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Forme de Blanchfield et cobordisme d’entrelacs bords

JuLieEN DuvaL

0. Introduction

Pour généraliser la forme de Blanchfield des noeuds [B] [L1] aux entrelacs
bords & m composantes on peut envisager d’employer le revétement abélien libre
ou bien le revétement libre du complémentaire de ’entrelacs (cf [S1] et [S2]).
Algébriquement les deux options présentent des difficultés supplémentaires par
rapport aux noeuds dues dans le premier cas a la dimension homologique de
Z[Z™] et dans le second a la non-commutativité de Z[F,] 1’anneau du groupe
libre 8 m générateurs. Cependant la similitude des dimensions homologiques de
Z|F,] et de Z[Z] permet d’étendre les méthodes de J. Levine [L1] aux entrelacs
bords. Nous obtenons ainsi les résultats suivants:

L’homologie médiane du revétement libre du complémentaire d’un entrelacs
bord en dimension impaire porte une dualité analogue a la forme de Blanchfield
des noeuds et on peut réaliser toutes les dualités a priori possibles par des
entrelacs simples. En corollaire on peut caractériser les polyndmes de Laurent
apparaissant comme polyndmes d’Alexander d’entrelacs simples et donner des
exemples d’entrelacs non scindables comme dans [CS1] et [Ka].

La forme de Blanchfield permet également d’identifier le groupe de cobordisme
des entrelacs bords en dimension impaire C,,_,(F,,) pour k=3 a un groupe de
Witt de formes d’enlacement, généralisant le résultat de C. Kearton pour les
noeuds [K]. Le calcul de Cy_(F,) a été effectué dans le cas général pour la
premiére fois par S. E. Cappel et J. L. Shaneson dans [CS1] en termes de
I'-groupes de chirurgie homologique et récemment par K. H. Ko [Ko] en termes
de matrices de Seifert dans la lignée du calcul de Levine pour les noeuds [L2].
Notre démonstration consiste, dans I’esprit de [CS1], a interpréter la forme de
Blanchfield comme une obstruction de chirurgie duale de J. R. Smith [Smi] au
moyen de résultats de P. Vogel [V1] [V2] liant dans une suite exacte le groupe de Witt
et les groupes de chirurgies homologique et classique.

Les résultats de cet article ont ét€ annoncés dans [D]. Je voudrais remercier
Jean Barge, qui m’a donné ce th¢me de recherche, pour ses encouragements et
son aide constante, ainsi que Pierre Vogel qui m’a mis sur la piste de I’anneau A.

Ce travail est organisé de la maniére suivante: Apres des définitions (§1) nous
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618 JULIEN DUVAL

étudions 'homologie du revétement libre (§2 et 3) et construisons la forme de
Blanchfield (§4 et 5). Les §6 et 7 sont consacrés au théor¢me de réalisation et a
ses applications aux polyndmes d’Alexander et aux entrelacs non scindables
tandis qu’aux §8 et 9 nous calculons Gy, _(F,,).

1. Définitions et notations

On travaille dans la catégorie différentiable. Un entrelacs L de dimension n a
m composantes est une sous-variété lisse orientée dans la sphére orientée S"*?,
homéomorphe a la somme disjointe de m sphéres S”.

Il est dit bord si ses composantes bordent dans $"*?/m sous-variétés lisses
orientables et disjointes. Notons X le complémentaire d’un voisinage tubulaire de
L dans $"*2. Son bord 3X est homéomorphe a m exemplaires du produit S* x S”
et en reliant les cercles S' X * en évidence dans X i un point-base de X on
construit les m méridiens de I'entrelacs. D’aprés [G] [CS1] la condition d’étre
bord coincide pour L avec lexistence d’'un homomorphisme 6:7,(X)— F,
envoyant méridiens ordonnés sur générateurs ordonnés du groupe libre a m
générateurs F,,. Un F,-entrelacs [CS1] sera la donnée d’un entrelacs bord L et
d’un tel homomorphisme 6. Notons X, le complémentaire de I’entrelacs trivial a
m composantes. D’aprés [CS1] il n’y a pas d’obstruction a2 matérialiser 6 en une
application de degré 1, f: (X, 3X)— (X,, 8X,) vérifiant les propriétés:

i) finduit 8 au niveau des groupes fondamentaux;

ii) f/3X est un homéomorphisme;

iii) f est une équivalence d’homologie entiére, i.e. induit des isomorphismes

en homologie entiére.

A un F,-entrelacs on peut associer le revétement libre X de son
complémentaire, revétement régulier de groupe F, induit par 6.

De méme on a le revétement libre X, de X,, et d’aprés la propriété i) de f on
peut relever fenf: X— X,.

On notera A [’anneau de groupe a involution Z[F,] identifié également a
Z{X;, ..., X, X7', ..., X;!) anneau des polynOmes de Laurent non com-
mutatifs 3 m indéterminées ainsi que ¥:A4— Z son augmentation. L’homologie
entiere de X a une structure de A-module a gauche via 6 que I’on notera H, (X, A)
tandis que la cohomologie de X a valeurs dans A sera notée H*(X, A).
Finalement, pour un A-module & gauche (resp. a droite) M on indiquera par:

« M la A-structure 2 droite (resp. a gauche) induite par I'involution de A;
* t(M) la Z-torsion de M;

* f(M) le quotient de M par t(M);

« ¢'(M) le A-module 2 droite (resp. a gauche) Ext, (M, A).
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2. Homologie libre &’ un F,-entrelacs

Comme pour les noeuds [L1], la dualité de Poincaré sur le revétement libre
X du complémentaire d’un F,,-entrelacs permet de déterminer les modules
Hi(X, A) au dessus de la dimension moiti€é par ceux qui sont en dessous. Plus
précisément on a le:

THEOREME 2.1. Soit (L, ) un F,-entrelacs de dimension n=1; on a les
isomorphismes

e*(t(H,_.(X, A))) 3t(H,(X, A)) pour tout i;
f(H(X, A)) 3 e'(f(H,+1-/(X, A))) pour i #0, n + 1.

La preuve suit celle de [L1] qui consiste & “raffiner” algébriquement la dualité
de Poincaré avec ici des différences provenant du fait que I’anneau A n’est plus

commutatif ni noethérien dés que m =2. Il conserve néanmoins de bonnes
propriétés:

PROPOSITION 2.2.

i) A est cohérent, i.e. le noyau d’un homomorphisme entre A-modules de
présentation finie est de présentation finie;
ii) A est de dimension globale 2;
iii) les A-modules projectifs de type fini sont libres;
iv) l’idéal d’augmentation I est libre de base les X; — 1 pour i=1, ..., m. De
plus (o= 1" =0;

V) on a des propriétés analogues a iv) pour ’anneau Z,[F,];

vi) Q[F,] est un F.I.R., i.e. tous ses idéaux (a droite ou a gauche) sont libres;
en particulier Q[F,,] est de dimension globale 1.

La majeure partie de cette proposition est citée dans [S1]. L’égalité
(Mn=ol"=0 résulte d’un théoréme de [F] ainsi que v) en adaptant la
démonstration tandis que la partie vi) provient de [Ba] cha. IV, §5.

Démonstration du théoreme 2.1. Pour éviter les problémes diis au bord de X
et aux dimensions 0 et n + 1, il est préférable de travailler avec I’homologie H,
du cone désuspendu de f: X — X, ainsi que sa cohomologie H* a coefficients A.
La différence avec H, (X, A) n’est pas grande car, f étant de degré 1, on a des

suites exactes courtes scindées: 0— H,— H;(X, A) TAN Hi(X,, A)—0 et, de plus,

H.X,, A) est nul sauf Hy(X,,A)=Z et H,,(X,, A)=A""". On a donc les
isomorphismes:

t(H) 3 t(H/(X, A)) pour tout i et f(H)) 3 f(H(X, A)) pouri#0,n+1. (1)
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Toujours puisque f est de degré 1 et f/3.X est un homéomorphisme, la dualité de
Dfl

Poincaré sur X a coefficients A produit les isomorphismes H; —— H"**>~' (W]

p. 25).

Comme A est de dimension 2 et si I'on sait que Hom, (H,, A) =0-ce qui
sera montré dans le §3 — la suite spectrale des coefficients universels calculant H*
dégénerera en des suites exactes courtes 0— e*(H,_,)—> H"** "> e'(H,,,_)—0
([L1], p. 6) que I'on interpréte via D' en:

0— €*(H,_;)— Hi—e'(H,4,-)—0. (2)

Pour conclure il suffit d’analyser les Z-torsions et les quotients Z-libres des
termes de (2). Pour cela il faut remarquer que les modules H, sont d’un type
particulier dont I’étude algébrique fait 'objet du prochain paragraphe.

3. Modules de type L

Ils sont introduits par N. Sato dans [S1] qui montre les deux propositions
suivantes, résultant des propriétés de A et de la Z-acyclicité du cone de f:

PROPOSITION-DEFINITION 3.1. Soit M un A-module a droite de
présentation finie. On a les équivalences:
i) Tor; (M, Z) =0 pour tout q;
ii) le Z-morphisme M"xM, (hy,...,h,)—=>YX"2 h(X;—1) est un
isomorphisme;
iii) M a une résolution libre 0—>A"% A°* % A'>M—0 avec r+t=s et les
p.g.c.d. des mineurs d’ordre r de #(U) et d’ordre t de (V') valent 1.

Un module satisfaisant a I’'une de ces propriétés sera dit de type L.

PROPOSITION 3.2. Les modules H; sont de type L pour tout i.

Pour m =1 on retrouve les modules de type K de [L1]. Dés que m =2 leur
comportement différe dans certains domaines. Par exemple la condition ii) de la
définition force un module de type L a avoir une Z-torsion nulle ou infinie si
m=2. Toujours sous cette condition un module de type L n’est pas
nécessairement de A torsion: Prenons le quotient de Z(X,, X,, Xi', X5') par
I’idéal a droite engendré par X, — 1+ X7'. C’est un module de type L et la classe
de X, + 1 n’y est pas de A-torsion car sinon on aurait une relation de dépendance
entre X,+ 1 et X; — 1+ X7'. L’idéal a droite (X, + 1, X; — 1+ X7!), serait alors
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principal dans Q(X,, X,, X;', X5') (cf. prop. 2.2vi)) ce qui est impossible
comme on le voit en passant 2 Q[X;, X,, X;', X5;'] par abélianisation des

variables. Cependant d’autres propriétés des modules de type K se conservent
bien:

LEMME 3.3. Soit M un module de type L; alors Hom, (M, A)=
Hom, (M, Z,[F,]) =0

Ce résultat termine la justification de la suite exacte (2) puisque les modules
H; sont de type L. Montrons par exemple que Hom, (M, A) =0. Soit ¢ dans
Hom, (M, A). D’aprées la propriété ii) d’'un module de type L, h dans M s’écrit
Y h(X;—1) et donc @(h)=X", @(h)(X;—1). Donc si I est [l'idéal
d’augmentation de A on obtient I'égalité Im(¢)-/=Im(¢p) qui donne par
itération Im (@) =( ;=0 I" =0 (prop. 2.2iv)).

Egalement de la méme maniére que pour les modules de type K on a les
isomorphismes suivants pour M de type L tel que f(M) soit de présentation finie:

e'(f(M))3e' (M) et e*(M)3e*(t(M)). )

Ce résultat se montre en analysant la longue suite exacte des Ext tirée de
0—t(M)—> M— f(M)—0 (cf [L1]) a la lumiére du lemme suivant:

LEMME 3.4. i) Soit M un A-module a droite de présentation finie, alors
e’ (M) est de Z-torsion;
ii) Soit M de type L, alors e'(M) est sans Z-torsion.

Démonstration. Pour le i) il suffit de voir que Q[F,]®,Exti (M, A)
est nul. Or, comme Q[F,] est plat sur A et que M a une résolution
libre finie (par cohérence de A), Q[F,] ®.Exti (M, A) est isomorphe a
Extgr, (M ® 4 Q[F,], Q[F,]) qui est nul puisque Q[F,] est de dimension 1
(prop. 2.2vi)).

Le ii) résulte du morceau de la suite des Ext:Hom, (M, Z,[F,])—

e'(M) > e'(M) tirée de 0> A > A— Z,[F,,]— 0 et du lemme 3.3.

En mettant ensemble (2), (3) et le lemme 3.4 on achi&ve la preuve du
théoréme 2.1.

Remarque. Dans le cas classique (n =1) le théoréme 2.1 fournit des renseig-
nements sur le noyau G de 6:7m,(X)—F,. En effet G/G’' = H\(X, A) et donc
G/G' est sans Z-torsion car t(G/G') 3 €*(t(Z)) = 0. De plus G/G' est de type L,
en particulier si G n’est pas parfait (G #G’) et m =2 alors G/G' n’est pas de
type fini sur Z et G n’est pas de type fini (cf prop. 3.1ii)).




622 JULIEN DUVAL

4. Formes d’enlacement et Panneau A

En dimension impaire n =2k — 1 le théoréme 2.1 donne un isomorphisme
f(H (X, A)) 3 e'(f(H (X, A))). Cest une dualité car e'(M) est la bonne notion
de dual (avec bidualité) pour un module M de type L sans Z-torsion, comme le
suggere la proposition suivante montrée par Levine dans le cadre des noeuds
[L1]:

PROPOSITION-DEFINITION 4.1. Modules de type S.

a) Soit M de type L, on a les équivalences:

i) M est sans Z-torsion;

ii) e’(M)=0;

iii) M a une résolution 0— A? -5 A?— M — 0 avec det (#(T)) = %1;
un module de type L satisfaisant a I’une de ces propriétés est dit de type S.

b) Soit M de type S, alors e'(e'(M)) est canoniquement isomorphe a M.

On peut ainsi donner un sens a la symétrie d’une telle dualité:

DEFINITION 4.2. e-forme d’enlacement. C’est un couple (M, @) oi:
i) M est de type S et @ : M 5 e'(M) est un isomorphisme;
ii) @ est e-symétrique pour e£==%1, ie. si @ est la duale de ¢

(¢: M e'(e’(M)) 5 e'(M)), alors @ = £¢.

On peut retrouver une définition plus familiére des formes d’enlacement [V1]
en termes de dualité a valeurs dans A/A, I'anneau A étant une extension
adéquate de A. Pour cela, on voudrait pouvoir inverser toute matrice de
présentation d’'un module de type S dans A. Notons 2 I’ensemble de ces matrices
de présentation, i.e. des matrices carrées T a coefficients dans A telles que
det(F(T))==x1, ot F:A—Z est 'augmentation. Dans le cas commutatif
(m=1), A est simplement 'anneau de fractions obtenu en inversant les
polyndmes de A d’augmentation %1, i.e. tous les déterminants des matrices de 2.
Pour m > 1, la construction doit faire intervenir 2 tout entier et I’anneau A est
alors engendré par A et autant de générateurs T; que de coefficients T; pour
chaque matrice T de 2, soumis aux relations T'T = TT'=1d. 1l en résulte un
homomorphisme A:A— A d’anneaux a involution (car X est stable par
'involution qui & T associe son adjointe T*) possédant la propriété universelle
suivante ([C], p. 255): si u:A— B est un homomorphisme d’anneaux Z-inversible
(i.e. les matrices de u(X) sont inversibles dans B), alors il se factorise de mani¢re
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unique via A:

De plus, comme Q[F,] est un F.I.R. (prop. 2.2vi)), il posséde un corps des
fractions universel K ([C], p. 283). On en déduit que A est injectif puisque
I’enchainement A & Q[F,,] < K est injectif et Z-inversible. Voici I'interprétation
des formes d’enlacement a I'aide de A:

PROPOSITION 4.3. Soit (M, @) une e-forme d’enlacement, alors e'(M) est
isomorphe a Hom, (M, A/A) et @ induit une forme M @®; M— A/A non
dégénérée et e-hermitienne au sens habituel pour I’involution de A/A.

En effet, on déduit de la suite exacte courte 0— A2 A— A/A—0 la suite
exacte Hom, (M, A)— Hom, (M, A/A) Z, e'(M)— Ext} (M, A). Or, M étant de

type S, il a une résolution courte 0— A7-5 A7—> M—0 avec T (et donc T*)
dans X. Il s’en suit que Hom, (M, A)=Ker (A(T*)) et Exti (M, A)=
Coker (A(T*)) sont nuls car A(T*) est inversible, et donc 3* est un isomorphisme.

Remarque. Pour cette traduction des formes d’enlacement, toute extension de
A Z-inversible conviendrait également (par exemple le corps des fractions K de
Q[E,]), on a choisi parmi elles I’extension universelle A.

5. La forme de Blanchfield

En dimension impaire la dualité fournie par le théoréme 2.1 sur ’homologie
médiane est symétrique:

THEOREME 5.1. Soit (L, 8) un F,.-entrelacs de dimension 2k —1, k= 1.
L’isomorphisme  f(H (X, A)) 3 e'(f(Hi (X, A))) est une (—1)*"'-forme
d’enlacement que !’on appellera forme de Blanchfield du F,,-entrelacs et notera
B(L, 6).

Remarque. Dans le cas des noeuds (m=1) on retrouve la forme de
Blanchfield de [L1].
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Pour montrer cette symétrie on va traduire plus géométriquement la forme de
Blanchfield ([L1], p. 13). Triangulons X et appelons X' le complexe dual de X, on
a alors une forme d’intersection A-linéaire a gauche: C,(X) ®; Cy41-,(X")— A4,
(a, B)— a - B telle que:

i) o - ﬁ - (_1)q(2k+1—q) ‘m;

4
ii) a - 3 =(—1)?a - 3B ol « est une g-chaine et B une (2k + 2 — q)-chain(e.

On en déduit une forme I:H, (X, A/A)®; H (X, A)> A/A qui a2 o dans
H, (X, A/A) représenté par YgnicA:® a; dans A®, Cyi(X) et 2 7 dans
H (X, A) représenté par le cycle B associe I(0, T) = Vgnie (B - @;)A; mod A.
Soit alors 3, :H; (X, A/A)— H,(X, A) le bord en homologie associé a la
suite exacte de coefficients 0—A— A— A/A— 0. Les relations (4) impliquent:

I(0, 3,0")=(—1)**1(0’', 3,0) pour o et o' dans H,. (X, A/A). (5)

De plus 2, est en fait un isomorphisme ce qui permet de construire une
forme B':H (X, A) == H,, (X, AJA)-5> Hom, (H.(X, A), A/A). L’égalité (5)
montre que B’ est (—1)**'-symétrique et il n’est pas difficile de voir que B’ induit
précisément la forme de Blanchfield sur f(H, (X, A)) (prop. 4.3). Prouvons pour
finir que 9, est inversible. 11 suffit pour cela de montrer la nullité de H, . (X, A)
et H(X, A) ou encore (cf §2) Pacyclicité de A®, C,(f). Or, f étant une
équivalence d’homologie entiére, Z ® , C,(f) est acylique. On dispose donc
d’une homotopie a zéro de ce complexe que I’on peut relever en un morphisme H
sur C,(f) puisque C,(f) est libre sur A et que "augmentation & est surjective.
Par construction de H on a ¥(0H + H3) =1d et donc dH + HJ est inversible
dans A. Si K est son inverse, on vérifie que KH est une homotopie a zéro de

A®,C.H.

6. Le théoreme de réalisation

Il s’agit de la réalisation de toutes les formes d’enlacement par des formes
de Blanchfield d’entrelacs simples, i.e. de F,-entrelacs (L, 8) de dimension
2k — 1, k =2 vérifiant que 0 est un isomorphisme et 7,(X) =0 pour 1<i<k.
Homotopiquement, le complémentaire d’un tel entrelacs (non trivial) est le plus
simple possible [G]. De plus, par le théoréme 2.1, H, (X, A) est déja de type S.

La forme de Blanchfield d’un entrelacs simple correspond donc a I’enchainement
D!

H,(X, A) 3 H.(X, 90X, A) —> H**(X, A) 3 e'(H (X, A)).




Forme de Blanchfield et cobordisme d’entrelacs bords 625

THEOREME 6.1. Soit (M, @) une e-forme d’enlacement. Alors pour tout
entier k =3, pair si € =—1 et impair si € = +1, il existe un entrelacs simple de
dimension 2k — 1 dont la forme de Blanchfield est isomorphe a (M, ¢).

Ici I'isomorphisme de deux formes d’enlacement (M;, @;) i=1, 2 signifie
I’existence d’un isomorphisme y faisant commuter le diagramme

M1'+’M2

[ 2] l? ‘7213

el(M)) <2 e'(M,).

Démonstration du théoreme 6.1. Elle consiste, dans l’esprit de [L1] (th.
12.1), a construire une variété a bord connexe par attachements d’anses sur un
modele standard, puis a “disjoindre’ le bord pour obtenir le complémentaire de
I’entrelacs désiré.

Pour commencer on constate, comme dans la proposition 12.3 de [L1], que ¢
admet un relevement symétrique a une résolution de M: Il existe deux matrices

carrées T et S faisant commuter le diagramme

0 — AT —> A7 —>M —>0

S

0 > A7 15 A7 — ei(M) — 0

avec det (¥(T))=x1 et ST est e-symétrique paire i.e. ST est de la forme
R + ¢R*.
Puis on construit la variété a bord connexe grace a ces matrices:

LEMME 6.2. Soit k =3, pair si € = —1, impair si € = +1. Il existe une variété
a bord N de dimension 2k + 1 telle que:
i) 1;(ON)3 x,(N)3 F,, 7(N)=0 pour 1 <i<k;
ii) on a un diagramme commutatif

0 — A’—5 A"— H,(N,A) — 0

N

0 — A5 47— H*'(N,A) — 0

ou J provient de la forme d’intersection de N (cf §5);
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iii) AN est difféomorphe a la somme connexe # 7L, (S' X Z;) ot les Z; sont des
spheres topologiques.

Admettons provisoirement ce résultat. On construit le complémentaire X
désiré de la maniere suivante: Si Y est la variété obtenue par somme connexe des
m variétés S'x X;x[0,1] dans les bords S'xZ3;x0, son bord 3Y est
difféomorphe a SN LIZ,(S'x 3;). On pose X=NU;yY. Cest bien un
complémentaire d’entrelacs car si I'on “rebouche” le bord de X par LI72, (D* x
;) on obtient une spheére d’homotopie (propriétés i) et ii) de N) donc
topologique [Sm1] qu'on peut supposer étre S***' en modifiant la structure
différentiable de X dans un petit disque. Enfin grace aux propriétés de N cet
entrelacs est simple et porte une forme de Blanchfield isomorphe a (M, ¢).

Il reste a2 montrer le lemme 6.2 pour clore la preuve du théoréme:

Construction de N. Notre modele de départ est
m q

No= #5(S'x D*), #5(S* x D**),
i=1 j=1

ou le symbole # ; signifie que ’on fait la somme connexe dans les bords. On a
T(BNy) 3 (Ny) 3 F,,  i(ONg) = 1:(Np) =0 pour 1<i<k, m(No)3A? et
7 (BN,) est libre sur A de base les e;=[(S* x *),] et f=[(*xS*);] pour
j=1,...,q. Soient maintenant les classes de m,(3N,) données par: a,=
Yo tye;+ Xy sf pour I=1,...,q ou les t; et s; sont les coefficients des
matrices T et S. Puisque ST est e-symétrique paire, on vérifie qu’intersections
mutuelles et autointersections des classes a; (cf [W] p. 45) dans AN, sont nulles.
On peut ainsi construire, par le procédé de Whitney (k =3), des plongements
disjoints ,: 8% x D* < AN, dont les dmes représentent les a,, On attache g
k + 1-anses 2 N, le long des , pour obtenir N =N, U,, L17_; (D**' x D¥),. Par
construction N satisfait déja aux conditions i) de I’énoncé.

Démonstration de ii). En utilisant la décomposition en anses de la variété N
on vérifie que C. (N, A) est libre de base les dmes des anses (D**'Xx %),
I=1,...,q, que Ci(N, A) est libre de base les spheres ($* x *),j=1,...,qet
Que le bord 3:C,1(N, A)—> C(N, A) a T comme matrice dans ces bases par
construction -des plongements 1,. On en déduit la suite exacte 0— A7 -5 47—
H, (N, A)— 0. En faisant de méme pour la cohomologie dans les bases duales on

obtient la suite exacte 0— A? L5 A9— H**!(N, A)— 0. Enfin en calculant les



Forme de Blanchfield et cobordisme d’entrelacs bords 627

intersections des chaines des bases précédentes, on trouve:
(DF*E X %), - (8% X %), = (8% X %) -5, (S¥ X %), =5, ce qui justifie
la commutation du diagramme.

Reconnaissance du bord de N. Par construction de N on a une fleche
g:ON— #2,(S'x8*™"),. Cest une équivalence dhomotopie car
H,_(dN, A) = H, (AN, A) =0 ce qui résulte du fait que J, et donc ’homorphisme
H (N, A)— H, (N, AN, A), sont des isomorphismes (diagramme ii)), ainsi que
d’une analyse de la longue suite exacte d’homologie relative de N (cf [L1], p. 37).
On est donc dans la situation du théoréme 3 de [Ca] qui permet de scinder ON en
une somme connexe de m variétés du type d’homotopie de S' X §%*~! donc de la
forme (S'x %) # X (cf [L1], p. 38) ou les variétés X, et 3/ sont des sphéres
topologiques de dimensions respectives 2k — 1 et 2k. En attachant des 2-anses le
long des cercles ainsi en évidence dans AN on vérifie que la somme connexe
# 7L, X borde une variété contractile, donc est difféomorphe a $§* [Sm2]. On en
déduit le difféomorphisme ON 35 # -, (§' X X}).

7. Applications du théoréme de réalisation

7.1. Exemples de modules d’ Alexander

Appelons module d’Alexander le module H,(X, A) pour un entrelacs simple
de dimension 2k — 1. Les théorémes 5.1 et 6.1 caractérisent les A-modules a
droite apparaissant comme module d’Alexander: 1l faut et il suffit qu’ils soient de
type S et supportent une (—1)**!-forme d’enlacement.

Par exemple. Soit T une matrice carrée a coefficients dans A telle que
det (¥(T))=£1. Si T est symétrique (resp. antisymétrique) alors pour tout
entier k =3 impair (resp. pair) il existe un entrelacs simple de dimension 2k — 1
dont le module d’Alexander est de présentation T.

En effet il suffit de remarquer que M = Coker (T) supporte une e-forme
d’enlacement évidente @ dont une résolution est:

0 — A-15 A7 - M >0

d b

0 —> A7 15 47— (M) — 0.
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En particulier, en dimension 2k —1 avec k impair on obtient comme modules
d’Alexander tous les modules cycliques A/aA ou a =a et ¥(a)= £1.

7.2. Exemples de polynomes d’Alexander

Les polynomes d’Alexander sont liés au revétement abélien libre X de X
associ€¢ au noyau de 'abélianisation m;(X)— Z™. Notons B I'anneau de groupe
Z[Z™)=7Z|X,, ..., Xm, X1, ..., X;;']. Soit L un entrelacs simple de dimension
2k — 1. D’aprés [S2] le B-module H,(X) admet une présentation de la forme
0— B?— B — H,(X)— 0. Le polynéme d’Alexander de L, noté P,, est le
déterminant de 7. C’est un invariant du module H,(X) vérifiant les propriétés
suivants [S2]: ‘

P(1,...,1)=%1 et P=P, (6)
qui, en fait, caractérisent les polyndmes d’Alexander:

COROLLAIRE. Soit p un polynéme de B vérifiant (6); alors il existe un
entrelacs simple de dimension 2k —1, k impair =3, dont p est le polynéme
d’Alexander.

En effet, on peut toujours trouver un polyndme g relevant p dans A et tel que
g = q et ¥(q) = 1. Par les exemples 7.1 il existe un entrelacs simple de la bonne
dimension et de module d’Alexander A/gA qui convient.

Remarque. Pour k pair =3, la méme méthode permet de réaliser comme
polyndme d’Alexander le déterminant p d’une matrice antisymétrique a
coefficients dans B si p(1,...,1)= %1, par exemple les polynomes de la forme

1+ pyp, avec p; = —p.

7.3. Exemples d’entrelacs a 2 composantes non cobordants a des entrelacs scindés.

Un probléme important de la théorie des entrelacs — resté ouvert jusqu’a
P’article de Cappell et Shaneson [CS1] (cf aussi [Ka]) — a été de savoir s’il existait
des entrelacs non cobordants a des entrelacs scindés, i.e. a des entrelacs dont les
composantes sont plongées dans des disques disjoints de la sphére ambiante. La
résponse est qu’il y en a beaucoup: Le cobordisme des entrelacs ne se réduit pas
au cobordisme de leurs noeuds composantes. On va en exhiber des exemples a 2
composantes grice au théoreme de réalisation mais auparavant rappelons une
condition nécessaire de cobordisme (cf [SS] Th. 3.2):
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DEFINITION. Deux entrelacs (quelconques) L, et L, sont cobordants s’il
existe une sous-variété lisse orientée V de codimension 2 dans $"*% x [0, 1] telle
que:

i) V coincide avec L, et L, aux niveaux 0 et 1;

ii) V est homéomorphe a L, X [0, 1].

Critére. Si L et L, sont deux entrelacs simples a 2 composantes cobordants il
existe un polynome q dans Z[X, X '] tel que P, (X, X)P, (X, X) = 144.

Nos exemples sont les entrelacs simples @ 2 composantes L, de polyn6me
d’Alexander P, (X;, X;) =1+ r(X; — X7')(X; — X7'), r entier positif, fournis par
le paragraphe précédent. Ces entrelacs satisfont les trois propriétés:

i) L, est brunnien, i.e. a des composantes non-nouées;

ii) L, n’est pas cobordant a I’entrelacs trivial,

iii) L, n’est pas cobordant & L, pour r #r'.

Ils répondent bien au probléme car un entrelacs brunnien cobordant a un
entrelacs scindé est forcément cobordant a I’entrelacs trivial. Montrons ces trois
faits:

Pour le i) il suffit de remarquer que les composantes de L, sont des noeuds
simples de polyndme d’Alexander égal a P, (X, 1) ou P, (1, X) c’est-a-dire a 1.
Ces composantes ont ainsi des complémentaires du méme type d’homotopie que
celui du noeud trivial, elles sont donc non-nouées [L3].

Les points ii) et iii) résultent du critére cité. En effet, les polyndmes P, (X, X)
sont irréductibles dans Z[X, X~'], comme on le voit en les décomposant dans
R[X, X7'].

8. Le contexte du F,,-cobordisme

Pour avoir une notion de cobordisme adaptée aux F,,-entrelacs et compatible
a la somme connexe, il est nécessaire de renforcer la définition du paragraphe
précédent:

DEFINITION 8.1 [CS1]. Deux F,-entrelacs (Lo, 6,) et (L;, 8,) sont E,-
cobordants s’il existe un cobordisme V dans $”*2 x [0, 1] (cf le §7) avec en outre:
iii) Si U est le complémentaire d’un voisinage tubulaire de V dans $"*? x [0, 1]
prolongeant X, et X; aux niveaux 0 et 1, il existe 8:m,(U)— F,, coincidant, a un

automorphisme intérieur de F,, prés, avec les 6; via les homomorphismes naturels
ﬂl(X,)""’ ﬂ](U), i= 0, 1.
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Géométriquement cela correspond a I'existence de m sous-variétés disjointes
dans $"*? X [0, 1] bordant les composantes de V [Ko].

NOTATION. On appelle C,(F,,) I'ensemble des F,,-entrelacs de dimension n
a F,,-cobordisme pres.

Il existe une somme connexe pour les entrelacs bords [Ko] qui fait de C,(F,,)
un groupe abélien. On la voit ainsi: Plagons notre premier entrelacs bord dans
’hémisphere Nord de §7*2, et le second dans I’hémisphére Sud, ainsi que leurs
surfaces de Seifert respectives. On connecte alors chaque composante du premier
entrelacs a la composante correspondante du second via le bord d’un n-
épaississement d’un arc évitant (sauf a ses extrémités) toutes les surfaces de

Seifert.

Par ailleurs d’apres [CS1] le groupe C,(F,,) est trivial pour n pair. Dans le cas
n impair, on dispose d’'un objet — la forme de Blanchfield — dont on aimerait bien
faire un invariant de F,,-cobordisme. Pour cela, il faut définir une relation
d’équivalence sur les formes d’enlacement:

DEFINITION 8.2. Soit (M, @) une e-forme d’enlacement.

a) Soit / un sous-module de M et i:I—>M son injection canonique.
L’orthogonal I+ de I pour @ est le sous-module ¢~ '(Ker (i*)) de M.

b) La forme (M, @) est neutre s’il existe un sous-module / de M tel que:
i) 1 et M/I sont de type S;
i) =1

Un tel sous-module / de M sera appelé un lagrangien de (M, @).

NOTATION. On appelle W*(A, ) le groupe quotient du monoide — pour la
somme orthogonale —des e-formes d’enlacement par la relation d’équivalence
engendrée par: (M;, ¢,) ~(M,, ;)& (M, ® M,, ¢, D —¢,) est neutre.

Remarques. a) En utilisant la définition des formes d’enlacement faisant
intervenir I’anneau A on retrouve ainsi un groupe de Witt au sens de [V1].

b) En travaillant davantage on peut montrer qu’en fait la relation ~ est déja
une relation d’équivalence.

On a également un critére de neutralité qui sera utile:

PROPOSITION 8.3. Soient (M, @) une ¢&-forme d’enlacement et I un
sous-module de type S de M. On suppose de plus que I est contenu dans son
orthogonal I+ et que I*/I est de Z-torsion. Alors (M, @) est neutre.
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Démonstration. On se propose de voir que /* est un lagrangien de (M, ¢). 1
n’est pas difficile de montrer que /* et M/I* sont de type L, grace au lemme des
5 par exemple, et donc de type S puisque I est sans Z-torsion et que M/I*
s’injecte, par définition de I+, dans e'([) lui aussi sans Z-torsion (lemme 3.4).

Vérifions I’égalité [** =1["*. Si I'on précise les inclusions en présence par
IS 1+ d>Monalt=g@ '(Ker(i* o j*)) et I'* = ¢~ '(Ker (j*)). Il suffit donc de
prouver l'injectivité de i*, qui résulte de la suite exacte

e'(I*/[)—e'(I*) > e'(l) tirée de 0—1-5>1*—[*/I—0

par dualisation, sachant que e'(I*/I) 3 e'(f(I*/I)) = 0 (isomorphismes (3)).

9. Calcul du F,,-cobordisme

THEOREME 9.1. Pour k=3, la forme de Blanchfield produit un isomor-
phisme de groupes abéliens B : Cy._,(E,)— WA, X), [(L, 8)]—[B(L, 6)].

Démonstration. 11 suffit de voir que B est bien définie, additive et injective
puisque sa surjectivité résulte du théoréme de réalisation 6.1.

Compatibilité de B aux relations d’équivalence. Soient (L,, 6,) et (L,, 6,)
deux F,,-entrelacs F,-cobordants. Montrons que ¢ = B(L,, 69) © —B(L,, 0,) est
neutre: On dispose du complémentaire U du cobordisme et de 6:7,(U)— E,
coincidant avec 6, et a8, via les inclusions. L’automorphisme intérieur a de F,,
ne va pas jouer de réle car on peut vérifier que B(L,, 6,) et B(L,, o~ 8,) sont
isomorphes. On peut donc supposer que 'action de F,, induite par 0 sur le revétement
libre de U prolonge celles induites par les 6; sur les revétements X;. En interprétant la
dualité de Poincaré a coefficients A sur U avec les méthodes des §2 et 3, on obtient le
diagramme commutatif

e (f(H (U, A))) > e (f(Hi(Xo, A))) ® €' (F(H(X:, A))) > e'(f(Hi1(U, U, A)))
zT zT ® zT

F(Hi(U, 3U, A) 25 f(H(Xo, A) OF(Hi(X:, A)) S f(H (U, A))

ol les lignes sont “presque” exactes: Par exemple Ker (i,)/Im(3,) est de
Z-torsion. On vérifie que le module / =Im(3,), dont 'orthogonal pour ¢ est
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Ker (i,) (cf le diagramme), satisfait aux hypothéses de la proposition 8.3. Donc ¢
est neutre.

Additivité de B. Puisque chaque classe de F,-cobordisme contient un
entrelacs simple [CS1] il suffit de voir que la forme de Blanchfield d’'une somme
connexe (L, 8) de deux entrelacs simples (L;, 6;), i =0, 1, est équivalente a
B(L,, 6,) D B(L,, 6,). Plagons L, et L, dans les hémisphéres Nord et Sud de la
sphére ambiante $**'. La donnée des isomorphismes 6; fournit des méridiens
privilégiés des L; basés en un méme point, et donc m arcs reliant les composantes
correspondantes des entrelacs et intersectant la sphére équateur S**
transversalement en m points distincts. On construit la somme connexe le long de
ces arcs.

Soient X le complémentaire de L, M, et M, les parties de X situées
respectivement dans les hémisphéres Nord et Sud, Y, (resp. Z,) le
complémentaire de I’entrelacs trivial de m sphéres (resp. disques) de codimension
2 dans $%* (resp. (D**', $%*)). On a les difféomorphismes M;y, Z, = X; qui
montrent que les variétés M; sont proches des complémentaires X; des entrelacs
L;. En particulier les homologies H,(M;, A) portent des formes d’enlacement
isomorphes a B(L;, 8,). Grace au difféomorphisme X =M, y, M, et a des
arguments standards on voit que L est un entrelacs simple muni d’'un isomor-
phisme 6 induit par les 68, et que B(L, 6) est isomorphe a B(L,, 6,) ® B(L,, 6,).

Injectivité de B. Soit (L, 6) un F,,-entrelacs dont la forme de Blanchfield est
équivalente a zéro; il faut montrer que (L, ) est F,-cobordant a l’entrelacs
trivial.

La premiére étape est de ramener ce probléme a un énoncé de chirurgie duale
au sens de [Smi]. En effet si X est le complémentaire de L et f:(X, 3X)—
(X,, 8X,) une matérialisation de 6 (cf §1), on a le résultat suivant ([CS1] p. 35,

[Ko)):

LEMME 09.2. Soit un cobordisme abstrait F:(U, X, X;, 0X X [0, 1])—
(X, x[0,1], X, x0, X, x1,3X, x[0, 1]) tel que:
i) 'image de I’homomorphisme m,(X)— n,(U) engendre normalement
7 (U);
ii) F/X=f; F/X, et F/3X X [0, 1] sont des équivalences d’homotopie;
iii) F est une équivalence en homologie entiére;
alors (L, 6) est E,,-cobordant a I’entrelacs trivial.

Pour celd on montre, grace au théoréme du h-cobordisme (k =3), que U est
le complémentaire d’un F,,-cobordisme ambiant et X, est alors le complémentaire
de I’entrelacs trivial par le critere homotopique de non-nouage de [G].
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La deuxiéme étape est la construction d’un cobordisme satisfaisant aux
hypothéses du lemme 9.2. Comme dans [Smi] (th. 3.5) on procéde en deux
temps: Par chirurgie classique sur f on obtient un cobordisme vérifiant les
hypothéses i) et ii) puis par chirurgie homologique [CS2] sur ce cobordisme on
satisfait en plus la condition iii).

Dans ce but on va relier la forme de Blanchfield aux obstructions de chirurgie
par la suite exacte

Lot o(Fn) =5 Do F) =2 WA, 2) L5 Ly 1(E)—0 )

ou les groupes L, et I', sont les groupes de chirurgies classique [W] et
homologique [CS2]. Elle se déduit de la suite relative pour la localisation
AA— ALY (A)— Ly 2(A)— L (M) — LA .1 (A)— L% . 1(A) [W] apres les
identifications dues a Vogel:

Li(A)=T4(F) [V2] et Li,,(A)=WY"(4, 2) [Vi]

sachant que I'%..(%) est un sous-groupe de L% .,(e) [CS2] qui est nul ([W]
§13A). Le h en exposant tombe car le groupe de Whitehead Wh (F,,) est nul [Ba].
Cette suite exacte (7) est également une version simplifiée de la suite exacte 4.1
de [Smi] et en posséde les propriétés de naturalité par rapport aux obstructions
géométriques (cf [Smi], p. 439).

On peut maintenant achever la preuve de l'injectivité de B: L’application
f:X— X, a une obstruction de chirurgie o(f) dans L. ,(F,). Par naturalité de
(7) o(f) =j(B(L, 8)) =0 et donc, par chirurgie dans I'intérieur de X, on construit
un cobordisme G entre f et une équivalence d’homotopie f,: X,— X, vérifiant les
conditions i) et ii) du lemme 9.2. A G on peut associer son obstruction de
chirurgie homologique or(G) dans I, .,(%). La naturalité de (7) assure que
3(o{G)) = B(L, 8) =0 et donc, puisque (7) est exacte, il existe B dans L, ,(F,)
tel que i(B) = o{G). Grice au théoréme 6.5 de [W] on réalise (—B) comme
I’obstruction de chirurgie d’un cobordisme H entre f, et une équivalence
d’homotopie f;:X,— X,. En recollant G et H sur f, on obtient un cobordisme
dont l'obstruction de chirurgie homologique est nulle, par construction. On

pourra donc le ‘“‘chirurgiser” pour obtenir 1’équivalence d’homologie entiere
désirée.

Remarque finale. Dans [CS1] Cappell et Shaneson obtenaient la suite exacte
scindée:

0— f2k+2(g)"" Cok-1(Fn) = (P )" — 0
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pour k=3 et ot [y, o(F) = Coker (Lox+2(Fn) = Dok F)) €t Poy = Z, (resp. Z)
si k est pair (resp. impair).

Le lien avec notre résultat réside dans la naturalité de la suite (7) qui assure la
commutativité du diagramme suivant:

0“"sz+z(~0})“'>Czk—l(Fm)“"(sz)m“"O
| 51 1)
0— f2k+2(g)—* W(-I)M(A; )= Ly +1(F)—0

ou Iisomorphisme de droite provient de résultats classiques ([Ca], [Sh] et [W]
§13A).
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