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Forme de Blanchfield et cobordisme d&apos;entrelacs bords

Julien Duval

0. Introduction

Pour généraliser la forme de Blanchfield des noeuds [B] [Ll] aux entrelacs
bords à m composantes on peut envisager d&apos;employer le revêtement abélien libre
ou bien le revêtement libre du complémentaire de l&apos;entrelacs (cf [SI] et [S2]).
Algébriquement les deux options présentent des difficultés supplémentaires par
rapport aux noeuds dues dans le premier cas à la dimension homologique de

Z[Zm] et dans le second à la non-commutativité de Z[Fm] l&apos;anneau du groupe
libre à m générateurs. Cependant la similitude des dimensions homologiques de

Z[Fm] et de Z[Z] permet d&apos;étendre les méthodes de J. Levine [Ll] aux entrelacs
bords. Nous obtenons ainsi les résultats suivants:

L&apos;homologie médiane du revêtement libre du complémentaire d&apos;un entrelacs
bord en dimension impaire porte une dualité analogue à la forme de Blanchfield
des noeuds et on peut réaliser toutes les dualités a priori possibles par des

entrelacs simples. En corollaire on peut caractériser les polynômes de Laurent
apparaissant comme polynômes d&apos;Alexander d&apos;entrelacs simples et donner des

exemples d&apos;entrelacs non scindables comme dans [CS1] et [Ka].
La forme de Blanchfield permet également d&apos;identifier le groupe de cobordisme

des entrelacs bords en dimension impaire Qit-.1(Fm) pour fc^3 àun groupe de

Witt de formes d&apos;enlacement, généralisant le résultat de C. Kearton pour les

noeuds [K]. Le calcul de C2k-i(Fm) a été effectué dans le cas général pour la

première fois par S. E. Cappel et J. L. Shaneson dans [CS1] en termes de

T-groupes de chirurgie homologique et récemment par K. H. Ko [Ko] en termes
de matrices de Seifert dans la lignée du calcul de Levine pour les noeuds [L2].
Notre démonstration consiste, dans l&apos;esprit de [CS1], à interpréter la forme de

Blanchfield comme une obstruction de chirurgie duale de J. R. Smith [Smi] au

moyen de résultats de P. Vogel [VI] [V2] liant dans une suite exacte le groupe de Witt
et les groupes de chirurgies homologique et classique.

Les résultats de cet article ont été annoncés dans [D]. Je voudrais remercier
Jean Barge, qui m&apos;a donné ce thème de recherche, pour ses encouragements et

son aide constante, ainsi que Pierre Vogel qui m&apos;a mis sur la piste de l&apos;anneau A.
Ce travail est organisé de la manière suivante: Après des définitions (§1) nous
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618 JULIEN DUVAL

étudions l&apos;homoiogie du revêtement libre (§2 et 3) et construisons la forme de

Blanchfield (§4 et 5). Les §6 et 7 sont consacrés au théorème de réalisation et à

ses applications aux polynômes d&apos;Alexander et aux entrelacs non scindables
tandis qu&apos;aux §8 et 9 nous calculons C2k-\{Fm).

1. Définitions et notations

On travaille dans la catégorie différentiable. Un entrelacs L de dimension n à

m composantes est une sous-variété lisse orientée dans la sphère orientée Sn+2,

homéomorphe à la somme disjointe de m sphères Sn.

Il est dit bord si ses composantes bordent dans Sn+2/m sous-variétés lisses

orientables et disjointes. Notons X le complémentaire d&apos;un voisinage tubulaire de

L dans 5&quot;+2. Son bord dX est homéomorphe à m exemplaires du produit S1 x S&quot;

et en reliant les cercles S1 x * en évidence dans dX à un point-base de X on
construit les m méridiens de l&apos;entrelacs. D&apos;après [G] [CS1] la condition d&apos;être

bord coïncide pour L avec l&apos;existence d&apos;un homomorphisme 0:rti(X) —&gt;Fm

envoyant méridiens ordonnés sur générateurs ordonnés du groupe libre à m

générateurs Fw. Un Fnrentrelacs [CS1] sera la donnée d&apos;un entrelacs bord L et
d&apos;un tel homomorphisme 0. Notons X* le complémentaire de l&apos;entrelacs trivial à

m composantes. D&apos;après [CS1] il n&apos;y a pas d&apos;obstruction à matérialiser 6 en une
application de degré l,f:(X9 dX)-+(X*, dX*) vérifiant les propriétés:

i) /induit 6 au niveau des groupes fondamentaux;
ii) f/dX est un homéomorphisme;
iii) /est une équivalence d&apos;homologie entière, i.e. induit des isomorphismes

en homologie entière.
A un Fm-entrelacs on peut associer le revêtement libre X de son

complémentaire, revêtement régulier de groupe Fm induit par 6.

De même on a le revêtement libre X* de X*, et d&apos;après la propriété i) de/on
peut relever fenf:X-*X*.

On notera A l&apos;anneau de groupe à involution Z[Fm] identifié également à

Z(Xlf Xm&gt; Xïl,. Xml) l&apos;anneau des polynômes de Laurent non com-
mutatifs à m indéterminées ainsi que 9&lt;:A—&gt;Z son augmentation. L&apos;homoiogie

entière de X a une structure de A -module à gauche via 6 que l&apos;on notera H*(X, A)
tandis que la cohomologie de X à valeurs dans A sera notée H*(X, A).
Finalement, pour un ^4-module à gauche (resp. à droite) M on indiquera par:
• M la ^4-structure à droite (resp, à gauche) induite par l&apos;involution de A;
• t(M) la Z-torsion de M;
•/(M) le quotient de M par t(M);
• e&apos;(M) le A-module à droite (resp. à gauche) Ext^ (M, A).
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2. Homologie libre d9 un Fm-entrelacs

Comme pour les noeuds [Ll], la dualité de Poincaré sur le revêtement libre
X du complémentaire d&apos;un Fm-entrelacs permet de déterminer les modules

Ht(X, A) au dessus de la dimension moitié par ceux qui sont en dessous. Plus

précisément on a le:

THÉORÈME 2.1. Soit (L, 9) un Fm-entrelacs de dimension n^l; on a les

isomorphismes

e\t{Hn^{Xy A)))*t(Ht(Xf A)) pour tout i;
f(Ht(X, A)) 2&gt; el(f(Hn+1.XX9 A))) pour i * 0, n + 1.

La preuve suit celle de [Ll] qui consiste à &quot;raffiner&quot; algébriquement la dualité
de Poincaré avec ici des différences provenant du fait que l&apos;anneau A n&apos;est plus
commutatif ni noethérien dès que m ^ 2. Il conserve néanmoins de bonnes

propriétés:

PROPOSITION 2.2.

i) A est cohérenty i.e. le noyau d&apos;un homomorphisme entre A-modules de

présentation finie est de présentation finie;
ii) A est de dimension globale 2;

iii) les A-modules projectifs de type fini sont libres;
iv) Vidéal d&apos;augmentation I est libre de base les Xt - 1 pour i — 1, m. De

plusDn^In 0;

v) on a des propriétés analogues à iv) pour l&apos;anneau Zr[Fm];

vi) Q[Fm] est un F.I.R., i.e. tous ses idéaux (à droite ou à gauche) sont libres;
en particulier Q[Fm] est de dimension globale 1.

La majeure partie de cette proposition est citée dans [SI]. L&apos;égalité

Hn=o /&quot; 0 résulte d&apos;un théorème de [F] ainsi que v) en adaptant la
démonstration tandis que la partie vi) provient de [Ba] cha. IV, §5.

Démonstration du théorème 2.1. Pour éviter les problèmes dûs au bord de X
et aux dimensions 0 et n + 1, il est préférable de travailler avec l&apos;homologie H*
du cône désuspendu de f:X-*X* ainsi que sa cohomologie H* à coefficients A.
La différence avec H*(X, A) n&apos;est pas grande car, / étant de degré 1, on a des

suites exactes courtes scindées: 0-»//,-*//,(X, A)—?//,(^r*&gt; A)-*0 et, de plus,

HJJC+tA) est nul sauf H0(X*, A) Z et Hn+l(X*&gt; A) Am~l. On a donc les

isomorphismes:

t{Ht) ^ t(Ht(X, A)) pour tout i et f(Ht) 2&gt;f(Ht(X, A)) pour i # 0, n + 1. (1)
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Toujours puisque/est de degré 1 ttf/dX est un homéomorphisme, la dualité de
d «

Poincaré sur X à coefficients A produit les isomorphismes H, -^-» Hn*2~&apos; ([W]

p. 25).
Comme A est de dimension 2 et si l&apos;on sait que Hom^ (//*, A) 0-ce qui

sera montré dans le §3 - la suite spectrale des coefficients universels calculant H*
dégénérera en des suites exactes courtes 0^&gt;e2(H„_,)-&gt;Hn+2~l-^e\Hn+l_l)-*0

([Ll], p. 6) que Ton interprète via D~l en:

0-+e2(Hn-l)-&gt;Hl-»e\Hn+l-l)-&gt;0. (2)

Pour conclure il suffit d&apos;analyser les Z-torsions et les quotients Z-libres des

termes de (2). Pour cela il faut remarquer que les modules H* sont d&apos;un type
particulier dont l&apos;étude algébrique fait l&apos;objet du prochain paragraphe.

3. Modules de type L

Ils sont introduits par N. Sato dans [SI] qui montre les deux propositions
suivantes, résultant des propriétés de A et de la Z-acyclicité du cône de /:

PROPOSITION-DÉFINITION 3.1. Soit M un A-module à droite de

présentation finie. On a les équivalences:

i) Tor£ (M, Z) 0 pour tout q ;

ii) le Z-morphisme Mm2^M, (hu hm)^&gt; E™ i /*,(A, - 1) est un
isomorphisme;

iii) M a une résolution libre 0-*Ar~QAs^A&apos;-+M-*0 avec r + t-s et les

p.g.c.d. des mineurs d&apos;ordre r de ^(U) et d&apos;ordre t de 9*{V) valent 1.

Un module satisfaisant à l&apos;une de ces propriétés sera dit de type L.

PROPOSITION 3.2. Les modules Ht sont de type L pour tout i.

Pour m 1 on retrouve les modules de type K de [Ll]. Dès que m ^2 leur

comportement diffère dans certains domaines. Par exemple la condition ii) de la
définition force un module de type L à avoir une Z-torsion nulle ou infinie si

m s* 2. Toujours sous cette condition un module de type L n&apos;est pas
nécessairement de A torsion: Prenons le quotient de Z(Xiy X2, Xïlf X^1) par
l&apos;idéal à droite engendré par Xx — 1 + Xïl. C&apos;est un module de type L et la classe

de X2 + 1 n&apos;y est pas de &gt;4-torsion car sinon on aurait une relation de dépendance
entre X2 + 1 et Xx - 1 4- AT1. L&apos;idéal à droite (X2 + 1, Ai - 1 + XTx)d serait alors
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principal dans Q(Xlf X2, X\\ X2l) (cf. prop. 2.2vi)) ce qui est impossible
comme on le voit en passant à Q[XU X2, X^\ X21] par abélianisation des

variables. Cependant d&apos;autres propriétés des modules de type K se conservent
bien:

LEMME 3.3. Soit M un module de type L; alors Hom^ (M, A)
HomA(M,Zr[Fm]) 0

Ce résultat termine la justification de la suite exacte (2) puisque les modules
Ht sont de type L. Montrons par exemple que Hom^ (M, A) 0. Soit q&gt; dans

Hom^ (M, A). D&apos;après la propriété ii) d&apos;un module de type L, h dans M s&apos;écrit

ETLiMAi-l) et donc &lt;p(h) E™i &lt;p(K)(Xt -1). Donc si / est l&apos;idéal

d&apos;augmentation de A on obtient l&apos;égalité Im (cp) • / Im (cp) qui donne par
itération Im (&lt;p) c p|«=o /&quot; 0 (prop. 2.2iv)).

Egalement de la même manière que pour les modules de type K on a les

isomorphismes suivants pour M de type L tel que/(M) soit de présentation finie:

el(f(M))^e\M) et e2(M)^e\t(M)). (3)

Ce résultat se montre en analysant la longue suite exacte des Ext tirée de
0-&gt; t(M)-^&gt; M-*/(M)-*0 (cf [Ll]) à la lumière du lemme suivant:

LEMME 3.4. i) Soit M un A-module à droite de présentation finie, alors
e2(M) est de Z-torsion ;

ii) Soit M de type L, alors el(M) est sans Z-torsion.

Démonstration. Pour le i) il suffit de voir que Q[Fm] ®A Ext^ (M, A)
est nul. Or, comme Q[Fm] est plat sur A et que M a une résolution
libre finie (par cohérence de A), Q[Fm] ®^ Ext^ (M, ^4) est isomorphe à

ExtQ[Fm] (M ®A Q[Fm], Q[Fm]) qui est nul puisque Q[Fm] est de dimension 1

(prop. 2.2vi)).
Le ii) résulte du morceau de la suite des Ext:Hom^ (M, Zr[Fm])~&gt;

e\M)-s±e\M) tirée de 0-»A^»A-*Zr[Fm]^&gt;0 et du lemme 3.3.

En mettant ensemble (2), (3) et le lemme 3.4 on achève la preuve du
théorème 2.1.

Remarque. Dans le cas classique (n 1) le théorème 2.1 fournit des
renseignements sur le noyau G de d:7zx(X)-*Fm. En effet G/G&apos; Hl(X,A) et donc
G/G&apos; est sans Z-torsion car t(G/G&apos;)2&gt;e2(t(Z)) 0. De plus G/G&apos; est de type L,
en particulier si G n&apos;est pas parfait (G^C) et m ^2 alors G/G&apos; n&apos;est pas de

type fini sur Z et G n&apos;est pas de type fini (cf prop. 3.1ii)).
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4. Formes d&apos;enlacement et Panneau A

En dimension impaire n=2k — 1 le théorème 2.1 donne un isomorphisme
f(Hk(X, A))z&gt;el(f(Hk(X, A))). C&apos;est une dualité car e\M) est la bonne notion
de dual (avec bidualité) pour un module M de type L sans Z-torsion, comme le

suggère la proposition suivante montrée par Levine dans le cadre des noeuds

[Ll]:
PROPOSITION-DÉFINITION 4.1. Modules de type S.

a) Soit M de type L, on a les équivalences:
i) M est sans Z-torsion ;

ii) e\M) 0;

iii) M a une résolution 0^&gt;AqJ*Aq-+M-+0 avec det (&amp;(T)) ±1;
un module de type L satisfaisant à l&apos;une de ces propriétés est dit de type S.

b) Soit M de type S, alors e\el(M)) est canoniquement isomorphe à M.

On peut ainsi donner un sens à la symétrie d&apos;une telle dualité:

DÉFINITION 4.2. e-forme d&apos;enlacement. C&apos;est un couple (Af, &lt;p) où:

i) M est de type S et q&gt;:M2&gt;el(M) est un isomorphisme;
ii) &lt;p est asymétrique pour e ±l, i.e. si cp est la duale de cp

(&lt;p : M ^el(e\M)) ^ el(M))&gt; alors (p ecp.

On peut retrouver une définition plus familière des formes d&apos;enlacement [VI]
en termes de dualité à valeurs dans A/A, l&apos;anneau A étant une extension

adéquate de A. Pour cela, on voudrait pouvoir inverser toute matrice de

présentation d&apos;un module de type S dans A. Notons Z l&apos;ensemble de ces matrices
de présentation, i.e. des matrices carrées T à coefficients dans A telles que
det{3F{T)) ±1, où 3F \ A —&gt;Z est l&apos;augmentation. Dans le cas commutatif
(m 1), A est simplement l&apos;anneau de fractions obtenu en inversant les

polynômes de A d&apos;augmentation ±1, i.e. tous les déterminants des matrices de Z.
Pour m &gt; 1, la construction doit faire intervenir Z tout entier et l&apos;anneau A est

alors engendré par A et autant de générateurs T&apos;tJ que de coefficients TtJ pour
chaque matrice T de 2, soumis aux relations FT= TT&apos; Id. Il en résulte un
homomorphisme À:A—&gt;A d&apos;anneaux à involution (car Z est stable par
l&apos;involution qui à T associe son adjointe T*) possédant la propriété universelle
suivante ([C], p. 255): si ju : A-» B est un homomorphisme d&apos;anneaux ^-inversible
(i.e. les matrices de fi(Z) sont inversibles dans B), alors il se factorise de manière
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unique via A:

De plus, comme Q[Fm] est un F.I.R. (prop. 2.2vi)), il possède un corps des

fractions universel K ([C], p. 283). On en déduit que À est injectif puisque
l&apos;enchaînement A &lt;-» Q[Fm] &lt;-» K est injectif et Z-inversible. Voici l&apos;interprétation

des formes d&apos;enlacement à l&apos;aide de A:

PROPOSITION 4.3. Soit (M, cp) une s-forme d&apos;enlacement, alors e\M) est

isomorphe à HomA(M&gt; A/A) et q&gt; induit une forme M®ZM-*A/A non
dégénérée et e-hermitienne au sens habituel pour Vinvolution de AlA.

En effet, on déduit de la suite exacte courte 0--»A-^ A—» A/A—»0 la suite

exacte Hom^ (M, A) -» Hom^ (M, AlA)^ e\M) -&gt; Exti (M, A). Or, M étant de

type 5, il a une résolution courte 0-»A9-^ Aq^&gt;M-+0 avec T (et donc r*)
dans I. Il s&apos;en suit que Hom^ (M, A) Ker (Â(r*)) et Ext^ (M, A)
Coker (Â(T*)) sont nuls car Â(T*) est inversible, et donc d* est un isomorphisme.

Remarque. Pour cette traduction des formes d&apos;enlacement, toute extension de

A 2&quot;-inversible conviendrait également (par exemple le corps des fractions K de

û[Fm]), on a choisi parmi elles l&apos;extension universelle A.

S. La forme de Blanchfield

En dimension impaire la dualité fournie par le théorème 2.1 sur l&apos;homologie

médiane est symétrique:

THÉORÈME 5.1. Soit (L, d) un Fm-entrelacs de dimension 2A: — 1, Jfc^l.
Uisomorphisme f(Hk(X, A))^e&apos;{f{Hk{Xy A))) est une (~l)k+l-forme
d&apos;enlacement que l&apos;on appellera forme de Blanchfield du Fm-entrelacs et notera

B(L, d).

Remarque. Dans le cas des noeuds (m 1) on retrouve la forme de

Blanchfield de [Ll].



624 JULIEN DUVAL

Pour montrer cette symétrie on va traduire plus géométriquement la forme de
Blanchfield ([Ll], p. 13). Triangulons X et appelons X1 le complexe dual de X, on
a alors une forme d&apos;intersection A-linéaire à gauche: Cq{X) ®z Czk+i-qiX1)-^ A,
(&lt;*, P) ¦-&gt; a • p telle que:

ii) da • dfi {-l)qoc • 3)3 où or est une #-chaîne et /3 une (2fc + 2 - &lt;?)-chaîne.

On en déduit une forme I:Hk+l(X, A/A) ®z Hk{X&gt; A)^&gt; A/A qui à a dans

Hk+i(X, A/A) représenté par Efmie^i®^ dans A®ACk+x{X) et à % dans

/4(Z, A) représenté par le cycle /? associe /(a, t) Efime (/* • oc^K modA
Soit alors d#:Hk+i(X, A/A)-^Hk(X, A) le bord en homologie associé à la

suite exacte de coefficients 0—»A—? A-» A/A—&gt;0. Les relations (4) impliquent:

/(a, d+o&apos;) (-l)*+7(a&apos;, a*a) pour a et a&apos; dans //*+1(X, A/A). (5)

De plus 3^ est en fait un isomorphisme ce qui permet de construire une

forme B&apos; :Hk{XiA)^:1^Hk+l{Xy A/A)-** Hoirie (Hk(X, A), A/A). L&apos;égalité (5)
montre que Bf est (—1)*+1 -symétrique et il n&apos;est pas difficile de voir que B&apos; induit
précisément la forme de Blanchfield sur f(Hk(X, A)) (prop. 4.3). Prouvons pour
finir que 3* est inversible. Il suffit pour cela de montrer la nullité de Hk+1(X, A)
et Hk(X, A) ou encore (cf §2) l&apos;acyclicité de A &lt;8)A C*(f). Or, / étant une
équivalence d&apos;homologie entière, Z ®A C*(f) est acylique. On dispose donc
d&apos;une homotopie à zéro de ce complexe que l&apos;on peut relever en un morphisme H
sur C*(f) puisque C*(f) est libre sur A et que l&apos;augmentation 9 est surjective.
Par construction de H on a ^(9H + Hd) — Id et donc 3H + Hd est inversible
dans A. Si K est son inverse, on vérifie que KH est une homotopie à zéro de

6. Le théorème de réalisation

II s&apos;agit de la réalisation de toutes les formes d&apos;enlacement par des formes
de Blanchfield d&apos;entrelacs simples, i.e. de Fm-entrelacs (L, 6) de dimension

2k-l,k^2 vérifiant que 6 est un isomorphisme et n^X) 0 pour 1&lt;i&lt;k.

Homotopiquement, le complémentaire d&apos;un tel entrelacs (non trivial) est le plus
simple possible [G]. De plus, par le théorème 2.1, Hk(X, A) est déjà de type 5.

La forme de Blanchfield d&apos;un entrelacs simple correspond donc à l&apos;enchaînement

Hk(Xt A)^Hk(Xy 3X9 A)-—&gt; Hk+i(X, A)^e\Hk(X, A)).
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THÉORÈME 6.1. Soit (M, cp) une e-forme d&apos;enlacement Alors pour tout
entier k^3, pair si e — 1 et impair si e + 1, // existe un entrelacs simple de

dimension 2k — 1 dont la forme de Blanchfield est isomorphe à (M, (p).

Ici l&apos;isomorphisme de deux formes d&apos;enlacement (Mn cpt) i 1, 2 signifie
l&apos;existence d&apos;un isomorphisme xp faisant commuter le diagramme

Mx ^—+ M2

Démonstration du théorème 6.1. Elle consiste, dans l&apos;esprit de [Ll] (th.
12.1), à construire une variété à bord connexe par attachements d&apos;anses sur un
modèle standard, puis à &quot;disjoindre&quot; le bord pour obtenir le complémentaire de
l&apos;entrelacs désiré.

Pour commencer on constate, comme dans la proposition 12.3 de [Ll], que qp

admet un relèvement symétrique à une résolution de M: II existe deux matrices
carrées T et 5 faisant commuter le diagramme

0 &gt; Aq -^ Aq &gt; M &gt; 0

0 &gt; Aq -^ Aq &gt; e\M) &gt; 0

avec det(^(T)) ±l et ST est ^-symétrique paire i.e. ST est de la forme
R + eR*.

Puis on construit la variété à bord connexe grâce à ces matrices:

LEMME 6.2. Soit k^3, pair si e — 1, impair si e +1. // existe une variété
à bord N de dimension 2k + 1 telle que:

i) ^(dW^n^^F,», jt,(W)=:0pour Ki&lt;k;
ii) on a un diagramme commutatif

0 &gt; Aq -£* Aq &gt; Hk(N, A) &gt; 0

0 &gt; Aq -£* Aq &gt; Hk+1(N, A) &gt; 0

où J provient de la forme d&apos;intersection de N (cf §5);
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iii) dN est difféomorphe à la somme connexe #?Lx(Sl x IJ où les I, sont des

sphères topologiques.

Admettons provisoirement ce résultat. On construit le complémentaire X
désiré de la manière suivante: Si Y est la variété obtenue par somme connexe des

m variétés S1 x It x [0, 1] dans les bords S1 x St x 0, son bord dY est

difféomorphe à dN U^iS1 x It). On pose X NUdNY. C&apos;est bien un
complémentaire d&apos;entrelacs car si l&apos;on &quot;rebouche&quot; le bord de X par ll™=i (D2 x
It) on obtient une sphère d&apos;homotopie (propriétés i) et ii) de N) donc

topologique [Sml] qu&apos;on peut supposer être S2k+l en modifiant la structure
différentiable de X dans un petit disque. Enfin grâce aux propriétés de N cet
entrelacs est simple et porte une forme de Blanchfield isomorphe à (M, &lt;p).

Il reste à montrer le lemme 6.2 pour clore la preuve du théorème:

Construction de N. Notre modèle de départ est

/Vo= #d(SlxD2k\ #d(SkxDk+l);
i=l y=l

où le symbole # a signifie que l&apos;on fait la somme connexe dans les bords. On a

jï,(dN0)^jïl(N0)^Fmf jr/(3iVo) jrl(iVo) 0 pour Ki&lt;k, Jtk(N0)^Aq et

Jtk(dN0) est libre sur A de base les e} [(S* x *)y] et /; [(* x Sk)}] pour
/= 1,.. q. Soient maintenant les classes de nk(dN0) données par: at

£/=i *//£, + Téf=\Sijfj pour / 1, q où les tj{ et s}l sont les coefficients des

matrices T et 5. Puisque ST est ^-symétrique paire, on vérifie qu&apos;intersections

mutuelles et autointersections des classes at (cf [W] p. 45) dans 9N0 sont nulles.

On peut ainsi construire, par le procédé de Whitney (k ^ 3), des plongements

disjoints tpl:Sk x Dk &lt;^ 9N0 dont les âmes représentent les ah On attache q
k 4- 1-anses à No le long des tpt pour obtenir N^NqU^ llUi (Dk+l x Dk)i. Par

construction N satisfait déjà aux conditions i) de l&apos;énoncé.

Démonstration de ii). En utilisant la décomposition en anses de la variété N
on vérifie que Q+î(iV, A) est libre de base les âmes des anses (Dk+1 x *),
/ 1,. q, que Ck(N, A) est libre de base les sphères ($k x *); j 1, q et

que le bord d:Ck+l(Nf A)-*Ck(N, A) a f comme matrice dans ces bases par
construction des plongements \ph On en déduit la suite exacte 0—&gt;Aq ^*Aq-*
Hk(N, i4)-»0. En faisant de même pour la cohomologie dans les bases duales on

obtient la suite exacte 0-^Aq I^Aq-^Hk+l{Nf A)-*0. Enfin en calculant les



Forme de Blanchfield et cobordisme d&apos;entrelacs bords 627

intersections des chaînes des bases précédentes, on trouve:

(D*+1 x *)/ •„ (S* x *), v&gt;/(S* x *) -dNo (5* x *), SlJ ce qui justifie

la commutation du diagramme.

Reconnaissance du bord de N. Par construction de N on a une flèche

g:dN-* #T=\(Slx S2k~])r C&apos;est une équivalence d&apos;homotopie car
Hk-\(dN, A) Hk(dN, A) 0 ce qui résulte du fait que 7, et donc Phomorphisme
Hk(N, A)-^&gt; Hk{N&gt; dN, A), sont des isomorphismes (diagramme ii)), ainsi que
d&apos;une analyse de la longue suite exacte d&apos;homologie relative de N (cf [Ll], p. 37).
On est donc dans la situation du théorème 3 de [Ca] qui permet de scinder dN en
une somme connexe de m variétés du type d&apos;homotopie de S1 x S2k~l donc de la
forme (S1 xl,)#i; (cf [Ll], p. 38) où les variétés It et S[ sont des sphères
topologiques de dimensions respectives 2k — 1 et 2k. En attachant des 2-anses le

long des cercles ainsi en évidence dans dN on vérifie que la somme connexe
# Jli II borde une variété contractile, donc est difféomorphe à S2k [Sm2]. On en
déduit le difféomorphisme dN ^ # %i (S1 x Zt).

7. Applications du théorème de réalisation

7.1. Exemples de modules d&apos;Alexander

Appelons module d&apos;Alexander le module Hk(X, A) pour un entrelacs simple
de dimension 2k — 1. Les théorèmes 5.1 et 6.1 caractérisent les A -modules à

droite apparaissant comme module d&apos;Alexander: II faut et il suffit qu&apos;ils soient de

type S et supportent une (-l)*+1-forme d&apos;enlacement.

Par exemple. Soit T une matrice carrée à coefficients dans A telle que
det {3F(T)) ±1. Si T est symétrique (resp. antisymétrique) alors pour tout
entier k ^ 3 impair (resp. pair) il existe un entrelacs simple de dimension 2k — 1

dont le module d&apos;Alexander est de présentation T.

En effet il suffit de remarquer que M Coker (T) supporte une e-forme
d&apos;enlacement évidente &lt;p dont une résolution est:

0 i4«-£-

Aq &gt; 7{M) &gt; 0.
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En particulier, en dimension 2k — 1 avec k impair on obtient comme modules
d&apos;Alexander tous les modules cycliques A/aA où â a et 3F(a) ±1.

7.2. Exemples de polynômes d&apos;Alexander

Les polynômes d&apos;Alexander sont liés au revêtement abélien libre X de X
associé au noyau de l&apos;abélianisation jtl(X)-*Zm. Notons B l&apos;anneau de groupe
Z[Zm] Z[XU Xm, Xîx, JQ1]. Soit L un entrelacs simple de dimension
2k — 1. D&apos;après [S2] le B-module Hk(X) admet une présentation de la forme

0-* Bq^&gt;Bq -+Hk(X)-*0. Le polynôme d&apos;Alexander de L, noté PL, est le
déterminant de T. C&apos;est un invariant du module Hk{X) vérifiant les propriétés
suivants [S2]:

PL(1,...,1) ±1 et PL PL (6)

qui, en fait, caractérisent les polynômes d&apos;Alexander:

COROLLAIRE. Soit p un polynôme de B vérifiant (6); alors il existe un
entrelacs simple de dimension 2k — 1, k impair ^3, dont p est le polynôme
d&apos;Alexander.

En effet, on peut toujours trouver un polynôme q relevant p dans A et tel que
q q et &amp;(q) ±1. Par les exemples 7.1 il existe un entrelacs simple de la bonne
dimension et de module d&apos;Alexander A/qA qui convient.

Remarque. Pour k pair 2*3, la même méthode permet de réaliser comme

polynôme d&apos;Alexander le déterminant p d&apos;une matrice antisymétrique à

coefficients dans Bsip(l,...,l) ±l, par exemple les polynômes de la forme

I+P1P2 avec pt -/?,.

7.3. Exemples d&apos;entrelacs à 2 composantes non cobordants à des entrelacs scindés.

Un problème important de la théorie des entrelacs - resté ouvert jusqu&apos;à

l&apos;article de Cappell et Shaneson [CS1] (cf aussi [Ka]) - a été de savoir s&apos;il existait
des entrelacs non cobordants à des entrelacs scindés, i.e. à des entrelacs dont les

composantes sont plongées dans des disques disjoints de la sphère ambiante. La
résponse est qu&apos;il y en a beaucoup: Le cobordisme des entrelacs ne se réduit pas
au cobordisme de leurs noeuds composantes. On va en exhiber des exemples à 2

composantes grâce au théorème de réalisation mais auparavant rappelons une
condition nécessaire de cobordisme (cf [SS] Th. 3.2):
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DÉFINITION Deux entrelacs (quelconques) L() et Lx sont cobordants s&apos;il

existe une sous-variété lisse orientée V de codimension 2 dans S&quot;+2 x [0, 1] telle
que

î) V coïncide avec Lo et Lx aux niveaux 0 et 1,

n) V est homéomorphe à Lo x [0, 1]

Critère Si L{) et Lx sont deux entrelacs simples à 2 composantes cobordants il
existe un polynôme q dans Z[X, X~l] tel que PL(){Xy X)Pt t(X, X) ±qq

Nos exemples sont les entrelacs simples à 2 composantes Lr de polynôme
d&apos;Alexander PLr{Xx, X2) l + r(Xx - X\~l)(X2 - X^1), r entier positif, fournis par
le paragraphe précédent Ces entrelacs satisfont les trois propriétés

î) Lr est brunnien, î e a des composantes non-nouées,
n) Lr n&apos;est pas cobordant à l&apos;entrelacs trivial,

m) Lr n&apos;est pas cobordant à Lr pour r^r&apos;

Ils répondent bien au problème car un entrelacs brunnien cobordant à un
entrelacs scindé est forcément cobordant à l&apos;entrelacs trivial Montrons ces trois
faits

Pour le î) il suffit de remarquer que les composantes de Lr sont des noeuds

simples de polynôme d&apos;Alexander égal à PL£X, 1) ou PLr(h X) c&apos;est-à-dire à 1

Ces composantes ont ainsi des complémentaires du même type d&apos;homotopie que
celui du noeud trivial, elles sont donc non-nouées [L3]

Les points n) et m) résultent du critère cité En effet, les polynômes PLr(X, X)
sont irréductibles dans Z[X, X~% comme on le voit en les décomposant dans
R[X,X&apos;1]

8. Le contexte du Fm-cobordisme

Pour avoir une notion de cobordisme adaptée aux Fm-entrelacs et compatible
à la somme connexe, il est nécessaire de renforcer la définition du paragraphe
précédent

DÉFINITION 8 1 [CS1] Deux Fm-entrelacs (Lo, 0O) et (L,, 00 sont Fm-

cobordants s&apos;il existe un cobordisme V dans 5&quot;+2 x [0, 1] (cf le §7) avec en outre
m) Si U est le complémentaire d&apos;un voisinage tubulaire de V dans Sn+2 x [0, 1]

prolongeant Xo et X1 aux niveaux 0 et 1, il existe 6 &apos; ft\(U)-&gt;Fm coïncidant, à un
automorphisme intérieur de Fm près, avec les 6t via les homomorphismes naturels
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Géométriquement cela correspond à l&apos;existence de m sous-variétés disjointes
dans Sn+2 x [0, 1] bordant les composantes de V [Ko].

NOTATION. On appelle Cn{Fm) l&apos;ensemble des Fm-entrelacs de dimension n
à Fm-cobordisme près.

Il existe une somme connexe pour les entrelacs bords [Ko] qui fait de Cn(Fm)

un groupe abélien. On la voit ainsi: Plaçons notre premier entrelacs bord dans

l&apos;hémisphère Nord de Sn+2f et le second dans l&apos;hémisphère Sud, ainsi que leurs
surfaces de Seifert respectives. On connecte alors chaque composante du premier
entrelacs à la composante correspondante du second via le bord d&apos;un n-
épaississement d&apos;un arc évitant (sauf à ses extrémités) toutes les surfaces de

Seifert.

Par ailleurs d&apos;après [CS1] le groupe Cn(Fm) est trivial pour n pair. Dans le cas

n impair, on dispose d&apos;un objet - la forme de Blanchfield - dont on aimerait bien
faire un invariant de Fm-cobordisme. Pour cela, il faut définir une relation
d&apos;équivalence sur les formes d&apos;enlacement:

DÉFINITION 8.2. Soit (M, q&gt;) une £-forme d&apos;enlacement.

a) Soit / un sous-module de M et i\I&lt;-*M son injection canonique.
Vorthogonal Ix de / pour cp est le sous-module (^(Ker (**)) de M.

b) La forme (M, q&gt;) est neutre s&apos;il existe un sous-module I de M tel que:
i) / et M/I sont de type 5;
ii) /x /.

Un tel sous-module 1 de M sera appelé un lagrangien de (M, ç&gt;).

NOTATION. On appelle We(A, I) le groupe quotient du monoïde - pour la

somme orthogonale - des e-formes d&apos;enlacement par la relation d&apos;équivalence

engendrée par: (Af,, yA) ~ (Af2, q&gt;2)G&gt;(Mi © Af2, &lt;Pi © -&lt;p2) est neutre.

Remarques, a) En utilisant la définition des formes d&apos;enlacement faisant
intervenir l&apos;anneau A on retrouve ainsi un groupe de Witt au sens de [VI].

b) En travaillant davantage on peut montrer qu&apos;en fait la relation ~ est déjà
une relation d&apos;équivalence.

On a également un critère de neutralité qui sera utile:

PROPOSITION 8.3. Soient (Af, &lt;p) une e-forme d&apos;enlacement et I un
sous-module de type S de M. On suppose de plus que I est contenu dans son
orthogonal /x et que 71// est de Z-torsion. Alors (Af, &lt;p) est neutre.
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Démonstration. On se propose de voir que 1^ est un lagrangien de (M, &lt;p). Il
n&apos;est pas difficile de montrer que lL et M/I1 sont de type L, grâce au lemme des

5 par exemple, et donc de type S puisque I1 est sans Z-torsion et que M/7&quot;1

s&apos;injecte, par définition de /x, dans e\l) lui aussi sans Z-torsion (lemme 3.4).
Vérifions l&apos;égalité I±±=I±. Si l&apos;on précise les inclusions en présence par

/^/HMon a/± ç?~1(Ker(/*oy*)) et I±± &lt;p-!(Ker(/&apos;*)). II suffit donc de

prouver l&apos;injectivité de i*, qui résulte de la suite exacte

eW/)-»^/1)-^^/) tirée de 0^/-i&gt;/±-&gt;/±//-&gt;0

par dualisation, sachant que el(I±/I)2$el(f(I±/I)) 0 (isomorphismes (3)).

9. Calcul du Fm -cobordisme

THÉORÈME 9.1. Pour k^3, la forme de Blanchfield produit un isomor-

phisme de groupes abéliens B : Q*_i(Fm)-&gt; W{~l)k+](A, Z), [(L, 0)] •-&gt; [B(L, 6)).

Démonstration. Il suffit de voir que B est bien définie, additive et injective
puisque sa surjectivité résulte du théorème de réalisation 6.1.

Compatibilité de B aux relations d&apos;équivalence. Soient (Lo, 0O) et (Lu 0t)
deux Fm-entrelacs Fm-cobordants. Montrons que &lt;p — B(L0, d0) © —B(Lïf 0j) est

neutre: On dispose du complémentaire U du cobordisme et de #:^i((/)-*Fm
coïncidant avec 0O et a° 6X via les inclusions. L&apos;automorphisme intérieur a de Fm

ne va pas jouer de rôle car on peut vérifier que B(Lït 9i) et B(Llf a°6l) sont

isomorphes. On peut donc supposer que l&apos;action de Fm induite par 0 sur le revêtement
libre de U prolonge celles induites par les 0, sur les revêtements Xr En interprétant la

dualité de Poincaré à coefficients A sur U avec les méthodes des §2 et 3, on obtient le

diagramme commutatif

el{f{Hk{UyA)))^el&lt;j{Hk{XQfA)))®el{f{H^ dU, A)))

-£? f(Hk(U,A))

où les lignes sont &quot;presque&quot; exactes: Par exemple Ker(is(t)/Im(3J|c) est de

Z-torsion. On vérifie que le module / Im (3*), dont l&apos;orthogonal pour q&gt; est
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Ker (i*) (cf le diagramme), satisfait aux hypothèses de la proposition 8.3. Donc &lt;p

est neutre.
Additivité de B. Puisque chaque classe de Fm-cobordisme contient un

entrelacs simple [CS1] il suffit de voir que la forme de Blanchfield d&apos;une somme
connexe (L, 6) de deux entrelacs simples (Ln 6,), i 0, 1, est équivalente à

fi(L(), 0(&gt;) © B(Llf #i). Plaçons L() et Lx dans les hémisphères Nord et Sud de la

sphère ambiante S2k+l. La donnée des isomorphismes 6, fournit des méridiens

privilégiés des L, basés en un même point, et donc m arcs reliant les composantes
correspondantes des entrelacs et intersectant la sphère équateur S2k

transversalement en m points distincts. On construit la somme connexe le long de

ces arcs.
Soient X le complémentaire de L, Mo et Mx les parties de X situées

respectivement dans les hémisphères Nord et Sud, Y* (resp. Z*) le

complémentaire de l&apos;entrelacs trivial de m sphères (resp. disques) de codimension
2 dans S2k (resp. (D2k+\ S2k)). On a les difféomorphismes MUy^-Z, qui
montrent que les variétés M, sont proches des complémentaires Xt des entrelacs

L,. En particulier les homologies Hk(Mn A) portent des formes d&apos;enlacement

isomorphes à B(Ln 6,). Grâce au difféomorphisme X-M0{JY, Mx et à des

arguments standards on voit que L est un entrelacs simple muni d&apos;un isomor-

phisme 6 induit par les 6, et que B(L, 8) est isomorphe à B(L0, 60) ® B(Lïf 0j).
Injectivité de B. Soit (L, 6) un Fm-entrelacs dont la forme de Blanchfield est

équivalente à zéro; il faut montrer que (L, 6) est Fw-cobordant à l&apos;entrelacs

trivial.
La première étape est de ramener ce problème à un énoncé de chirurgie duale

au sens de [Smi]. En effet si X est le complémentaire de L et f:(X, 3X)-+
{X^ dX*) une matérialisation de 6 (cf §1), on a le résultat suivant ([CS1] p. 35,

[Ko]):

LEMME 9.2. Soit un cobordisme abstrait F :(C/, Xy Xu dXx [0, 1])-»
(Z* x [0, 1], X* xO,I,x 1, dX* x [0, 1]) tel que:

i) Vimage de Vhomomorphisme Jtl(X)-*xï(U) engendre normalement

ii) FIX =/; F/Xi et F/dX x [0, 1] sont des équivalences d&apos;homotopie;

iii) F est une équivalence en homologie entière,
alors (L, 6) est Fm-cobordant à l&apos;entrelacs trivial.

Pour cela on montre, grâce au théorème du /i-cobordisme (k s* 3), que U est
le complémentaire d&apos;un Fm-cobordisme ambiant et Xx est alors le complémentaire
de l&apos;entrelacs trivial par le critère homotopique de non-nouage de [G].
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La deuxième étape est la construction d&apos;un cobordisme satisfaisant aux
hypothèses du lemme 9.2. Comme dans [Smi] (th. 3.5) on procède en deux

temps: Par chirurgie classique sur / on obtient un cobordisme vérifiant les

hypothèses i) et ii) puis par chirurgie homologique [CS2] sur ce cobordisme on
satisfait en plus la condition iii).

Dans ce but on va relier la forme de Blanchfield aux obstructions de chirurgie

par la suite exacte

L2k+2(Fm)-± r2k+2(&amp;)^-+ W&lt;-*+\A, ^)-J-^L2k^{Fm)^Q (7)

où les groupes L* et f^ sont les groupes de chirurgies classique [W] et

homologique [CS2]. Elle se déduit de la suite relative pour la localisation

A:i4^A:I^+2(i4)^L^+2(A)^L^+2(A)^l4+i(i4)^L§fc+1(A) [W] après les

identifications dues à Vogel:

LÎ(A)-riW [V2] et L^CA)-^&quot;1^1^^) [VI]

sachant que r2k+1(3^) est un sous-groupe de L2k+i(e) [CS2] qui est nul ([W]
§13A). Le h en exposant tombe car le groupe de Whitehead Wh (Fm) est nul [Ba].
Cette suite exacte (7) est également une version simplifiée de la suite exacte 4.1

de [Smi] et en possède les propriétés de naturalité par rapport aux obstructions

géométriques (cf [Smi], p. 439).
On peut maintenant achever la preuve de l&apos;injectivité de B: L&apos;application

f:X^&gt;X* a une obstruction de chirurgie a(f) dans L2k+l(Fm). Par naturalité de

(7) a(f) =j(B(L, 6)) 0 et donc, par chirurgie dans l&apos;intérieur de X, on construit
un cobordisme G entre/et une équivalence d&apos;homotopie/2:X2—&gt;X* vérifiant les

conditions i) et ii) du lemme 9.2. A G on peut associer son obstruction de

chirurgie homologique or(G) dans r2k+2(3&lt;). La naturalité de (7) assure que
d(Of{G)) B(Ly 6) 0 et donc, puisque (7) est exacte, il existe j8 dans L2k+2{Fm)

tel que f(j8) Or{G). Grâce au théorème 6.5 de [W] on réalise (—j8) comme
l&apos;obstruction de chirurgie d&apos;un cobordisme H entre f2 et une équivalence
d&apos;homotopie fx\Xi-*X+. En recollant G et H sur f2 on obtient un cobordisme
dont l&apos;obstruction de chirurgie homologique est nulle, par construction. On

pourra donc le &quot;chirurgiser&quot; pour obtenir l&apos;équivalence d&apos;homologie entière
désirée.

Remarque finale. Dans [CS1] Cappell et Shaneson obtenaient la suite exacte
scindée:

* Q,_1(Fm)^ (P2k)m-*0
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pour k ^ 3 et où f2*+2(^) Coker (L2k+2(Fm)-&gt; r2k+2(&amp;)) et P2k Z2 (resp Z)
si k est pair (resp impair)

Le lien avec notre résultat réside dans la naturahté de la suite (7) qui assure la

commutativité du diagramme suivant

» 4 4

où l&apos;isomorphisme de droite provient de résultats classiques ([Ca], [Sh] et [W]
§13A)
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