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Transformation de Poisson de formes differentielles. Le cas de
Pespace hyperbolique

PIERRE-YVES GAILLARD

1. Introduction

Dans ce travail, on définit, en suivant une idée de Thurston [24, Chapitre 11],
une transformation de Poisson qui, a une p-forme sur le bord de I’espace
hyperbolique, associe une p-forme harmonique cofermée sur cet espace. Cette
transformation commute aux isométries hyperboliques et s’étend aux p-
hyperformes, qui sont par définition les sections hyperfonction du fibré des
p-formes. On étudie cette transformation, et on répond aux quatre questions
suivantes:

1) Quelles sont les propriétés élémentaires de cette application?

2) Quel est son noyau et quelle est son image?

3) Quelles sont les transformées des courants?

4) Quel est le comportement vers le bord des transformées?

Les réponses a ces quatre questions figurent respectivement dans les théorémes 1,
2, 3 et 4 — énoncés au §2.1.2.

On prouve ces théorémes a I’aide d’une expression explicite de la transforma-
tion de Poisson en termes de fonctions hypergéométriques (lemme fondamental,
voir §4.1) qui généralise un résultat de Helgason [10] et Minemura [16]. On
utilise largement les méthodes développées par ces deux auteurs.

Pour obtenir une telle expression explicite, nous avons dii considérer plus
généralement des formes différentielles a valeurs dans un fibré homogeéne en
droites sur le bord de I’espace hyperbolique. Les transformées sont alors des
p-formes cofermées sur 'espace hyperbolique qui sont vecteurs propres du
laplacien.

Les questions 1), 2), 3) et 4) ont encore un sens dans ce cadre plus général, et
les théoremes 1’, 2', 3’ et 4’ y répondent respectivement (voir §2.2.2).

Dans le cas p =0, les quatre problémes énoncés plus haut avaient déja été
résolus — et ceci pour n’importe quel espace symétrique riemannien de type non
compact.

En ce qui concerne la question 2), Helgason a conjecturé — et prouvé dans
plusieurs cas particuliers — qu’une fonction propre de tous les opérateurs
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582 PIERRE-YVES GAILLARD

différentiels invariants était la transformée de Poisson d’une section hyperfonc-
tion d’'un fibré homogene en droites convenable sur la fronti€re maximale.
Kashiwara et al. [12], & l'aide de I'analyse microlocale, ont prouvé cette
conjecture en toute généralit€. Un corollaire d’un trés beau théoreme de W.
Schmid [20] réduit cependant ce résultat a la caractérisation des transformées de
sections K-finies — caractérisation qui avait été donnée par Helgason. Le
théoréeme de Schmid s’applique a la situation examinée ici. Plus précis€ément, il
permet de déduire immédiatement les théoremes 2 (§2.1.2) et 2' (§2.2.2) du
lemme fondamental (§4.1). Les preuves présentées ici sont directes et n’utilisent
pas ce résultat.

Pour ce qui est de la question 3), Lewis a montré en rang un que les
transformées des sections distribution sont précisément les fonctions propres des
opérateurs différentiels invariants qui satisfont une certaine condition de crois-
sance [14]. Le résultat de Lewis comporte toutefois une certaine restriction. (Ce
théoréme ne s’applique par exemple pas a la transformation de Poisson classique
des distributions en fonctions harmoniques sur les espaces hyperboliques de
dimension impaire.) Oshima et Sekigushi, de nouveau en utilisant des techniques
d’analyse microlocale, ont levé cette restriction et, surtout, ont généralisé ces
résultats aux espaces symétriques affines [18].

On donne ici une preuve du cas non traité par Lewis qui repose sur une
simple identité entre fonctions hypergéométriques (lemme 7, §5.2). On obtient
cette identité grace au fait qu’'on considére la transformation de Poisson des
formes différentielles. Cela introduit un parameétre supplémentaire —le degré p
des formes — dans les équations différentielles qui interviennent. Ainsi, méme
pour résoudre certains problémes relatifs aux fonctions, il peut étre utile de
considérer des formes différentielles.

Les théorémes 4 et 4’ (énoncés aux §2.1.2 et §2.2.2 respectivement) mettent
en évidence un phénomeéne de convergence non tangencielle, qui avait été
observé par Michelson [15, Theorem 3.4] pour p =0, sur des espaces symétriques
un peu plus généraux. La preuve du cas p =0 s’adapte sans difficulté au cas p
quelconque, ainsi que me I’a fait remarquer P. Sjogren.

Le principal enseignement qui se dégage de ce travail me semble étre le
suivant. Les transformées étudiées ici sont non seulement des vecteurs propres du
laplacien, mais elles sont aussi cofermées. 11 faut donc, pour caractériser I'image
de. la transformation de Poisson, faire appel a un opérateur différentiel invariant
(1a codifférentielle) allant d’un fibré (celui des p-formes) dans un autre fibré (celui
des (p — 1)-formes). C’est sans doute le phénomeéne qui se produit dans le cas
général.

En outre, dans le cas p =0 (en rang quelconque), le module de Harish-
Chandra des fonctions K-finies d’'un espace propre de tous les opérateurs
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différentiels invariants est isomorphe, via la transformation de Poisson, & un
module de Harish-Chandra de la série principale. C’est la version K-finie de la
conjecture de Helgason (version prouvée, rappelons-le, par Helgason lui-méme).
Donc, pour p =0 I’étude de la transformation de Poisson ne fait pas apparaitre
de représentations qui ne sont pas dans la série principale. En régle générale, ce
phénomene se manifeste également dans les cas examinés ici. On constate
cependant une exception intéressante. Le module des (n —1)/2-formes har-
moniques cofermées K-finies sur I’espace hyperbolique de dimension (impaire)
n — qui ne contient qu’un seul sous-module non trivial — ne se plonge pas dans la
série principale (théoréme 6, §6.1).

La motivation originelle de cette recherche vient de la théorie des feuilletages.
En effet, Haefliger a montré comment la question de savoir si une variété compacte
feuilletée admet une métrique riemannienne rendant toutes les feuilles minimales
est liée a l'existence de courants invariants par le pseudogroupe d’holonomie
transverse [8]. Si ce pseudogroupe est équivalent a I’action sur le bord de I’espace
hyperbolique d’un sous-groupe discret cocompact du groupe des isométries
hyperboliques, la transformation de Poisson permet de détecter ces courants.
Cette idée avait déja été utilisée avec succes par Haefliger et Li-Banghe [9] (voir
aussi §6.2 plus loin).

Certains résultats présentés ici ont été¢ annoncés dans [6] et [7].

Le texte ci-dessous est une version condensée de ma theése de doctorat a
I’Université de Geneéve (Suisse). Parmi toutes les personnes qui m’ont aidé au
cours de ce travail, je tiens & remercier tout particulierement André Haefliger,
qui m’a proposé ce sujet et m’a toujours donné les bons conseils aux bons
moments, ainsi que Pierre de la Harpe, Wilfried Schmid et Georges Skandalis,
membres du jury.

2. Résultats

Dans ce travail, on désigne par H" I’espace hyperbolique de dimension #» muni
de la métrique de courbure —1 et d’une orientation. On désigne par H" le bord
(ou frontiere ou encore sphére a l'infini) de H". Par isométrie hyperbolique, on
entend une isométrie qui ne préserve pas nécessairement I’orientation de H".

2.1. Transfomation des p-formes usuelles
2.1.1. Définitions

Considérons d’abord l'application “visuelle” V, de la spheére unité S, de
'espace T,H" tangent 3 H" en x, sur OH". Cette application envoie chaque
vecteur unitaire tangent 2 H" en x sur le point de oH" vers lequel tend la
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demi-géodésique issue de ce vecteur. L’application V, est conforme (pour s’en
convaincre, on peut penser au modele de la boule pour H” et placer x au centre).

Soient « une p-forme sur dH" et § un p-vecteur tangent a H” en x. On va
définir la valeur (¢,o, &) de la transformée ¢, de & sur §. Pour cela, on
considére I'image inverse V;a de « par I’application visuelle. C’est une p-forme
sur S,. Plagons-nous sur ’espace euclidien 7,H" et oublions un instant ’espace
hyperbolique. Choisissons un point u de S,, translatons § de l'origine a u et
projetons-le orthogonalement pour obtenir un p-vecteur £ tangent a S, en u (voir
Figure 1), sur lequel on évalue V}a. En faisant varier le point u, on obtient une
fonction sur S, ; sa moyenne sera la valeur cherchée:

1

(800 £) =g f (Vie Eiow) (1)

oi |S"7! est le volume de la sphere unité de R”, w est la forme volume
hyperbolique et i, est le produit intérieur par le champ de vecteur normal
extérieur unitaire v sur S,.

Lorsque n est impair et p = (n — 1)/2, on peut définir un opérateur C-linéaire *
sur les p-formes sur dH" de la fagon suivante. On choisit une métrique
riemanienne sur H" compatible avec la structure conforme et on prend

Figure 1
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I'opérateur * correspondant a cette métrique. Cest opérateur ne dépend pas du
choix de la métrique. Cela est di au fait que I’étoile sur A’R? est invariante par
homothéties.

Définissons une p-hyperforme sur SH" comme étant une forme linéaire
continue sur I'espace des (n — 1 — p)-formes analytiques sur dH".

(On dira “p-hyperforme” au lieu de “p-hyperforme sur dH"” et, lorsque le
contexte le permettra, “p-forme” au lieu de “p-forme sur H"” ou “p-forme sur
dH".”)

On munit I’espace des p-hyperformes de la topologie forte. L’accouplement
naturel entre formes de degrés complémentaires, donné par l'intégrale sur oH"
du produit extérieur, permet de plonger les p-formes dans les p-hyperformes. La
différentielle d s’étend aux p-hyperformes, de méme que, pour p = (n —1)/2,
I’opérateur * provenant de la structure conforme de dH". Une (n — 1)/2 hyper-
forme dont I’étoile est fermée sera dite cofermée. Toute (n — 1)/2 hyperforme
s’écrit de facon unique comme somme d’une hyperforme fermée et d’une
hyperforme cofermée.

La transformation de Poisson @, s’étend facilement aux p-hyperformes.

Désignons par C~“(APT* dH") 'espace des p-hyperformes sur dH" et par
C°%(APT*H") ’espace des p-formes continues sur H".

DEFINITION 1. On appelle transformation de Poisson I’application linéaire
continue

D,:C“(APT* OH")— CO(A”T*H")
décrite ci-dessus.

On verra que les transformées sont en fait harmoniques. La topologie la plus

naturelle sur les formes harmoniques est la topologie C° (qui coincide avec la
topologie C*).

2.1.2. Résultats
Le premier théoreme énonce les propriétés élémentaires de la transformation
de Poisson &,.

THEOREME 1. La transformation de Poisson ®, est caractérisée par les
propriétés suivantes:

a) @D, est la transformation de Poisson usuelle

b) P, commute aux isométries hyperboliques

c) les transformées sont harmoniques et cofermées
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d) (n-1-2p)®,,\d=(n—1-p)d®,, p=0,...,n-2
e) B,41d = prd,, p = (n—1)/2
f) d®,_ o =(1—n)([su» @)w, ot w est la forme volume hyperbolique.

Ce théoréme sera prouvé au §3.

THEOREME 2. Si p # (n—1)/2, ®, est un isomorphisme topologique de
Iespace des p-hyperformes sur SH" sur ['espace des p-formes harmoniques
cofermées sur H" muni de la topologie de la convergence compacte. Si p =
(n —1)/2, le noyau de ®, est ’espace des p-hyperformes cofermées, tandis que son
image est I’espace des p-formes fermées et cofermées sur H".

Dans tous les cas, pour p #0, @, induit un isomorphisme de I’espace des
p-hyperformes exactes sur I’espace des p-formes fermées et cofermées sur H".

DEFINITION 2. On dira qu’une p-forme sur I’espace hyperbolique croit
lentement si sa norme est majorée par une fonction de la forme x—
a exp (d(xq, x)) ou d(x,, x) est la distance de x & un point fixe x, de H" et ou a et
b sont des constantes convenables.

THEOREME 3. La transformée d’une p-hyperforme est la transformée d’un
courant si et seulement si elle croit lentement.

Si c’est le cas, on peut majorer I’ordre du courant par une constante
dépendant de la croissance de la transformée, et vice-versa.

En ce qui concerne le comportement vers le bord des transformées, on a le
résultat suivant. Posons:

n
r(—+ 1)
_?¥*'I(n-2p) \2

C = .
n I'(n-p) T(g—p>

THEOREME 4. Supposons p <n —1/2.

a) Si a est une p-forme mesurable essentiellement bornée sur SH" continue au
point u alors @,« s’étend en une p-forme continue sur H" U {u} dont la
valeur en u est celle de C,a.

b) Soient x, un point de H" et R un nombre positif. Si u est un point de dH",
on désigne par T, le tube des points de H" dont la distance a la géodésique
passant par x et u est inférieure a R (voir Figure 2). Soit a une p-forme L7
sur SH", avec 1 <q = . Alors presque tous les points u de OH” possédent
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Figure 2

la propriété suivante: Si x est un point de T, qui tend vers u, alors (P,a)(x)
tend vers C,a(u).

2.2. Transformation des p-formes a valeurs dans un fibré homogéne en droites
2.2.1. D¢éfinitions

Soit f: M — N une application différentiable entre deux variétés riemaniennes.

NOTATION 1. f'(x): .M — TN est I’application tangente a f au point x
de M.

NOTATION 2. ||f'(x)|| est la norme d’opérateur de f'(x).

Remarque 1. Si M et N ont la méme dimension m et si f est conforme, alors
un m-vecteur de norme 1 tangent 8 M en x est appliqué par f sur un m-vecteur de
norme ||f’'(x)||™ tangent a N en f(x). Par ailleurs, si f et g sont conformes, on a:

1¢F=8) Il = [lf* el llg" )l

Supposons maintenant que M =N est munie seulement d’une structure
conforme, que f(x) = x, et que f est conforme.

NOTATION 3. ||f'(x)|| est la norme commune des valeurs propres de f'(x).

On observera que les notations 2 et 3 sont cohérentes.

Soit s un nombre complexe. On va définir un fibré homogeéne en droites
D*— 3H".

Pour cela, on commence par définir une fonction positive Q sur H" X 9H" X
H". Soit (y, u, x) un point de H" X H" X H". Considérons les applications
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Figure 3

visuelles V, et V, définies au §2.1.1, et posons:

QW u, x) = |[(V; e V) (VI W)l

(voir notation 2 ci-dessus).

Remarquons qu'on a: Q(y,u,x)=e“, ou d est la distance entre les
horospheres “‘centrées’ en n passant par x et par y, et € vaut +1 ou —1 selon que
la demi-géodésique (x, u) coupe on ne coupe pas I’horosphére passant par y et u
(voir Figure 3).

Cette fonction Q est invariante (par les isométries hyperboliques) et satisfait —
en vertu de la remarque 1 ci-dessus — la relation de ‘“‘cocycle:”

Q(z, u, y)QW, u, x) = Q(z, u, x).

Disons que les triples (x, u, §) et (y, v, n) de H" X 9H" X C sont équivalents
si et seulement si:

u="v, n=0Q0,u x)"’E

Désignons par (x, u, £)° la classe de (x, u, ). L’ensemble de ces classes
posséde une structure naturelle de fibré homogene en droites sur dH". La
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projection est définie par (x, u, £)*— u et I'isométrie hyperbolique g agit par:
g(x, u, &) = (gx, gu, £)'.

NOTATION 4. On désigne par D° le fibré homogene en droites sur OH"
défini ci-dessus.

La signification géométrique du parametre s est la suivante. Si I'isométrie g
fixe le point u de dH", on a:

glx, u, &) =g’ (x, u, &)

(voir notation 3).

A c6té de ce modele intrinseque du fibré D?, il sera commode de disposer du
modele plus concret que voici.

Soit U un ouvert de dH" muni d’une métrique riemanienne compatible avec la
structure conforme. Définissons le noyau de Poisson P sur H" X U par:

P(x, u) = [|(VZ) (W) )

(voir notation 2).
Le rapport entre P et Q est le suivant:

O, u, x) = P(y, u)P(x, u)~".

Notons que P(x, u) et P(y, u) dépendent de la métrique de U, mais pas leur
quotient.

Remarquons que si f est une fonction continue et bornée sur U, son extension
harmonique est donnée par:

@)@ =151 [ )P, wy o)

ol w est la forme volume provenant de la métrique de U (voir remarque 1).

Munissons le fibré trivial U X C sur U de I’action suivante. Si u est un point de
U et g une isométrie hyperbolique telle que gu est encore dans U, alors g agit sur
le vecteur (u, §) de U X C par:

gu, £)=(gu, llg’@)|~°%),

ol ||g'(u)]|| est défini a I'aide de la métrique de U (voir notation 2).
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NOTATION 5. On désigne par U X, C le fibré trivial sur U muni de I’action
ci-dessus.

On vérifie sans peine que I’application

i:Ux,C—»D’|U
(u, &)= (x, u, P(x, u)—*Cy (3)

est un isomorphisme équivariant (D° | U est la restriction de D* a U).

Considérons le cas particulier ou U = dH" est muni de la métrique qui rend
I’application visuelle V, isométrique, x étant au point fixé de H”. L’isomorphisme
(3), noté i3, est alors simplement donné par:

Bu, £)=(x, u, &). (4)

Il permet d’associer a une p-hyperformes « a dans D’ une p-hyperforme usuelle
notée (i)*a.

Soit A un nombre complexe. Définissons I’espace C~“(A’T* 6H", D*7*) des
p-hyperformes a valeurs dans D*~” comme étant le dual topologique (muni de la
topologie forte) de I'espace des (n —1— p)-formes analytiques a valeurs dans
DP~*. Cette definition est justifiée par la remarque 2 plus bas. Rappelons que

C%(APT*H") est I’espace des p-formes continues sur H".

DEFINITION 3. On appelle transformation de Poisson I’application linéaire
continue

@i C™“(APT* H", D*P)— CY(A’T*H")
définie par

(@ra)(x) = (P, (i27")* @) (x).
On a: ¥, =@,

(R

La signification géométrique du parametre A est la suivante. Si « est une
p-forme a valeurs dans D*"? définie au point u de dH", et si I'isométrie g fixe u,

alors I’action de g sur « est donnée par

g-a=|gWl ™ a

(voir notation 3), o h est une isométrie telle que hu = u et ||h’'(u)|| = 1.
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En particulier si A = —p, « est un p-vecteur tangent.
Le produit extérieur d’'une p-forme a valeurs dans D*™” par une g-forme 2
valeurs dans D"~ ¢ est une (p + q)-forme a valeurs dans D***~7 79,

Remarque 2. L’intégrale du produit extérieur fournit un accouplement naturel

entre les p-formes a valeurs dans D*” et les (n — 1 — p)-formes a valeurs dans
P P
Dn—l—l—(n—l-—p) = Dp—/\

La conjuguée complexe d’une p-forme « a valeurs dans D*™” est une p-forme
& a valeurs dans D*~7 (4 est le conjugué complexe de A).
Définissons ’opérateur C-linéaire

x: APT* 3H" @ D*P— A"~ '"PT* H" @ D*~"~'~P)

comme suit. Soit a une p-forme usuelle définie au point u de dH". Désignons par
** 'opérateur étoile correspondant a la métrique sur dH" qui rend I’application
V, isométrique (x est un point de H"). On pose alors

*((x, u, V*Pa) = (x, u, 1)* """ 17Px"q, (5)

Il résulte des observations ci-dessus que si ReA=n—1/2, alors le produit
scalaire sur les p-formes a valeurs dans D*~7 défini par

@|B)=| ansp

OH"

(¥B est la conjuguée complexe de *B) est invariant. (Il est clair en effet que les
opérations défines plus haut sont invariantes.)

2.2.2. Résultats

Les théorémes 1 (assertions b) et c)), 2, 3 et 4 ont des analogues pour @},
qu’on appellera respectivement théorémes 1', 2’, 3' et 4'.

THEOREME 1'. La transformation de Poisson ®, commute aux isométries
hyperboliques. De plus, les transformées par @) sont cofermées et vecteurs
propres du laplacien pour la valeur propre (A —p)(n —1—A—p).

THEOREME 2'. Fixons un entier p,0<p=<n —1.
a) Si A est un entier plus grand que n — 1, le noyau de

@2 :C“(AN°T* 6H", D*?)— CU(A’T*H")

est de codimension finie.
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b) SiA=n—-1-p, ona 2p+1-n)®; ' Px=+dd,_,_, ou I'étoile dans
le membre de gauche désigne I’isomorphisme naturel de [’espace des
(n — 1— p)-hyperformes sur l’espace des p-hyperformes a valeurs dans
D" "% (voir (5), §2.2.1). Le noyau et limage de ®;~'"P sont donc
donnés par le théoréme 2.

c) Dans les autres cas, P, est un isomorphisme topologique de ’espace des
p-hyperformes a valeurs dans D*™7 sur I'espace des p-forms cofermées sur
H" qui sont wvecteurs propres du laplacien pour la valeur propre

(A-p)n-1-21-p).

Le lemma fondamental (§4.1) fournira une description explicite du noyau de
@)} dans le cas a).
Le théoréme 3’ s’énonce comme le théoréme 3:

THEOREME 3'. La transformée d’une p-hyperforme a valeurs dans D*7P est
la transformée d’un courant (a valeurs dans D*7F) si et seulement si elle croit
lentement.

Afin d’énoncer le théoreme 4', on introduit quelques notations.
Identifions conformément H” (muni de sa métrique de courbure —1) & une
boule de dH"*'. Soit s un nombre complexe.

NOTATION 6. Désignons par D3, le fibré noté D° jusqu’ici (voir notation 4,
§2.2.1) et par D3, le fibré analogue sur SH"*'.

Soient « une p-forme sur 8H" a valeurs dans Dj,, et & un champ de
p-vecteurs sur dH"*!. Posons A=p +s. Le fibré H" X, C (notation 5, §2.2.1)
s’identifie, en tant que fibré homogéne, au fibré trivial H” X C (muni de I’action
g (x, £)=(gx, £)). On peut donc considérer la section is@,a (i est le produit
intérieur) du fibré trivial comme une section de H" X C.

On va définir un plongement j qui fait commuter le diagramme

, ,
H"X,C - D5, ,|H" —> D%, «----D¢

S

S

H' —— aHn+l «— JH"
en posant:

(G u, ©) = u, Pz, u)™Y. ~ (6)
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(L’isomorphisme i° et la fonction P sont définis respectivement par (3) et (2),
§2.2.1.)

En faisant les identifications induites -par i° et j, on peut considérer que @)

transforme des p-formes sur H" a valeurs dans D4 en des p-formes sur H” a
valeurs dans le méme fibré:

A C“(APT* 3H", D*7%)— C°(APT*H", D%77).
THEOREME 4'. Il existe une constante C,(A) telle que:
a) L’assertion a) du théoréme 4 est encore vraie mutatis mutandis si on
remplace dans son énoncé @, par @} (ou plus précisément @, par i* o D et
« par j° «), ’hypothése p <n — 1/2 par ’hypothése Re A <n —1/2, C, par
Co(h).
b) 1l en va de méme pour l'assertion b) du théoréme 4.

Le lemme fondamental (§4.1) montrera

+1)
)

C,(h)=2+"1"

n T(n—»2)

—l—A—pF(n—l—ZA)F(
(3-

N!R NS

3. Preuve des théorémes 1 et 1’

3.1. Le noyau @} de la transformation de Poisson Lo

Définissons la (p, n — 1 — p)-forme double (voir [19, §7]) @, sur H" X 9H" a
valeurs dans DP~*. Soient £ un p-vector tangent 38 H” en x et 1 un
(n — 1 — p)-vecteur tangent a dH" en u. Posons

(w5 § @ ) = (G (@), Vi) A& A (V) e, 17

ou |[S""!| désigne le volume de la sphére unité de R” et w la forme volume
hyperbolique de H". On verifie alors le lemme suivant.

LEMME 1. La transformation de Poisson ®) est donnée par le noyau
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invariant @;, i.e.

—_ A
Pra=| @A
SH"

Remarquons que la transformation @} et le noyau @} sont tous deux définis
d’une fagon qui rend leur invariance manifeste.

LEMME 2. Les transformées ®, sont cofermées et vecteurs propres du
laplacien pour la valeur propre (A —p)(n —1— A4 —p).

Preuve. Le noyau ¢, est une (p,n —1— p)-forme double sur H” x 3H" a
valeurs dans D”~*, Soient u un (n — 1 — p)-vecteur en un point u de 3H" et £ un
vecteur de D*"? au point u. Définissons la p-forme B sur H” par

(B, E)=(¢ (@), E®n))

Il suffit de montrer que B est cofermée et vecteur propre du laplacien pour la
valeur propre (A—p)(n—1—A—p).

Prenons le demi-espace x, >0 de R”, muni de la métrique x,%(dx?+-- -+
dx?), pour modele de H" et plagons le point u a I'infini. On peut supposer

Ble,)=dx;An---ndx, (e,=(0,...,0,1)eR"),

car 8 ne contient pas le facteur dx,. On en déduit, par équivariance de @)
B=x"1"*Pdx, A Adx,

et on acheéve la preuve du lemme par un calcul direct et facile.

Afin de donner une expression explicite du noyau @, = @5, introduisons les
notations suivantes.

NOTATION 7.

H'={x=(x,...,x,)eR"|x,>0},
R”“:{u'=(u1, A ,u,,)GR"Iun‘_‘O}’
OH" =R""'U {=},
en=(0,...,0,1)eR",
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Xi — U

, UF®
fi(x, u)= lx — ul? (x,u)e H" x 8H",j=1, ..., n,

x,- u=o

P =f, est le noyau de Poisson, 3/3u;(») (resp. du;(<)) est I'image directe de
8/3u;(0) (resp. du;(0)) par la réflexion u—u/|ul?, (i=1,...,n—1), S est le
groupe des permutations de {1,...,n —1}, &, est le signe de la permutation,

L={ieS|iQ)<---<i(p),i(p+1)<---<i(n-1)}
Vp = Eolsfoy At A dufoo) Aoy At A dltg(uoy

1, ueR"!
as=:s(u)={__1 Y = oo

|$7~!| est le volume de la sphere unité de R".

LEMME 3. Ona

n—1-2p

2 ~1— i
(pp___(_l)np+n8 |Sn—1| ) L 1 ZPE ,lpp’

ou i parcourt I,. De plus on a, au point (e,, 0)

dP=—dx, df=dx, d.d.f=—dx,®du,.

Preuve. Pour vérifier que 'égalité du lemme est vraie au point (e,, ®) de
H" x 3H", il faut calculer u =V, ({). La figure 4 représente le plan contenant

<\

Figure 4
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e, 0 et {. Par similitude des triangles (0,e,, w) et (0, v, e,) I'angle 6 que le
vecteur { forme avec (e,, 0) se retrouve comme indiqué en v. Le triangle
(u, v, e,) étant isocele, son angle en e, vaut (x — 6)/2. L’angle (0, e,,, w) est donc

T—0 T 6
— 4t —-=—=—.
2 + 2 2

Il en résulte que la distance de u a 0 est 1g(6/2). L’application tangente a
I'application visuelle V, en V_'(0) - vue comme endomorphisme de R"™! - est
donc ’homothétie de rapport

(L49) -
d0%2),_, "2

On obtient ainsi I’expression de ¢, en (e,, 0). En utilisant les isométries
x—ax+b, a>0, beR"', on trouve la valeur de @, en (x, ©) pour tout x dans
H". L’isométrie x— x/|x|* donne @,(x, 0). Enfin, par translation parallele a
R”~!, on obtient I’expression du lemme.

3.2. Preuve du théoréme 1
Les transformations d®,, ®,., d et *P(,_;,,* sont données respectivement
par les noyaux d,@,, (—1)* "' " d,@,.; et (=1)""V % %,0.,_1),. On a

. 1
> Y= > vy

iel, P'(n -] ‘"P)' ogeS

(Voir notation 7, §3.1).
D’apres le lemme 2, on a

n—1-p

2 e
q)P = (-l)np+n8 ISn—-lI Pn : 2p2 u)p’ lelp;

et, en (e,, 0):

duwp-!-l = 2(P + 1)“’; A dxn
n-1
2

* kY, = —YP5 A dx,, p=
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D’ou (toujours en (e,, 0)):

dp,=—(n—1-2p)dx, r @,
du(pp+1 = (_1)"(n -1 “p)(pp A dxn

n—1

2

*x*u(pp =—@p A dxm P=

Les assertions d), ) et f) du théoréme 1 découlent alors immédiatement de
ces trois relations et de la premiere phrase de la preuve.

Prouvons que les propriétés a), b), c), d) et f) du théoreme 1 caractérisent
bien la transformation de Poisson @,. D’apres la réciprocité de Frobenius, il
existe une bijection linéaire entre d’une part ’espace des transformations
linéaires continues et équivariantes par rapport aux isométries hyperboliques de
p-hyperformes sur H" en p-formes sur H", et, d’autre part, I’espace

Hom,, _ (A?C"1, APC"),

ol O,_, est le groupe orthogonal de R"~', qui est isomorphe au stabilisateur d’un
point de H" X dH". Or cet espace est engendré (sur C) par I'inclusion naturelle.

Cela montre que @, est déterminée a un facteur prés sur I’équivariance. La
conclusion désirée découle alors de a), d), e) et f).

4. Lemme fondamental

4.1. Enoncé
Prenons pour modele de I’espace hyperbolique la boule unité B" de R” avec la
métrique 4(dx?+ - - - +dxZ)/(1 - |x|*)’. On va énoncer un lemme fondamental
qui donne une expression explicite des transformées des p-formes O,-finies a
valeurs dans D*"?(O, désigne ici, et dans la suite, le groupe orthogonal de R").
Il s’agit du résultat essentiel de ce travail. Pour énoncer ce lemme, il faut
introduire un certain nombre de notations. Posons:

VP = {p-formes O,-finies sur $""'}

{p-formes O,-finies fermées}, p#n—1 @)

-
w {{p-formes O, -finies exactes}, p#0.

On désigne par W?* l'orthogonal de W” dans V* (pour le produit scalaire
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O,-invariant usuel). Pour tout entier non négatif k, on pose encore:

Wi={aeW’|Aa=(k+p)k+n-p)a}
(WP ), ={aeWP ' | Aa=(k +p)k +n—-p)a)

ol A est la laplacien de $"~'.

Voici les décompositions de W* et de W”* en sous-O,-modules irréductibles
non nuls:

Wo=C si p=0

WP: x

b Wi si p#0

k=0

@ (WP, si p#n-—-1
WP-L= k=0

W s p=n-1

Les seuls O,-isomorphismes entre tous les modules irréductibles ci-dessus sont
donnés par la différentielle (8) d de (W?~!+), sur W2,

On trouvera ces résultats dans [11, §4.6] et [3, ch.7, §15].

L’espace des p-formes O,-finies a valeurs dans D*7? est O,-isomorphe a V”
via (i§7P)* (voir (4), §2.2.1).

CONVENTION. On identifie les deux espaces ci-dessus au moyen de
I'isomorphisme O,-équivariant (i§~?)*.

On prendra bien garde au fait que cette identification n’est pas compatible
avec I’action des isométries hyperboliques infinitésimales.
Définissons les coordonnées polaires (p, 8) par

p:B™\{0}—]0, 1]
xolrl= (4
6:B"™\{0}—»S"!
x

X
x|
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Enfin posons:

Iak(z)=F(1+A—g,1+,1+k;1+f2'-+k;z),

2 () = 2p 201 — o2\F! (24 TR =P 2
Pl = Gy = [P~ PIFsu?) + 5 =R (1= pRu ()

+(n=1- A= p)pFn(e?)

' (n—A)(n—-A+1)---(n—A+k-1)

ESREREn

LEMME FONDAMENTAL.:
a) L’application linéaire w — w* définie sur V? par

ck(A)=

9)

(da)*=p" 1" (1 = p?)* P{fhu(p)0*de + (1 — p*)Fiu(p?)dp A 0*a},
pour c e (WP, p=1,...,n—1

B*=p?* 1 (1 - p*)*"PEu(p?)0* B,

pour Be (W), p=0,...,n—-1,

1*=F __,(p?) {1 est la fonction constante égale a 1)

est un O,-isomorphisme de V? sur I’espace des p-formes sur B"\{0} qui
sont O,-finies, cofermées, vecteurs propres du laplacien pour la valeur
propre (A —p)(n —1— A —p) et bornées au voisinage de 0.

b) Si @} désigne la transformation de Poisson des p-formes sur S"~' a valeurs
dans D*7? et si « et B sont comme ci-dessus, on a:

Prda =KL )("2+ " =P cor)y(dar)®

@B =(n—1-A-p)cE(H)p*
D)1 =1"=F _,(p?).

Remarques:
1) Lorsque A =p ou A =n —1—p, l'expression de p%, se simplific comme suit
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(preuve au §5.2):

0) = firpaP) = L Fo )

2) Il découle de I'assertion b) du lemme fondamental que les p-formes
(da)* et B* sont en fait analytiques on 0. En effet, ces formes sont dans
Pimage de @, ou de @, '"*, sauf pour B* dans le cas A =p = (n — 1)/2.
Mais on a

" Fyx (Pz)

R e

ﬂ#

avec " analytique en O si u #p, et F,,/F,; analytique en 0. On reviendra
sur ce cas exceptionnel dans le théoréme 6 (§6.1).

4.2. Preuve de l’assertion a)
Soient T et v deux formes de degré respectif p et p — 1 sur B"\{0} telles que

i30T =0 =155,v, i produit intérieur.

DEFINITION. On dira que 7 est la partie tangente et v la partie normale de
T+dp Av. Si v=0, on dira que 7 +dp A v est tangente.

Cette definition a bien un sens car si T +dp A v est nulle, alors 7 et v le sont
aussi.

Soit w une (p —1)-forme (resp. T+ dp A v une p-forme comme ci-dessus)
cofermé sur B"\{0} et vecteur propre du laplacien pour la valeur propre
(A-p)(n—1—A4-p) (resp. (A—p)(n+1—A—p). Supposons que w, T et v se
transforment sous I’action de O, comme des formes de W%. En vue de (8) §4.1,
cela implique que w est tangente car iy;,w est de degré p —2 et le type W%
n’apparait pas dans V7?72,

On peut alors considérer w, T et v comme des courbes paramétrées par p dans
WZ2. On identifie ici — et souvent dans la suite — les espaces (W?~'*), et W% au
moyen de la différentielle d.

Introduisons les abréviations suivantes: D est ’opérateur différentiel

~-n -n 9 n+1- n—
P PP g R (L= P,
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s=(k+p)(k +n—p) est une valeur propre du laplacien de S"°', b; =(A—

p)(n—1—A—p) est une valeur propre du laplacien de B", gi(p) =s — bi(4p?/
(1= p*?). On a alors:

LEMME 4. Les courbes w, v et T vérifient les équations différentielles:

9 _
(D-é—b——gﬁ_})w=0 (w)
o
(é—pD—gﬁ>V=0 (v)
st =Dv (Tv)
ot
g$v=s55. (vr)

Preuve. L’application x— (p(x), 6(x)) = (Jx|, |x| 'x) est un difféomorphisme
de B™\{0} sur ]0, 1] x $”~'. La différentielle d sur B"\{0} s’écrit donc sous la
forme:

ol d, (resp. dy) provient de la différentielle sur ]0, 1[ (resp. sur $*~'). On peut
aussi écrire symboliquement

3
dy=dp A5 (11)

ol 3/39p est la dérivée de Lie dans la direction du champ 3/3p sur B"\{0}. De la
méme fagon, on peut considérer 'opérateur *, sur les formes tangentes aux
sphéres de B"\{0} centrées a I'origine — opérateur défini par la propriété

*o0*a = 0**q. (12)
On vérifie la relation

(T +dp Av)=2""2"Pp" 172 (1 = p?)" P (p?xev + (= 1)dp A *7). (13)

et on prouve le lemme par des calculs directs utilisant (10), (11), (12) et (13).
La substitution p = Vz dans les équations (w) et (v) du lemme 4 conduit
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respectivement aux deux équations suivantes:

d°w (n—2p 2p—-n- 2) dw ( s b} b2}
= + — 4 _ P + p )
dz? ( z—1 2z dz \4z* (z—-17 z(z-1) @ (14
d2v_<2p —n -4+n —Zp)ig
dz? z z—-1/dz
s+2p—-n—1 6p—3n-2b] 2p——n—b$)
+ - +
( z? z(z—-1) (z—-1) (15)

Ces équations présentent des singularités réguliéres en 0, 1 et = (voir [1, Chap. 8,
§4]. Les racines des équations indicielles de (14) (resp. (15)) en ces points sont les
suivantes:

p+k p—n—k( p+k—1 p—n—k——l)
> et > resp. > et 5 en0, (16)

A—petl+n—A—p(resp.1+A—petn—p—A)enl,

14 ’21 ketp;k(res .p+’2(+1etl+p 2" k) en <.

A chacune des deux racines en 0 correspond une solution non proportionnelle a
'autre. La solution correspondant & (p —n —k)/2 (resp. (p —n — k —1)/2) n’est
pas bornée en 0 (voir (26, 10.32]). Elle doit donc étre rejetée. L autre solution,
exprimée a l'aide des fonctions hypergéométriques, donne les expressions de
(da)* et B* dans I’assertion a).

4.3. Preuve de ’assertion b)

Dans le cas p =0, cette assertion n’est autre que le corollaire 4.4 dans [17].
En utilisant d’'une part I'assertion a) du théoréme 4' (qui est indépendante de
I’énoncé a démontrer) et, d’autre part, le théoréme 1 ainsi que les relations (10),
(11), (12) et (13), on peut, sans difficulté majeure, généraliser la preuve
développée dans [17] au cas p quelconque. Les détails sont laissés au lecteur.

5.4 Preuves
5.1. Preuve des théorémes 2 et 2'

Soit w une p-forme propre du laplacien hyperbolique pour la valeur propre
(A=p)(n—1—A4—p) cofermée sur B". Pour toute (classe d’équivalence de)
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représentation irréductible unitaire & de O,, on pose:

0 = dim ()| 7(8)(e - w)dg

ou X, est le caractére de x, g - w désigne P'action naturelle de g € O, sur w et dg
est la mesure de Haar sur O,. Il est clair que w, est cofermée et vecteur propre
du laplacien pour la valeur propre (A —p)(n —1—A—p). On a:

W= Z Wy, (19)

la convergence ayant lieu sur chaque sphére |x| = p en moyenne quadratique. (En
fait on a convergence uniforme sur tout compact de B".)

L’assertion a) du théoréme 2’ découle immédiatement du lemme fondamen-
tal. Prouvons I’assertion c). D’aprés le lemme fondamental, on peut écrire (19)
sous la forme:

w= PNda,+B), k=0,1,...,®
O € (Wp‘-ll)k, ﬁk € (Wpl)k.

LEMME 5. Pour tout 0<p <1, on a:

2 (el + 1BlBp™ <o, k=0,1,...,

Le lemme entraine le théoréme, car d’aprés [16, §1] il implique que la série
Y. (day + Bi) converge vers une p-hyperforme y et donc @iy = w.

Preuve du lemme 5. Pour tout 0<p <1, on désigne p.r pS"~' la sphére
|x| = p et on considere les inégalités:

f WA ¥ <®©
psn~l

f lia/apw A *glg/3p0 <@ (20)
pS"

oll iy, est le produit intérieur et %, est 'opérateur *g (voir (12), §4.2) suivi de la
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conjugaison complexe. En utilisant le lemme fondamental et en tenant compte du
fait que |cg(A)| (voir (9), §4.1) est plus grand qu’une puissance de k™' pour k
assez grand, on obtient:

|Bi (D)) ||ax]|2p? < o=
|

Ex(p?)? |Bellzp®* <=

p <Ll (21)

0<
D’aprés [17, lemme 5.3 (2)], on a, pour k assez grand

B0 > 4(1 = p2)d 1A

Cela prouve le lemme.

Assertion b. La relation (2p + 1 —n)®; "' "Px =*d®,_,_, découle du lemme
fondamental et de (10), (11), (12) et (13), §4.2. On pose
P,d, p=0,...,n=2
Yp = —
d¢n—1’ p=n-— 1.

Il faut montrer que le noyau de ¥, est I’espace des p-hyperformes fermées si
p#n—1, exactes si p#0, tandis que 'image de ¥, est ’espace des p-formes
fermées et cofermées sur H".

La seule différence avec la preuve ci-dessus de I’assertion ¢) du théoréme 2’
est que les formes B, sont toutes nulles.

5.2. Preuve des théoréemes 3 et 3’
Soit w une p-hyperforme sur $"~'. Développons-la en série de Fourier:

0= (dag + Bi), o € (WPY),, Bre (WP, k=0,1,...,

Rappelons que w est un courant si et seulement si les suites ||a,||3 et ||B«||3 sont 2
croissance polynomiale en k. Si cest le cas, P,w est a croissance lente. On
prouve cela aisément en majorant les |F.(p?)| et |Fi(p?)| uniformément par
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rapport a k et en rappelant qu’il existe un polynéme f tel que:

el + 11 Bell- = f) (Il @l + 11 Bell2) (22)

[26, 5.6].
Supposons maintenant que @,w croit lentement. On peut aussi supposer

=0 si P)da, =0

Bi=0 si @B, =0.

Montrons que w est un courant. ’

En remplagant w par ®@,w dans les membres de droite de (20), en utilisant
’hypothése sur la croissance de @,w ainsi que la relation (22), et en procédant
comme on I’a fait pour déduire (21) de (20), on obtient:

k™ B0 el l20% < (1 = p*)™
0<po<p<l, k>k,,

ou / est un entier assez grand.
Le lemme que voici fournit la conclusion désirée.

LEMME 6. Pour tout nombre complexe A, il existe une suite p, €0, 1], k =
1,2, ... et un entier positif q tels que:

lim k9(1 — p2) = 4+

k—>x
lim P |Bx(PD)? (1 = p2) ™ = +oo.

Lewis a prouvé ce lemme pour A ¢ (n — 1/2) + Z 13, lemme 5.6]. 1l suffit donc
de le démontrer ici pour A réel.

LEMME 7. On a

2z ,
Fioral@) = (1= 2V (s Fiy s al) + Frcaoaa(2)).

(Voir (9), 84.1 pour la définition de F, _, x.)
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Montrons le lemme 6 pour A réel en admettant le lemme 7. Posons:
pi=1-1/k. On a alors p*=1/4. Si A=n/2 on a E_, (p?) =1 car il sagit
d’une série dont le premier terme vaut 1 et les autres sont non négatifs. On peut
donc prendre n’importe quel g, par exemple g =1. Si A=<n/2 et k=—A4 on a,
pour la méme raison F,_,_, (p*)=1. Si de plus k>A—n, on a aussi (2p?/
A+n—A)F,__,..(p?)=0. Le lemme 5 implique alors: F,_, ((p*) = (1 — p?)" .
On peut choisir ¢ >2n — 4A. Cela prouve le lemme 6.

Preuve du lemme 7. Les fonctions suivantes sont des solutions bornées en
des équations (w) et (r) du lemme 4 (§4.2)

w = wiZ} = pP**(1 - p?)*PE_, (P
t=1)=p" """ (1 - p»)*PfR(p)
v=vh=p? K1 - p?) PR (pP).

Ces équations étant invariantes par la substitution A—n —1— A, leurs solutions
le sont aussi. On en déduit les relations:

1- Z)Aﬂk(z) =(1- Z)n_l—AEr—l—A,k(z)
(1= p)f8uP) = (1 = p*)" ' fo_i_ax(p).

Supposons maintenant A = p. On a alors, en vertu du lemme 4 (§4.2)

sr=Dv=D-€E, et donc: (D—i——s)r=0.
op op

On voit que les fonctions 75 et w5”; définies ci-dessus vérifient la méme
équation et sont toutes deux bornées en 0. D’apres (16) §4.2, elles sont donc
multiples ’'une de 'autre par un facteur facile a calculer. D’ou

whl=(p+k)te=(@p+k)1;" "

Cela prouve la remarque 1 qui suit le lemme fondamental. On en déduit d’autre
part apreés quelques calculs €lémentaires

2z

k+n—-p n-1-p(2) F"-l*p.k(z))-

Fyois(2) = (1= 2%

Il s’agit d’'une égalité entre deux séries entieres en z dont les coefficients sont des
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fonctions rationnelles de n, p et k — égalité qui est vraie pour tous les entiers n, p
et k satisfaisant les conditions n =2, 1=p=<n -1, k=0. Il en résulte que cette
égalité est vraie pour toutes les valeurs de n, p et k.

5.3. Preuve des théorémes 4 et 4’

Identifions I’espace hyperbolique H" a la boule unité B” de R". Soient p un
entier compris entre 0 et n — 1, et A un nombre complexe dont la partie réelle est
inférieure a (n — 1)/2.

On va d’abord voir que pour prouver la théoréme 4' (qui généralise le
théoréme 4), il suffit de montrer que les formes 2*77(1 — p?~*®ia ont des
valeurs au bord (dans les divers sens de ’énoncé) et de comparer, en adoptant la
convention du §4.1, ces valeurs au bord avec les p-formes a.

Désignons respectivement par i,, i, et i; les isomorphismes obtenus a partir de
(3), §2.2.1) en posant successivement:

- U = B" munie de la métrique hyperbolique et vue comme ouvert de dH"*!,
— U=R" muni de sa métrique standard et vu comme ouvert de dH"*',
— U =S"""! munie de sa métrique usuelle et vue comme (ouvert de) dH" = 5B".

Rappelons que le plongement j est défini par (6), §2.2.2. Définissons les
plongements j; et j, en imposant que le diagramme ci-dessous commute. (On
pose s = A — p.) On vérifie alors les relations:

jitx, §) = (x, 2°(1 - p*)~°C)
J2(u, &) = (u, ).
B"x,C - R"Xx,C «2 s"1x,C

iy i "31
v

Di.1| B" —> D} |R" «L— D;,

l ‘, l

n ¢ R" € Sn—l

En faisant les identifications induites par i,,i,, i3, j, j; €t j;, on peut
considérer que @, transforme des p-hyperformes sur "' a valeurs dans R” x, C
en des p-formes sur B” a valeurs dans le méme fibré:

®h: C~(APT*S™!, R" X, C)— CYA’T*B", R" X, C).

L’expression explicite des transformées ®P,w est alors obtenue, comme
annoncé, en multipliant celle du lemme fondamental par 2°(1 — p?)~*.
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Le noyau ¢, est donc une (p,n—1-p)-forme double invariante sur
B" x $"~! a valeurs dans le fibré (R” X, C) ® (R" X, C) sur R” X R".

Remarque. L’application

R" xs C—>Rn xResq:
(x, ©)—(x, |Z])

est équivariante.
Appelons norme euclidienne de (x, §) e R” x,C et désignons par |(x, {)| le
nombre |g|.

LEMME 8. La norme euclidienne du noyau @)} est:
'(pzl - a(1 . 'x|2)n—-1—-2ReA |u _x|2(ReA+l~—n), (x, u) e B" X Sn—l
ou a est une constante.

Preuve. La remarque ci-dessus implique le fait suivant. Le noyau ¢} étant
invariant, sa norme se transforme par les isométries hyperboliques de B" comme
un vecteur du fibré DR3 ® D71 7R sur B” x §"~'. Supposons |@(0, u)| =a,
ol u est un point de $"~'. Soit x un point de B"\{0}. Choisissons un 2-plan

hyperbolique de B” contenant 0, x et u, et indentifions-le au disque de Poincaré.

Soit g ’automorphisme biholomorphe du disque de Poincaré tel que g0 =x et
gu = u. On a alors:

l@p(x, u)| =alg’(0)| "R g’ (w)|ReA 1.

Un calcul facile permet alors de conclure.

On prouve maintenant les assertions a) et b) des théorémes 4 et 4'.

a) Soit a une p-forme mesurable essentiellement bornée sur $”~' & valeurs
dans R” x, C. Supposons que « est continue au point u de $"~! et que
ReA<n-1/2, od A—p=s. Montrons que P,a s’étend continiment 2
B" U {u} et que sa valeur limite en u est ¢ - @(u), ol ¢ est une constante
indépendante de a.

CAS 1. a(u)=0. L’exposant n —1—2Re A qui apparait dans le lemme 6
étant positif, la norme euclidienne de @)(x, .) converge vers 0 lorsque x tend vers
u uniformément sur tout compact de $"~"\{u}. En outre il est bien connu que la
moyenne de |@)| sur s"~! est la fonction Fxes ;(Jx|?) qui est bornée sur B" (ce
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résultat est aussi contenu dans le lemme fondamental, §4.1). Un argument facile
en g 6 montre que d)ﬁa tend vers 0 si x tend vers u.

CAS 2. a(u)#0. On choisit une forme f dans un sous-espace O, -irréductible .
de V?” telle que B(u)= a(u). (Par exemple, si u=(0,...,0,1)eR" et a(u)=
dx, A -+ Andx,, on prend pour B la forme de W{ obtenue en restreignant
dx, A+ Andx, de R" a §"7'.) D’aprés le lemme fondamental (assertion a)), il
existe une constante c telle que la valeur limite de ®,8 en u soit ¢ - B(u). En
considérant la forme a — 3, on est alors ramené au cas 1.

b) Les seules différences avec la preuve du théoréme 3.4 dans [15] sont les

suivantes. Désignons par A’ le A de [15] (et par A notre A). On a alors

n—1
v=i(aA-"=)
: 2

Le noyau P, de [15] est remplacé par notre @;. La norme euclidienne de ¢}
est, 2 un facteur constant non nul pres, celle de F, _,(p?)P,..

La valeur au bord d’une transformée par P,. est exactement la fonction de
départ, tandis que la valeur au bord d’une transformée par @} est obtenue en
multipliant la p-forme de départ par le facteur C,(A), qui peut étre nul. Mais
aucune modification de la preuve de [15, Theorem 3.4] n’est nécessitée par cette
différence.

Cela acheve la preuve des théorémes 4 et 4'.

6. Applications

6.1. Représentations

Désignons par g ’algébre de Lie des isométries hyperboliques infinitésimales
de la boule B", et par O, (resp. SO,) le groupe orthogonal (resp. spécial
orthogonal) de R". Les (g, O,)-modules V? et W” ont été définis par (7), §4.1.

THEOREME 5. a) Si n est impair et p<n—1/2, il existe un polynéme f
unitaire a coefficients entiers et une constante rationnelle c tels que:

(@u1-p) " #d D, = cxf (+drd). (23)

b) Le module WP est unitaire pour le produit scalaire invariant

(@)= (17| anp’

A

oit B’ est la conjuguée complexe d’une primitive de (®,_,) " '*®,p.
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c) Sip=(n-—-1)/2, on a VP = W? @ *W? avec W? (et donc *W?) (g, SO,)-
irréductibles. Dans les autres cas, les seuls sous-espaces (g, SO, )-invariants non

triviaux de V? sont:
n n-—2
WP  si *F—, ,
si p > 5

W? et les deux sous-espaces propres W* et W™ correspondant aux valeurs
propres

+1 de l'opérateur i*(P,)” '@, sur WP(i =(-1)"?), sip =g,
WP, d7'W* et d™'W™ si p=(n—2)/2 (d"'W* est I'image inverse de W*
par la différentielle d).

d) (®,_,) '*®, est un (g, SO,)-isomorphisme de WP sur W"™P Si q #p,
n —p, alors W? et W7 ne sont pas SO,-isomorphes.

Les racines de f sont

n 2 n-—3
(-z——p—l) -(m+%, m=0,1,..., L

La constante ¢ est donnée par

c=(n—1—2p)~(-;1£’jj;-_l_—)p!)!.

Il est remarquable que I'expression
*f(*d*d)

définisse un opérateur différentiel invariant.

Les propriétés de V7 et de ses (g, SO, )-sous-modules énoncées ci-dessus sont
des cas particuliers de résultats dis a Thieleker [21, 22, 23]. La transformation de
Poisson apporte cependant (dans ce cas particulier) des interprétations sugges-
tives et permet de simplifier considérablement les preuves et surtout les énoncés
de ces propriétés. Signalons toutefois une information supplémentaire
intéressante contenue dans les papiers de Thieleker: parmi les sous-modules
irréductibles qui apparaissent ici (et qui sont tous unitaires) seuls W* et W~ sont
dans la série discréte.
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Preuve du théoréme 5. Rappelons la notation
2=2z(z+1),...,(z+k—-1),
et supposons @, inversible. D’apres le lemme fondamental, on a

(D) 'O Pa=a(M)a, aeWi
(@) '@, T B=bR(A)B,  Be(WPH),

c‘,';(n—l—/l)___(l+1)k
ck(A) (n— A

__A-p
bi(x)-—nd_l_pak(ﬂt).

a(A) =

Remarquons que (@) '@;~'~* est l'opérateur d’entrelacement de Kunze et
Stein [25, 8.10, 8.11].

Soit B dans (W?”*),. La forme *B est dans W% ~'"7. En utilisant la relation
figurant dans le théoréme 2'(b) (§2.2.2), on obtient

—1-=p)!
(@urop 240 = (11 =) G S @9

Remarquons que si n=2 et p=0, I'opérateur ci-dessus n’est autre que la
transformation de Hilbert.

On achéve la preuve de a) par un calcul direct.
b) Soit B dans (W?*),. D’apreés (24), on a

(n -1- 2p)((pn—l—p)_1*(pp+ldﬁ = (n -1 —p)(¢n—l—p)—l*d¢pﬁ
=(n—1-2p)c*pB,

ol ¢ est une constante positive. Soit (dB)’ une primitive de la conjuguée
complexe de (P,_,_,) *P,.,df. On a

(~1p*[df r @B) =c[B r 3B=0
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Cela montre que la forme hermitienne définite sous b) est définie positive, ce qui
était la seule chose a vérifier.
c) Esquissons la preuve de c).

LEMME 9. Le (g, SO,)-module engendré par (W?*), est V¥ si p #(n — 1)/2,
et *WP si p = (n —1)/2. Le (g, SO,)-module engendré par W4 est WP".

AFFIRMATION. Le noyau de ®,_,_, (intersecté avec V”) est I'orthogonal
du (g, $O,)-module engendré par (W”*), pour I’accouplement

VP xvrlP s C

(2 )~ [ n B

Pour prouver cette affirmation, on commence par remarquer que les deux
modules en question sont bien orthogonaux. Soit a une forme de V"~'7P
orthogonale au (g, SO, )-module engendré par (W”*),. Montrons que &@,_;_,«
est nulle. Il suffit de voir que si 7y, ..., 1, sont des isométries hyperboliques
infinitésimales, alors (7, . . ., 7, Pn-1-,a)(0) =0, car @, est analytique. Soit §
un vecteur de A""!'"PC” vu comme un (n — 1 — p)-vecteur tangent a B" en 0.
D’apreés le lemme 1 (§3.1), on a

<¢n—1—pn1' C Ny, g) = j’h Mm@ A iE(pn—l—p'

Or le membre de droite est égal a

(—l)mfw AN Mig@p_q—p.

L’application & — iz@,_,_, étant un isomorphisme de A"~'"PC" sur (W**), (voir
[11, §4, §6]), I’affirmation est prouvée. On en déduit aisément la premiere phrase
du lemme 9. La second phrase découle de la premiére et du fait que
dxW" P = WP et d(WP™'1) = W5,

. On prouve sans peine l’assertion c¢) du théoreme 5 dans le cas p #n/2,
(n —1)/2 en utilisant le lemme 9, le fait que les W” sont unitaires, ’observation
(8) (§4.1) et lé fait que (W), et W{*! sont SO, -irréductibles pour q # (n — 2)/2
([11, §4, §6]). Si p = (n —2)/2 ou n/2, la preuve est analogue.

d) L’assertion d) du théoréme 5 résulte d’une inspection des O, et SO,-types
intervenant dans W”. Le théoré¢me 5 est donc prouvé.
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THEOREME 6. Le module de Harish-Chandra X des (n —1)/2-formes
SO, -finies harmoniques cofermées sur H" = B" ne contient qu’un seul sous-module
non trivial: celui des formes SO, -finies fermées et cofermées. De plus, si Y est
un module de la série principale du groupe des isométries de H" préservant
I’orientation, alors X ne se plonge pas dans Y.

Preuve. Prouvons la premiére assertion. Posons p=(n—1)/2. On a la
suite exacte:

0 > WP — 2 x Lee d, yrrl ), (25)

Supposons par ’absurde qu’il existe un sous-espace (g, SO, )-invariant non trivial
S de X, avec S#P,WP. Comme W’ et WP*! sont irréductibles, on a:
X=®,W? DS avec S =W?"'. Etant somme directe de deux modules unitaires,
X admet un produit scalaire (g, SO,)-invariant et donc un produit scalaire
(g, O,)-invariant. Ainsi, on peut supposer que S est (g, SO,)-invariant. Vu que
les composantes O,-isotypiques de X sont irréductibles, on déduit du lemme
fondamental (assertion a), §4.1) que les formes o de S sont caractérisées (parmi
celles de X) par la condition:

isp =0 (i est le produit intérieur).

Cela est impossible. En effet, soit g une isométrie hyperbolique. Si § était
invariant, on aurait, pour tout a dans S:

is208 ‘=0,
ol g~! a désigne I’action de g~' sur a. D’ol, avec le méme type de notation:
Ig(arap)® = 0.
C’est-a-dire iz = 0 pour tout vecteur tangent &, et donc o =0.
Démontrons la deuxieme assertion. Le module X contient le SO, -type A?C",
qui est SO,,_;-isomorphe a
APCT LT @ APCT T @ APTICT (26)
D’apreés la réciprocité de Frobenius, Y, en tant que SO,-module, est induit par

'un des trois SO,_,-modules ci-dessus. La somme des deux premiers modules
induit V?, qui est (g, SO,)-isomorphe 3 W” @ W”. 1l en résulte que chacun des
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deux premiers termes de (26) induit W”. Le troisitme sommand induit V?~!,
D’aprés la suite exacte (25), le SO,-type APC" = W§ apparait deux fois dans X,
alors qu’il n’apparait qu’une seule fois dans Y = W? ou V*~! (voir [11, §4, §6]).
Le théoreme 6 est prouvé.

6.2. Courants invariants

Supposons maintenant que I" est un sous-groupe discret co-compact du groupe

des isométries de H". Désignons par b, le p-€me nombre de Betti du quotient
\H".

COROLLAIRE DU THEOREME 3. Sip #n —1/2 (resp. p = (n — 1)/2), les
courants I'-invariants sur OH" forment un espace vectoriel de dimension b, (resp.
2b,).

Preuve. Au vu des théorémes 2 et 3, il suffit de démontrer que b, est la
dimension de I’espace des p-formes harmoniques I'-invariantes sur H". Si I agit
librement sur H", la cohomologie de Cech et la cohomologie de de Rham de
I'\H" sont isomorphes par le théoréme de de Rham, et la cohomologie de de
Rham est représentée, d’aprés le théor¢eme de Hodge, par les formes har-
moniques. On peut adapter la preuve de ces deux théorémes au cas ou I’action de
I’ n’est pas libre. (Pour plus de détails, voir [2, §7, théoréme H].) Cela acheve la
preuve du corollaire.

PROPOSITION. Soit I' un sous-groupe quasi-fuchsien de PSL(2,C)
Supposons que le quotient du domaine de discontinuité de I par I est formé de
deux surfaces de Riemann compactes de genre g. Il existe alors au moins 4g
courants linéairement indépendants de degré 1 sur S"~' qui sont portés par le
quasi-cercle limite et d’ordre au plus 1.

Preuve. On peut définir une transformation de Poisson légerement différente
de la précédente de la fagon suivante. Soit o un courant de degré 1 sur la sphére
de Riemann § porté par le fermé A. Ce courant s’écrit de fagon unique sous la
forme o = Fo + Ca avec Fa fermé et Ca cofermé. Sur S\A, on a: Fo = —Ca.
Par régularité, Fa est donc donné sur S\A par une l-forme ya fermée et
cofermée. Il est clair que y est équivariante par rapport aux transformations
conformes préservant A. Supposons maintenant que A est le quasi-cercle limite
du groupe I" de I’énoncé, et soit B une 1-forme fermée et cofermée sur S\A. Ces
formes B constituent un espace de dimension 4g. Il suffit donc de prouver qu’il
existe un courant « satisfaisant les conditions de I’énoncé tel que ya = .

Observons d’abord qu’on peut réaliser I' comme une déformation d’un groupe
fuchsien par un homéomorphisme quasi-conforme f qui envoie conformément le
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disque unité D du plan complexe sur I'une des deux composantes — notons-la
2 - de S\A. On prouve cela en constatant que I est déterminé, & conjuguaison
prés, par les surfaces de Riemann marquées qu’il représente (voir par exemple |3,
p. 133]) et en procédant comme [5, p. 22].

Soit A une primitive de . On peut supposer que B et donc 4 sont nulles en
dehors de 2. Comme on a dh=f, on a df*h=f*f sur D. Vu que f*f est
invariante par un groupe d’isométries hyperboliques admettant un domaine
fondamental compact, sa norme hyperbolique est bornée. On a donc, si c est le
segment géodésique de 0 au point z de D:

W) = WO + [1°8,

et lintégrale est majorée, d’aprés l'inégalité fondamentale, par la distance
(hyperbolique) de 0 & z multipliée par la norme (hyperbolique) de f*B, qui est
bornée. Cela implique que la norme euclidienne de f*h ne croit pas plus vite que
—log (1 — |z|). 11 en résulte que h est intégrable sur C. En effet, si f' désigne la
dérivée de f sur D, alors |f’|?, qui est en principe L’ sur D, est en fait L'** pour
un certain ¢ positif [13, p. 138]! Par suite f*h - |f'|* est bien L.

Ainsi, h définit une distribution & sur S, 8 = dh est un courant I'-invariant qui
étend B. On peut définir (*B)~ de fagon analogue. En posant a = 8 + *(*8)™, on
obtient le courant cherché.
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