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Transformation de Poisson de formes différentielles. Le cas de
l&apos;espace hyperbolique

Pierre-Yves Gaillard

1. Introduction

Dans ce travail, on définit, en suivant une idée de Thurston [24, Chapitre 11],
une transformation de Poisson qui, à une p-forme sur le bord de l&apos;espace

hyperbolique, associe une p-forme harmonique cofermée sur cet espace. Cette
transformation commute aux isométries hyperboliques et s&apos;étend aux p-
hyperformes, qui sont par définition les sections hyperfonction du fibre des

p-formes. On étudie cette transformation, et on répond aux quatre questions
suivantes:

1) Quelles sont les propriétés élémentaires de cette application?
2) Quel est son noyau et quelle est son image?
3) Quelles sont les transformées des courants?

4) Quel est le comportement vers le bord des transformées?
Les réponses à ces quatre questions figurent respectivement dans les théorèmes 1,

2, 3 et 4-énoncés au §2.1.2.
On prouve ces théorèmes à l&apos;aide d&apos;une expression explicite de la transformation

de Poisson en termes de fonctions hypergéométriques (lemme fondamental,
voir §4.1) qui généralise un résultat de Helgason [10] et Minemura [16]. On
utilise largement les méthodes développées par ces deux auteurs.

Pour obtenir une telle expression explicite, nous avons dû considérer plus
généralement des formes différentielles à valeurs dans un fibre homogène en
droites sur le bord de l&apos;espace hyperbolique. Les transformées sont alors des

p-formes cofermées sur l&apos;espace hyperbolique qui sont vecteurs propres du

laplacien.
Les questions 1), 2), 3) et 4) ont encore un sens dans ce cadre plus général, et

les théorèmes 1&apos;, 2&apos;, 3&apos; et 4&apos; y répondent respectivement (voir §2.2.2).
Dans le cas p 0, les quatre problèmes énoncés plus haut avaient déjà été

résolus - et ceci pour n&apos;importe quel espace symétrique riemannien de type non
compact.

En ce qui concerne la question 2), Helgason a conjecturé - et prouvé dans

plusieurs cas particuliers - qu&apos;une fonction propre de tous les opérateurs
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582 PIERRE-YVES GAILLARD

différentiels invariants était la transformée de Poisson d&apos;une section hyperfonc-
tion d&apos;un fibre homogène en droites convenable sur la frontière maximale.
Kashiwara et al, [12], à l&apos;aide de l&apos;analyse microlocale, ont prouvé cette

conjecture en toute généralité. Un corollaire d&apos;un très beau théorème de W.
Schmid [20] réduit cependant ce résultat à la caractérisation des transformées de

sections /C-finies - caractérisation qui avait été donnée par Helgason. Le
théorème de Schmid s&apos;applique à la situation examinée ici. Plus précisément, il
permet de déduire immédiatement les théorèmes 2 (§2.1.2) et 2&apos; (§2.2.2) du
lemme fondamental (§4.1). Les preuves présentées ici sont directes et n&apos;utilisent

pas ce résultat.
Pour ce qui est de la question 3), Lewis a montré en rang un que les

transformées des sections distribution sont précisément les fonctions propres des

opérateurs différentiels invariants qui satisfont une certaine condition de croissance

[14]. Le résultat de Lewis comporte toutefois une certaine restriction. (Ce
théorème ne s&apos;applique par exemple pas à la transformation de Poisson classique
des distributions en fonctions harmoniques sur les espaces hyperboliques de

dimension impaire.) Oshima et Sekigushi, de nouveau en utilisant des techniques
d&apos;analyse microlocale, ont levé cette restriction et, surtout, ont généralisé ces

résultats aux espaces symétriques affines [18].
On donne ici une preuve du cas non traité par Lewis qui repose sur une

simple identité entre fonctions hypergéométriques (lemme 7, §5.2). On obtient
cette identité grâce au fait qu&apos;on considère la transformation de Poisson des

formes différentielles. Cela introduit un paramètre supplémentaire - le degré p
des formes - dans les équations différentielles qui interviennent. Ainsi, même

pour résoudre certains problèmes relatifs aux fonctions, il peut être utile de

considérer des formes différentielles.
Les théorèmes 4 et 4&apos; (énoncés aux §2.1.2 et §2.2.2 respectivement) mettent

en évidence un phénomène de convergence non tangencielle, qui avait été

observé par Michelson [15, Theorem 3.4] pour/? =0, sur des espaces symétriques
un peu plus généraux. La preuve du cas p 0 s&apos;adapte sans difficulté au cas p
quelconque, ainsi que me l&apos;a fait remarquer P. Sjôgren.

Le principal enseignement qui se dégage de ce travail me semble être le

suivant. Les transformées étudiées ici sont non seulement des vecteurs propres du

laplacien, mais elles sont aussi cofermées. Il faut donc, pour caractériser l&apos;image

de la transformation de Poisson, faire appel à un opérateur différentiel invariant
(la codifférentielle) allant d&apos;un fibre (celui des p-formes) dans un autre fibre (celui
des (p - Informes). C&apos;est sans doute le phénomène qui se produit dans le cas

général.
En outre, dans le cas p 0 (en rang quelconque), le module de Harish-

Chandra des fonctions ^-finies d&apos;un espace propre de tous les opérateurs
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différentiels invariants est isomorphe, via la transformation de Poisson, à un
module de Harish-Chandra de la série principale. C&apos;est la version /C-finie de la

conjecture de Helgason (version prouvée, rappelons-le, par Helgason lui-même).
Donc, pour p 0 l&apos;étude de la transformation de Poisson ne fait pas apparaître
de représentations qui ne sont pas dans la série principale. En règle générale, ce

phénomène se manifeste également dans les cas examinés ici. On constate

cependant une exception intéressante. Le module des (n - l)/2-formes
harmoniques cofermées ^-finies sur l&apos;espace hyperbolique de dimension (impaire)
n - qui ne contient qu&apos;un seul sous-module non trivial - ne se plonge pas dans la
série principale (théorème 6, §6.1).

La motivation originelle de cette recherche vient de la théorie des feuilletages.
En effet, Haefliger a montré comment la question de savoir si une variété compacte
feuilletée admet une métrique riemannienne rendant toutes les feuilles minimales
est liée à l&apos;existence de courants invariants par le pseudogroupe d&apos;holonomie

transverse [8]. Si ce pseudogroupe est équivalent à l&apos;action sur le bord de l&apos;espace

hyperbolique d&apos;un sous-groupe discret cocompact du groupe des isométries

hyperboliques, la transformation de Poisson permet de détecter ces courants.
Cette idée avait déjà été utilisée avec succès par Haefliger et Li-Banghe [9] (voir
aussi §6.2 plus loin).

Certains résultats présentés ici ont été annoncés dans [6] et [7].
Le texte ci-dessous est une version condensée de ma thèse de doctorat à

l&apos;Université de Genève (Suisse). Parmi toutes les personnes qui m&apos;ont aidé au

cours de ce travail, je tiens à remercier tout particulièrement André Haefliger,
qui m&apos;a proposé ce sujet et m&apos;a toujours donné les bons conseils aux bons

moments, ainsi que Pierre de la Harpe, Wilfried Schmid et Georges Skandalis,
membres du jury.

2. Résultats

Dans ce travail, on désigne par Hn l&apos;espace hyperbolique de dimension n muni
de la métrique de courbure —1 et d&apos;une orientation. On désigne par dHn le bord

(ou frontière ou encore sphère à l&apos;infini) de Hn. Par isométrie hyperbolique, on
entend une isométrie qui ne préserve pas nécessairement l&apos;orientation de Hn.

2.1. Transfomation des p-formes usuelles

2.1.1. Définitions
Considérons d&apos;abord l&apos;application &quot;visuelle&quot; Vx de la sphère unité Sx de

l&apos;espace TxHn tangent à Hn en x, sur 3Hn. Cette application envoie chaque

vecteur unitaire tangent à Hn en x sur le point de dHn vers lequel tend la
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demi-géodésique issue de ce vecteur. L&apos;application Vx est conforme (pour s&apos;en

convaincre, on peut penser au modèle de la boule pour Hn et placer x au centre).
Soient a une p -forme sur 3Hn et § un p -vecteur tangent à Hn en x. On va

définir la valeur {&lt;t&gt;p(x, §) de la transformée &lt;ppa de a sur f. Pour cela, on
considère l&apos;image inverse V*a de # par l&apos;application visuelle. C&apos;est une p-forme
sur S*. Plaçons-nous sur l&apos;espace euclidien TxHn et oublions un instant l&apos;espace

hyperbolique. Choisissons un point u de Sx, translatons § de l&apos;origine à u et

projetons-le orthogonalement pour obtenir un p-vecteur f tangent à Sx en u (voir
Figure 1), sur lequel on évalue V*a. En faisant varier le point u, on obtient une
fonction sur 5*; sa moyenne sera la valeur cherchée:

(&lt;t&gt;P&lt;*&gt; £&gt; (1)

où |Sn x| est le volume de la sphère unité de IRn, co est la forme volume

hyperbolique et iv est le produit intérieur par le champ de vecteur normal
extérieur unitaire v sur Sx.

Lorsque n est impair et p (n - l)/2, on peut définir un opérateur C-linéaire *
sur les p-formes sur dHn de la façon suivante. On choisit une métrique
riemanienne sur 9Hn compatible avec la structure conforme et on prend

Figure 1
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l&apos;opérateur * correspondant à cette métrique. Cest opérateur ne dépend pas du
choix de la métrique. Cela est dû au fait que l&apos;étoile sur ApU2p est invariante par
homothéties.

Définissons une p-hyperforme sur dHn comme étant une forme linéaire
continue sur l&apos;espace des (n - 1 -p)-formes analytiques sur dHn.

(On dira &quot;p-hyperforme&quot; au lieu de &quot;p-hyperforme sur 3//&quot;&quot; et, lorsque le

contexte le permettra, &quot;p-forme&quot; au lieu de &quot;p-forme sur //n&quot; ou &quot;p-forme sur

d/JV)
On munit l&apos;espace des p-hyperformes de la topologie forte. L&apos;accouplement

naturel entre formes de degrés complémentaires, donné par l&apos;intégrale sur 9Hn
du produit extérieur, permet de plonger les p-formes dans les p-hyperformes. La
différentielle d s&apos;étend aux p-hyperformes, de même que, pour p (n - l)/2,
l&apos;opérateur * provenant de la structure conforme de 9Hn. Une (n -1)/2 hyper-
forme dont l&apos;étoile est fermée sera dite cofermée. Toute (n —1)/2 hyperforme
s&apos;écrit de façon unique comme somme d&apos;une hyperforme fermée et d&apos;une

hyperforme cofermée.
La transformation de Poisson &lt;PP s&apos;étend facilement aux p-hyperformes.
Désignons par C~a(ApT* 3Hn) l&apos;espace des p-hyperformes sur dHn et par

C°(ApT*Hn) l&apos;espace desp-formes continues sur Hn.

DÉFINITION 1. On appelle transformation de Poisson l&apos;application linéaire
continue

&lt;PP : C-^T* 3Hn)-+ C°(ApT*Hn)

décrite ci-dessus.

On verra que les transformées sont en fait harmoniques. La topologie la plus
naturelle sur les formes harmoniques est la topologie C° (qui coïncide avec la

topologie Cx).

2.1.2. Résultats

Le premier théorème énonce les propriétés élémentaires de la transformation
de Poisson &lt;PP.

THÉORÈME 1. La transformation de Poisson &lt;PP est caractérisée par les

propriétés suivantes:

a) &lt;P0 est la transformation de Poisson usuelle

b) &lt;PP commute aux isométries hyperboliques
c) les transformées sont harmoniques et cofermées



586 PIERRE-YVES GAILLARD

d) (n - l-2p)&amp;p+xd (n - 1 -p)d&lt;Ppi p 0,...,n-2
e) &lt;Pp^d=p*&lt;Pp*yp^(n-l)/2
f) d&lt;Pn^i(x (1 — ft)(JaW&quot; cr)cw, où œ est la forme volume hyperbolique.

Ce théorème sera prouvé au §3.

THÉORÈME 2, Si p¥^(n — l)/2, &lt;PP est un isomorphisme topologique de

Vespace des p-hyperformes sur 9Hn sur l&apos;espace des p-formes harmoniques
cofermées sur Hn muni de la topologie de la convergence compacte. Si p
(n — l)/2, le noyau de &lt;PP est l&apos;espace des p-hyperformes cofermées, tandis que son

image est Vespace des p-formes fermées et cofermées sur Hn.
Dans tous les casf pour p =£ 0, &lt;PP induit un isomorphisme de l&apos;espace des

p-hyperformes exactes sur l&apos;espace des p-formes fermées et cofermées sur Hn.

DÉFINITION 2. On dira qu&apos;une p-forme sur l&apos;espace hyperbolique croit
lentement si sa norme est majorée par une fonction de la forme *—»

a exp (d(x0, x)) où d(jc0, x) est la distance de x à un point fixe x0 de Hn et où a et
b sont des constantes convenables.

THÉORÈME 3. La transformée d&apos;une p-hyperforme est la transformée d&apos;un

courant si et seulement si elle croit lentement.

Si c&apos;est le cas, on peut majorer l&apos;ordre du courant par une constante

dépendant de la croissance de la transformée, et vice-versa.
En ce qui concerne le comportement vers le bord des transformées, on a le

résultat suivant. Posons:

&quot;

n r(n-p)

THÉORÈME 4. Supposonsp&lt;n- 1/2.

a) Si a est une p-forme mesurable essentiellement bornée sur dHn continue au
point u alors &lt;Ppa s&apos;étend en une p-forme continue sur Hn U {u} dont la
valeur en u est celle de Cpa.

b) Soient xi} un point de Hn et R un nombre positif. Si u est un point de dHnf
on désigne par Tu le tube des points de Hn dont la distance à la géodésique
passant par x{) et u est inférieure à R (voir Figure 2). Soit a une p-forme Lq

sur 9Hn, avec 1 &lt; q ^ o°. Alors presque tous les points u de 9Hn possèdent
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Figure 2

la propriété suivante: Si x est un point de Tu qui tend vers uy alors (&lt;Ppa)(x)

tend vers Cpa(u).

2.2. Transformation des p-formes à valeurs dans un fibre homogène en droites
2.2.1. Définitions

Soit /: M —» N une application différentiable entre deux variétés riemaniennes.

NOTATION 1. f&apos;(x): TXM-* Tf{x)N est l&apos;application tangente à / au point x
de M.

NOTATION 2. \\f&apos;(x)\\ est la norme d&apos;opérateur de/&apos;(*).

Remarque 1. Si M et N ont la même dimension m et si / est conforme, alors
un m-vecteur de norme 1 tangent à M en x est appliqué par /sur un m-vecteur de

norme ||/&apos;(*)l|m tangent à N enf(x). Par ailleurs, si /et g sont conformes, on a:

lier °gy(x)\\ \\r(g(x))\\ \\g&apos;(x)\\.

Supposons maintenant que M N est munie seulement d&apos;une structure
conforme, que f(x) x, et que / est conforme.

NOTATION 3. \\f&apos;(x)\\ est la norme commune des valeurs propres de/&apos;(*).

On observera que les notations 2 et 3 sont cohérentes.
Soit s un nombre complexe. On va définir un fibre homogène en droites

Ds-*dHn.
Pour cela, on commence par définir une fonction positive Q sur Hn x 3Hn x

Hn. Soit (yy u, x) un point de Hn x 3Hn x Hn. Considérons les applications
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Figure 3

visuelles Vx et Vy définies au §2.1.1, et posons:

Q(y, u, x) \\il\
(voir notation 2 ci-dessus).

Remarquons qu&apos;on a: Q(y, u, x) eed, où d est la distance entre les

horosphères &quot;centrées&quot; en n passant par x et par y, et e vaut +1 ou — 1 selon que
la demi-géodésique (x, u) coupe on ne coupe pas l&apos;horosphère passant par y et u

(voir Figure 3).
Cette fonction Q est invariante (par les isométries hyperboliques) et satisfait -

en vertu de la remarque 1 ci-dessus-la relation de &quot;cocycle:&quot;

Q(z, u, y)Q(y, u,x) Q(z, u,x).

Disons que les triples (jc, m, £) et (y, v, tj) de Hn x 9Hn x C sont équivalents
si et seulement si:

u u, 20 w&gt;

Désignons par (x, u, £)5 la classe de (x, u, Ç). L&apos;ensemble de ces classes

possède une structure naturelle de fibre homogène en droites sur 9Hn. La
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projection est définie par (x, u, t,)s-*u et l&apos;isométrie hyperbolique g agit par:

g(x, u, Ç)5 (gx, guy £)J.

NOTATION 4. On désigne par Ds le fibre homogène en droites sur dHn
défini ci-dessus.

La signification géométrique du paramètre s est la suivante. Si l&apos;isométrie g
fixe le point u de dH&quot;, on a:

(voir notation 3).
A côté de ce modèle intrinsèque du fibre Ds, il sera commode de disposer du

modèle plus concret que voici.
Soit U un ouvert de dHn muni d&apos;une métrique riemanienne compatible avec la

structure conforme. Définissons le noyau de Poisson P sur Hn x U par:

)&apos;(w)i| (2)

(voir notation 2).
Le rapport entre P et Q est le suivant:

Q(y, u,x) P(y, u)P(x,u)&apos;\

Notons que P(x, u) et P(y, u) dépendent de la métrique de (/, mais pas leur
quotient.

Remarquons que si / est une fonction continue et bornée sur U, son extension

harmonique est donnée par:

1 f
Ju

f(u)P(x, u)n-lœ(u)

où co est la forme volume provenant de la métrique de U (voir remarque 1).

Munissons le fibre trivial U x C sur U de l&apos;action suivante. Si u est un point de

U et g une isométrie hyperbolique telle que gu est encore dans £/, alors g agit sur
le vecteur (w, £) de U x C par:

où ||g&apos;(M)ll est défini à l&apos;aide de la métrique de U (voir notation 2).
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NOTATION 5. On désigne par t/xTC le fibre trivial sur U muni de l&apos;action

ci-dessus.

On vérifie sans peine que l&apos;application

r :UxsC~»Ds\U
(u9Ç)-+(x,u,P(x9u)-&apos;ÇY (3)

est un isomorphisme équivariant (Ds | U est la restriction de D5 à (/).
Considérons le cas particulier où U 3//n est muni de la métrique qui rend

l&apos;application visuelle Vx isométrique, x étant au point fixé de Hn. L&apos;isomorphisme

(3), noté i5x, est alors simplement donné par:

îî(u,Ç) (*,«,£)¦. (4)

II permet d&apos;associer à une /?-hyperformes oc à dans Ds une /?-hyperforme usuelle
notée (/£)*&lt;*.

Soit A un nombre complexe. Définissons l&apos;espace ^&quot;(AfT* 9Hny Dk~p) des

p-hyperformes à valeurs dans Dk~p comme étant le dual topologique (muni de la

topologie forte) de l&apos;espace des (n — 1 —p)-iormes analytiques à valeurs dans
Dp~k. Cette définition est justifiée par la remarque 2 plus bas. Rappelons que
C\ApT*Hn) est l&apos;espace des p-formes continues sur Hn.

DÉFINITION 3. On appelle transformation de Poisson l&apos;application linéaire
continue

£ ny Dk-p)-*C°(ApT*Hn)

définie par

La signification géométrique du paramètre À est la suivante. Si oc est une
p-forme à valeurs dans Dx~p définie au point u de dHn, et si l&apos;isométrie g fixe m,

alors Faction de g sur oc est donnée par

(voir notation 3), où h est une isométrie telle que hu u et ||/i&apos;(«)|| 1.
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En particulier si À —p, a est un p-vecteur tangent.
Le produit extérieur d&apos;une p-forme à valeurs dans Dk~p par une q-forme à

valeurs dans DfÀ~q est une (p + g)-forme à valeurs dans Dk+fA~p~q.

Remarque 2. L&apos;intégrale du produit extérieur fournit un accouplement naturel
entre les p -formes à valeurs dans Dk~p et les (n — 1 -p)-formes à valeurs dans

£)n-l-À-(n-l-p) _ £)P~*

La conjuguée complexe d&apos;une p-forme a à valeurs dans Dk~p est une p-forme
à à valeurs dans Dk~p (À est le conjugué complexe de À).

Définissons l&apos;opérateur C-linéaire

*: APT* 3Hn &lt;g) Dk~p^&gt; An~l~pT* 3Hn ® Dk-(n-l-p)

comme suit. Soit oc une p-forme usuelle définie au point u de BHn. Désignons par
** l&apos;opérateur étoile correspondant à la métrique sur dHn qui rend l&apos;application

Vx isométrique (x est un point de Hn). On pose alors

*((*, uy \)x-poc) (x, u, l)k-(n~l-p)*xa. (5)

II résulte des observations ci-dessus que si Re À n —1/2, alors le produit
scalaire sur les p -formes à valeurs dans Dk~p défini par

(a | p) f a
JdHn

a

(*j3 est la conjuguée complexe de *j3) est invariant. (Il est clair en effet que les

opérations défines plus haut sont invariantes.)

2.2.2. Résultats

Les théorèmes 1 (assertions b) et c)), 2, 3 et 4 ont des analogues pour &lt;Pk,

qu&apos;on appellera respectivement théorèmes 1&apos;, 2&apos;, 3&apos; et 4&apos;.

THÉORÈME V. La transformation de Poisson &lt;Pk commute aux isométries

hyperboliques. De plusy les transformées par &lt;Pk sont cofermées et vecteurs

propres du laplacien pour la valeur propre (À -p)(n - 1 - À -p).

THÉORÈME 2&apos;. Fixons un entierpf 0&lt;p &lt;n - 1.

a) Si A est un entier plus grand que n-l, le noyau de

&lt;Pkp:C-œ{ApT* 3Hn, Dk-p)-+C°(ApT*Hn)

est de codimension finie.
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b) Si A /r-l-p, on a (2p + 1 -n)&lt;Pnp~l~p* *d4&gt;w_!_p ow

fe membre de gauche désigne Visomorphisme naturel de l&apos;espace des

{n — \ — pYhyperformes sur Vespace des p-hyperformes à valeurs dans

Dn-\-2P ^yoir ^ §2.2.1). Le noyau et l&apos;image de 0^~l~p sont donc
donnés par le théorème 2.

c) Dans les autres cas, &lt;PXP est un isomorphisme topologique de Vespace des

p-hyperjormes à valeurs dans Dk~p sur Vespace des p-forms cofermées sur
Hn qui sont vecteurs propres du laplacien pour la valeur propre

Le lemma fondamental (§4.1) fournira une description explicite du noyau de

&lt;Pp dans le cas a).
Le théorème 3&apos; s&apos;énonce comme le théorème 3:

THÉORÈME 3&apos;. La transformée d&apos;une p-hyperforme à valeurs dans Dk~p est

la transformée d&apos;un courant (à valeurs dans Dk~p) si et seulement si elle croit
lentement.

Afin d&apos;énoncer le théorème 4&apos;, on introduit quelques notations.
Identifions conformément Hn (muni de sa métrique de courbure -1) à une

boule de 3/f1&quot;1&quot;1. Soit s un nombre complexe.

NOTATION 6. Désignons par Dsn le fibre noté Ds jusqu&apos;ici (voir notation 4,

§2.2.1) et par DsnJtï le fibre analogue sur dHn+l.

Soient a une p-forme sur dHn à valeurs dans Dsn+1 et § un champ de

p-vecteurs sur 3Hn+ï. Posons A p+s. Le fibre HnxsC (notation 5, §2.2.1)
s&apos;identifie, en tant que fibre homogène, au fibre trivial Hn x C (muni de l&apos;action

g • (je, Ç) (gxy £)). On peut donc considérer la section i$&lt;Pxp(x (i est le produit
intérieur) du fibre trivial comme une section de Hn xs C.

On va définir un plongement j qui fait commuter le diagramme

H&quot;XsC-U D°n+l\H&quot;^-*D°n+l*-&apos;-D,

en posant:
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(L&apos;isomorphisme is et la fonction P sont définis respectivement par (3) et (2),
§2.2.1.)

En faisant les identifications induites par is et y, on peut considérer que &lt;PP

transforme des p-formes sur dHn à valeurs dans D*+^ en des p-formes sur Hn à

valeurs dans le même fibre:

&amp;kp:C-œ(ApT* 3Hn, Dkn+pi)-+C°(ApT*Hn, Dfy).

THÉORÈME 4&apos;. // existe une constante CP(X) telle que:
a) Uassertion a) du théorème 4 est encore vraie mutatis mutandis si on

remplace dans son énoncé &amp;p par &lt;PP (ou plus précisément &lt;PP par i5 ° &lt;Pkp et
oc par j°a), rhypothèse p &lt; n — 1/2 par l&apos;hypothèse Re A &lt; n — 1/2, Cp par
CP(A).

b) // en va de même pour l&apos;assertion b) du théorème 4.

Le lemme fondamental (§4.1) montrera

T(n-A)

3. Preuve des théorèmes 1 et V

3.1. Le noyau q)p de la transformation de Poisson &lt;PP

Définissons la (p, n - 1 -/?)-forme double (voir [19, §7]) cpxp sur Hn x 3Hn à

valeurs dans Dp~k. Soient | un /?-vector tangent à //&quot; en x et rç un

(n - 1 -p)-vecteur tangent à 3//n en m. Posons

où I5&quot;&quot;1! désigne le volume de la sphère unité de Un et œ la forme volume

hyperbolique de Hn. On vérifie alors le lemme suivant.

LEMME 1. La transformation de Poisson &lt;Pp est donnée par le noyau
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invariant q&gt;p, Le.

&lt;Pkpa (pxp a a.
JdHn

Remarquons que la transformation &lt;PP et le noyau cpp sont tous deux définis
d&apos;une façon qui rend leur invariance manifeste.

LEMME 2. Les transformées &lt;PP sont cofermées et vecteurs propres du
laplacien pour la valeur propre (Â — p)(n — 1 — À — p).

Preuve. Le noyau q&gt;p est une (p, n — 1 -p)-forme double sur Hn x 9Hn à

valeurs dans Dp~k. Soient pi un (n — 1 -p)-vecteur en un point u de d/f&quot; et Ç un
vecteur de Z)A~P au point m. Définissons la p-forme p sur //&quot; par

&lt;0, S&gt; &lt;£,&lt;?*,£®ij»

II suffit de montrer que j8 est cofermée et vecteur propre du laplacien pour la
valeur propre (A — p){n — 1 — A — p).

Prenons le demi-espace xn&gt;0 de U&quot;, muni de la métrique x~2(dx\ + ¦ ¦ • +
dx2n), pour modèle de H&quot; et plaçons le point u à l&apos;infini. On peut supposer

p(en) dxiA---A dxp (en (0,... 0, 1) e R&quot;),

car P ne contient pas le facteur dxn. On en déduit, par équivariance de &lt;P^

et on achève la preuve du lemme par un calcul direct et facile.
Afin de donner une expression explicite du noyau q&gt;p &lt;p£, introduisons les

notations suivantes.

NOTATION 7.

Hn {x (xu...,xn)eW\xn&gt;0},
M&quot;&apos;1 {« (u,,... un) e W | un 0},
3H&quot; U&quot;-1 U {oo},

«„ (&lt;),...,0, l)eJT,
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fj(x,u)=&lt; \x-u\ (x,u)eH&quot;xdHn,j=\,. ,ax,

P~fn est le noyau de Poisson, 3/dwy(°°) (resp. dwy(°°)) est l&apos;image directe de

3/dUj(0) (resp. du;(0)) par la réflexion u-*u/\u\2, (i 1, n - 1), 5 est le

groupe des permutations de {1,. n - 1}, ea est le signe de la permutation,

{ieS /(n - 1)}

u e

U 00

/î—1

&quot;&quot;1! est le volume de la sphère unité de W.

LEMME3. On a

&lt;pp (-

où i parcourt Ip. De plus on a, au point (eny 0)

dxP -dxn) djj dxn dxdj} -dxn ® dur

Preuve. Pour vérifier que l&apos;égalité du lemme est vraie au point (en, ») de

Hn x 9Hn, il faut calculer u KB(£). La figure 4 représente le plan contenant

Figure 4
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en, 0 et £. Par similitude des triangles (0, eny w) et (0, v, en) l&apos;angle 6 que le

vecteur £ forme avec (en, 0) se retrouve comme indiqué en v. Le triangle
(w, v, en) étant isocèle, son angle en en vaut (jï - 6)/2. L&apos;angle (0, en, w) est donc

x-B „ n 6
T+flT2&quot;

II en résulte que la distance de w à 0 est tg(6/2). L&apos;application tangente à

l&apos;application visuelle V€n en 1^(0)-vue comme endomorphisme de R^-^est
donc l&apos;homothétie de rapport

d 6(d_ 6\
_

1

On obtient ainsi l&apos;expression de (pp en {enJ 0). En utilisant les isométries

x^ax + by a&gt;0, b e Rn~l, on trouve la valeur de yp en (jc, °o) pour tout jc dans
Hn. L&apos;isométrie x-+x/\x\2 donne q)p(x, 0). Enfin, par translation parallèle à

Un~~l, on obtient l&apos;expression du lemme.

3.2. Preuve du théorème 1

Les transformations d&lt;Pp} &lt;Pp+\ d et *^(rt_i)/2* sont données respectivement
par les noyaux dxcpp, {-l)n~l~pducpp^ et (-l)(/l&quot;&quot;1)/2*x*Mç(n-i)/2. On a

(Voir notation 7, §3.1).
D&apos;après le lemme 2, on a

et, en (*„, 0):

n-1
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D&apos;où (toujours en (en, 0)):

dx(pp ~(n - 1 - 2p)dxn a q&gt;p

*x*u&lt;PP -?pA dxn, p -y-
Les assertions d), e) et f) du théorème 1 découlent alors immédiatement de

ces trois relations et de la première phrase de la preuve.
Prouvons que les propriétés a), b), c), d) et f) du théorème 1 caractérisent

bien la transformation de Poisson &lt;Pp. D&apos;après la réciprocité de Frobenius, il
existe une bijection linéaire entre d&apos;une part l&apos;espace des transformations
linéaires continues et équivariantes par rapport aux isométries hyperboliques de

p-hyperformes sur 3Hn en p-formes sur Hn, et, d&apos;autre part, l&apos;espace

Hom^,, (ApC&quot;-\ ApCn),

où On-i est le groupe orthogonal de R&quot;&quot;1, qui est isomorphe au stabilisateur d&apos;un

point de Hn x 9Hn. Or cet espace est engendré (sur C) par l&apos;inclusion naturelle.
Cela montre que &lt;PP est déterminée à un facteur près sur l&apos;équivariance. La
conclusion désirée découle alors de a), d), e) et f).

4. Lemme fondamental

4.1. Enoncé
Prenons pour modèle de l&apos;espace hyperbolique la boule unité Bn de R&quot; avec la

métrique 4(dx\ + • • • + dxî)/(l - \x\2)2. On va énoncer un lemme fondamental

qui donne une expression explicite des transformées des p -formes On -finies à

valeurs dans Dk~p(On désigne ici, et dans la suite, le groupe orthogonal de Un).

Il s&apos;agit du résultat essentiel de ce travail. Pour énoncer ce lemme, il faut
introduire un certain nombre de notations. Posons:

yp (p-formes On-finies sur Sn~1}

{p-formes On-finies fermées}, p¥^n-l (7)
Wp

&apos;. {p-formes On-finies exactes}, p # 0.

On désigne par Wp± l&apos;orthogonal de Wp dans Vp (pour le produit scalaire
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OM-invariant usuel). Pour tout entier non négatif /c, on pose encore:

Wpk {a e Wp | Aoc (k + p)(k + n -p)a}
(Wp~l±)k {a e Wp~l± \Aa (k +p)(k + n -p)a}

où A est la laplacien de Sn~l.

Voici les décompositions de Wp et de Wp± en sous-On-modules irréductibles
non nuls:

{
C si p=0

oc

© Wpk si p^=0

© (Wp±)k si p^«-
lx)o si p=n-

Les seuls Ow-isomorphismes entre tous les modules irréductibles ci-dessus sont
donnés par la différentielle (8) d de (Wp~l±)k sur Wpk.

On trouvera ces résultats dans [11, §4.6] et [3, ch.7, §15].
L&apos;espace des p-formes On-finies à valeurs dans Dk~p est On-isomorphe à Vp

via(/â~O* (voir (4), §2.2.1).

CONVENTION. On identifie les deux espaces ci-dessus au moyen de

l&apos;isomorphisme OM-équivariant (i$~py.

On prendra bien garde au fait que cette identification n&apos;est pas compatible
avec l&apos;action des isométries hyperboliques infinitésimales.

Définissons les coordonnées polaires (p, 6) par
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Enfin posons:

(n-l-A-/&gt;)p2FA*(p2)],

^1(»-A)(n-A + l)---(»-A + fc-l)

LEMME FONDAMENTAL:
a) L&apos;application linéaire *w —&gt; ook définie sur Vp par

(da)k pp~1+k(l - p2)x-p{fUpW*da + (1 - p2)FXk{p2)dp a

1A /^.^p2) {1 e5f /a fonction constante égale à 1)

esf un On&apos;isomorphisme de Vp sur Vespace des p-formes sur ZT\{0} qui
sont On-finies, cofermées, vecteurs propres du laplacien pour la valeur

propre (À —p){n — 1 — À — p) et bornées au voisinage de 0.

b) Si &lt;Pp désigne la transformation de Poisson des p-formes sur Sn~l à valeurs
dans Dk~p et si a et fi sont comme ci-dessus, on a:

Remarques:
1) Lorsque A=pouA «-l-p, l&apos;expression de p$* se simplifie comme suit
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(preuve au §5.2):

2) II découle de l&apos;assertion b) du lemme fondamental que les p-formes
{da)k et /3A sont en fait analytiques on 0. En effet, ces formes sont dans
l&apos;image de &amp;p ou de &amp;p~l~x, sauf pour /îA dans le cas À =p (n- l)/2.
Mais on a

avec /3M analytique en 0 si ju ¥=p, et FpklF^k analytique en 0. On reviendra
sur ce cas exceptionnel dans le théorème 6 (§6.1).

4.2. Preuve de Vassertion a)
Soient t et v deux formes de degré respectif/? et p - 1 sur IT\{0} telles que

h/dp* 0 iaidpVy i produit intérieur.

DEFINITION. On dira que t est la partie tangente et v la partie normale de

t + dp a v. Si v 0, on dira que t -f dp a v est tangente.

Cette définition a bien un sens car si t + dp a v est nulle, alors t et v le sont
aussi.

Soit o) une (p — l)-forme (resp. t + dp a v une p -forme comme ci-dessus)
cofermé sur Bn\{0} et vecteur propre du laplacien pour la valeur propre
(A —p)(n — 1 — À — p) (resp. (X—p)(n + 1 — À — p). Supposons que co, t et v se

transforment sous Faction de On comme des formes de Wpk. En vue de (8) §4.1,
cela implique que (o est tangente car id/dPco est de degré p - 2 et le type Wpk

n&apos;apparait pas dans Vp~2.

On peut alors considérer cw, t et v comme des courbes paramétrées par p dans

Wpk. On identifie ici-et souvent dans la suite-les espaces (Wp~l±)k et Wpk au

moyen de la différentielle d.

Introduisons les abréviations suivantes: D est l&apos;opérateur différentiel

dp
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5 (Hp)(i+n-/?) est une valeur propre du laplacien de Sn~\ bp (k-
p)(n - 1 - À -/?) est une valeur propre du laplacien de Bny gkp{p) s - bp(4p2/
(1-p2)2). On a alors:

LEMME 4. Les courbes co, v et x vérifient les équations différentielles:

(v)

sx Dv (rv)

v 5- (vr)

Preuve. L&apos;application x~-*(p(x), 0(x)) (\x\, \x\~lx) est un difféomorphisme
de Bn\{0} sur ]0, 1[ x S&quot;&quot;1. La différentielle d sur £n\{0} s&apos;écrit donc sous la
forme:

d dp+dd (10)

où dp (resp. de) provient de la différentielle sur ]0,1[ (resp. sur 5&quot;&quot;1). On peut
aussi écrire symboliquement

(H)

où 9/dp est la dérivée de Lie dans la direction du champ 9/dp sur /^{O}. De la
même façon, on peut considérer l&apos;opérateur *0 sur les formes tangentes aux
sphères de B&quot;\{0} centrées à l&apos;origine - opérateur défini par la propriété

*ed*a d**a. (12)

On vérifie la relation

*(t -h dp a v) 2n-2~ppn-1~2p(l - p2)n-2p(p2*ev 4- {-Vfdp a *er). (13)

et on prouve le lemme par des calculs directs utilisant (10), (11), (12) et (13).
La substitution p \/z dans les équations (cw) et (v) du lemme 4 conduit
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respectivement aux deux équations suivantes:

2w (n-2p 2p-n-2\do) (s bk~

d^v
__

(2p -n-4 n-2p\ dv
~d?~\ z

+ z-1 )Tz

+ 2p-n-l 6p-3n~2bx 2p-n-bkp(s + 2pnl 6p3n2b
\ Z2 2(2-1) (Z-1)2

Ces équations présentent des singularités régulières en 0, 1 et °c (voir [1, Chap. 8,

§4]. Les racines des équations indicielles de (14) (resp. (15)) en ces points sont les

suivantes:

p+k p — n — k/ p+k — l~ et —^ (resP- IL—2 etet ^(resP- 2et 2

À-/? et 1 -f n -k-p (resp. 1 + Â-p et n -p -A) en 1,

p-n-k p + k( p + fc + 1

en oc.

A chacune des deux racines en 0 correspond une solution non proportionnelle à

l&apos;autre. La solution correspondant à (p - n - k)/2 (resp. (p -n- k- l)/2) n&apos;est

pas bornée en 0 (voir (26, 10.32]). Elle doit donc être rejetée. L&apos;autre solution,
exprimée à l&apos;aide des fonctions hypergéométriques, donne les expressions de

(da)k et pk dans l&apos;assertion a).

4.3. Preuve de l&apos;assertion b)
Dans le cas p =0, cette assertion n&apos;est autre que le corollaire 4.4 dans [17].

En utilisant d&apos;une part l&apos;assertion a) du théorème 4&apos; (qui est indépendante de
l&apos;énoncé à démontrer) et, d&apos;autre part, le théorème 1 ainsi que les relations (10),
(11), (12) et (13), on peut, sans difficulté majeure, généraliser la preuve
développée dans [17] au cas p quelconque. Les détails sont laissés au lecteur.

5. Preuves

5.1. Preuve des théorèmes 2 et 2&apos;

Soit a&gt; une p -forme propre du laplacien hyperbolique pour la valeur propre
(À~p)(n -1 - A-p) cofermée sur Bn. Pour toute (classe d&apos;équivalence de)
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représentation irréductible unitaire n de On&gt; on pose:

0), dim(;r)
Jon

où Xn est le caractère de n, g • o&gt; désigne l&apos;action naturelle de g € On sur co et dg
est la mesure de Haar sur On. Il est clair que (on est cofermée et vecteur propre
du laplacien pour la valeur propre (A — p)(n — 1 — À — p). On a:

û&gt; 2&gt;*&gt; (19)

la convergence ayant lieu sur chaque sphère |jc| p en moyenne quadratique. (En
fait on a convergence uniforme sur tout compact de Bn.)

L&apos;assertion a) du théorème 2&apos; découle immédiatement du lemme fondamental.

Prouvons l&apos;assertion c). D&apos;après le lemme fondamental, on peut écrire (19)
sous la forme:

LEMME 5. Pour tout 0 &lt; p &lt; 1, on a:

Le lemme entraîne le théorème, car d&apos;après [16, §1] il implique que la série
E (dak + fik) converge vers une p-hyperforrne y et donc 4&gt;£y œ.

Preuve du lemme 5. Pour tout 0&lt;p&lt;l, on désigne p.vr pSn~l la sphère
|jc| p et on considère les inégalités:

J&apos; 0) A *0 (O &lt; co

pSn~i

I ia/dpW a *e id/dP(o &lt; oo (20)
JpSn~^

où idfdp est le produit intérieur et *0 est l&apos;opérateur *0 (voir (12), §4.2) suivi de la
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conjugaison complexe. En utilisant le lemme fondamental et en tenant compte du

fait que |c£(A)| (voir (9), §4.1) est plus grand qu&apos;une puissance de k~x pour k
assez grand, on obtient:

*=0

0&lt;p&lt;l. (21)

D&apos;après [17, lemme 5.3 (2)], on a, pour k assez grand

Cela prouve le lemme.

Assertion b. La relation (2p + 1 - n)&lt;Ppl~l~p* ^d^.j^ découle du lemme
fondamental et de (10), (11), (12) et (13), §4.2. On pose

f &amp;pd, p 0,. n - 2
p \d&lt;Pn^Xf p=n —1.

Il faut montrer que le noyau de Wp est l&apos;espace des p-hyperformes fermées si

p¥^n — 1, exactes si p #0, tandis que l&apos;image de Wp est l&apos;espace des p-formes
fermées et cofermées sur Hn.

La seule différence avec la preuve ci-dessus de l&apos;assertion c) du théorème 2&apos;

est que les formes pk sont toutes nulles.

5.2. Preuve des théorèmes 3 et 3&apos;

Soit a) une p-hyperforme sur S&quot;&quot;1. Développons-la en série de Fourier:

0) S iàock + &amp;), ak e (Wp~x±)kt &amp; 6 (Wp±)k, k 0, 1,... «.

Rappelons que a) est un courant si et seulement si les suites \\ak\\i et \\f}k\\l sont à

croissance polynômiale en k. Si c&apos;est le cas, &lt;Pp(o est à croissance lente. On

prouve cela aisément en majorant les \Fkk(p2)\ et |F^(p2)| uniformément par
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rapport à A; et en rappelant qu&apos;il existe un polynôme/tel que:

lk,|U + ||/3,|U&lt;/(A:)(||^||2+||^||2) (22)

[26, 5.6].
Supposons maintenant que &lt;Pp(o croit lentement. On peut aussi supposer

ock 0 si &lt;Ppdak 0

&amp; 0 si

Montrons que co est un courant.
En remplaçant co par &lt;Pp&lt;x&gt; dans les membres de droite de (20), en utilisant

l&apos;hypothèse sur la croissance de &lt;PpO) ainsi que la relation (22), et en procédant
comme on l&apos;a fait pour déduire (21) de (20), on obtient:

0&lt;po&lt;p&lt;l,

où / est un entier assez grand.
Le lemme que voici fournit la conclusion désirée.

LEMME 6. Pour tout nombre complexe À, il existe une suite pk e ]0, 1[, k
1, 2, et un entier positif q tels que:

Lewis a prouvé ce lemme pour À ^ (n - 1/2) 4- Z [13, lemme 5.6]. Il suffit donc
de le démontrer ici pour À réel.

LEMME 7. On a

(Voir (9), §4.1 pour la définition de FA_1(*.)
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Montrons le lemme 6 pour A réel en admettant le lemme 7. Posons:

P* 1-1M:. On a alors pf &gt; 1/4. Si A&gt;n/2 on a FA_lt*(p2)&gt;l car il s&apos;agit

d&apos;une série dont le premier terme vaut 1 et les autres sont non négatifs. On peut
donc prendre n&apos;importe quel q, par exemple q 1. Si A &lt;n/2 et k &gt; — Â on a,
pour la même raison /v,_1_AJt(p2) &gt; 1. Si de plus k&gt;k — n, on a aussi (2p2/
A 4- n - A)F;_,_a,^(p2) &gt;0. Le lemme 5 implique alors: FA_1Jt(p2) &gt; (1 - p2)n&quot;2A.

On peut choisir q &gt; 2n — 4A. Cela prouve le lemme 6.

Preuve du lemme 7. Les fonctions suivantes sont des solutions bornées en 0

des équations (eo) et (r) du lemme 4 (§ 4.2)

co o,*li p»+k(l - p2f~&quot;Fk_uk{p2)

v v£ p*-&apos;+*(i - Py+K-&quot;FXk(P2).

Ces équations étant invariantes par la substitution X-*n — 1 -A, leurs solutions
le sont aussi. On en déduit les relations:

(1 - z)xFXk{z) (1 - z)n-l-%^ktk{z)

Supposons maintenant A =/?. On a alors, en vertu du lemme 4 (§4.2)

dr / d \
st Dv Z) — etdonc: D —-s r 0.

dp \ dp /

On voit que les fonctions xpp et &lt;oppz\ définies ci-dessus vérifient la même

équation et sont toutes deux bornées en 0. D&apos;après (16) §4.2, elles sont donc

multiples l&apos;une de l&apos;autre par un facteur facile à calculer. D&apos;où

&lt;oPpZ\ (p + *)tJ (p + k)T&quot;p-l~p.

Cela prouve la remarque 1 qui suit le lemme fondamental. On en déduit d&apos;autre

part après quelques calculs élémentaires

Il s&apos;agit d&apos;une égalité entre deux séries entières en z dont les coefficients sont des
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fonctions rationnelles de ny p et k - égalité qui est vraie pour tous les entiers n, p
et k satisfaisant les conditions « &gt; 2, 1 &lt;p &lt; n - 1, fc&gt;0. Il en résulte que cette
égalité est vraie pour toutes les valeurs de n, p et k.

5.3. Preuve des théorèmes 4 et 4&apos;

Identifions l&apos;espace hyperbolique Hn à la boule unité Bn de (Rn. Soient p un
entier compris entre 0 et n — 1, et À un nombre complexe dont la partie réelle est
inférieure à (n - l)/2.

On va d&apos;abord voir que pour prouver la théorème 4&apos; (qui généralise le

théorème 4), il suffit de montrer que les formes 2k~p{\ - p2y~x&lt;Pp&lt;x ont des

valeurs au bord (dans les divers sens de l&apos;énoncé) et de comparer, en adoptant la
convention du §4.1, ces valeurs au bord avec les p -formes oc.

Désignons respectivement par ilf i2 et i3 les isomorphismes obtenus à partir de

(3), §2.2.1) en posant successivement:

- U Bn munie de la métrique hyperbolique et vue comme ouvert de dHn+l,

- U Un muni de sa métrique standard et vu comme ouvert de dHn+l,

- U — Sn~l munie de sa métrique usuelle et vue comme (ouvert de) dHn 9Bn.

Rappelons que le plongement j est défini par (6), §2.2.2. Définissons les

plongements ]\ et j2 en imposant que le diagramme ci-dessous commute. (On
pose s À -p.) On vérifie alors les relations:

Bnx5C -^ UnxsC «-£L Sn-l

i i 1

n+i I B Un+l I H « Un

i i i

En faisant les identifications induites par i\ti2,h&gt; }&gt; j\ et j2, on peut
considérer que &lt;Pp transforme des p-hyperformes sur Sn~l à valeurs dans Un xs C

en des p-formes sur Bn à valeurs dans le même fibre:

&lt;Pkp: C-w(ApT*Sn-\ Un xs C)-* C°(ApT*Bnf Un xs C).

L&apos;expression explicite des transformées 4&gt;p(o est alors obtenue, comme

annoncé, en multipliant celle du lemme fondamental par 25(1 - p2)~s.
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Le noyau &lt;pkp est donc une (p, n — 1 — p)-forme double invariante sur
Bn x S&quot;&quot;1 à valeurs dans le fibre (Un xs C) ® (Un xs C) sur R&quot; x R&quot;.

Remarque. L&apos;application

(*,£)-&gt;(*, ICI)

est équivariante.
Appelons norme euclidienne de (jc, Ç)€R&apos;lxJC et désignons par |(jc, £)| le

nombre |Ç|.

LEMME 8. La norme euclidienne du noyau q&gt;p est:

\&lt;pkp\ 0(1 - |jc|2)«-l-2ReA |w _ ^(ReA+l-n^ (^ M) 6 £« X S&quot;&quot;1

où a est une constante.

Preuve. La remarque ci-dessus implique le fait suivant. Le noyau &lt;p£ étant
invariant, sa norme se transforme par les isométries hyperboliques de Bn comme
un vecteur du fibre D*%\ El Dnnl\~KeX sur BnxSn~\ Supposons |ç&gt;£(0, u)\ a,
où m est un point de S&quot;&quot;1. Soit x un point de JB&quot;\{0}. Choisissons un 2-plan
hyperbolique de Bn contenant O,jc et m, et indentifions-le au disque de Poincaré.

Soit g l&apos;automorphisme biholomorphe du disque de Poincaré tel que gO x et

gu m. On a alors:

ReA-n + l\&lt;pKp(x,u)\=a\g&apos;(P)\-R&quot;\g&apos;(u)\

Un calcul facile permet alors de conclure.
On prouve maintenant les assertions a) et b) des théorèmes 4 et 4&apos;.

a) Soit oc une p-forme mesurable essentiellement bornée sur S&quot;&quot;1 à valeurs
dans IR^x^C. Supposons que oc est continue au point u de Sn~l et que
ReA&lt;n-l/2, où A-p=s. Montrons que &lt;Pp(x s&apos;étend continûment à

Bn U {u} et que sa valeur limite en u est c • ût(m), où c est une constante

indépendante de a.

CAS 1. a(u) 0. L&apos;exposant n-l-2ReA qui apparaît dans le lemme 6

étant positif, la norme euclidienne de (Pp(x,.) converge vers 0 lorsque x tend vers

u uniformément sur tout compact de Sn&apos;&quot;1\{w}. En outre il est bien connu que la

moyenne de |&lt;p£| sur sn~l est la fonction FReA^djcl2) qui est bornée sur Bn (ce
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résultat est aussi contenu dans le lemme fondamental, §4.1). Un argument facile
en e, ô montre que &lt;Ppa tend vers 0 si x tend vers u.

CAS 2. a(u) # 0. On choisit une forme /î dans un sous-espace On-irréductible.
de Vp telle que B(u) a(u). (Par exemple, si u (0, 0, 1) e M&quot; et a(u)
dxx a • • • a dxpy on prend pour /? la forme de Wft obtenue en restreignant
dxx a • • • a dxp de Rn à S&quot;~l.) D&apos;après le lemme fondamental (assertion a)), il
existe une constante c telle que la valeur limite de &lt;Ppfi en u soit c • fi(u). En
considérant la forme a — fi, on est alors ramené au cas 1.

b) Les seules différences avec la preuve du théorème 3.4 dans [15] sont les

suivantes. Désignons par À&apos; le Â de [15] (et par À notre À). On a alors

Le noyau Px de [15] est remplacé par notre cpp. La norme euclidienne de (pkp

est, à un facteur constant non nul près, celle de Fk _i(p2)PA-.
La valeur au bord d&apos;une transformée par Py est exactement la fonction de

départ, tandis que la valeur au bord d&apos;une transformée par q)p est obtenue en

multipliant la p-forme de départ par le facteur CP(Â), qui peut être nul. Mais
aucune modification de la preuve de [15, Theorem 3.4] n&apos;est nécessitée par cette
différence.

Cela achève la preuve des théorèmes 4 et 4&apos;.

6. Applications

6.1. Représentations
Désignons par g l&apos;algèbre de Lie des isométries hyperboliques infinitésimales

de la boule Bn, et par On (resp. SOn) le groupe orthogonal (resp. spécial
orthogonal) de Rn. Les (g, On)-modules Vp et Wp ont été définis par (7), §4.1.

THÉORÈME 5. a) Si n est impair et p &lt;n - 1/2, il existe un polynôme f
unitaire à coefficients entiers et une constante rationnelle c tels que:

(23)

b) Le module Wp est unitaire pour le produit scalaire invariant

a a/?&apos;

où fi&apos; est la conjuguée complexe d&apos;une primitive de (&lt;Pn-.p)~l*&lt;I&gt;pIS.
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c) Si p {n- l)/2, on aVp Wp® *WP avec Wp (et donc *WP) (g, SOn)-
irréductibles. Dans les autres casf les seuls sous-espaces (g, SO^-invariants non
triviaux de Vp sont:

si

Wp et les deux sous-espaces propres W* et W~ correspondant aux valeurs

propres

±1 de l&apos;opérateur ip(&lt;Pp)~l*&lt;Pp sur Wp(i (-1)1/2), si p ^,

Wp, d~xW+ et d~lW~ si p (n-2)/2 {d&apos;lW± est l&apos;image inverse de W±

par la différentielle d).

d) (*n./,)&quot;l*0#, est un (g, SOn)-isomorphisme de Wp sur Wn~p Si q¥=p,
n — p, alors Wp et Wq ne sont pas SOn-isomorphes.

Les racines de / sont

-im + iï, m 0,1 ^-P-
La constante c est donnée par

II est remarquable que l&apos;expression

*f(*d*d)

définisse un opérateur différentiel invariant.
Les propriétés de Vp et de ses (g, SOn)-sous-modules énoncées ci-dessus sont

des cas particuliers de résultats dûs à Thieleker [21,22,23]. La transformation de
Poisson apporte cependant (dans ce cas particulier) des interprétations suggestives

et permet de simplifier considérablement les preuves et surtout les énoncés
de ces propriétés. Signalons toutefois une information supplémentaire
intéressante contenue dans les papiers de Thieleker: parmi les sous-modules
irréductibles qui apparaissent ici (et qui sont tous unitaires) seuls W* et W~ sont
dans la série discrète.
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Preuve du théorème 5. Rappelons la notation

(z)*=z(z + l),...,(z + *-l),
et supposons 4&gt;* inversible. D&apos;après le lemme fondamental, on a

où

cftn-l-Â) (A

c?(A) (n-k)k

Remarquons que (^p)&quot;1^&quot;1&quot;* est l&apos;opérateur d&apos;entrelacement de Kunze et
Stein [25, 8.10, 8.11].

Soit p dans (Wp±)k. La forme *j3 est dans Wnk~l~p. En utilisant la relation
figurant dans le théorème 2&apos;(b) (§2.2.2), on obtient

&quot; ;;/V
Remarquons que si n 2 et p 0, l&apos;opérateur ci-dessus n&apos;est autre que la
transformation de Hilbert.

On achève la preuve de a) par un calcul direct.
b) Soit p dans (Wp±)k. D&apos;après (24), on a

(n - 1 - 2p)(&lt;ï&gt;n_1_p)-1*&lt;ï&gt;p+1dj8 (« - 1 -p)(&lt;Pn-x-pYl*d&lt;I&gt;pP

(* - 1 - 2/?)c*j3,

où c est une constante positive. Soit (dp)&apos; une primitive de la conjuguée
complexe de (0n_1_/,)~&quot;1*0p+1d/8. On a
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Cela montre que la forme hermitienne définite sous b) est définie positive, ce qui
était la seule chose à vérifier.

c) Esquissons la preuve de c).

LEMME 9. Le (g, SOn)-module engendré par (Wp±)0 est Vp si p*(n- l)/2,
et *WP si p (n- l)/2. Le (g, SOn)-module engendré par Wft est Wp.

AFFIRMATION. Le noyau de &lt;Pn-x-p (intersecté avec Vp) est l&apos;orthogonal

du (g, 5On)-module engendré par (Wpl)0 pour l&apos;accouplement

yp x yn-l-p_+C

Pour prouver cette affirmation, on commence par remarquer que les deux

modules en question sont bien orthogonaux. Soit oc une forme de Vn~l~p

orthogonale au (g, SOn)-module engendré par (Wp±)0. Montrons que ®n-X-poc
est nulle. Il suffit de voir que si r\Xy rjm sont des isométries hyperboliques
infinitésimales, alors {r\Xy ?jm4&gt;,l_1_par)(0) 0, car &lt;Ppa est analytique. Soit §

un vecteur de An~l~pCn vu comme un (n -1 -/?)-vecteur tangent à Bn en 0.

D&apos;après le lemme 1 (§3.1), on a

\&lt;Pn-i-prii- • -nma, Ç)

Or le membre de droite est égal à

a r\m • • • rç^^-i-p-

L&apos;application £—»/§&lt;£?„_!_p étant un isomorphisme de An~1~pCn sur (Wp±)0 (voir
[11, §4, §6]), l&apos;affirmation est prouvée. On en déduit aisément la première phrase
du lemme 9. La second phrase découle de la première et du fait que
d*Wn~p Wp et d(Wp-l±)0 W&amp;

On prouve sans peine l&apos;assertion c) du théorème 5 dans le cas p^n/2,
(n —1)/2 en utilisant le lemme 9, le fait que les Wp sont unitaires, l&apos;observation

(8) (§4.1) et lé fait que (Wq±)k et WV1 sont SOn-irréductibles pour q*(n- 2)/2
([11, §4, §6]). Si p (n — 2)/2 ou w/2, la preuve est analogue.

d) L&apos;assertion d) du théorème 5 résulte d&apos;une inspection des On et SOn -types
intervenant dans Wp. Le théorème 5 est donc prouvé.
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THÉORÈME 6. Le module de Harish-Chandra X des (n - 1)1&apos;2-formes

SOn-finies harmoniques cofermées sur Hn Bn ne contient qu&apos;un seul sous-module

non trivial: celui des formes SOn-finies fermées et cofermées. De plus, si Y est

un module de la série principale du groupe des isométries de Hn préservant
Vorientation y alors X ne se plonge pas dans Y.

Preuve. Prouvons la première assertion. Posons p-(n — X)l2. On a la
suite exacte:

Wp ^—&gt; X (&lt;V&apos;r&apos;*&gt; y/P+\ &gt; g. (25)

Supposons par l&apos;absurde qu&apos;il existe un sous-espace (g, 5On)-invariant non trivial
5 de X, avec S^&lt;PPWP. Comme Wp et Wp+l sont irréductibles, on a:

X &lt;PPWP © S avec S Wp+1. Etant somme directe de deux modules unitaires,
X admet un produit scalaire (g, SOn)-invariant et donc un produit scalaire

(g, On)-invariant. Ainsi, on peut supposer que 5 est (g, 5On)-invariant. Vu que
les composantes On-isotypiques de X sont irréductibles, on déduit du lemme
fondamental (assertion a), §4.1) que les formes oc de S sont caractérisées (parmi
celles de X) par la condition:

id/dp&lt;* 0 0&quot; est Ie produit intérieur).

Cela est impossible. En effet, soit g une isométrie hyperbolique. Si 5 était
invariant, on aurait, pour tout a dans 5:

où g&quot;1 oc désigne l&apos;action de g&quot;1 sur oc. D&apos;où, avec le même type de notation:

0.

C&apos;est-à-dire i%oc 0 pour tout vecteur tangent §, et donc oc 0.

Démontrons la deuxième assertion. Le module X contient le SOn-type ApCn,

qui est S0n-i -isomorphe à

ApCn~l&apos;+ 0 APC&quot;-1&apos;- © Ap-lCr~l. (26)

D&apos;après la réciprocité de Frobenius, 7, en tant que SOn-module, est induit par
l&apos;un des trois SO,,-!-modules ci-dessus. La somme des deux premiers modules
induit Vp, qui est (g, SOn)-isomorphe àWp© Wp. Il en résulte que chacun des
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deux premiers termes de (26) induit Wp. Le troisième sommand induit Vp~l.
D&apos;après la suite exacte (25), le SO,,-type ApCn Wg apparait deux fois dans X,
alors qu&apos;il n&apos;apparaît qu&apos;une seule fois dans Y Wp ou Vp~1 (voir [11, §4, §6]).
Le théorème 6 est prouvé.

6.2. Courants invariants
Supposons maintenant que F est un sous-groupe discret co-compact du groupe

des isométries de H&quot;. Désignons par bp le p-ème nombre de Betti du quotient
F\Hn.

COROLLAIRE DU THÉORÈME 3. Sipïn- 1/2 (resp. p (n- l)/2), les

courants F-invariants sur 9Hn forment un espace vectoriel de dimension bp {resp.

2bp).

Preuve. Au vu des théorèmes 2 et 3, il suffit de démontrer que bp est la
dimension de l&apos;espace des p-formes harmoniques F-invariantes sur H&quot;. Si F agit
librement sur //&quot;, la cohomologie de Cech et la cohomologie de de Rham de

F\Hn sont isomorphes par le théorème de de Rham, et la cohomologie de de

Rham est représentée, d&apos;après le théorème de Hodge, par les formes
harmoniques. On peut adapter la preuve de ces deux théorèmes au cas où l&apos;action de

F n&apos;est pas libre. (Pour plus de détails, voir [2, §7, théorème H].) Cela achève la

preuve du corollaire.

PROPOSITION. Soit F un sous-groupe quasi-fuchsien de PSL(2, C)
Supposons que le quotient du domaine de discontinuité de F par F est formé de

deux surfaces de Riemann compactes de genre g. Il existe alors au moins 4g
courants linéairement indépendants de degré 1 sur S&quot;&quot;1 qui sont portés par le

quasi-cercle limite et d&apos;ordre au plus 1.

Preuve. On peut définir une transformation de Poisson légèrement différente
de la précédente de la façon suivante. Soit a un courant de degré 1 sur la sphère
de Riemann S porté par le fermé A. Ce courant s&apos;écrit de façon unique sous la

forme a Fa + Ca avec Fa fermé et Ca cofermé. Sur S\A, on a: Fa — Ca.
Par régularité, Fa est donc donné sur S\A par une 1-forme ipa fermée et
cofermée. Il est clair que t// est équivariante par rapport aux transformations
conformes préservant A. Supposons maintenant que A est le quasi-cercle limite
du groupe F de l&apos;énoncé, et soit j3 une 1-forme fermée et cofermée sur S\A. Ces

formes j8 constituent un espace de dimension 4g. Il suffit donc de prouver qu&apos;il

existe un courant a satisfaisant les conditions de l&apos;énoncé tel que tya p.
Observons d&apos;abord qu&apos;on peut réaliser F comme une déformation d&apos;un groupe

fuchsien par un homéomorphisme quasi-conforme / qui envoie conformément le
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disque unité D du plan complexe sur l&apos;une des deux composantes - notons-la
£?-de S\A. On prouve cela en constatant que Test déterminé, à conjuguaison
près, par les surfaces de Riemann marquées qu&apos;il représente (voir par exemple [3,

p. 133]) et en procédant comme [5, p. 22].
Soit h une primitive de j8. On peut supposer que /3 et donc h sont nulles en

dehors de Q. Comme on a dh /?, on a df*h =/*/J sur D. Vu que /*/3 est
invariante par un groupe d&apos;isométries hyperboliques admettant un domaine
fondamental compact, sa norme hyperbolique est bornée. On a donc, si c est le

segment géodésique de 0 au point z de D:

et l&apos;intégrale est majorée, d&apos;après l&apos;inégalité fondamentale, par la distance

(hyperbolique) de 0 à z multipliée par la norme (hyperbolique) de /*j8, qui est
bornée. Cela implique que la norme euclidienne de/*/i ne croit pas plus vite que
—log(l — |z|). Il en résulte que h est intégrable sur C. En effet, si /&apos; désigne la
dérivée de /sur D, alors |/&apos;|2, qui est en principe L1 sur D, est en fait L1+£ pour
un certain e positif [13, p. 138]! Par suite f*h • |/&apos;|2 est bien L1.

Ainsi, h définit une distribution h sur S, fi dh est un courant T-invariant qui
étend /?. On peut définir (*j3)~ de façon analogue. En posant oc — j8 + *(*j8)~, on
obtient le courant cherché.
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