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On a fundamental variational lemma for extremal quasiconformal
mappings

RicHARD FEHLMANN

1. Introduction

In [R2] E. Reich considers the following extremal problem in qc (quasiconfor-
mal) mappings. Given are a closed set o on the boundary 8D of the unit disk
D = {w | |w| <1} which contains at least four points and a measurable set E in D
where D\E has positive area-measure and where, if ¢ is an infinite set, E is
assumed to be compact in D\o. Furthermore a quasisymmetric boundary
mapping h: 9D — 3D is given and a measurable non-negative function b(w) on E
with esssup,.zb(w)<1 which is called the ‘dilatation bound function”:
Q(h, o, E, b) then denotes the class of all qc mappings F:D — D which satisfy
the side-condition

Fl,=h|, and |kp(w)|=b(w) a.e.inE,

where k= F/F, is the complex dilatation of F. In this class a mapping F is
called extremal if it minimizes the value

ess sup |kx(w)|
weD\E

and is called uniquely extremal if it is the only such mapping.

In the case when E is the empty set a necessary and sufficient condition for
extremality is the Hamilton-condition as has been shown in [H] and [RS]. In [R2]
E. Reich has given a generalization of this condition which is necessary and
sufficient for extremality in Q(h, o, E, b) and by which extremal mappings can be
characterized. But in his work an additional requirement had to be posed on
b(w), namely that it is bounded away from zero. Later F. Gardiner succeeded in
proving the analogous condition in the case when o is finite and b(w)=0 in E
[G2]. He used a result from Teichmiiller theory which he had proved in [G1].

In this note we use Gardiner’s result to generalize a fundamental variational
lemma which is needed in Reich’s treatment. In its generalized form it turns out
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566 RICHARD FEHLMANN

to be adequate for the general case. In section 3 we apply it to handle the case
where o is infinite and b(w) =0 in E. The proof then follows exactly the same
pattern as the one in Reich’s paper. In a forthcoming paper of K. Sakan [Sa] it
then will be applied to arbitrary dilatation bound functions b(w).

In section 4 we give, based on Reich’s treatment, alternative proofs of
Gardiner’s result in two special cases. Namely, if the area-measure of the
boundary 9E of the set E is zero, then this result follows immediately by
approximation and if E is supposed to be a closed set, it can be proved similarly.

Finally, I want to add that the idea of setting variable dilatation bounds as a
side-condition for extremal problems goes back to O. Teichmiiller ([T], p. 15),
and to my knowledge R. Kiihnau has been the first one who attacked such
problems successfully. In [K1] he solved a problem of this sort (Satz 1) which
enables him in [K2] to give a complete solution of our extremal problem above in
the case where o consists of four points by an essentially different method. No
requirements as b(w)=e>0 had to be made except for some regularity
assumptions on E and b(w).

2. Notations and the variational lemma

For a qc mapping F we denote its complex dilatation by kf, the dilatation of F
at the point w by Dr(w) = (1 + |kr(w)|)/(1 — |ks(w)|) and its maximal dilatation
by K[F]. We put o' =h(0), Eo={weE|b(w)=0} and for a fixed element
F e Q(h, o, E, b) we introduce

f=F7!, K =Ky, kg = ess sup |kg(w)]
weD\E
and )
K(z) ze D\F(E)
K(2)
R(z)={k ze F(E\E 2
@)=\ ki) 2€FEF) -
| 0 ZE€ F(Eg)

We note that ||&||.:=ess sup,<p |K(z)| = kr. Then the Banach-space B, = {@ | ¢
holomorphic in D, ||@|| <*, @dz? real along 3D\o'} over the field R will be
used, where

Il =[[le@ldsdy, z=x+)

D
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as well as the unit sphere in B,

B,,={9eB,||¢|=1}.

For measurable sets A in D we will put

Iolla= | [loe) dx .

A

If Q(h, o, E, b) is not empty, then there exist extremal mappings in this class as
follows by normality and the following result of Strebel [St]: If a sequence of qc
mappings F, converge locally uniformly in D to a qc mapping, F, then

|kr(w)| < 1lim |k (w)| a.e. in D.
The result of Gardiner then is the

THEOREM 2.1 [G2]. If o is finite and b(w)=0 in E, then F € Q(h, o, E, b)
is extremal iff

sup Rejjfc(z)(p(z) dx dy = k.
@eB, D
lellpwey=1

Since o is finite, the space B, is finite dimensional and it is easy to see that the
sup must be attained. Namely, if @, is a sequence in B, with ||@,|| oy =1,
then the norms ||@,|| stay bounded. Otherwise, by normality of B,.;, ¥, := (@,/
|l@.|]) would contain a subsequence which converges to zero locally uniformly in
D\F(E,), an impossibility because of the finite dimension of B,.. Hence ¢, is a
normal sequence and if it is a maximizing sequence for the functional above,

then the limit of a convergent subsequence maximizes the functional. Therefore
this theorem implies the

COROLLARY 2.1 [G2]). If o is finite, b(w)=0 in E and F extremal in
Q(h, o, E, b), then there is a @ € B, \{0} with

F'—%% ze D\F(E)
0 z € F(E).

K(z) =
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Our main tool will be the Main Inequality of Reich and Strebel [RS], p. 380 (see
also [R1], p. 110), or more precisely, two statements following from it. First

(M1) If ¢ € B, and f and g are two qc mappings from D onto itself which agree

on o', then
()
ll_Kf(z)qv_
- lo(2)|
1= fbf PO ey D U dedy.

Then, as is shown in [R1], p. 119, the Main Inequality applied to extremal n-gon
Teichmiiller mappings, yields

(M2) If o, consists of n points on 3D and f, is a Teichmiiller mapping with
complex dilatation (K, —1)/(K, + 1)(@./|@.|), where ¢, € B, then for
every qc selfmapping g of D which agrees with f, on o,, we have

a(2) |?
ll+1< (z) i
- 7 @a(2)]
K, ——fJ'qyn(z)l 1— lKg(Z)lz dx dJ’-

Before coming to the variational lemma we will derive the

LEMMA 2.1. Let h, o, o' and E be as above and K =1 be a fixed number.
Then there is a q <1 such that

|l

GE)y=4
for every @ € B, and every G € Qx(h, 0):={G | G:D— D, K —qc, G|, =h|,}.

Proof. If this lemma were false, there would be a sequence @, in B,.; and G,
in Qx(h, o) with

G,,(E)'—') 1, n— oo,

lln

The set B, is normal and, since o contains at least three points, the set Qx(h, o)
is normal and closed. So by passing to subsequences we may assume that there is
a @. € B, and a G.. € Qg(h, o) where

@» > @. locally uniformly in D\o’

G, ™5 G, uniformly in D.
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Taking into account that for infinite o the set G.(E) is supposed to be relatively
compact in D\o’ we infer that

|- GAE) = li_fgc @, Guey = 1. (2.2)

(This equality seems to be obvious, but in lack of a precise reference we add a
proof of it in the appendix). Clearly ||@.|| =1 and hence

| lout2)laxay =0

D\G(E)

which is a contradiction because D\G.(E) has positive measure and @.#0 is
holomorphic.

FUNDAMENTAL VARIATIONAL LEMMA. Let E' be a measurable
subset of D where D\E' has positive measure and o' be a closed set on 3D which
contains at least four points and where, if o' is an infinite set, E' is compact in

D\o'. If g is a qc mapping from D onto itself where its complex dilatation K,
satisfies

K, (z)=0in E' and Rejjxgtpdxdy=0 Vo eB,,
D

then there is a qc mapping g*:D— D with g*og =id on o' and with a complex
dilatation k,- that satisfies

K (2)=0in g(E') and |k,

oc=0(”K‘s'”3°) as ”Kg”x_>0-

Proof. The best choice for g* is to be an extremal element in Q(g~|sp, 0",
E", 0) where 0" =g(o’), E”"=g(E"). If 0" is not finite, we choose o, to consist of
n points on ¢” which become to be denser and denser as n tends to infinity. For
every n there is an extremal mapping G, in Q(g *|sp, 0}, E", 0) and by Corollary
2.1 there is a @, € B, (0, =g~!(0})) such that the complex dilatation k, of
g.:=G, ! satisfies

#a(2)
k, \E"
k(2) =1 gy 2 €O DD 2.3)

0 z € G,(E")
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Evidently k, =< ||k.:||~ and &, is an increasing sequence. By normality we may
assume that the qc mappings G, converge locally uniformly to a qc mapping
G.: D — D where obviously G.|,-=g |, and by Strebel’s result

|k6.(2)] erTni |k, (z)| a.e.in D.

We hence conclude that k;_(z) =0 in E” and ess sup, .p\s- |kg.(z)| = lim,_. k, <
l|e+ll<- So G~ € Q(g~ Y sp, 0", E”, 0) and G.. is therefore extremal in this class,
i = lim,_,. k, and we can take G. for g*.

For the purpose of estimating the numbers k, we introduce the extremal
Teichmiiller n-gon mappings f, : D — D which agree on o, with g. Their complex
dilatations k, are equal to

a.e.in D

where @n € BO,:I'
We use the statement (M1) where we put the quadruple (o,, @,, g., f,) for

(o, 9,1, 8)

tan

1 x,(2) Pa(2) |?
[ e gy (5,-12)

Using (2.3), splitting up the integral and putting K, = (1 + k,,)/(1 — k,,) we get

L}

3

&)+ Ko @4l 6,2

K
1==2(1-|lo,
K,,( |

SO

We multiply with K,, and subtract K,, ||@,

G,.(E")) + (Kn - 1)Kn “(pn

1- . G(EN) = K.(1- @,

and finally since ||@,||c,&y <1, K, =K|[g*]

P AR K[g*] ,
KRt (Remlhgo l@nllGen )
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Next we estimate K,. We use the statement (M2) and put the quadrupel
(Ons @us fur &) fOT (Ony Pus fs 8)

\1+ % {2 )%( z) |?
= ij [@(2) 'Kg'(z)‘z dx dy.

Following Reich’s calculation in [R2] the integral becomes

jj|~ |1+: gIZdXd +2Refjl | gIdedy
S [

because of the hypothesis

Re[fxg(i)n dxdy =0, ¢, € B, B,
D
The second term can be estimated by

[ o<l

Hence
2 3 2
P A e L P 1
1 - [l 2 1—||&gll-

With (2.4) finally

: H K[g*
l"“Kg”x 1—“1(8“’51_”¢n

Gn(E")

We let n tend to infinity, i.e. G, — G.. locally uniformly in D and by normality
of B,., we may pass to a further subsequence such that

®n =5 @.. locally uniformly in D\o’

where @. € B,., ||@]| =1.
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This approximation takes place only if o' is infinite, so E” is relatively
compact in D\o" and hence

n—x

ll®. GJE) ”(px“Gz(E")'
Hence
2 2 Klg*
K[g*]=lim K, =1+ L | (1 + le”] )
n—sx 1- “Kg”x 1-||@x Gx(E")

Now we apply Lemma 2.1 with the quadrupel (id, o', o', E’) instead of
(h, 0, 0', E) for a fixed number K > K[g]*>. Namely, G.(E")= G.°g(E') and
Gx°g|a’ = id'a" SO Gxog € QK(ld’ 0,) and by “(Px“ =1 and ((px/”(px“) € Bo'l’
there is a ¢ <1 which does not depend on g (only on K), such that

Q.
oz | =4
l#-llocaer= ol ncer
and hence
K\ 2|2
K[g*]sl+(1+ ) e
1—q/ 1-||k;||=

which shows that

x = 0(""3“1)

”Kg*

for ||x,||~— 0, since K can stay fixed as K[g]— 1.

3. Application: The case b(w) =0

An elaboration of a technique employed by Krushkal [Kr] which is done in
Reich’s paper [R2] now yields the necessity part of the

THEOREM 3.1. A qc mapping F is extremal in Q(h, o, E, 0) iff

sup Ref]fcq)dxdy=kp

@€eB,. D
lle “n\m-:“)= 1
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Proof. Let F be extremal. Since k. = ||k||.. we now assume that

a:= sup Refjl‘«pdxdy<k,.~

P€eB,
el pwey=1

and hence k. > 0.
Then a is the norm of the linear operator

p—Re Jf K@ dx dy
D\F(E)

(k=0 on F(E)!) defined on the Banach-space {@|p\r) | @ € B,-} which is a
subspace of L,(D\F(E)) over the field R. By the Hahn-Banach Theorem there is
an extension of this operator on L,(D\F(E)) with norm a and by the
Riesz-representation theorem there is a complex-valued function 8 on D\F(E)
with || || = a which realizes this extension, i.e.,

Re fj Kpdxdy =Re j[ Ppdxdy VeeB,.

D\F(E) D\F(E)
We put
_[k(z)—B(z) zeD\F(E)
v(z) = {o z € F(E)

and have ||v||..>0 (& # B!) and
Refqu)dxdy=0 for peB,.
D

For t, 0=t <(1/||v||.) we put g:D— D to be a qc mapping with g(1) =1,
g@)=i, g(-1)=-1and

K, = V.
Here we apply the Fundamental Variational Lemma on g, ¢’ =h(o) and

E'=F(E). Hence there is a qc mapping g*:D— D where g*°g=id on o',
Kg»=01in g(E’) and

|kge]l-=O(*) as t—0.
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We have g*og°F € Q(h, o, E, 0) and show that

€sS SUP |Kgroger(W)| < kp
weD\E

for t >0, sufficiently small. This contradicts then the extremality of F. One
computes for z € D\E'

k(1—1t)+1B
1—-1tvk

1Ko (8(2))] = |

and the computation in [R2], p. 109 and 110, assures the existence of numbers
8 >0, t,>0 with

|Kpe-1(8(2))| =kp—6,t for O0=t=<t, and zeD\E'

By ||x,+|l< = O(¢%) the values |kf.z-1e+-1(8*(g(2)))| can be estimated in the same
manner in D\E' and this yields the result.

The sufficiency part is immediate. We do not need any restriction on b(w) for
it. Let F e Q(h, o, E, b) and

sup Re[jfc(pdxdy=kp.

@eB,
lelipwey=1

If this sup is attained, then there is a @ € B,., ||@||p\r&) =1, With

@(2)

K=k o

a.e. in D\F(E,).

If kr =0 we have extremality. If k- >0 we conclude from (2.1)

e 22 z € D\F(E)
K(z) =

b(f(2)) l"’?;, 2 € F(E)

"

Then by [R2], Theorem 5, F is even uniquely extremal in Q(h, o, E, b).
If the sup is not attained, and this can occur only if o is infinite, then there is a

n—x n—x

sequence @, € B,., ||@.llpwre) =1 with Ref[p k@, dx dy = kr and @,=50
locally uniformly in D\o’.
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From the relative compactness of E in D\o’ we conclude that ||@,|| rz) = 0

and hence ||@,|| = 1. So if we put

A ¢n
@Qp =
|l .|l

we get a degenerating Hamilton sequence @, for the complex dilatation &, this is
a sequence @, € B,, where Re [[,k®,dxdy =S ||k|l.=kr and §,2=>0
locally uniformly in D\o’. We denote by f a gc selfmapping from D with complex
dilatation &. By the sufficiency of Hamilton’s condition f is extremal for its own
boundary values on o', and by Satz 5.2 in [F] there exists a substantial boundary
point on ¢'. i.e., a point with local dilatation equal to K[f]=(1+k¢) | (1 — k)
(for the boundary values f|,.). Since foF is conformal in D\E which contains a
neighborhood of o and since local dilatations of the boundary mapping are
preserved under conformal mapping we conclude that there is a point on o with
local dilatation K[f] for the boundary values h|,. Hence every mapping in
Q(h, o, E, b) needs to have its dilatation near that point at least as large as
K[f]1=(Q + kg)/(1 — kg), in particular, F is extremal.

4. Alternative proofs of Theorem 2.1 in two special cases

Let o be finite and b(w) =0 in E. We put b,(w)=1/n in E and denote by F,
an extremal qc mapping in Q(h, o, E, 1/n). By Reich’s result there is a ¢, € B,
where the complex dilatation k, of f, := F, ! is

4

Pn(2)
)Tl 2PV
Kn(z)—<1 ¢ (Z)
L;m ZE€ F,,(E)

Furthermore, let F be extremal in Q(h, o, E, 0), hence k, =k, Passing to
subsequences we find a qc mapping F. and a function @. where

F,™=5 F. locally uniformly in D

and

@, = @, locally uniformly in D\o’
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As above we conclude that FE.e Q(h, o, E,0), and therefore kp=k; <
lim,,_,. k, < kg, and since o is finite we have @. € B,.,. Furthermore

f, = f.:= F1" locally uniformly in D.

E. is hence extremal in Q(h, o, E, 0) and the complex dilatations k, converge
pointwise a.e. in the interior of F.(E) or in the interior of D\F.(E) to zero or
ke(®./|p|) respectively. Since qc mappings preserve sets of area-measure zero
we infer from Theorem 5.2 in [LV], p. 187, that if the area-measure of JE is zero,
then a.e.

722)
K.(2) =4 gy 2 EPVE) “.1)

0 z e E.(E).

By Theorem 5 in [R2] E. is uniquely extremal in Q(h, o, E, 0) and hence F = F..
Clearly

sup Reffkftcpdxdy = kg

peB;: D
lollowe=1

and we thus have proved the first part of

PROPOSITION 4.1. Let F be extremal in Q(h, o, E, 0) where o is finite. If
the area-measure of JE is zero or if E is a closed set, then

sup Refffcq)dxdy = kp.
@€B,
"W"D\HE)""l

For the second part the reasoning in the proof above has to be slightly
changed since we do not know if k, is convergent a.e. in D. For this purpose we
change to the w-plane. First we observe that by |kp.(w)| <lim,_,.. |ks (w)| a.e. in
D we conclude that kg (w) =0 a.e. in E, hence k. (z) =0 a.e. in F.(E). Next we
use the fact that E is closed. Let z, € D\F.(E). There is a neighborhood U, of z,
with U, cD\F.(E) and by the local uniform convergence of F, to F. we find an
open disk D,, with center 2, in U,, such that for a number n,e N

Z0

D, cD\F,(E) Vn=n,.
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We hence infer that

3u(2) nen  T2)
=k s kp
k(@) =K @) 0.)]

a.e.in D,
Again by Theorem 5.2 in [LV] we get
a.e.in D,

and since z, was arbitrary in D\F,.(E), we again have (4.1) from which the result
follows.

S. Appendix

As has been pointed out to me by K. Sakan, the equation (2.2) in Lemma 2.1
is not at all a triviality. So let me add a proof here. There are several ways to do
it, e.g. one could infer this statement from results on the weak-convergence of
Jacobians of qc mappings (see [L]). I prefer here to use a consequence of a result
on area-distortion by Gehring and Reich [GR].

Let us denote the Jacobian of a qc mapping f by J,. For a number K =1 let F
be the set of K-qc mappings of the unit disk D onto itself which fix the origin.
From [GR] it then follows that the integrals [, J; dx dy are uniformly absolutely
continuous, i.e., for every £ >0 there is a 4 > 0 such that

If]dedy<8

E

for every f € F and every measurable set E in the disk with |E|:= [[z dx dy <.
This property will imply the

THEOREM 5.1. Let f, and f be K-qc selfmappings of the unit disk D where

o = f locally uniformly in D. Then we have for every measurable and bounded
function @ in D

tim [ [z, (2) dvdy = [ [ @@Wyiz) d dy.
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In case that g, is continuous in D\o and E relatively compact in D\o we choose
@ = @oxe (xe denotes the characteristic function of E), hence ¢ is bounded and
from this theorem we derive that

f f Poly, dx dy = f f @oJy dx dy. (5.1)

E E

The equation (2.2) claims that

[[192°Galsa, dxdy = [ [ 192Gl 1. ax ay
E E

which clearly follows from (5.1) by putting ¢ = @..° G. because ¢, °G,— @..° G,
locally uniformly in D\o.

Proof of Theorem 5.1. By [GR] we conclude that obviously also the integrals
[fpJs, dx dy are uniformly absolutely continuous. We first choose @ = xr where
R is a rectangle whose closure is contained in D. Then the statement follows from
Lebesgue’s dominated convergence theorem since x; r)—> Xs&) @-€. in D. Hence
for step-functions s = L), c;xz We have

ffslfn dx dy = jfsff dx dy. (5.2)
b b

Finally let @ be measurable and bounded in D. Let s, be a sequence of

step-functions with s,,(z) ™ @(z) a.e. in D and M be a number with |¢| <=M
and |s,,| = M for all m. Let £ >0 be given. By the uniform absolute continuity of
the integrals [ [ J; dx dy, there is an n >0 such that

ijf"dxdy<£ Vn and fflfdxdy<e
E

E

whenever E is a measurable set in D with |E| < . By Egoroff’s theorem there is a

set E, « D with |E,| <7 such that 5,, ™ @ uniformly on D\E,. We choose m,
such that

Is.(z) — @(z)|<e VzeD\E,, VYm=m,.
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For an m = m, we then have

fj¢1fndxdy—JJ¢dexdy= Jf(w_sm)an+ff(¢‘Sm)an
D B A g
e[ fsn =10+ [[6n =+ [ [ (50~ o,
D D\E, 5

By
fj}(p —Sm|J;, dxdy <€em  and j[|q) — S| Jy, =2Me
D\E, B,

(also with J; instead of J; ) we conclude from (5.2)

lim

n—x

”‘P(Jf,, —Jp) dx dy‘ <2em +4Me
D
and £— 0 proves the theorem.
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