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Symplectic bundles over affine surfaces

M. OJANGUREN, R. PArRiIMALA and R. SRIDHARAN

Introduction

Let A be a real affine algebra of dimension 2 and V = spec A. In [10], Pardon
relates the structure of the Witt group W~!(A4) of skew-symmetric forms over A
to the group Ay(V) of zero cycles of V modulo rational equivalence. He proves
[10, Th. B, p 262] that if PicV is trivial and V is smooth, W™ 1(4)® Z/2
3A0(V)®Z/2. In this paper, by what we believe to be a more direct and
elementary approach, we prove that for a real affine surface V =spec A, not
necessarily smooth, W™(A) ® Z/2 5 SK(A)/tr Ky(A), tr Ko(A) denoting the
subgroup of SK,(A) generated by all elements of the form P & P*. If PicA is
trivial, tr Ko(A) = 2SK(A) and our result extends Pardon’s theorem. Our method
of proof uses Vaserstein’s symbol on unimodular rows of length three and a
construction of certain generic rank 2 symplectic bundles which generalise the
classical Hopf bundles over the real sphere.

The description of W™!(A) in terms of linear data raises the following natural
question: for a projective module P over a ring A, on what conditions is the map
det: Aut P— A* surjective? This map, in general, is not surjective [8, §4 ex. 2].
We prove however, that the map det is surjective if, for instance, P is a rank d
projective A-module where A is an affine algebra of dimension d over an
algebraically closed field of characteristic 0.

We thank Chandra for his delightful company during the ‘development’ of this
work. One of the authors thanks the Tata Institute for its hospitality.

§1. Witt group of skew-symmetric forms

Let A be a commutative ring. A skew-symmetric space over A is a pair (P, )
where P is a finitely generated projective A-module and s:PXP—>A a
skew-symmetric bilinear form which induces an isomorphism s,:P 3 P*. An
isometry of skew-symmetric spaces is an isomorphism of the underlying modules
which preserves the forms. Any finitely generated projective module P gives rise
to a skew-symmetric space, called the hyperbolic space, denoted by H(P): its

491



492 M. OJANGUREN, R. PARIMALA AND R. SRIDHARAN

underlying module is P ® P* and the form is given by ((x,f), (x',f))—
f(x")—f'(x). The orthogonal sum of two skew-symmetric spaces (P, s) and
(P',s'), denoted by (P,s)L (P’,s’), is the space (P P’, t) where t((v, w),
(v, w))=s(v,v')+s'(w,w'): v, v eP, w, w eP'. For any skew-symmetric
space (P, s), we have (P, s) L (P, —s) 3 H(P). We say that two spaces (P, s) and
(P',s'") are equivalent if (P,s) L H(Q)x(P',s') L H(Q') for some Q and Q'.
The orthogonal sum induces a group structure on the set of equivalence classes of
skew-symmetric spaces, the identity being the class of the hyperbolic spaces and
the inverse of the class of (P, s) being the class of (P, —s).

We denote by K((A) the Grothendieck group of finitely generated projective
A-modules, by Pic A the group of isomorphism classes of invertible A-modules,
by K(A) the kernel of the rank homomorphism and by SKy(A) the kernel of the
determinant map. We cite [1] and [2] as references for these and other
unexplained terms.

There is an involution o on Ky(A) which maps the class of P to the class of
P*. For any x € Ko(A), we have, x + o(x) € SKo(A) and we denote by tr (K,(A))
the subgroup of SKy(A) consisting of all elements of the form x + o(x),
x € Ko(A).

We record here some stability results on skew-symmetric spaces which will be
used in sequel.

THEOREM 1.1 ([2, 4.11.2]). Let (P, s5) be a skew symmetric space over A. If
P has a unimodular element, then (P,s)>(P’',s') L H(A). If A is a noetherian
ring of dimension d, any skew symmetric space over A splits as (P, s) L H(A™)
with rank P =d.

THEOREM 1.2 ([2, 4.16]). Let A be a noetherian ring of dimension <2. If
(P,s) L(Q,t)3(P',s')L(Q, ), then (P,s)x(P',s").

(One should note that in the proof of (4.16) of [2], the reference should be to
(4.14) instead of (4.15).)

COROLLARY 1.3. Let A be a noetherian ring of dimension <2. Then every
class in W™'(A) has a representative (P, s) with rank P =2.

Let P be a projective module of rank 2. Any nonsingular skew symmetric
form s on P induces an isomorphism A*P  A. Conversely any isomorphism
A’Px A gives rise to a skew symmetric structure on P. Thus, any rank 2
projective module with trivial determinant carries a skew symmetric structure
which is unique up to units of A. If (P, s) is a rank 2 skew-symmetric space and u
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a unit of A, then (P,s) and (P, us) are isometric if and only there exists an
automorphism « of P with det o = u.

Let A be a noetherian ring of dimension 2 and (P, s) a skew-symmetric space
wer A. By (1.3),

#,s) LH(Q) 3 (P, s') LH(Q'),

where rank P’'=2 for suitable Q and Q'. Taking determinants, we get,
det P x det P’ 5 A. Thus associating to each skew-symmetric space its underlying
module, we obtain a homomorphism

D: W A)— SKo(A)/tr Ko(A).

The map @ is surjective since every element of SK((A) can be represented by a
rank 2 projective module with trivial determinant, which as we saw above, carries

a skew-symmetric structure. Since 2SKy(A) ctr K,(A), & induces a homo-
morphism

@: W (A)/2W~Y(A)— SKo(A)/tr Ko(A).

We shall show that this map ¢ is an isomorphism for a certain class of
2-dimensional affine algebras. To do this, we begin with some preliminary results.

Let Ums(A) denote the set of unimodular rows of length 3 over A. For
« = (a, b, ¢c) e Ums(A), let § =(x, y, z) e Um;(A) be such that ax + by +cz = 1.
Let

0 —x -y -z
x 0 —-c b

S(a, &)=
(a, &) vy ¢ 0 -a
z —b a 0

We note that S(a, §) is the most general skew-symmetric matrix with Pfaffian
Pf(S(a, &))=ax+by+cz=1.1fE =(x', y', z') also satisfiesax’' + by’ + cz' =1,
then there exists U e GL,(A) such that S(a, §') = US(a, §)U’ [12, (5.1)]. For
V eSLy(A), if a'=aV, and §' =E(V")™!, then, there exists U € GL4(A) such
that S(a’, §') = US(a, §)U’ [12, (5.2)]. Thus the isometry class of the skew
symmetric space (A%, S(a, £)) is uniquely determined by the class of a in
Ums3(A)/SL3(A). We denote this isometry class by X(a). We remark that any
rank 4 skew-symmetric space whose underlying module is free is in 2(«) for some
a € Um3(A); in fact, for any T e GL,(A) and any skew-symmetric matrix
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S e GL(A), Pf(TST)=Pf(S)detT. We have a map w:Um;(A)/SLi(A)—
W~!(A) which sends the class of « to the class of Z(a).

PROPOSITION 1.4. The image of w is the kernel of ®. In particular, if
SL;(A) acts transitively on unimodular rows, then ® is an isomorphism.

Proof. The underlying module of any skew-symmetric space (P, s) whose
class is in ker @ is of the form Q @ Q* for some projective module Q. Let Q' be
such that Q @ Q' is free. Then (P, s) L H(Q') is free. By (1.3), this space is
isometric to (P’,s') L H(A™) with rank P’'=2 and P’ stably free. The class of
(P, s) in W™(A) is the class of (P',s’) L H(A). By a well-known cancellation
theorem for projective modules, [1, p 172], P’ @ A? is free so that by our earlier
remarks, (P’, s') L H(A) is in () for some o € Um;(A).

COROLLARY 1.5. Let A be an affine algebra of dimension 2 over a field K.
Suppose that one of the following conditions is satisfied:
1) K is algebraically closed.
2) K is finite.
3) K is real closed and the set of K-rational points of spec A lies in a closed
subscheme of dimension <1.
Then @:W'(A)— SKy(A)/tr Ko(A) is an isomorphism.

Proof. In each of these cases, SL3(A) acts transitively on Umj(A) (See
[7, Theorem 1] and [12, Corollary 17.3))

COROLLARY 1.6. If A is a regular affine algebra of dimension 2 over an
algebraically closed field, then W~'(A) = 0.

Proof. In view of [7, Theorem 3], SK(A)=2SKy(A)ctrKy(A) and the
result follows from (1.5).
§2. Real surfaces and generic Hopf bundles

Throughout this section, R denotes a real closed field and A denotes an affine
algebra over R of dimension 2.

PROPOSITION 2.1. Every element of Ums(A)/SL3(A) can be represented by
E=(x,y, z) € Um(A) such that ax + y*+ cz.= 1 for some a, c € A.
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Proof. Let § =(x,y, z) e Um;(A). Operating on & by elementary transforma-
tions, we may, in view of [3, §3, Lemma 2], assume that I = Ax + Az has height
2. Let a, b, c € A be such that ax + by + cz = 1. The ring A/I, modulo its radical
is a finite product of copies of R or C, C denoting the algebraic closure of R.
Hence any square in A/I is a fourth power. Let 5% =t* and let t € A be a lift of ¢.
Since t*'y?=1mod I, there exist a’, ¢’ € A such that a’x + (f°y)’+c'z=1. To
complete the proof of the proposition, it suffices to show that there exists an

element of SL;(A) which maps (x, y, z) to (x, t’y, z). This is achieved by the
following

LEMMA 2.2. Let A be any ring of dimension 2 and x, y, z,t € A such that
(x, %y, z) is unimodular. Then there exists & € SL;(A) such that (x, ty, 2)a =
(x, 5, 2).

Proof. Since dim A =2, for r =4, E,(A) acts transitively on the set Um,(A) of

unimodular rows of length r. In view of [12, Theorem 5.2], (x, %y, z) ~ (x, y, z)
under the action of SL3(A) if and only if

Z(x,t’y,z) LHA)33(x,y,z) LH(A")

for some 7. Since dim A =2, by (1.3), this happens if and only if Z(x, °y, z) 5
3(x, y, z). By [12, Theorem 5.2}, if px + qy + rz =1, then

S(x,y,2)L3(x, 2, 2)33(x, Py —rz, (t*+ q)z) L H(A?).

Denoting by ~¢ the equivalence under the action of E;(A), we have, (cf. [15, p
380])

(x, Py —rz, (P +q)z2) =(x, Py — 1+ px + qy, (> + q)2)
~e(x, (P+q)y -1, (P +9)z)
~e(x, (F+q)y -1, (P +9)z)
~e(x, (P+q)y -1, 2)
~g (x, £y, 2).

Thus in view of [12, Theorem 5.2],

3(x, y,2) L2(x, £, z2) 3 2(x, Py, z) L H(A?).
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Since (x, £%, y) is completable in SLi(A) (see [14, Theorem 2.1]), ¥ (x, %, y) 3
H(A% and by (1.3), £ (x,y, 2) 3 X (x, %y, 2).

Let S, S’ be two 4 X4 skew symmetric matrices with §' nonsingular. Then
§'~1S satisfies [9, Lemma 3.5] the quadratic equation Pf(S — S'r) = (Pf(S))f* —
Pf(S, $')t+ Pf(S') =0 where Pf(S,S') is the bilinear form associated to the
quadratic form § — Pf(S). Let

0 —x -y -z

{x 0 —c y

S—S((a,)’, C)) (x)y’ Z))— y ¢ 0 -—a
z =y a 0

be the generic skew symmetric matrix defined over the commutative R-algebra B
generated by x, y, z, a, ¢ with relation ax + y* + ¢z = 1. Choosing

00 -1 0
oo o0 -1
S"looo’

01 0 O

we see that Pf(S, S') =0 and Pf(S') = —1 so that U =S'"'S has square 1. Let

1+y ¢ 0 —a
z 1-y a 0
0 x 1+y =z
—x 0 c 1-y

E=i1+U)=1

Then E?>=E. Let ¥ be the projective module EB*. If we specialise a =x, ¢ = z,
we recover the Hopf bundle on the 2-sphere [5]. Let ' =(1-E)B*
Computations reveal that B*= # @ ¥’ is an orthogonal decomposition for both
the structures (B*, S) and (B*, h) 3 H(B?), where

PROPOSITION 2.3. The class of (B%, S) in W~'(B) belongs to 2W~\(B).
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Proof. Let s, s’ be the restrictions of (B*, §) to # and #' respectively. Since
the only units B are non-zero elements of R, the restrictions of 4 to ¥ and ¥’ are
respectively es, €'s’ where ¢, ¢’ are £1. We have isometries

(B, ) (%, s) L (', s")
(B%, h)— (%, es) L (%', €'s").

Adding these equations in W™'(B), we see that the class of (B%, S) in W~'(B)
belongs to 2W ~!(B).

THEOREM 2.4. Let R be a real closed field and A a 2-dimensional affine
algebra over R. Then the map @:W~'(A)/2W '(A)— SK(A)/tr Ko(A) is an
isomorphism.

Proof. We have seen earlier that & is surjective and that its kernel is
generated by the classes Z(a), o€ Umz(A). By (2.1), we may assume that
a=(a, y, ¢) with ax + y*+ cz =1 for some x, z € A. By (2.3), the class of Z(a)
in W~!(A) belongs to 2W ~1(A).

COROLLARY 2.5. Let A be a regular affine algebra of dimension 2 over R.
Suppose Pic A is trivial. If V =spec A, we have an isomorphism W~'(A)/
2W™YA) 3 Ay(V)/2A((V), where Ao(V) denotes the group of zero cycles of V
modulo rational equivalence.

Proof. For a smooth affine surface V =spec A, SKy(A) 3 Ay(V) [6, p 298].
Since PicA =0, tr Ky(A) = 2SK(A).

Remark. The group Ay(V)/2A4(V) can be computed using results of Colliot-
Théléne and Ischebeck [4]. If V has no R-rational points at infinity, then,
Ao(V)/2A¢(V) 3 (Z/2) where s is the number of algebraic real components of V
(10, 3.2].

Remark. Pardon, in [10], raises the question whether the condition PicA =0
is necessary to conclude that W™'(A4)/2W 1 (A) 53 Ay(V)/2Ao(V). The following
example, suggested by Mohan Kumar, shows that this condition is indeed
necessary.

EXAMPLE. Let Spec A = P% — § where S is the curve x>+ y*+ z2=0. Then
Pic A 5 7/2, generated by the restriction L of 0(1) on P} to A and SK((A) 37/2,
generated by L@ L*. Thus SKo(A)=trK,(A) and 2 SKy(A)=0. Then we
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have W™(A)/2 W™(A) 3 SKo(A)/tr Ko(A) =0 (2.4) whereas Ao(V)/2 Ay(V) 3
SKo(A)/2 SKo(A) 3 Z/2.

§3. Surjectivity of the determinant map
We prove in this section, the following

THEOREM 3.1. Let A be an affine algebra of dimension d over a field K.
Suppose one of the following two conditions holds.
1) K is algebraically closed of characteristic prime to d.
2) K is real closed and the set of K-rational points of A lies in a closed
subscheme of dimension =d — 1.

Then for any projective module P over A of rank =d, the map det: Aut P— A* is
surjective.

For the proof of this theorem, we need the following result which is a minor
variation of a theorem of Suslin [11].

THEOREM 3.2. Let A and P be as in (3.1). Then SL(A © P) acts transitively
on the set of unimodular elements of A @ P.

Sketch of a proof. 1f rank P >d, by Serre’s theorem, P contains a free direct
summand and the theorem is immediate. We therefore assume that rank P =d.
Let (a, v) € A @ P be a unimodular element. Let J be the intersection of all the
maximal ideals » of A such that A/» is real. By our assumption, dim A/J
=d —1. By a version of Bertini’s theorem given in [13, Theorem 1.4], there
exists a finite subset 7 < P such that for a generic linear combination w of
elements of T, I =0(v + aw), has the property that dim A/I =0. Since dim A/J
=<d — 1, there exists a finite subset S c P, bar denoting modulo J, such that for a
generic linear combination w of elements of S, ¥ +aw is unimodular. By
enlarging T if necessary, we assume that the image of 7 in A/J contains S so that,
for a generic linear combination w of elements of T, dimA/I =0 and I +J = A.
Since A/I, modulo its radical, is a product of algebraically closed fields, @ = b’
for some b’ € A/I, d being invertible in A/I, ~ denoting reduction modulo I. Let
b e A be a lift of b’. Then there exists an elementary transformation of A ® P
which maps (a, v) to (b?, v’) for some v’ € P. A unimodular element of the form
(b%, v") can be mapped to (1,0) by an element of SL(A @ P). This follows from
steps 6 and 7 of the proof of [11, Theorem].
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Remark. If A is reduced, the assumption on the characteristic of K in the
above theorem can be dropped.

Proof of Theorem 3.1. Let u be a unit of A. By (3.2), there exists an
automorphism

(0 )

of P &® A mapping (0, u) to (0, 1) with determinant 1. We have p =0 and 6 is an
automorphism of P with det 6 = u.

COROLLARY 3.3. Let A be as in (3.1). If dimA =2, every rank 2
projective module P over A with trivial determinant carries a skew-symmetric
structure s which is unique up to isometry. The map which sends the class of P in
SKy(A) to the class of (P,s) in W™'(A) yields a homomorphism SK,A)—
W™Y(A) which in turn induces a homomorphism SKy(A)/tr Ko(A)— W~1(A)
which is inverse to .
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