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Local cohomology and the connectedness dimension in algebraic
varieties

MARkUs BRODMANN and JoseF RUNG

0. Introduction

In this paper, we use local cohomology to prove some connectedness results
for algebraic varieties. What is used from local cohomology are the Mayer-
Vietoris sequence, the Hartshorne-Lichtenbaum vanishing theorem and
Hartshorne’s bound on the cohomological dimension of an ideal by its arithmetical
rank. This method already was successfully applied by the second author in [10]
and also in [11], where a proof of the connectedness theorem of Fulton—Hansen
[3] (Barth [1], Faltings [2]) for the intersection of two projective varieties was
given.

Besides the connectedness of intersections, the connectedness of fibres under
projective morphisms plays an important role in algebraic geometry. We will
show that — using essentially the same tools from local cohomology — it is possible
to get results in the latter field, too. In particular we may prove a generalized and
sharpened version of Zariskis’ connectedness theorem [12] for projective bira-
tional morphisms, (3.4). This result has some applications to blowing-up and
tangent cones, which will be published elsewhere.

According to the two types of questions mentioned above, our paper is
divided into two parts.

The first part concerns connectedness of closed subsets in a variety and of
their intersections. Here we give a bound on the (local) formal connectedness-
dimension of a closed subset in terms of its arithmetical rank and the formal
connectedness-dimension of the ambient variety, (2.4). From this we get a bound
on formal connectedness-dimensions of intersections, (2.5). Passing to affine
cones we immediately get a bound on the connectedness-dimension of two
intersecting projective varieties, (2.6).

The second part of the paper concerns the connectedness of fibres under
projective (in fact even under quasi-homogeneous) morphisms. First we prove a
connectedness criterion for the fibres under such morphisms, (3.1). This criterion
has some similarity with Grotendieck’s version of the Zariski connectedness
theorem [4]. But instead of Stein-factors our criterion uses the formal extension

481



482 MARKUS BRODMANN AND JOSEF RUNG

of the given morphism. Combining (3.1) with the results of the first part, we get a
lower bound for the connectedness-dimension of the fiber, (3.4).

The connecteness-criterion of the second part relies on (3.2). To prove this
result, we also use the method of [11], but in a refined form. Instead of vanishing
and non-vanishing of local cohomology we have to look at vanishing and
non-vanishing of graded local cohomology at different degrees. This requests to
consider the ‘“‘graded versions” of the previously mentioned results on local
cohomology.

1. Preliminaries

We now list a few definitions and results which will be used.

Let X be a noetherian scheme and let Z < X be a closed subset. We define the
connectedness—dimension c(Z) of Z as the largest integer n such that Z — W is
connected for all closed subsets W c Z with dim (W) <n. Thereby the empty set
@ is considered as disconnected. So, using the convention dim (J) = —1, we may
write

(1.1) ¢(Z)=min {dim (W) | W < Z closed, Z — W disconnected}.

In particular Z is connected iff ¢(Z) is =0. Another description of c(Z) is:

(1.2) ¢(Z)=min{dim (Z,N Z,)}, where Z,, Z, are unions of
irreducible components of Z such that Z,U Z, = Z.

Let R be a noetherian ring. Let / ¢ R be an ideal. The arithmetical rank r (I)
of I is defined as the minimal number of elements in / which span an ideal with
the same radical as [:

(1.3) r():=min{r|3a,,...,a elwith \V(a,,....a)=VI).

H/ denotes the i-th local cohomology functor with respect to the ideal /. We now
list the results on these functors which will be used in our proofs (for reference see

(61, (7))
If J< R is another ideal and if M is an R-module, we have the following
natural exact Mayer—Vietoris sequence:

(14) -+ HiT)(M)— Hi (M)~ Hi(M) © Hi(M)— Hir, (M)~ - -

We will use the following form of the Hartshorne—Lichtenbaum vanishing
theorem (cf. [8]):

(1.5) Let R be a local complete domain and let dim (R/I)>0. Then H(R)
vanishes for all i = dim (R).
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Parallel to (1.5) we shall use

(1.6) Let (R, m) be local of dimension d>0. Then HZ(R) is not finitely
generated as an R-module.

We recall Hartshorne’s bound for the cohomological dimension of an ideal / (cf.
[8]):
(1.7) i>r()>H;=0.

To treat projective morphisms, we must use the homogeneous versions of
(1.4-7). More precisely, let R=R,®DR,---be a graded noetherian ring, let
I = R be a homogeneous ideal and let M = @, .; M, be a graded R-module. Then
the modules Hj(M) are naturally graded over R. If J c R is another homogeneous

ideal, the natural homomorphisms in (1.4) are homogeneous of degree 0. The
vanishing result (1.5) then has the following homogeneous version:

(1.8) Let R=R,DR,- - be a graded noetherian domain such that R is local
and complete. Let I = R be a homogeneous ideal with dim (R/I)>0. Then
“(R) vanishes for all i = dim (R).

(1.6) has the following homogeneous version:

(1.9) Let R=R,DR,D - - be graded, noetherian of dimension d >0 and such
that R, is local. Let m be the homogeneous maximal ideal of R. Then the
graded module HZ(R) has non-vanishing homogeneous parts in almost all
negative degrees.

Finally we will use the following fact, which is an easy consequence of the
base ring independence of local cohomology:

(1.10) Let R=RyDR,®D - be graded noetherian and let Iy R, be an ideal.
Then the graded modules Hi x(R) vanish in all negative degrees.

2. Local connectedness-dimensions
If R is a noetherian ring, we write c¢(R) instead of c(Spec (R)).

(2.1) PROPOSITION. (cf. [11], Satz 1). Let (R, m) be a local noetherian

complete ring and let J, Lcm be ideals such that dim(R/J), dim (R/L)>
dim (R/(J + L)). Then

dim(R/(J+L))=c(R)—-r(JNL)-1.
Proof. (Induction on d= dim (R/(J + L))). Let d=0. We must show
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r(J N L)=c(R)—1. First we treat the case where at least one of the ideals J + g
or L + q is m-primary for each minimal prime ideal g of R. Let q,, ..., g, be the
minimal primes of R. After an appropriate reordering we find a non-negative
integer s <n such that J+¢q,,...,/J+q, and L+ q;4y,..., L +gq, are m-
primary. As neither J nor L is m-primary we must have 0<s<n. Put
Zi=V(@N---Na), Z,=V(q1N - Na,). Then Spec(R)—(Z,NZ,) is
disconnected. This shows that dim (Z; N Z,) =c(R). Consequently there is a
minimal prime 3 of q;N---Nq;+ g, N -+ Nq, such that dim (R/3) =c(R).
Now we may choose indices i, j with i=s=j=n and such that q;, g,c8.
Therefore JN L + 3 is m-primary. This induces r((J N L)/3)=dim (R/3). As
r(JNL)=r((J N L)/3) we get the requested equality.

So we may assume that neither J+q nor L+ q is m-primary for an
appropriately chosen minimal prime ideal q of R. Put R=R/q, mi=m/q, J=JR,
L=LR and t=dim (R). Then neither J nor L is thi-primary. Moreover it holds
r(JNL)=r( NL). As Spec (R) is an irreducible component of Spec (R) we have
t=c(R). So, replacing R by R we may assume that R is a domain of dimension
t>0 and restrict ourselves to prove r(JNL)=t—1. To do so, consider the
following piece of the Mayer—Vietoris sequence (1.4):

Hjn; (R)— Hj, (R)— HYR) © H.(R).

Here the last term vanishes by the theorem of Hartshorne-Lichtenbaum. As
J + L is m-primary, the middle term of our sequence may be written as H; (R)
and thus does not vanish, (1.6). It follows H5:L(R)#0, thus r(J NL)=¢—
1.7.

Finally let d>0. Put r=r(JNL) and let a,,...,a,€JNL be such that
V(ay,...,a)=VINL. As J+L is not m-primary we find an element b € m
which lies outside of all minimal prime divisors of J+ L. Setting J' = (J, b),
L'=(L,b) we obtain dim(R/(J'+L'))=d-1, dim(R/J')=dim(R/])-1,
dim (R/L') =dim (R/L)-1, r(L' NJ')<r + 1. By induction we have

dim (R/(J' + L)) =c(R)—r(J' N L")~1.

Altogether this proves our claim.

Let X be a locally noetherian scheme, Z c X a closed set, x € Z and let
FcOx be the ideal of sections vanishing at Z. We define the local
connectedness-dimension of Z at x resp. the formal connectedness-dimension of Z
at x by

(22) (i) Cx(z) = C(OX.x/fx)’
(ii) E(Z):=c((Ox.«/F:)")-

Obviously é,(Z) = c,(Z2).
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The local analytical rank of Z at x is defined as

(2.3) rxx(Z) =r(F).

In these notations we have

(2.4) THEOREM. Let X be a noetherian scheme, Z — X a closed set, x € Z.
Then

Cx(z) = 6x()() - rX,x(Z)—l'

Proof. Passing to local rings at x and then taking completions we may assume
that X = Spec (R), x = m, where (R, m) is local and complete. Let I = R be the
vanishing ideal of Z and put ¢ = c(Z). We must show that c =c(R) —r(I) — 1.

If Z is irreducible, this is obvious. Otherwise we may write Z =2,U Z,,
where Z; and Z, are both unions of irreducible components of Z such that
dim (Z,NZ,) =c. But then Z, and Z, have no common components (by the
minimality of dim (Z; N Z,)). Therefore dim (Z,), dim (Z,)>dim(Z,NZ,)=c.
Let J, L c R be the vanishing ideals of Z, and Z, respectively. We have JN L =1,
dim (R/J), dim (R/L) > c¢ =dim (R/(J + L)). Now we get our claim by (2.1).

Denoting the embedding dimension of a noetherian scheme X at a point x € X
by edim, (X) we obtain

(2.5) COROLLARY. Let X be of finite type over an algebraically closed field
k and let S, T = X be two closed sets which have in common a closed point p.
Then

&,(S N T) = &,(S) + &,(T) — edim,, (X) — 1.

Proof. Put e = edim,(X). The formal space germ (X, p)" is closed in (A}, p)~,
where p € A} is closed. As our statement is concerned only with closed subsets of
(X, p)”* we thus may replace X by A; = A°.

Let D c A° X A® be the diagonal. Then the canonical isomorphism 6 :A°— D
gives rise to a isomorphism SNT=(SXT)ND and maps p to p Xp. So,
applying (2.4) to the pair (S X T) N D = S§ X T and observing that

rsxt.pxp(S X T)ND)<e

we obtain &,(SNT)=E,x,(SXT)—e—1. It thus remains to prove ¢,(S)+
¢,(T) =¢&,%,(S X T). This may be done easily by decomposing the germs (S, p)”~,
(T. p)" in irreducible components and using the description (1.2) of the
connectedness-dimension.
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(2.6) COROLLARY. Let k be an algebraically closed field and let V, W c P§
be closed. Then c(VNW)=c(V)+c(W)—-d - 1.

Proof. Denote the origin of AZ*! by p. If Z = P{ is closed let K(Z) = A¢*! be
its affine cone. Obviously ¢(Z) =c,(K(Z)) — 1. As the irreducible components of
K(Z) are analytically irreducible in their vertex, we also have c,(K(Z))=
¢,(K(Z)). Now apply (2.5) to K(V) and K(W) and observe that K(VN W)=
K(V)NnK(W).

Choosing V and W irreducible we immediately see that (2.6) contains the
connectedness theorem of Fulton—-Hansen mentioned in the introduction.

Recall that the connectedness-part of Bertinis theorem claims that a hyper-
plane section of an irreducible projective variety of dimension =2 is connected.
We close the section by another application of (2.5), which generalizes this result:

(2.7) COROLLARY. Let k be an algebraically closed field. Let V < P be
closed and let H = P{ be a hypersurface. Then c((HN V)= c(V)-2.

Proof. Using the notations of the previous proof we have rgy), ,(K(H NV))
<1. As observed above we have c¢(Z)=¢,(K(Z))—1 for Z=V and for
Z=HNYV. So, applying (2.4) to the pair K(H N V)< K(V) we get our claim.

3. Projective morphisms

Throughout this section let (R, m) be a local noetherian ring, (R, 1) its
completion. Moreover let § = @ ,-0S, be a graded noetherian R-algebra with
R=3S, Put $ =R ®;S. We consider the canonical morphism

(3.1) = :Proj (S)— Spec (R).

(3.2) PROPOSITION. The special fiber £~ ({m}) is connected iff Proj (8) is
connected.

Proof. Considering the canonical diagram

b4

Proj (§) > Spec (R)

Proj (§) 2 - Spec (R)
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and observing that 7~'({m}) and & ~'({1ft) are homeomorphic by means of a, we

may replace S by S, and thus assume that R is complete. Put Z = 2~ '({m}).
Assume that Z is connected. As & is a closed map and as R is local, each

non-empty closed subset of Proj (§) meets Z. So Proj (S) is connected.

Assume that Z is disconnected. We must show that X := Proj (S) is discon-
nected. If Z=(J, this is clear as then X = (by the fact that any non-empty
closed subset of X meets Z). So we may assume Z # J. We find two non-empty
closed subsets V, W < Z such that Z =V UW. Assume first that no irreducible
component of X meets both V and W. Let X;,..., X, be the irreducible
components of X. Then, after an appropriate reordering we find a non-negative
integer s=n such that VNX,,...,VNX and WNX,,,,..., WNJX, are
empty. As VUW <UL, X; we must have 0<s<n. Put X'=U<, X;, X"=
Uss Xi. AsZN(X'NX)=(VNX)UWNX)=Tweget X' NX=(, thus a
closed disjoint decomposition X = X'UX". Therefore X is disconnected. So it
remains to treat the case where VN X, W N X #  for an irreducible component
X of X. We show that this case cannot occur as it would lead to a contradiction.
To do so, write X = Proj (§), where § = @, S, is a graded homomorphic image
domain of §. §;=: R is a homomorphic image domain of R, whose maximal ideal
will be denoted by 1. If 7 : Proj (§)— Spec (R) is the canonical map, we have the
closed disjoint decomposition Z:=a~!({ii}) = (VN X)U (W N X). So, replac-
ing § by § we are in the situation where S is a domain. Let J, Lc S be the
homogeneous vanishing ideals of V and W and let nc § be the homogeneous
maximal ideal. Put ¢ =dim (S,)) and consider the following piece of the graded
Mayer—Vietoris sequence

HiRL ()= Hi4n(S)— HY(S) @ HL(S).

As V#, J is not n-primary, and so H%S) vanishes by Hartshorne—
Lichtenbaum (1.8). By the same reason we have H(S)=0. As VNW = and
V, W ca '({m}), J + L is n-primary. So the middle term of our sequence may
be replaced by H;(S) and thus contains non-zero homogeneous elements of
negative degree, (1.9). As VU W =z~ '({m}) we have J N L = VmS. So the first
term of the sequence coincides with H’¢(S) and thus vanishes in all homoge-
neous parts of negative degree, (1.10). Altogether this gives a contradiction.

For a closed subset Z of a noetherian scheme X we introduce the notation
(3.3) r(Z2):=max {ry(Z)|x e Z}

Using this notation we have

(3.4) THEOREM. Let Z = Spec (R) be a closed set. Assume that Proj (8) is
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connected. Then n~'(Z) is connected and satisfies c(nx~'(Z))= c(Proj(S)) -
rProj(S)(”—l(Z)) - 1

Proof. We put Y=a"(Z). By (3.2) n~'({m}) is connected. By the
closedness of 7 we obtain that Y is connected.

To prove the remaining claim we first want to replace S by S, which allows to
assume that R is complete. To be able to perform this relacement we must show
(in view of the previous diagram (*)) the inequalities c(Y)=c(a"'(Y)),
7proj (5)(Y) = 'proj (g)(a/"l(Y)). The second inequality is an immediate consequence
of the fact that « is surjective. The first inequality is shown using in addition that
« gives a bijection between the special fibres #7'({fi}) and 7~'({m}): Indeed,
let Y=Y,UY,, where Y; and Y, are unions of irreducible components of Y such
that dim (Y, N Y;)=c(Y). Then by the surjectivity of a, a”'(Y}), a '(Y,) are
both unions of irreducible components of a~'(Y) and it holds a~'(Y)=
a }(Y)) U &~ !(Y,). So we have to prove the inequality dim (a™'(Y}) N a™(Y,)) <
dim (Y; N'Y,), hence dim (a™'(Y¥; N Y,)) =dim (Y; N Y,). The mentioned bijection
between the special fibres means that o maps closed points to closed points and
that the preimage a~'(x) of a closed point x € Y consists of a single closed point.
From this the above inequality is clear.

Next we want to show that in addition S may be supposed to be a domain. We
may restrict ourselves to the case c(Y) <c(Proj(§)), as otherwise (3.4) holds
trivially. By (1.2) we find two closed sets Y;, Y, Y such that YU Y,=Y and
dim (Y;NY;)=c(Y) and such that Y—Y,NY, is disconnected. There is an
irreducible component X of Proj(S) with XNY,, XNY,#J. (Otherwise,
collecting the components which avoid Y; and those which avoid Y, we get a
closed decomposition Proj (S) = X; U X, with X;NX,c Y;NY,, hence the con-
tradiction c(Y) = c(Proj(S))). It follows c(XNY)=c(Y), c(X)=dim(X)=
c(Proj (S)) and r,(X N'Y) = rpo;(sy(Y). This allows to replace S by its homomor-
phic image domain § for which Proj (§) = X.

Finally we want to show that Proj(S) moreover may be assumed to be
normal. To do so let §'= @ S, be the graded integral closure of S. As S is of
finite type over the complete local domain R, it is excellent. So S’ is a finite
integral extension domain of § [5]. In particular R':= S8 is a local complete
domain and §,, vanishes for n <0. We have the canonical diagram

Proj () il > Spec (R)

] ok

Proj (S') > Spec (R')
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Thereby B is finite birational and Proj ($’) is normal. From the finiteness of § we
get the inequalities

c(Y)= c(ﬁul(y))’ ' proj o(¥)= T proj (s')(ﬁ—l(y)),

which allow to replace S by §S'.

So let R be complete, let S be a domain and assume that X:=Proj(§) is
normal. Consider a closed decomposition Y=Y, NY,, where Y; and Y, are
unions of irreducible components of Y such that dim (Y; N Y,) =c(Y). Let x be a
generic point of Y; N'Y, such that dim {x} = ¢(Y). If x is a generic point of Y; or
of Y, it is a generic point of Y and so we get dim (Ox ) =rx (Y)=r(Y) =
rx(Y) + 1, thus the inequality

(**) —dim (Ox, ,)=—ryx(Y) - 1.

If x is neither a generic point of Y; nor of Y5, let J, L « Ox , = R be the vanishing
ideals of Y; and Y,. Then J and L satisfy the hypotheses of (2.1) and we obtain
—c(0x, ) =zr(JNL)—1=—=rx (Y)—1=—ry(Y)—1. As X is normal and ex-
cellent, 6y , is a domain [5], and thus satisfies c¢(0y ,) = dim (O ,). So we get
again the inequality (**). Finally, as S is of finite type over the local excellent
domain R, we have ¢(Y) = dim {x} = dim (X)— dim (O ,), [9]. Now, by (**) we
obtain ¢(Y) = dim (X)—rx(Y)—1. This proves our claim.

Let R be analytically normal and assume that 7 : X := Proj (§)— Spec (R) is
birational. Then Proj () obviously is irreducible. By (3.4) 7~'(Z) is connected.
So (3.4) contains Zariski’s connectedness theorem for projective birational
morphisms. As c(Proj(§))=dim(R) we get in addition the estimate
c(r™(Z)) =dim (R)—rx(x~(Z))-1.
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