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Properties of the scattering map

Thomas Kappeler and Eugène Trubowitz

§1. Introduction

To define the scattering fonction and the scattering map, let us consider the
Schrôdinger équation on the whole line

~^2y(x) + q(x)y(x) k2y(x) (1.1)

where q(x) is a complex valued potential with $lx \q(x)\ (1 +x2) dx &lt; ». Dénote
by fi(x, k) and/2(jc, k) (Im k &gt;0) the so called Jost fonctions, i.e. the solutions of
(1.1) with /x(jc, k) ~~ elkx for x -» 4- oc and /2(jc, k) ~ e~lkx for x -&gt; -» respectively.
For k in R\{0}, fx{x&gt; k) and fx{x, -k) are solutions of the same differential
équation (1.1) but with différent boundary conditions at +°°, so they must be

linearly independent. The fonction /2(jc, k) is also a solution of (1.1) and can thus
be represented as a linear combination of /i(jt, k) and/i(jt, — k): for k in IR\{0}

Similarly one finds the corresponding expression for/^jc, k) (k in !R\{0})

Mx&gt; k) ™/z(;c&apos; ~k) + SJwTMx&apos;ky

S(k):=S(k, q) is called the scattering fonction associated to q. The fonctions
W(k) and S(k) are related to the more often used reflection coefficients R{(k)
and R2(k) and the transmission coefficient T(k) in the following way:

The matrix
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is called the scattering matrix [3,4]. Its coefficients hâve a straightforward
physical interprétation: T(k)fi(x, k) R2(k)f2(x, k)+f2(x,-k) is a solution of
the time independent Schrôdinger équation (1.1) which corresponds to a particle
sent in freely from — oo. The appropriate asymptotic form of the wave function
describing the particle at x -» is given by R2(k)e~lkx + elkx where R2(k)e~lkx is

the part of the wave function which is reflected by the potential. The asymptotic
form of the wave function describing the particle at x +°° consists of the
transmitted part and is given by T(k)elkx.

The aim of this paper is to analyse the so-called scattering map 5 associating
to a potential q its scattering function S(q): S(-, q). First we will show that the

map S can be defined between certain function spaces as a holomorphic map
(Section 2). In Section 3 we compute the derivative dqS of 5 and prove that dqS is

boundedly invertible on the corresponding tangent spaces. In Section 4 the global
behavior of 5 is studied.

We investigate 5 rather than the map Rx associating to a potential q its
reflection coefficient R\(q) because 5 can be defined on nicer function spaces. Let
us point out that in délicate investigations of scattering theory the map 5 was
useful to other people as well [7, 8].

The map Rl has been studied by many authors [e.g. 2,3,4,9]. Their main
interest was to characterize the properties of the reflection coefficients

corresponding to potentials in certain spaces, e.g. in a weighted L^space, and to
solve the inverse problem. It is for example known that a real valued potential q
in L\ with no bound states is completely determined by its reflection coefficient

Rx(q) [3, 4].
One motivation to study the scattering map in greater détail cornes from the

well-known fact [5] that S(q) linearizes the Korteweg-deVries équation (KdV),
i.e. if u(x, t) is a solution of dtu(x, t) — 6w(jc, t)dxu(x, t) + dlu(x, t) 0 then

3tS(k, w(-, 0) + k3S(k, u(-, t)) 0. To solve the initial value problem of KdV one

can proceed in the following way: to w(-, 0) one associâtes S(k, u(-, 0)), solves

the linear differential équation for 5 to get S(k, t) and, provided one can solve the

inverse problem, associâtes to S(k, t) the potential w(-, t). This shows that the

scattering map can be used to solve certain non-linear differential équations in an

analogous way as the Fourier transform on the line is used to solve certain linear
differential équations. The analogy between the Fourier transform and the

scattering map has been observed before [e.g. 1,2,3] but primarily on a formai
level. In the course of our investigations we will make this analogy more précise.

The first problem arises in the choice of the spaces where the scattering map
should be set up. If we look at the asymptotics of S(kf q) as k -&gt; ±°° we get
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So in first approximation S(-, q) is the Fourier transform of q and a natural choice
of spaces would be L2. However for q in L2 the scattering function S(k, q) is not
defined and it is this fact that complicates the situation. Another choice could be
the Schwartz space of rapidly decreasing functions which is no longer a Banach

space. As is well-known it is difficult to do analysis in Fréchet spaces. We
consider hère weighted Sobolev spaces. Let us introduce the following notation:

and

In Section 2 we prove that for N^ 3 5 maps HNN into H%^lN. So for q in
HNNf 5(-, q) is almost in HNN except that the Af-th derivative d%S(k, q) is not in

LL around A: 0, however, k^d^Sik, q) is in L2 for 1&lt;/?&lt;N. This property
makes the scattering map again very similar to the Fourier transform which maps
HNN into HNN.

Clearly unlike the Fourier transform 5 will no longer be linear. However, we
will show (Section 2) that 5 is not only continuous but also differentiable and thus

holomorphic.
In a next step (Section 3) we investigate on the local properties of 5. First we

show that the derivative d95[u] of 5 in direction v(v e HN N) can be computed
explicitly

dqS[v](k) fdxv(xMx, -k, q)f2(x, k, q).

For q 0 the Jost functions are given by fx(x, —k) e lkx and f2(x, k) e&apos;kx, thus
the derivative dqS at q 0 is the Fourier transform

i I dxv(x)e-2lkx.
J—oc

One could be tempted to guess that for q =é 0 dqS is a compact perturbation of the
Fourier transform, but this is not the case. We prove that dqS:HNN -&gt; H%.XN is
1 - 1 and onto for N&gt;3 and q in QN(C):={&lt;?€HNN:W{ky q)^Q&apos;m\mk&gt;0}.

To show it we use the following fundamental orthogonality relation, simple to
verify
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where ô dénotes as usual Dirac&apos;s delta fonction and where the intégral on the

right hand side is a distribution which has to be integrated against fonctions a(l)
in L*(R). It turns out that the inverse (dqS)&apos;1 ://jÇ-i,n~~* HNN of dqS again can
be computed explicitly and is given by (o e //*_1&gt;N)

(dqsy1(a)(x) -^ J^ dla{l) T{l)l^l) £ Mx, I)f2{xy -/

Now let us turn to the global properties of 5. We restrict ourselves to real valued

potentials which are contained in the set QN(U) :={&lt;?:R -&gt; R |q e HNN;
W(k,q)¥=0 in ImA:&gt;0}. Let us dénote by 5^ the set {aeH*-1N:o(-k)
a(k)*\ a(0) &gt; 0} where * means complex conjugation. In Section 4 we prove that
S : Gw(R) -* &amp;n is 1 - 1 and onto.

In order to summarize our results we hâve to introduce still another space,
namely H*r.lN:= {f eH*.hN:f(k)* =f(-k) (k in R)}.

THEOREM. IfN&gt;3then

(1) 5 : &lt;2/v(R) -* SfN is a real analytic isomorphism.
(2) In particular at every q in QN(U) the Jacobian dqS:HNtN(M, R) -» H%-hN

is boundedly invertible. Moreover dqS is an intégral operator given by

dqS(v)(k) f dxfx{x, -k, q)f2(x, k, q)v(x) (v e HNtN(R, R)).
J — -x.

The inverse (dqS)~l is also an intégral operator and given by

The notation is mostly standard. Besides the spaces already introduced we
define for an arbitrary Banach space E the Banach space C°([a, °°[, E) of ail
continuous fonctions /:[a, &lt;»[ -» E with limt^xf(t) 0 (a in R). C%(R, E) de-

notes the intersection of ail the spaces C{\[af &lt;»[, E) (a in R). Similarly one de-

fines C°(] - », a], E) and C(i(R, £). L2N(]a, oo[, £) (a &gt; -oo) dénotes the Banach

space of ail Bochner measurable fonctions f:]a, oo[-»£ such that

fâdx(l + \x\N)2 \\f(x)\\2&lt;*&gt;. L2+(M,E) dénotes the intersection of ail spaces

L2(]a,°o[fE) with &lt;*&gt;-«&gt;. Similarly one defines LL(R, E). For two Banach
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spaces E and F, i?(£, F) dénotes the Banach space of ail linear bounded

operators. SE(E, E) is denoted simply by t£(E).
Let us recall from [6] the notion of differentiability. Let U be an open subset

of a Banach space E and let F be another Banach space. /:£/—» F is called
differentiable at x in U if there exists a bounded linear map dj :E —» F such that
\\f(x + k) -f(x) - dj{k))\\ O(r) uniformly in \\k\\ &lt; r. dj is called the deriva-
tive of / at x. f is called continuously differentiable on U if f is differentiable at
each point x in U, and if the map x ?-&gt; dj is continuous from U to ï£(Ey F). In the

same way one defines higher order derivatives. We will use freely well-known
properties of differentiable maps (e.g. chain rule, inverse function theorem). Let
v be in E. We say that the directional derivative dxf[v\ of / at x in direction v
exists, if the limit \\me^(f(x + ev)-f(x))/e, denoted by dj[v]y exists. If/is
differentiable on U then / is differentiable at each point x in U in any direction v
and dj(v) dj[v\. Now assume that E and F are complex Banach spaces.

/: U -* F is called holomorphic on U if it is continuously differentiable on U. If/
is holomorphic on U it is infinitely often differentiable on U and is represented by
a Taylor séries in a neighborhood of each point in U. One can show that / is

holomorphic iff it is weakly holomorphic, i.e. if / is locally bounded and

z ~» Lf{x + zk) is holomorphic on the dise |z|&lt;r in the usual sensé of one
complex variable for x in U, k in E and L in the dual of F, provided r is small

enough.
Finally we introduce the notion of real analytic map. Let E,F be real Banach

spaces, dénote by CE and CF their complexifications and let U^E be open.
/:(/-&gt; F is called real analytic on U if for each point x in U there exists

a neighborhood V of x in C£ and a holomorphic map g : V -» CF such that / g
on

§2. Investigation on the scattering function and the reflexion and transmission
coefficients

The main results of this section are contained in Theorem 2.15, 2.18 and 2.19.

In order to prove thèse theorems we need a number of rather technical results.
In the whole section let N be an integer with N^lii not otherwise stated. In

this section only we use for derivatives the following convenient notation: Let/be
a function of n variables xïf.. xn. Then D;/(jci, xn) dénotes the y-th
partial derivative of / with respect to jc^ Da&apos;fif(xlt.. xn) dénotes the mixed
derivative (a&apos;/ajtfX^/a*?)/^!, • • •, *«)•

For x, k in R, y in R* and q in HNN we want to study the following intégral
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équations

Bi(x, y,q)=t q(z) dz + f dz \ Bx(s, z, q)q(s) ds (y &gt; 0) (2.1)
Jx+y JO Jx+y—z

Dk(t-x)mx(t, k, q)q(t)dt (2.2)

Hx, y, q) f \(z) dz - f dz [*&apos; *B2{s, z, q)q(s) ds (y &lt; 0) (2.3)

m2(x, k,q) l+\ Dk(x - t)m2{t, k, q)q(t) dt (2.4)
J

We restrict ourselves to investigate on (2.1) and (2.2) alone. Equations (2.3)
and (2.4) are treated similarly. We will often write B(x, y, q) and m(jc, k, q)
instead of B^x, yy q) and m^jc, ky q) respectively.

We start investigating on équation (2.1). For that reason we introduce the

following family of Banach spaces E E(x0, n) (jc0 in R, n^l) of functions
feC°([xOf oo[xR+, C) with the norm

\\f\\E := sup {\f{u, v)\ :(uy v) e [x0)

dy (1 + yfn sup {|/(r, z)\2 : (r, z) e G(x0, y)}

where

G(x, &gt;^) {(t, z):=0&lt;z&lt;y,r&gt;j

For ç in HNN let Pi(ç) dénote the operator defined on E(xOt n) in the following
way (g € E(x0, n))

\ g(ttz)q{t)dt.
x+y-z

LEMMA 2.1. Let x0 be in R andn&gt; 1. Then

(1) Pi(&lt;?) is a linear bounded operator on E(x0, n).
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(2)

where ||-|| dénotes the operator norm in £(E(x0, n))
(3) The map Pa:HNN -» £(E(x0, n)) is linear and bounded. (Id - PiG?))&quot;1 is

holomorphic in q.

Proof: (1) For x &gt; x0, y ^ 0

\Pi(q)[g)(*&gt; y)\ * sup |g(/, z)| f \q(t)\ (r -*) A. (2.5)

This implies that Pi(q)[g] is in E(x0, n) and (1) follows. Moreover

(2) follows by an induction argument on (2.5). We claim that

(t -\Pi(q)m[g)(*&gt; y)\ * sup \g(t, z)|^(fdt \q(t)\
(t,z)€G(x,y) m\ \JX

It remains to prove the induction step from m to m + 1.

\Pi(q)m+l[g](x,y)\

^ \dz\ dt\q(t)\ sup \g(u,v)\—-( rfw k(»v)| (w -*„)

&lt; sup |g(«,i&gt;)|f àt-^-~(\ dw\q(w)\(W-x0))
(u,v)eô(x,y) Jx m + latmWjt /

(3) By (2) the von Neumann séries (Id - Px(q))-1 £m^o Pv(q)m converges
absolutely in £(E(x0, n)). As P\(q) is linear in q the analyticity of (Id - Px{q))~l
follows. Looking at équation (2.1) one sees that

fx+y
q(t)dt\

/

For later référence we state the following lemma easy to prove
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LEMMA 2.2. Ifxj(x) is in L2+for0&lt;a&lt;n with n &gt; 1, then xa J* \f(y)\ dy
is in L+ for 0 &lt; a ^ n — 1.

With this resuit one concludes that J~+&gt;, q(t) dt is in £(x0, N -l) for any x0 in R

and is holomorphic in q.
Let us summarize our results in the following

LEMMA 2.3. There exists a unique solution B(x, y, q) in
C%(M, L^_!([R+)) H L2+(U, L%,2(U+)) of équation (2.1), continuous in x and y. B
is holomorphic as a map of q from HN N to C^(R, L^_!(IR+))n
Ll(U,L2N_2(U+)).

In order to prove that D°tf*B(x, y, q) is in C°+(M, L2N^(U+)) for 0&lt; a -h fi &lt;

N + 1 one writes formally for 0 &lt; a &lt; N

l

D01S(jc, y, q) D10B(jc, y, + f

+ y - z, z, (2.6)

(2.7)

So it is convenient to introduce for/in L%(U) the following linear operator P2(f)
on C°([jc0, »[, L5,_,(R+)) D

LEMMA 2.4.

(1) P2(/)[g] e

(2) TAc map P2:

is linear and bounded.

Proof. Let h be in L2(R+). Then

L2([jc0,

~[, L2V_2(R+)))

z)| rfyA(y)(l + y)&quot;-xg(x + z,y-z)

dy(l+y + zfN~2 \g(x + z, y)\2)
1/2
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and thus we get

1/2

t
1/2

2N~l\ dz \f(x + z)\ I dy\g(x + z,t

1/2 / roc v 1/2

«»-2K

â ^(x +

Using this inequality we get

f \\(l+y)N-2P2(f)[g)(x,y)\\h(R+)dx

&lt; 22N f dz f dy \g(z, y)\2 f dz \f(z)\2 f (1 + z - x)2N~2 dx

+22»fdz\f(z)\2(z-x0)- F dz rdy\g(z,y)\2(l+y)

Now (1) follows by Lebesgue&apos;s dominated convergence theorem.

LEMMA 2.5. //0 &lt; a &lt; N then

(1) D«+l0B(xf y, q) e C%(M, L2N^(U+)) H L2+(R, L%-2(R+)).
(2) Da+lt0B(x,y, q) is holomorphic as a map of q front HN N to

C°+(R, L2N.X{U+)) H Ll(M, L2N.2(R+)).

Proof. One argues inductively, using formula (2.6) which can be written as

y). (2.8)
;=0

For oc 0, Dl0B(x, yy q) P2(q)[B(-, -, q)](x, y) e C°+(R, l£-i(R+)) H

Lî.(R,L5r-2(R+)) and as B(-, -, g) is holomorphic in &lt;? the analyticity of
P2((?)[B(-, -, q)] in g on /f/v/vfollows by the product rule for differentiation. Now
let us prove the induction step from oc to oc + 1. On the right hand side of formula
(2.8) only terms of the form DJt0B(-, -, q) with / ^ oc are involved. Using Lemma
2.4 and the induction hypothesis one concludes that D&quot;*lt0B(x, y, q) satisfies (1)
and (2).

To discuss the derivatives DafiB(x, y, q) for j3^1 we still need another
lemma.
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LEMMA 2.6. q induces a linear operator P3(q) on C°([jc0, &lt;*&gt;[, L2N^(U+))n
L2([x0, »[, L2N.2(U+)) in thefollowing way (x &gt; x0)

Ps(q)\g](x,y):=f q(s)g(s}y)ds.

The following properties hold:
(1) PsbMix, y) e C°([jc0, »[, L^
(2) 2

on

*)) H L2([jc0, «[, L2N.2(R+))
vv/iere ||-|| dénotes the operator norm

0, «[, Z£_,(R+)) D

Proof. Let /i be in L2(R+). Then

1!* dsq(s)g(s, y)

m

On the other side

c il r il2

dx\\\ dsq(s)g(s,y)\\
Jx0 WJx II^_2(R+)

xfdxfds \q(s)\2 f ds fJx0 Jx Jx0 JO

-V \g(Sf y)\2.

So (1) and (2) follow.

LEMMA 2.7.

(1) DaPB(x, y, q) e C°+(U, L2N.l(U+)) n L2+(R, L?v_2(R+)) /or 0&lt; a + fi &lt;

+ l.
(2) D&quot;PB(-, -,q) is holomorphic as a map of q front HN N to

L2+(R, L?,_2(R+)).

Proof. The proof proceeds by induction on m oc + /3. For m 0 statements
(1) and (2) are already proved. In view of Lemma 2.5 let us assume that
DafiB(x,yf q)eCl(M,L%^(M+))nLl(M,L2N-2(M+)) for 0&lt;ar + j8&lt;m and

a + j8 m + 1 with )8 ^ j80(&lt;m) and ar^ao:=m + l- j80(^l). One has to prove
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that

D--l-*&quot;B{x9 y, q) € C°+(R, L^i(R+)) H U(R, L^_2(R+))

and is holomorphic in q. Using (2.7) one gets formally

D&quot;°-l&gt;p0+1B(x, y, q) D^^B(x, y, q) + D**-1-0 f q(s)DofioB(s, y, q) ds.

By the induction hypothesis D&quot;ofioB(x,y, q) is in C+(iR, L^_i(R+)) H

L+(R, L^_2(K+)) and is holomorphic in #. If aro=l then
f^(s)D°&apos;3&gt;S(5,y,9)ds is in C°+(R, L^_1(K+))nL2+(Li_2(R+)) by Lemma 2.6
and the induction hypothesis. If ar0^ 2 then

1.0 f
Jx /=0

But 0^)&apos; + j80^ ao — 2 + fîo&lt;m so one can apply the induction hypothesis on
iy&apos;*&gt;B(x,y,q). This implies that Dao&quot;hO^q(s)DOt^B(s,y,q)ds is in

It is a well-known fact that m(jc, k, q)- 1 Jo B(jc, y, q)e2lkydy where
m(jc, fc, ^) is the solution of (2.2).

Thus one gets the following

COROLLARY 2.8. // 0 &lt;/ &lt; A^ - 1, 0 &lt; or &lt;/ and )3 &gt; 0 suc/i r/iar 0 &lt; cr +
P&lt;N + l then

(1) k&quot;Dfij(m(x, k, q)~\)is in C°+(M, L2(U)) and is holomorphic as a map of
q front HNN to C°+(U, L2(U)).

(2) If in addition j &lt; N - 2 /Aew k°Dfi-&apos;(m(x, k, q)~l)is in L2+(M, L2(U)) and
is holomorphic as a map ofqfrom HNN to L+(R, L2(R)).

Proo/. One has D*&apos;(m(x, k, q)-ï) Jo (2iyyDfi{)B(xf y, q)e2tky dy. As or &lt;/

one can integrate ar times by parts without getting boundary terms to give

f k, &lt;?)-!) (-

Next we will prove that m(x, k,q) has better differentiability properties than
indicated in Corollary 2.8. For this reason we introduce the following linear
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operator P4(q) on C°([jc0, &lt;*[, L2(U))

P*(q)[g](x, *): fDk(t-x)g(t, k)q{t)dt

where x &gt;jc0, k in R and g in C°([x0, »[, L2(R)).
This définition has to be understood in the foliowing way: For jc in R,

P4(q)[g](x, •) defines a linear bounded functional on L2(R),

f P4(q)\g]{x,k)h{k)dk= fdtq(t) f X

dz f dkh(k)e2lkzg(t, k)
J-oc JX h J-oc

for h in L2(R). The right hand side is well defined and

^ r*ig(oi(&apos;-*
JXQ

where
In order to hâve P4(q)[g] in C°([jc0, »[, L2(R)), F4(?)[g](^, •) must be

continuous in x. But this can be easily verified using Lebesgue&apos;s convergence
theorem. So we get the following

LEMMA 2.9.

(1) P4(q) defines a bounded linear operator on C°([jc0, °°[, L2(U)) with

where the norm \\-\\ is the operator norm in «S?(C°([x0, °°[, L\
(2) (Id — /^O?))&quot;1 is holomorphic as a map of q front HNN to

and \\(Id - P4(q)yl\\ ^exp { f \q(t)\ (t -xo)dt\.
^ Jx{) &apos;

Proof. (2) follows from (1) immediately as P4(q) is linear in q. So let us prove
(1). It remains to prove the estimate for the iterated map.

It suffices to show that (jc &gt;jc0, g € C°([jt(), »[, L2(R)))

\\P4(q)m[g]\\x *^(f \q(t)\ (t - x0) rf^ \\g\\x.
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One does prove it by induction. For m 1 the estimate has already been proved.
So it remains to prove the induction step from m to m +1. Let h be in L2&apos;

Then

\fjkh(k)P4(qr+1\g](x,k)

^ dkhik) | Dk(t - x)P&lt;(q)m[g](t, k)q(t) dt

| Jf dr9(0 £
X

dz J^ d^(A:)e2^P4(g)m[g](f) k)

xJ^Tïy.(f k(2)l (z -;Co)dz

Now let us look at the intégral équation (2.2)

m{x, k, q) 1 + f D*(f - ^)m(f, k, q)q{t) dt.

Then formally for 1 ^ or &lt; N

(« - P4(9))[*tfO°&apos;Nm(x, k, q)] fcar(jc, fc, q)

where

and

k&quot;rn(x, k,q):=k« f ^D,(f-x)q{t)D0N-&quot;{m(t, k, q)-l)dt
•&apos;jr

*%+1(jc, A:, 9) := k« f d?Dk(t -x)q(t) dt.
&lt;*X

sN)
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So formally k«D0&gt;Nm{x, k, q) (Id - P

It remains to show that karn(x, k, q) e C°+(M, L2(U)) for l&lt;ar&lt;Af and
1 &lt; n &lt; N + 1 and is holomorphic as a map of q from /JMiV to C+(R, L2(R)). This
will be done in the following lemmata.

LEMMA 2.10. For l&lt;ar&lt;Af, karN^(x} kf q) is in C°+(U, L2(R)) and is

holomorphic as a map of q from HNN to C+(R, L2(IR)).

Proof By partial intégration lifeS^D^-jc)! ^(2(t-x))N (t&gt;x), so
fc, q) can be written as

ik)«\ 3NkDk(t -x)q(t) dt {2ik)«-1 \ dte2lk«~x\2i(t -x))Nq(t)
*x Jx

-(2ik)a-l2iN l dzéUaQizYt-l[ q(t)dt.

Intégration by parts furnishes for 1 ^ a s N

(2ifc)%+1(jt, k, q) (-l)*-1 f «te2*-*» 3f-&apos;([«(ï - ^)]N?

+(-1)^2^ f dze^2 3r1((2/z)7V-1 f q(t) dt)
h \ Jx+z *

and thus the lemma follows.

LEMMA 2.11. For 1 &lt; n &lt; N and 1 &lt; or &lt; N, A:arrt(jc, A:, 9) w m C°+(R, L2(R))
and w holomorphic as a map of q from HNN to C+(R, L2(R)).

Proof

CASE 1. 1&lt;/î&lt;AT-1 and 1 &lt; a &lt; N - n. We introduce the linear operators
defined on C°([jc0, «[, L2(R)) (x0 in R)

^ *&gt;=rk ^D^ -
We use \k 9&quot;kDk(t - x)\ ^ (2(t-x))n to get for

f h(k)P5.n(q)\g](x,k)dk= [ dtq{t) f dkh{k)g(t,k)kdrkDk{t-x)
J — ac Jx J — ac
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the estimate

\[ji{k)P5.H(q)\g\(x,k)dk

s f dt \q(t)\ (2(f - x))n \\h || sup \\g(s,
Jx s^x

This estimate shows that PStn(q)[g]eC°([x0,°o[f L2(M)) and that P5tn:HNtN-+
£(C°([x0, °°[, L2(U))) is a bounded linear operator. From Corollary 2.8 one
knows that ka-xD0N-n{m{t, k, q)- 1) is in C°(R, L2(U)) for l&lt;£a&lt;N-n,
1 &lt; iV-n^N-1 and is holomorphic in q. Thus in case 1 the lemma follows.

CASE 2. l&lt;n&lt;N-l and N-n 4-1 &lt; a. We introduce p:=a-(N-n).
Then 1 &lt; j8 &lt; «. By partial intégration we get

ar-l /v-1 v

(2ik)fi dnkDk{t - jc) 2 (&quot;&quot;l)v(2i(r~Jt)r~v( II 2/(n -/&apos;)) d?~x~ve2lk{t~x)
v=0 \;=0 /

+(~1)* Il 2î(w -;) f {2iz)n~ae2lkz dz (2.9)

where by convention FI^o ••• Thus

(2ik)&quot;t 3nkDk{t -x)D0N-nm(tf k, q)q(t) dt

P-l v-l
2 (~l)v ff 2i{n -y) f dt{2i(t-x)r-vq(t)
v=0 /=0 •&apos;x

+ (-1)&quot; n 2i(» &quot;/) f 3!&quot;&quot;O*(/ - JfKafc^-p0^-»!^ k, q))q(t) dt.

In the following we will discuss the terms appearing in the expression above

separately.
First let us look at the term J* k dnk~*Dk{t - x)kN&apos;H&apos;\D^N&apos;nm{tf k, q))q(t) dt

(0^n :siV- 1 and lss« — jS^n — l=sJV-l). One can apply case 1 and con-
clude that this term is in C+(IR, L2(U)) and is holomorphic in q.

For y + ô j8 — 1 partial intégration yields

f dt(dïe2lk{t~x))[(2i(t-x))n-ôq(t)(2ik)N-nD0N-n(m(ty ky q)]
Jx

(~iyf £te**&lt;-*&gt;( 2 3f[(2i(t-x))&quot;-ôq(t))(2ik)N-&quot;D&apos;&gt;&quot;-nm(t, k, q)).
Jx ^€ + w y

&apos;
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From Corollary 2.8 we know that {2ik)N-nDT]N-nm{ty k, q) is in C°+(R, L2(U))
and is holomorphic in q. In view of Lemma 2.6 we conclude that in case 2 the
lemma holds.

CASE 3. n N and 1 &lt; a &lt; N. Again we apply formula (2.9) to get

(2ik)«\ 3NkDk(t - x)(m(t, k, q) - l)q(t) dt
Jx

v=0

x f dte2lk(-*drl-v[{2i{t-x))N-vq(t)(m(t,k,q)-\)\
Jx

+ (-1)&quot; ÎÏ 2i{N-j) f dï-aDk(t-x)(m(t, k, q) - l)q(t) dt.
;=0 Jx

Again we hâve to discuss thèse terms separately. For this reason let us introduce

operators P6,p,j(q) defined on C°([jc0, «&gt;[, L2(iR)) n L2([jc0, »[, L2&lt;

y k)

where 0 &lt; /3, j &lt; N.
One dérives in a by now familiar way the estimate

is in C°([jc0, *[, L2(U)) (0&lt;j8,/&lt;yV). Clearly P^(q) is bounded
and linear in q. From Corollary 2.8 we know that Dl{)(m(tf k, q) — 1) is in
C(!(R, L2(R))flL2+(R, L\U)) and holomorphic in q. then one concludes that
fcdte2&apos;k(t-x\t-x)pDJq(t)Dli)(m(t,k,q)-l) is in C(|(!R, L2(R)) and holomorphic

in q for 0 &lt; )8 &lt; jV, 0 &lt;y &lt; A^, 0 &lt; / &lt; M
It remains to look at terms of the form j~ dt 9kDk(t ~ x)q(t)(m(t, k, q) — 1)

(0 ^ y &lt; N — 1). For this reason we introduce a linear operator P7tY(q) defined on
C°([jc0, °°[&gt; L2(M)) H L2([x(h oo[, L2(R)) in the following way

:= f dtq{t) dlDk(t- x)g(t, k).
Jx
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One dérives easily the following estimate

^ f dt\q{t)\2{2{t-x))24~ dt\\g(tt Wmuy
*x Jx

So P7tY(q)[g] is in C°([x0, &lt;*&gt;[, L2(U)) and is bounded as an operator from

C°([jc0, «[, L2(R)) H L2([jc0, oo[, L2(R)) to C°([x0, »[, L2(R)).

Again with Corollary 2.8 we conclude that

f didU&gt;k{t-x){m{t,k,q)-l)q(t) is in C0+(R, L2(R))

and is holomorphic in q.

LEMMA 2.12. For l&lt;ar&lt;iV, k«D1Nm(x, k, q) is in Q(R, L2(U)) and is

holomorphic as a map of q from HNN to C+(R, L2(IR)).

Proof. From (2.2) we obtain the formula DltOm(x, k, q)
-$x e2lk(t~x)m(t, k, q) dt. From Corollary 2.8 we know that kaDhjm(x, k} q) is in

C°+(M, L2(R)) (0 &lt; a &lt;/&apos;, 0 &lt;; &lt; iV - 1) and is holomorphic in q. For 1 &lt; a &lt; N
we write then formally

kaDiNm(x, k, q)

(N) f di(2i(t-x))nq(t)D0-N-n(m(t, k, q) -

Similarly as in Lemma 2.11 one shows (1) and (2).
We summarize our results in the following theorem using

Bi{x, y,q) ^ \\ (m,(JC, k, q) - l)e-2lk&gt; dy.

THEOREM 2.13. LetN^.2. Then

(1) D&apos;kBi(x, y, q) is holomorphic as a map of q from HN N to
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(2) DJtkB1(xf yf q) is holomorphic as a map ofqfrom HNN to C+(R, L2N(R+))

0,l and l&lt;k&lt;N.

Remark: Analogous results hold for B2(x, y, q).

As usual one introduces the Jost functions /x(x, k} q) ëkxmx(x, k&gt; q) and

/2(jc, ky q) e~lkxm2(x, kf q) and then defines the Wronskian

W(k, q) := W\f2(x, K q)yfl(Xy k} q)].

Clearly W(kf q) is defined in lmk&gt;0 and is holomorphic in Im/c&gt;0. For
Im k 0 one introduces the scattering function S(kf q)

S(ky q) W[/i(jC, ~ky q)yf2(Xy ky Ç)].

We now want to study the regularity and decay properties of W and 5. For this

reason we introduce the following représentations for S and W given by Faddeev

[4]

S(k,q)=f JT1{yyq)e-2lkydy

where for y &gt; 0

*i(y&gt; 4) := -£&gt;105i(0, y, q) + f £&gt;10B2(0, z, 4)^(0, y - z, q) dz
J — x

-f D1&apos;°B1(O,z,

Jy

and for y &lt; 0

y, 9) := DloB2(0y y y q) + f DloB2(0, z, ^)B1(0, y - z, ç) dz
J —oc

- f Dl0Bx{0, z, q)^, y-z,q) dz.
h

Similarly one can write

W(k, q) 2ik - f q(z) dz + f Jt2(y,
J-œ h
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where for y ^ 0

*&amp;, &lt;?) D1-0*®, y, q) + £&gt;01B2(0, -y, q) - D10B2(0, -y, g)

- D°&apos;XBX(Q9 y,q)+\ {D^B^O, z, q) - D°%(0f z, q)}B2(0, z-yyq) dz

- B1{09 0, q)B2(0, -yy q) - \ Bt(0, z, q)DloB2(0, z-yyq) dz.
Jo

Let us discuss ^(y, q) first.

LEMMA 2.14.

(1) jrx(&apos;, q) is holomorphic as a map of q from HN N to L%-i(R).
(2) DJjïi(-f q) is holomorphic as a map of q from HN N to L2N(U) (1 &lt;; &lt; N).

Proof The proof is divided into 5 steps:

STEP 1 [2]. ?ii{&apos;, q) is holomorphic as a map of q from HN N to
LjUi(R+)[i£-i(ir)].

STEP 3 [4]. D]nx{y, q) is holomorphic as a map of q from HN N to

STEP 5. D^O*, ç) - D;&lt;7(&gt;0 is continuous in y for 0 &lt;; &lt; N.

It will suffice to show Step 1 and Step 3. Clearly Step 2 and Step 4 can be proved
similarly. As concerns Step 5 one remarks that only the continuity at y 0 is in

question. Writing out the expression for DJnx{y, q) in the cases y &gt;0 and y &lt;0

and letting y —? 0 the continuity follows if one can show that

or

D1jBi(0, 0, q) + DJq(0) + ]£ DltaB\(0f 0, q)DOffiB2(0f 0, ^)

JDly52(0, 0, q) - Z);9(0) + 2 ^larB2(0, 0, q)D°%(0, 0, &lt;?).

It is not difficult to check that our hypothesis on q suffice to dérive this equality
following the Une of arguments of the appendix in [2]. So let us corne to the proof
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of Step 1 and Step 3. For 0 &lt;/ &lt; N and y &gt; 0

ttiy, q) D&apos;-&apos;B^O, y, q) + J° D10fl2(0, z, q)Do&apos;B1(0, y-z,q) dz

2 DlaB1(O,y,q)D°PB2(O,O,q)

0^, z, q)D°&gt;B2(0, y~zyq) dz.

If y&apos;^ 1 one gets integrating by parts

- \ D10^^, z, q)D0jB2(0, y-z,q) dz
Jy

- f D11^^, z, q)D°&gt;-1B2(0, y-zyq) dz
Jy

-D10Bi(0,y,q)D°&apos;-1B2(0,0,q).

Sofor 1&lt;/&lt;N

O&apos;jt.O&apos;, 9) D1JB,(0, y, 9) + f Z)lofi2(0,2,9)DOjfli(0, y - z, g) ^
+ Z £&gt;ly#i(0, y, q)Do(iB2(0, 0, 9)

y +0=;-l

Jy

From Theorem 2.13 Step 1 and Step 3 now follow.

As an application we get the following

THEOREM 2.15. S is holomorphic as a map of q from HNN to H%.XN.

Now let us turn towards n2(y&gt; q) in order to analyze W(k, q).

LEMMA2.16.
(1) Jt2(yf q) and 3^Jt2(yy q) are holomorphic as a map of q from HN N to

(2) DJn2(yyq) is holomorphic as a map of q from HNN to L2N(U+)
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Proof. For 1&lt;;&apos;&lt;N the intégrais appearing in the expression for D&apos;n2{y, q)
are splitted up, j£ fft/2 + \yya, and in lyya one intégrâtes by parts to get

D&apos;n2{y, q) D1Jfia(0, y, q) + (-1)&gt;D0&gt;+1B2(0, -y, q)

+ (-îy+WB^O, -y, q) - D°&apos;+%(0, y, q)

-(-iyB1(0,0,q)D°&apos;B2(0,-y,q)

+ 2 (-îyiD&apos;-&apos;BriO, y, q) - DO«+XBX(V, y, q)}D° ^2(0, 0, q)

+ f {Z&gt;loB,(0, z, q) - D^BriO, z, q)}D°&apos;B2(0, z-y, q)(-iy dz

+ f {D^B^O, z, q) - D0-2fl,(0, z, 9)}D°^1B2(0) z -y, q)(-iy+1 dz
Jy/2

+ (-îy^iD^B^O, y/2, q) - D01BX(0, y 12, q)}D°&apos;-&apos;B2(0, -y, q)

çy/2
(-iy+1 B,(0, z, q)D1&apos;B2(0, z-y, q)dz

(-iy f D01BX(0, z, q)Dlj-lB2(0, z-y,q) dz
Jy/2

&gt; -y/2, q).

The results now follow easily from Theorem 2.13.

As an application we get

THEOREM 2.17. LetN&gt;2. Then

(1) W(k, q) - 2ik is holomorphic as a map of q from HNN to L*
(2) k&quot;(df/dkJ)(W(k,q)-2ik) is holomorphic as a map of q from HNN to

L2(U)for {a,j) in {(ar,;):O&lt; a^j and 1&lt;/&lt;N-1}U {{a, N):l&lt; a&lt;N-1}.

Now let us recall from the introduction the définition

£„(€):= {q èHN,N: W(k, 9)#0, k in R}.

Clearly Qh(C) is open in HNN.



Properties of the scattering map 463

Let us define as usual the reflection coefficients

THEOREM 2.18. Let N^3. Then Rt and R2 are holomorphic as a map of q
front QN(C) to H%.hN+1.

Proof Clearly it suffices to prove the theorem for R1. Writing
W(k, q)Ri(k, q) S(k, q) one gets formally

W(k, q)DJR1(kJ q) DJS(k, q) - £ (7 W/?^, q)DJ~vW(kf q). (2.10)
v=0 \V/

Now (1) and (2) follow using induction on y and the results of Theorem 2.15 and

2.17.
As usual one defines the transmission coefficient T(k, q) 2ik/W(k, q) (q in

Qn(C))&apos; Using induction and Theorem 2.17 one obtains the following

THEOREM 2.19. LetN&gt;3. Then

(1) DJ(T(k, q) - 1) w holomorphic as a map ofqfrom QN(C) to LUU).

(2) D1———- is holomorphic as a map ofqfrom QN(C) to LJv_i(R).
W(k, q)

(3) k aDN —-—- is holomorphic as a map ofqfrom QN(C) to L2(U (1 &lt; oc &lt; N).
W(k, q)

Remark. Theorem 2.18 and 2.19 show that the range of the reflection
coefficient Ri(-, q) for q in QN(C) is not open in HjÇ_lfiv+1 in gênerai: From

T(k, q)T(-k, q) l-Ri(ky q)R1(-kf q) one concludes that

for a=ox

§3. The Jacobian of the scattering map

In this section we will first compute explicitly the directional derivative of 5

and détermine the kernel of the Jacobian dqS. This kernel is used to show that
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dqS is boundedly invertible. Moreover we compute the kernel of the inverse

(dqS)~l. By abuse of notation we dénote the kernel of dqS by dS(k, q)/dq(x).
We also compute the kernels of the derivatives of the reflection and transmission
coefficients. The main results are summarized in Theorem 3.12.

In the whole section we assume N^3 if not otherwise stated. Whenever
possible we will not indicate explicitly the dependence on q of the functions
considered. Let q in Qn(C) be a fixed given potential. Now let us look at the Jost
functions ft(x, k): ft(x, k,q) (i l,2) and compute the directional derivatives

dqfi[v] and dqf2[v] for v in HNN. Clearly dqfx[v] satisfies the Schrôdinger équation

&quot; ê d«fl[v]{x&gt; k) + 9(x)d^[v](x9 k) tfdJMb, *) - v{x)f,{xy k)

with the boundary conditions

(i) lim dqfx[v]{xy k) 0 and

(ii) lim |-&lt;gi[t;K*,*) 0.

One gets

Mix, k) =f^- [m, kMt) dt 0.

W(k)
and similarly

*M0 d&lt; (3.2)

THEOREM 3.1. lfN&gt;3andqis in HNN then

dq(x)

(2)

Proof. (1) and (2) are proved similarly, so let us concentrate on (2) only. It
suffices to prove (2) for q in Cyv(C), as QN(C) is dense in HNN due to the
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asymptotic properties of W(k, q) for \k\ —» ». From

W(k, q) =/2(jc, *, ?)^/i(*&gt; *&gt; iï~!fxf2&lt;&lt;Xy K q)fl{X&apos; kf q)

one obtains after interchanging differentiation with respect to q and x, for v in

d,W[t»](*. q) d/2[t;](x, *) £A(x, k)-j-x dJ2[v](x, k^x, k)

+ M*. VyxdqfM{x, k)~f2(x

Using (3.1) and (3.2) one gets

dqW[v](k) -\X Mt, k)f2(t, k)v(t) dt

and (2) follows.

THEOREM 3.2. IfN&gt;3andqis in QN(C) then

dRAKq) _T{k,q)
(1)

dq(x) -h{Xkq)
dR2(kq)

f2)

dq(x)

dR2(k,q) T{k,q)
dq(x)

Proof. It suffices to prove (1). One writes W(k)Rx(k) S(k) and applies the

product rule for differentiation to get

dq(x) 3q(x) dq(x)
R&lt;k)

=/,(*&gt; ~k)h{x, k) + RtikMx, k)f2(x, k)

T(k)f2(x, kf
where we used that/,(jc, -k) + /?,(Jt)/,(^, k) T(k)f2(x, k). So (1) follows.

Similarly one proves the following

THEOREM 3.3. // N &gt; 3 and q is in QN(C) then

3T(k, q) T(k, q)
dq(x) W(k, q)

/.(*&gt; k, q)f2(x, k, q) (k in M).
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Again let us fix a q in (?/v(C) and study the operator B on Hx fl given by the kernel

First we want to show the following

PROPOSITION 3.4. If N^2 and q is in QN(C) then

(1) J^rf/a(/)r(~2^r(/)£(M*, /)£(*, -0) e //i,i /or a e //,,,.

(2) J^ dloW^W® j^Mx, I)f2(x, -/)) e //„,„ /or a e //£_,,„.

Before giving the proof let us make the following observations. (1) and (2) are

proved in the same way, so let us concentrate on (2) only. Now let us introduce
functions ^(x) and &amp;(*) in C°(R) with 0&lt; Ç,(at) &lt; 1 (i 1,2), £,(*) + Ç2(jc) 1

and Ç2(^) 1 for x ^ 0 as well as £2(*) 0 for jc s 1. Obviously it suffices to show
that

for cr in Hj5_1&gt;w. We use T(-l)f2(x, -l) R^-l^x, -l) +/,(*, /) to get

2{,(i) J*_ &lt;ito(0^ «¦&quot;•(»¦,(», 0-1)

dlo{l)-—e2&quot;*{ml{x,l)-l)2
W(l)

^^m,^, /)mî(x, /).

Clearly J&quot;«dlo(l)(2il/W(l))e2&quot;x eHNN if a is in H%.liN. As the other terms are
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treated similarly it suffices to show that

xJJ~k\ &lt;Uo(l)T(l)e2ax(m1(x,l)-i)eL2(R+) for 0&lt;/,fc&lt;M (3.3)
dX J — oc

Using the Schrôdinger équation m&apos;[{x, k) + 2ikm[(x, k) q(x)mi(x, k) one

proves by induction that (dn/dxn)ml(xy k) can be written as (3 &lt; n &lt; N + 1)

dn n-3

c, /) • Pn2((-2*/), q(x), £^(x)) (3.5)

where Pnl — (—2il)n~1 is a polynomial in (—2*7) of degree (n — 3) with coefficients
which are polynomials in q(x), (dn~3/dxn~3)q(x) of degree ^1 and Pn2 is a

polynomial in (-2*7) of degree (n - 2) with coefficients which are polynomials in
q(x), (dn-2/dxn-2)q(x) of degree &gt;1.

Let us make one more observation. From

and

one dérives

/)-l)€L2(R+, L2(R)) 0&lt;ûr&lt;iV-3/2. (3.6)

(of Proposition 3.4). With the above observations it suffices to prove
(3.3). So one has to prove that

where 0 &lt; a -h p &lt; N, 0 &lt;/ &lt; N.

CASE 1. 0 0. Use mx{xf /)-! /&quot; D,(f - x)q(t)mx(tf l) dt and prove first
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thatfor 0&lt;/&lt;N

xf f dl(2iire^lxf Dt{t - x)q(t) dto{l)T{l) e L2(U +).
J—oc Jx

From the définition D,(f) Jo e2l/2 dz one obtains that

x&gt;\ dliUiye™* \ Dl(t-x)q(t)dta(l)T(l)
J—x Jx

x&apos;\ dz\ dtq(t)\ dle2&quot;{z+x)o(l)T(l)(2il)a

is in L2(R+) for O^j^N. Second one proves that

x&gt; f dliliiye2*1* f D,(i ~x)q(t)(ml(tf l) - 1) dta(l)T(l)
J — x Jx

();Now the claim follows from (3.6) and the following estimate

D,(t - x)q{t){ml{t, l) - 1) dta{l)T(l)

&lt; \\(2U)ao{!)T(l)\\L&gt;m \ dt \q(t)\ (t-x) ||m,(f, /) - l\\L,m.
Jx

CASE 2. p &gt; 1. Then write fi + 1 instead of )3. We hâve to show that

for 0^/^^N and 0&lt; oc + j8 &lt;N- 1.

We want to use (3.5). The only term in the expression for (d^lldx^x)mx{xy l)
which does not contain q{x) or one of its derivatives is (-2il)fim[(xf /), so clearly
it suffices to prove that

l dle^iliiyoiOTilX-Mfmiïx, l) e L2(R+)
J—ac



Properties of the scattering map 469

&lt;N-l. Now

- f dtq(t)e2&quot;^ - f dtq(t)e2&quot;&lt;-^mi(t, l) - 1).
Jx Jx

So let us first show that for 0 &lt;; &lt; N, 0 &lt; a + j8 &lt; A^ - 1

x&apos;f dle2llx(2il)^^a(l)T(l) f dtq(t)e2ll«-x) e L2(R+).

Changing the order of intégration one gets

Jt&apos;f d^(f + Jt)f dle2llit+x)(2il)a+pa(l)T(l)

and this expression is clearly in L2(U+) for 0 &lt;; &lt; AT and 0&lt;ar + j3&lt;iV-l.
Finally it is easy to see, using (3.6), that

xJ f d/r(/)a(/)(2//)ûr+^2//jr f dte2tl(t-x)q(t)(mx(ty l) - 1)

is in L2(R +) for 0 &lt;y &lt; A^ and 0 &lt; or + 0 &lt; N - 1, thus (3.3) is proved.
For a q given in (?n(C) let us study the operator A on HlA given by the kernel

/i(jc, —k)f2(x, k). We will need the following

PROPOSITION 3.5. // W &gt; 3 and q is in QN(C) then

f dxf](x)-k)f2(xfk)v(x)eH]J for t/e//,.,.
•J

— oc

Proo/. It suffices to show that

f dxft(x9-k)f2(x,k)v(x)eHltl
J — rx.

for ail veHltX with sup v c ]-», a] as the case where supp v c [a, oo[ is treated

similarly and the operator A is linear. Let us introduce §I€CX §
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such that Çtik) 1 for \k\ &gt; 1 and %x{k) 0 for \k\ &lt; i Define £2 := 1 - £i- We
first show that %x(k) ft^dxf^x, k)f2(x, -k)v(x)eHhl. Clearly this term is equal
to

R (k) Ca 1 Ca

SW Ta* dxv(x)m*(x&gt; -k)m2{x, k) + §,(*) —- dxv(x)e+2Ax

dxv(x)e2&quot;&quot;(m2(x, -k)-l)2.

The first two terms are in Hltl using v e Hitl and Corollary 2.8, Theorem 2.18 and
2.19. As concerns the last two terms they are seen to be in Hxx by partial
intégration.

Finally we hâve to show that §2(&amp;) /-« dx/i(jc, k)f2(x, -k)v(x) is in Hlt0. One
writes

or

k)f2(x, -k) R2i^.k+
1

W(k)m2(x, k)m2{x, -k)

Using the Hardy-Littlewood-Polya inequality, A/&gt;3 and R2(0) -l we con-
clude that

2ik lf&gt;

and

df m2(x, -k) - m2(x, k) for ; 1,2.



Properties of the scattering map 471

This gives that

f dxMx, k)f2(x, -k)v(x)eHhl.
J — oc

The next step is to show that B is a right inverse of A, where B and A are
defined as above

PROPOSITION 3.6. LetN&gt;?&gt; and q be in QN(C). Then

(l) A° B Id on Hltl

Proof. (2) follows immediately from (1) and Proposition 3.4. The proof of (1)
is a calculation which is at the heart of the matter. Let a be in Hxl. Then

(A o Ba)(k)= f dyfx{y9 -k)f2(y, k)\

One shows that (/

&gt; -k),fr{y, l)]W\f2(y, k),Uy, -/)]}•
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Using the asymptotics of /i(y, /) and f2(y, /) as y —» ±00 we get for x

3L *) &lt;*y

2,*_

1 - r2ilx -2ikx i_ x p2ixk ~2ixl

-A:)
p2ix(k-l) i i -2«(*-/)

As Hïti^Ll the Riemann-Lebesgue lemma can be applied. Together with
limx^xpV(e2lx(k-l)/(k-l)) MÔ(k-l) where ô dénotes Dirac&apos;s ô function one
gets

l) fx d

lu J-x dy

Finally we want to prove that the Jacobian dqS of 5 is boundedly invertible. It
follows from Proposition 3.6 that dqS is onto.

In order to prove the injectivity of dqS we need several lemmata. Let us first
introduce the following spaces H2(a) := H2+(a) H H2&apos;(a) where

H2+(a) := {f € L2(U) :e2lkaf(k) e H2+)

H2~(a) := {/ g L2(R) :e2lkaf(-k) e H2+}

Hhl(a) := {f eHhl:s\xppf c[-a, a]}.

Let us recall that H2* dénotes the Hardy space of functions o{k) holomorphic in
Imifc&gt;0 with supfo&gt;oj-œ|a(a + tà)|2da&lt;oo and H2~ {a(k):o(-k) e/f2+}.
Using the équation mx(x, k) 1 + J*dtq{i)Dk(t -x)mx(t, k) it is easy to prove
the following

LEMMA 3.7. Let b&gt;0 be given and q be in HNN with N&gt;3 such that

suppq c [-6, b]. Then for a&gt;b

(1) (e2*(&apos;&quot;&quot;*)(mi(x, -k) -l)is holomorphic in Im k &gt; 0, |*| &lt; a and

~ °^ &quot; a)
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where Kx Kt(x) dénotes a non-increasing fonction.
(2) m1(x,k) l(x&gt;b, keC).
(3) (m2(x, —k) — 1) is holomorphic in Im k &gt; 0, x ^ — a and

\e2lk{x+a)(m2(x, -k) - 1)| &lt; Kx J^Jjj (Im * &gt; 0, jc &gt; -a).
1 + |AC|

(4) m2(jc, A:) 1 (jc &lt; -6), A: e C).

LEMMA 3.8. Let q be in HNN with N&gt;3 and supp&lt;? c[-6, 6]. Then for
a&gt;b

(l) A(Hul(a))czHhlnH2+(a).
(2) A(Hhl(a))çzHhlnH2-(a).

Proof. (1) and (2) are proved in a similar way, so let us prove (1) only. Due
to Proposition 3.5 we hâve only to show that for veHlfl with suppt/c
[-a, a] e2lka J*. dxfx(x, -k)f2{xy k)v{x) e H2+. We write

e2tka f dxMx9-k)f2(x9k)v(x)
J — oc

f e21*&quot;-*^*, -k)m2(x, k)v(x) dx

[ dxv(x)e2lk(a-x) + dtu(jc)e2&quot;:(a-Jr)(m2(x( k) - 1)

e21*&quot;-*^/»!,^, -fc) - I)m2(jc, *).

Applying Lemma 3.8 (1) follows.
Now let us introduce the set

:={9 ei^iN: W[f2(x, *:,?),/,(*,*, ?)]^0 for

One sees easily that Q%(C) is open in //NN. For q in (?îv(C) we know that

T(k,q) is holomorphic in Im/c&gt;0, moreover continuous and bounded in

LEMMA 3.9. Let q be in Q%(C) with N&gt;3 and suppg c [-6, b]. Then for
alla&gt;b B(HUÏ f)H\a))cHhl(a).
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Proof. Let a be in HhlnH2(a) and x&gt;a. Then fi(x,k) elkx and

T(-k)f2(x, -k) Rx{-k)e-lkx + elkx. Thus

^£/i(x, k)T(-k)f2(xf -k) e2^

and for jc &gt; a

r30 T(k}T(—fc\ d f00

J dka{k)^2^difl0c&gt; k)fl{Xy ~k) J ^2l&quot;^(^)r(^&gt;2^&quot;a) 0-

Similarly one proves that for x &lt; -a one has

dko{k) T(k)2ik~k)icfi(x&apos;k)fiiXf ~k)=°-

Together with Proposition 3.4 one concludes that B(a) e Hltl(a).

LEMMA 3.10. Let q be in Q%(C) with N&gt;3 and suppq c [-b, b]. Then for
a&gt;b

(2) A\Hl l(fl) is a compact perturbation of the Fourier transform.
(3) B\Hl xc\H\a) ° A\Hx l(fl) Id\Hl l(fl)

Proof. (1) Follows from Lemma 3.9 and Proposition 3.4. One concludes that

A\hx i(a) ° B\Hl ,n//2(a) Id\H

(2) One writes

Mx, ~k)f2{x, k) - e~2lkx e-2lkx(m2(x, k) - 1)

It is to show that e~2tkx{m2(x, k)- 1) and ^&quot;^(m^,-A:) - I)m2(jc, Jt) are
kernels of compact operators in S£{HXtl(a)y HltX). But this is easily shown using
results of Corollary 2.8.

(3) From (2) and (1) and the fact that the Fourier transform is an

isomorphism from Hlt(a) onto HiAf\H2{a) we conclude that the Fredholm
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alternative holds, so that A\Hll(a) is 1 — 1 and onto. Together with the fact that

\a) Id\HxinHi{a) (3) follows.

LEMMA 3.11. Let q be in Q°N(C), with N&gt;3 and suppç c [-6, b]. Then A
wl-1 and B ° A Id on Hlfl.

Proof. Let veHltl. Choose a séquence of cut-off functions £n in Cx with
supp £n g [-n -b,b + n] such that lim,,.^ £nu v in //1(1.

By Lemma 3.10 we hâve lim,^ B © ^(^u) £nt/ Vn e M. Moreover fi ° A is

a continuous bounded operator on Hltl thus

B o A{v) lim B
n-*oc

Now let q be in (?5v(C) with N&gt;3. Choose a séquence of cut-off functions
£n e C00, 0 &lt; Çn &lt; 1 such that supp £n is compact and limrt_&gt;:x C«9 q in //^at- As
Ga^(C) is open in HNN we can and do assume without any loss of generality that
tnq e Q°n(C) for ail ninN. Let us dénote by An and Bn the operators in
generated by the kernels fx{x, -k, qt&gt;ùfi(xy k, qÇn) and

f ~l&gt;qU resPectiveIy-

By Lemma 3.11 and Proposition 3.6 we know that Bn°An=Id and

An ° Bn Id. But limn_&gt;oc Anv Av and limn_ac Bno Bo for ail v and a in //ltj,
applying Corollary 2.8. So in ail we hâve proved the following

THEOREM 3.12. Let q be in Q%{£) with N &gt; 3. Then

(1) The Jacobian dqS e 3?(HNN, H%.hN) is boundedly invertible.

(2) The kernel of dqS is given by /,(*, -k, q)f2(x, k, q).
(3) The kernel of the inverse of dqS is given by

-l) d

Jï LU UX

We now make some remarks about the Jacobian dqRx of the reflection
coefficient Rt. With similar arguments as for S one can show that dqRx e
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NN, //*_lfN+1) is 1 - 1 and that dgRl has a right inverse given by

However the space dqRx{HNN) is a rather complicated subspace in //*_lpA,+1
because R1 has to satisfy the extra condition

eL (R) for

(Remark after Theorem 2.19). Thus dgR1 is not onto in gênerai.

§4. Global properties of the scattering map

In this whole section we restrict ourselves to real valued potentials. For N &gt; 3

let us dénote by QN(U) the set of ail real valued potentials in HNN such that
W(k, q) té 0 in Im k ^ 0.

Let us recall that SfN dénotes the set of functions o(k)eL2(M, C) with the

following properties
(1) aeH%^1N
(2) a(0)&gt;0

(3) a(k)* a(-k) (k in R)
where * dénotes complex conjugation. QN and £fN are given the natural
topologies.

First we quickly remark that S(q) S(k, q) is an élément of ïfN if q is in QN(U).
To see that S(0) &gt; 0 recall that S(0) -W(0). Moreover W(iic) has no zeroes for
k &gt; 0. But for large k we hâve W{itc) ~ 2i(iic) -2k. Thus W(/ic) &lt; 0 for k &gt; 0.

The aim of this section is to show that the scattering map S : Q^(R) —&gt; 5^ is 1 - 1

and onto. Most of the proof is standard so we will allow ourselves to be rather
short.

In order to show that 5 is 1 - 1 one observes that W(k, q) can be represented
by the Herglotz formula (Im k &gt; 0)

||^ expf^f dzlog

where we used that W(Jt, ç)W(-fc, 9) 4it2-f S(it, q)S(-k, q) (k in R) and

l/W(k, q) is holomorphic in Imfc&gt;0. So for ^!, ç2 in QN(M) with



Properties of the scattering map 477

S(k, qx) (k e R) it follows that W(k, qx) W(k, q2), thus Rt(k, qx) S(k, qt)f
W(kf q^ and Rx(kf q2) are equal. By [3] it follows that qx q2 and the injectivity
of 5 is proved. The harder part is to show that the map is onto. For a in ïfN let us
define

©(*):=
lima)(k+ ie)

|0

and

z)z-
&lt;Im*&gt;0)

1 -i/2
h-(&amp;) k + i

1

o(k),

*(*)
2/A:

1

The aini is to show that Pi(k), p2(k) and r(k) are the scattering data of a

potential q in Q^(R).
First we hâve to discuss the properties of co(k). In order to do so we introduce

•
4k2 + o(k)o(-k) v &quot;y-

As a(0) # 0 and o(k)o(-k) &gt; 0 there exists M &gt; 1 with 1/M &lt; A(A:) &lt; M (fc in
For |A:| &gt; 1 one can find a constant C&gt;0 with

So one concludes that logh(k)eLl(U) and k&quot;logh(k)eL

moreover one vérifies that \ogh(k) is uniformly continuous on R

Now let us introduce for z : x + /y 0&gt; &gt; 0)

for 0&lt;a&lt;2,



478 THOMAS RAPPELER AND EUGENE TRUBOWITZ

v(z) is then the conjugate fonction of u(z) and thus u(z) + iv{z) is holomorphic
in Im z &gt; 0. Clearly a)(z) exp {u(z) + iv(z)} in Im z &gt; 0. It follows that w{z) is

an outer fonction, in Hx and continuous in Im z ^ 0. Moreover

One shows that eo(z) has no zeroes in the upper half plane Im z &gt; 0 and for fc in
R one gets

(o(k) exp {i log h(k) + î*(i log ft)(*)}

where 5if dénotes the Hilbert transform. It is easy to verify that co(k)* co(-k)
(k in R). The asymptotics can be estimated to give

co(z)

From o in H%-1N it follows that h(k) is in //*_ltl. But then d/dk log h=h&apos;/h is

in L2 and one shows by induction that logft € H*_M.
As differentation commutes with the Hilbert transform one gets that

X(logh)eH%-ltl.
Now let us summarize the properties of r(k) (k/k + i)co(k) in the following

LEMMA 4.1. For a in ïfN, r(k) is holomorphic in ImA:&gt;0, continuous in
Im k &gt; 0 and satisfies

(1) r(0) 0, r(k)*0\/keM\{0}, T(k)* r(-k) (kinU)

(2) r(k) 1 + 0(7 1 in ImA:^0 for \k\ —&gt; 00.

\k/
Next let us summarize the properties of l/w(k):=([—i/2)/(k + i))œ(k) in the

following

LEMMA 4.2. For a in ifN we get

(1) ——-6///v-i,o and -— € j

1 1 1

Vit



Properties of the scattering map 479

Now let us recall that p1(k) o(k)/w(k), p2(k) o{-k)/w(k). Then the

following lemma follows from Lemma 4.2 and the assumptions:

LEMMA 4.3. // a is in ?fN then {i 1,2)
(1) p,eH%-UN+1
(2) p,(k)* p,(-k) (kinU)
(3) p,{k)p,{-k) + t(k)t(-k) 1 (k in R)
(4) \p,(k)\ &lt; 1 VA: in R\{0}
(5) p,(0) -l.

Introduce

F^x) : - ï pi(k)e2lkx dk and F2(x) :=- f p^e&apos;2&quot;&quot; dk.
71 J-00 7Ï J_OC

As pt eH*-.ltN+i we conclude that xa(d/dx)Fl(x) e L\U) (0&lt; ût&lt;2). The main
theorem in inverse scattering [4] assures that there exists a real valued potential
q : M -* U such that jl^ (1 + jc2) |ç(*)| dx&lt;*&gt; having ply p2 and r as its scattering
data. It remains to show that q is in QN(R). Let us look at the Marchenko

équation (y &gt; 0, x in U)

0 BxC*, y) -f Fi(jc 4- y) + f Bx(xf z)Fl(x 4- y 4- z) dz.

With &lt;?(jc) (-d/dx)Bi(x, 0). It is well-known that there exists a nonincreasing
function C(x) such that for;,*: with 1&lt;y+

5= «M dz.

This together with Lemma 4.3 implies that q is in QN(U). Thus we hâve proved.

THEOREM 4.4. Let N &gt; 3. T/ien r/ie scattering map S : QN(R) -+ SPNis 1-1
and onto.

§5. Summary

Let us recall the following définitions

QN(U) :={qe HN&gt;N(R, U) : W(k, q) #0 in Im k &amp;0}

5PN:={a6flJ5_lfjV:(l) a(0)&gt;0, (2) a(-*)»a(*)*}.
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Then by Theorem 2.17 S:QN(R)-+ &amp;N is real analytic. By Theorem 3.12 the
Jacobian dqS is boundedly mvertible for q m QN(U). The inverse function
theorem thus furnishes together with Theorem 4.4

THEOREM 5.1. // JV&gt;3 then the scattenng map S:QN(U) -? &amp;N is a real

analytic isomorphism.
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