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The influence of the boundary behaviour on hypersurfaces
with constant mean curvature in H"*'

54
M. P. po Carmo:'J. bE M. GoMes and G. THORBERGSSON'"
5

1. Introduction

This paper deals with complete, properly embedded hypersurfaces M" with
constant mean curvature H of the hyperbolic space H"*', and addresses itself to
the following general question. How is the behaviour of such hypersurfaces
influenced by their behaviour at infinity?

H™*! has a natural compactification H"*! and we will call 3, M = M N 3H"*!
the asymptotic boundary of M where M is the closure of M in H"*'. Some recent
work ([dCL], [GRR], [Hs], [LR]) has shown the strong influence of 3.M on M.
To describe our contribution, we first observe that 3H"*! has a natural conformal
structure where the conformal transformations are induced by the isometries of
H"*'. Thus it makes sense to talk about k-dimensional spheres S* in 9H"*!,
Osk=n-1

In Section 2 we define a conformally invariant distance between two compact
sets in 3H"*' and show (Theorem 1) that for H € [0, 1) there exists a real number
d;; that is an upper bound for the distance between any connected component A
of 8.M and its complement 5.M — A (supposed nonempty). Furthermore if the
bound dj is attained for some component A, M is a rotation hypersurface of
spherical type, i.e., M is invariant by a group of isometries that leave a geodesic
pointwise fixed. Since the distance is defined in such a way that the distance from
a point to a compact set not containing it is unbounded, it follows that o.M
contains no isolated points for H € [0, 1) (Corollary 1). The result in Corollary 1
is sharp, since for any H =1 there exists examples of embedded hypersurfaces
with constant mean curvature H whose asymptotic boundary consists of two
points (see [Go] or [GRR]).

It has been noticed that some condition at infinity is necessary for some of the
theorems in the quoted literature (see, e.g., the final remark in [dCL]). In Section

"The third author was supported by the exchange program of GMD (Germany) and CNPq
(Brazil).
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3 we present a definition of regularity at infinity that is a slight modification of the
one given in [LR] for the minimal case and turns out to be very strong. With such
a condition, we show that the fact that H belongs to one of the intervals [0, 1),
(1,»), or H=1 can be completely characterized in terms of the boundary
behaviour of M (Theorem 2). In particular we show that if M is a properly
embedded hypersurface regular at infinity with constant mean curvature H > 1, it
must be compact.

In Section 4 we prove (Theorem 3) that if .M consists of two disjoints
(n — 1)-spheres, M is regular at infinity and H+#1, then M is a rotation
hypersurface of spherical type. This extends a result in [LR], where the theorem
is proved for H =0 (as usual in cases where M is minimal, no embeddness is
assumed here), and is related to [GRR] where similar results were obtained for
isometries of H"*! that leave fixed one point in dH"*! (parabolic isometries) or
two points in dH"*! (hyperbolic isometries). The idea of the proof of Theorem 3
can be used to give simpler proofs of some results in [dCL] and [LR]. We do not
know whether Theorem 3 holds true for H = 1.

The method used in proving the above results is essentially Alexandrov
maximum principle, that we will call the tangency principle, in the form given in
Proposition 1.5 of [dCL]. In section 2 we make essential use of some facts from
the classification of rotation hypersurfaces of spherical type. These facts were
proved in Gomes’ thesis at IMPA; we describe them and refer to [Go] for the
proofs.

2. Non-existence of isolated points in the asymptotic boundary

A" will denote the natural compactification of hyperbolic (n + 1)-
dimensional space, and $"(«) is the boundary dH"*' of H"*'. The asymptotic
boundary 3.A of a set Ac H"*'is 3,,A = A N $"(x), where A is the closure of A
in H**1.

Let S; and S, be two disjoint codimension-one spheres in §"(x); we will
denote by D; and D, the components of " () — (S; U S,) that are homeomorphic
to disks. Given two (not necessarily connected) subsets A; and A, in $"(=) we say
that S; and S, separate A, and A, if A, < D, and A, < D,. The distance d(S$;, $)
will mean the hyperbolic distance of the two totally geodesic submanifolds
H,, H,, where 0. H;=S;, i =1,2.

" Given two compact sets A;, A, S"(®), we define the distance d(A,, A;)
from A, to A, by

0 if there does not exist spheres S, and
d(A,, A)= S, that separate A, and A,;

sup {d(S,, $,); $; and S, separate A; and A,}.
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Since conformal transformations of S$"() are induced by hyperbolic iso-
metries of H"*', d(A,, A,) is conformally invariant. Notice for n =2 that the
distance of a compact set to a point away from this set is infinite; also if
d(A,, A;) < +x, by compactness there exists S,,, and S4, such that d(A,, A,) =
d(Ha,, Hy,), where 9.H, =S, and 9.H,,=S,, Although we called d a
distance, we observe that the triangle inequality does not hold in general.

THEOREM 1. Let M" = H"*' be a complete connected, properly embedded
hypersurface with constant mean curvature H € [0, 1). Assume that the asymptotic
boundary 3.M has at least two components and let A be any such component.
Then there exists a constant dy (depending only on H, and computable) such that

d(A, 3.M — A)=dy,
and equality holds if and only if M is a rotation hypersurface of spherical type.
Before proving the theorem, we will mention the following

COROLLARY 1. Let M" « H**! be a complete connected, properly embedded
hypersurface of H™*' with constant mean curvature H € [0, 1). Then the asymptotic
boundary of M has no isolated points.

Proof of the corollary. If the asymptotic boundary reduces to one point, the
result follows from the characterization of horospheres by do Carmo-Lawson
[dCL]. Otherwise, there are at least two connected components in 3. M, and we
can apply the theorem. Since the distance from a compact set to a point is
infinite, the corollary follows.

Before starting the proof of the theorem, we need some facts from the
classification of rotation hypersurfaces of spherical type in hyperbolic space, with
constant mean curvature. These questions were treated by Wu-Yi Hsiang [Hs],
and do Carmo-Dajczer [dCD], but the facts that we need here were proved in
Gomes’ thesis [Go].

We will use the half-space model of the hyperbolic space:

H"+l={(x1,... ,x,,.,.l)ER"'H; x,,+|>0},

with the metric g; = §;/x%,,. In this model, certain rotation hypersurfaces M of
spherical type with constant mean curvature H can be described as follows. Let y
be the axis of rotation, that we take to be perpendicular to the hyperplane
X,+1 =0 (see Fig. 1).
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Figure 1

Let g be any geodesic perpendicular to y and consider a totally geodesic plane o
containing y and g. There exists, in the plane o, a curve c that is symmetric
relative to g (Fig. 1) and is such that M is obtained by rotating ¢ about y. The
properties of M that have a bearing in our proof are as follows:

i) For each He[0,1), and each g perpendicular to y, there exists a
one-parameter family M,, A € (0, ), of rotation hypersurfaces of spherical type
with mean curvature H. The points where M, intersects the totally geodesic
hypersurface generated by the rotation of g have a constant (hyperbolic) distance
to y, and this distance is the value of the parameter A. Furthermore, the
asymptotic boundary 3. M, of each hypersurface in the family M, consists of two
disjoint codimension-one spheres.

ii) Consider a hypersurface M, of the family defined in (i), let S; and S, be the
two components of 3.M, and set d(1)=d(S,, S,). The function of d =d(A)
satisfies d(0) =0, increases initially, reaches a maximum dy, and decreases
asymptotically to zero as A — «. The maximum value d;; depends only on H, and
it is given in terms of an integral; thus d, can be explicitly computed to any
degree of accuracy. If H >0, then dy > d,,, and the mean curvature vector of M,
points to the connected component of H"*'— M, that contains the axis of
rotation y.

Proof of the theorem. We may suppose that 9.M is contained in the
hyperplane x,+1=0. Consider a totally geodesic submanifold H,, such that A is
contained in the disk bounded by 8.H, =S,. Let y be the geodesic in H"*'
represented in R"*! as a half-line emanating from the center of the sphere S, (see
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Fig. 2). We will assume that
d(A, 3.M — A)>dy,

and we will derive a contradiction.

Set B=3.M — A, and let Hy be a totally geodesic submanifold orthogonal to y
and such that B is contained in the disk bounded by 3. Hy = Sg; Hp exists since
d(A, B)>dy>0. Let p, and pg be the intersections of y with H, and Hy
respectively, and let p be the (hyperbolic) middle point of the segment p,pz

along y. Let g be a geodesic orthogonal to y at p, and consider the family M,
described in (i). Then

d(pAJ pB) > dH Zd())

where the last inequality comes from (ii).

It follows, for each H € [0, 1), that the family M, has the property that 3. M,
does not intersect either A or B. Furthermore, given € >0, there exists A = A(g)
with A < e. Since A is the distance from M, to the axis of rotation y, and, for A
sufficiently large, M, "M =(J, there exists A, such that M, touches M for the
first time, say at a point g € M.

Since M is embedded, H"*' — M has two connected components. Let us
denote by O the component that contains M, for large A and by I the other one.
We orient M in such a way that the mean curvature H =0. We claim that either
M is minimal, or the mean curvature vector of M points towards /. Otherwise,

Y

Figure 2
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consider the minimal spherical hypersurface M, that is tangent to M. By looking
at the normal sections at the tangency point, it is easy to see that the mean
curvature of M, is greater than or equal to the mean curvature of M, and this
proves the claim.

If M is minimal, an application of the tangency principle shows that M agrees
with M, , a contradiction to the fact that d(A, B) >dy >d,. If M has constant
mean curvature H >0, the mean curvature vector points towards I, and a
application of the tangency principle gives again a contradiction.

This shows that d(A, B) =dy, and proves the first part of the theorem.

Now assume that d(A, B) = dy, and choose S, and Sp as in the above proof,
so that d(H,, Hg) =d(A, B). Proceeding as in the proof, we obtain that
M = M, . This proves the second part, and completes the proof of the theorem.

3. Boundary regularity

Until further notice, we will use the unit ball model for the hyperbolic space
H™'. H™*" will denote the closed unit ball and §”(») will denote the unit sphere.
All topological notions used here will refer to the topology of the closed unit ball.

Given an embedded hypersurface M c H"*', we will say that M is C*-regular
at infinity, k =1, (or simply C*-regular) if M < H"*' is a C*-submanifold with
boundary of H"*', and 3. M is a C*-submanifold of $"(); in particular, if M is
C'-regular, it has a well defined tangent space at each point in M N $"() which is
the limit of tangent spaces of M (this definition is a slight modification of the one
given in [LR]).

It is sometimes convenient to localize the definition of regularity at infinity
and say that M is C*-regular at a point p e M N S"() if there exists an open
neighbourhood U of p in H"*' such that MNU is a C*-submanifold with
boundary of A"*', and 3.M N U is a C*-submanifold of $"(x).

A general discussion about regularity at infinity, with many examples is given
in Chapter IV of [Go].

When M is C*-regular, it will be convenient to consider the boundary M of
the submanifold M. It is easily checked that M < 3. M, but equality may fail to
occur. For instance, if M is a horosphere, 3M = & and 3. M = {one point}. Also
note that proper embeddedness together with the additional hypothesis that
d.M = J means that M is compact.

If M is an embedded hypersurface in H"*' with constant mean curvature
H #0, we will orient M in such a way that H > 0.

THEOREM 2. Let M" c H"*' be a connected, complete, properly embedded
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hypersurface with constant mean curvature H. Assume that M is C*-regular at
infinity. Then

) H>10.M = &;
if, in addition, 3.M # O,
ii) H<1¢0.M =03M. In this case, M is nowhere tangent to S™().
iiil) H=150M =,

Proof. M divides H"*' into two components denoted by I and O. Assume
that the normal vector points towards /. We will first prove some assertions that
will imply the theorem.

ASSERTION 1. Let 0. M # & and OM # . Then H < 1.

Since M #J, both 3.1 and 3.0 have interior points. Let p € Int (8..1) and
let H, be the family of horospheres with p as asymptotic boundary; the parameter
t is chosen in such a way that a geodesic y(¢) with y(>) = p satisfies y(t) € H,.
Since p € Int (3.1), the intersection H,N M = for large t. Therefore, there
exists £, such that H, is tangent to M and H, c I. Since the normal vector of M
points towards I, we see that H = 1. If H =1, by the tangency principle, H, = M,
and this contradicts the fact that 3M # . Thus H <1, and this proves Assertion

1.

ASSERTION 2. Let 3.M#@ and H<1. Then M is nowhere tangent to
§7().

Assume the contrary, i.e., there exists p € 3, M where M is tangent to $"(x).
By C*-regularity, there exists a codimension-one sphere X, =3B in $"(*) that is
tangent to .M at p, and is such that Int BN M = @. Foliate B by codimension-
one spheres 2,, 0=¢=1, and consider one of the two continuous families of
hyperspheres h, that satisfy 9.h, =%, and have mean curvature H. Clearly, for
some of the two possible choices of X, and some 0 <t, =<1, the hypersphere #,, is
tangent to M. We can assume that the normal vector of h, and M agree at the
tangency point; if this is not the case, we just have to choose the other family of
hyperspheres with the same mean curvature and same asymptotic boundaries. By
the tangency principle, A, = M and this contradicts the fact that 3.h, N 3.M = .
This proves Assertion 2.

to

ASSERTION 3. Let 8.M # and M = . Then H < 1.

Choose p € 3.M. Since M is a submanifold with boundary, and oM =, M is
tangent to $”(«) at p. By C>-regularity, there exists a codimension-one euclidean
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sphere 3, in H"*' such that 3, is tangent to M and 3, c I. By decreasing the
euclidean radius of 2, if necessary, we can find a continuous family of euclidean
spheres X,, g € M NV, where V is a sufficiently small neighbourhood of p. From
the view point of hyperbolic geometry, 3, is a horosphere and if p #q, X, is a
hyperbolic sphere tangent to M, with the same normal vector as M. Let
@(q) = H, — H, where H, is the mean curvature of the hyperbolic sphere 2, By
looking at the normal sections we see that at g, @(g)=0. Since X, is a
horosphere, @(p) =1— H, and by continuity 1 — H =0. This proves Assertion 3.

Now we come to the proof of the Theorem itself.

Assertions (1) and (3) imply that if 3.M # & then H =< 1. This proves (i) >.
The converse comes from the tangency principle, and this completes the proof of
(@i).

We now prove (ii). Assume that H <1 and that there exists p € 3. M with
p ¢ M. Then M is tangent to S™() at p and this contradicts Assertion 2. Thus
H<1=>3.M =0M. The converse follows from Assertion 1, and the last
statement of (ii) follows from Assertion 2.

Finally we prove (iii). If 3.M # & and M # J, then by Assertion 1, H < 1.
Thus if H =1 either 3.M =@ or M =J. But 3.M = is equivalent to H > 1
by (i). Thus H=13.M =J. Conversely, if M = and 3.M #J, then
oM # 3.M. Thus by (ii), H=1 and, by (i), H=<1, hence H = 1. This completes
the proof of the Theorem.

Remark 1. In [dCL] it is proved that if M" < H"*' is a complete properly
embedded hypersurface with constant mean curvature, 3.M =S5""', and M
separates poles, then M is a hypersphere with $”~' as asymptotic boundary. The
condition that M separates poles in the proof of [dCL] is equivalent to the
condition that both 9./ and 9.0 have interior points, which by its turn is
equivalent to both .M # < and M # . Thus in [dCL] we can, by Theorem 2,
replace the condition “M separates poles” by the stronger condition that “M is
C2-regular at infinity”.

Remark 2. 1t is easily checked that the implications < of Theorem 2 hold if M
is merely locally C%regular. Also if we localize the right hand sides of the
implications in Theorem 2, the theorem holds true for local C?-regularity.

Notice that we did not use the regularity hypothesis in the proof of Assertion
1. In fact that proof shows the following “dual” of Corollary 1.

COROLLARY 2. Let M be a properly embedded hypersurface in H"*' with
constant mean curvature H>1. Then the asymptotic boundary of M does not
contain any component whose codimension in S" () is one.
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4. A characterization of embedded rotation hypersurface of spherical type
In this section we will prove the following

THEOREM 3. Let M" c H™*! be a connected complete properly embedded
hypersurface in H"*' with constant mean curvature H #1. Assume that M is
C>-regular at infinity and that 3.M is the union of two disjoint codimension-one
spheres of S"(). Then M is a rotation hypersurface of spherical type.

Remark 3. For the case H=0 and M not necessarily embedded, Theorem 3
was proved by Levitt and Rosenbert [LR]. Our proof is essentially the one in
Alexandroff [Al]; see also Hopf [Ho].

We will need the following elementary lemma, the proof of which will be
sketched for the sake of completness.

LEMMA 1. For any two codimension-one spheres S,, and S, in the unit sphere
S" < R™*!, such that S; N S, = B, there exists a conformal transformation of S" that
brings S, and S, into spheres of equal radii which lie in parallel hyperplanes of
Rn+1.

Proof. Let B be a ball bounded by §,, that contains S,. The ball B has a
hyperbolic metric with the property that the isometries of such a metric are the
conformal transformations of §” that leave B and §, invariant. The family §(¢) of
codimension-one spheres in B = $” = R"*', parallel (i.e., in parallel hyperplanes)
to §;, is a family of hyperbolic spheres whose hyperbolic radii R(¢) varies in the
interval [0, ). Thus there exists ¢, € [0, «) such that the hyperbolic radius of S(¢,)
and S, are the same. Therefore there exists a conformal transformation that
leaves S, invariant and brings S, into S(¢,). It follows that we can assume that S,
and S, are in parallel hyperplanes. By using the conformal transformations of §"
induced by the similarity transformations of R"” via a stereographic projection
(say, from the center of §;), the proof of the lemma is easily completed.

Proof of Theorem 3. We will use the ball model $"*' for hyperbolic
(n + 1)-space. First we introduce the notation to be used in the proof. We can
assume by Lemma 1 that the two spheres in 3. M lie in parallel hyperplanes and
have the same radius. They are therefore symmetric to each other relative to an
equator of $”(e) which we denote by E (see Fig. 3 below).

Let y:(—o, +%) — H"*! be a geodesic of H"*' whose image is a diameter of
E, and such that y(0) is the center of E. Consider the family P,, —o <t <+, of
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Y (+)

Figure 3

totally geodesic hypersurfaces orthogonal to y at y(f). Notice that 3. P, is the
family of parallel codimension-one spheres which approaches y(+) or y(—~) as
t tends to +o and —o, respectively, and that 3..F, is the great sphere in §"(x)
orthogonal to E. P, divides H"*! into two components: the one that contains
y(—x) is denoted by P;, and the other by P;. Set M,=M N P;.

Consider the reflection R,: H"*' — H"*! across P.. We want to show that R,
extends continuously to a map R, of H"*! and we proceed as follows (cf. [Al] and
also [LR]). For each p € H"*', as ¢ runs the interval (—®, +%), R,p will describe
the hypercycle passing through p and joining y(—=) to y(+«). Let c, be such a
hypercycle and parametrize it in such a way that c,(¢t) € P, t € (—», +) (see Fig.
3). As p approaches a point g € §"(®), g # y(+*), g # y(—=), c, approaches the
(unique) arc of circle c, of $"(=) that passes through ¢ and joins y(—) to y(+).
For convenience, we will say that ¢, is the hypercycle passing through g, although
this notion depends on the choice of y (which will be kept fixed throughout the
proof). We now define R, in an obvious continuous way and call it the reflection
across P.

Let M, be the reflection of M, accross P, and denote by I the component of
H""'— M that contains the north and south poles relative to E. Notice that
§"(®) — .M has three connected components; denote by Iy (resp. L) the
component that contains the north (resp. south) pole relative to E. Since H # 1
and M is C*-regular, it follows from (ii) of Theorem 2 that 3./ = I, U Is. Hence
the reflection of 3.M across P, N §"(=) is contained in / if t=<0, and it is not
contained in [ if ¢t > 0.
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We now start the proof. Set
t, =inf {¢; M is not contained in I}.

By the behaviour of the reflections of 3. M, it is clear that ¢; =0. Furthermore,
M; < I, since it is the limit of such sets. The crucial point of the proof is to show
that ¢, =0.

Assume that ¢t; <0. Choose an orientation for M, and define a function
@:M — {y(-=), y(+=)} = R by @(p) = (N(p), c,), where N(p) is the normal
vector of M at p (notice that M has normal vectors at infinity although it makes
no sense to talk about their lengths). Set A =@~ !(—x, 0), B=¢ (0, +»), and
C=¢7'(0). Of course, ¢, is tangent to M if peC, and by changing the
orientation of M, if necessary, we can assume that the normal to M points
towards I. We say that c, enters M in the points of A, and leaves M in the points
of the set B. In figure 3, the points A, and A, belong to A, the point C; belongs
to C, and the points B, and B, belong to the set B.

We claim that M, = A. Since M, = for ¢ near —, if we set

to=sup {x; M, =},

then P, N M c A. If there exists p €e M, N B, by continuity of ¢, we can find
t,<tyand qe M, NC. Thus g€ P, t,<t, and M, c L. Since M is C*-regular, and
H #1, it follows from Theorem 2 that M is nowhere tangent to S$"(x), hence
q € M. Furthermore since q € C, P, intersects M orthogonally at g, which shows
that M, is, around ¢, a manifold with boundary that is tangent to M, at g. Since
M;c1I, we can apply the boundary tangency principle to conclude that
3.M'=3,.M and this contradicts the boundary behaviour of the reflection for
t; <0. It follows that there are no points of M,, either in C or in B, and our claim
is proved.

Since M, = A, M, is compact and A is open, we conclude that M, ,/, = A for
n > ny, n sufficiently large. Since M, < I, a hypercycle c, that enters p € M,, at a
time ¢ is still in [ at time ¢ + 2(t, — t). Since M, .y, ¢ I, there exists a hypercycle
¢y, P €M, ., and a real number 6, 0<6 <1/n <1/n,, such that c,(t +2(t; +
d —t)) € B. By letting n, approach infinity, we see that there exists ¢,, g € M,,
such that ¢ (¢t +2(t, —t))=re B.

Again, since M, c I, this implies that M, is tangent to M at r and on the same
side of M. From the fact that ¢, <0 and the boundary behaviour of the reflections,
we see that g ¢ .M. Thus r e M and we can apply the tangency principle to
obtain the same contradiction as before. Therefore ¢, =0, as we wished.

Let O be the closure of H"*! —I. Since t, =0, My < I. Thus the reflection of
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M N Py across P, is contained in O. On the other hand, by using the above
construction for the geodesic —y, we see that the reflection of M N P§ across P, is
contained in 1. It follows that M is symmetric about P,.

We now repeat the above argument for any geodesic whose image is a
diameter of the equator E. Thus M is symmetric about all hyperplanes containing
the geodesic g that joins the north and south poles relative to the equator E. Such
symmetries generate the group 0(n) of isometries of H"*! that leave g fixed. It
follows that M is a rotation hypersurface of spherical type, and this completes the
proof of the Theorem.

Remark 4. Once one knows that M is a rotation hypersurface of spherical type, it
follows from the classification theorem of such hypersurfaces (see Gomes’ thesis
at IMPA [Go]) that both M N Py, and M N Py are graphs over P,. It also follows
from Theorem 2 that the mean curvature H of M belongs to the interval [0, 1).

Wu-Yi Hsiang has shown in [Hs] that if M is an embedded hypersurface with
constant mean curvature and at a finite distance from a totally geodesic
(k + 1)-submanifold, then it is O(n — k)-invariant. It is clear that such a condition
(finiteness of distance) implies that .M is contained in a k-dimensional sphere
(the converse is not true). The ideas of the proof of Theorem 2 above apply and
yield a proof of the following result (Cf. [LR]).

COROLLARY 3, (of the proof). Let M be a complete nonumbilic properly
embedded hypersurface in H**' with constant mean curvature. Assume that 3.M
is contained in a k-dimensional sphere S* < S"(*). Then M is an O(n — k)-
rotational hypersurface whose “axis” is the totally geodesic (k + 1)-submanifold
with S* as asymptotic boundary.

Notice that there is no need of regularity at infinity in the above corollary.
This reflects the fact that in the proof we only reach the asymptotic boundary of
M at t=0.

We want to mention two special cases of Corollary 3 that were proved in
[LR]. If 8.M is contained in a codimension-one sphere, then M has a
Z,-symmetry. If .M consists of two points, it is a rotational hypersurface of
spherical type.

Corollary 3 can also be used to give a proof to the fact that if 3.M reduces to
one point p, then M is a horosphere with p as asymptotic boundary (cf. [dCL]).
In fact, from the last result in the previous paragraph, M is symmetric relative to
any geodesic y in H"*! with y() = p. Thus if g € M Ny, ¢ is an umbilic point of
M. Since v is arbitrary, M is an umbilic hypersurface with 3.M = {p}, hence a
horosphere.
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