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Extremal length and Holder continuity of conformal mappings

RaiMo NAkk1* and BRUCE PALka

1. Introduction

Let A be a set in the complex plane C and let 0< o =1. A complex-valued
function f defined on A is said to belong to Lip, (A), the Lipschitz class in A with
exponent «, if there is a constant M >0 such that

f(2) - fw)| =M |z —w|* (1)

for all z and win A, i.e., if f satisfies a uniform Hélder condition with exponent o
on A.

Consider a simply connected proper subdomain D of C and a conformal
mapping f of D onto the open unit disk B = {z:|z| < 1}. Of late it has become a
matter of some interest to identify geometric criteria under which either the
mapping f or its inverse belongs to some Lipschitz class. Sufficient conditions for
uniform Hoélder continuity on the part of f or f~! are to be found, among other
places, in [7], [8], [9], [13] and [15], while [10] contains a description of certain
necessary conditions for such behavior. The conditions referred to are all
euclidean geometric in nature. If, on the other hand, one actually desires to
characterize the domains D for which either f or f~' is a member of some
Lipschitz class, evidence would suggest that one is compelled to abandon a
euclidean perspective and to enter the realm of conformal invariants. Thus, for
example, Becker and Pommerenke [1] and the authors [11] have exhibited
necessary and sufficient conditions for Holder continuity of conformal mappings
in terms of hyperbolic geometry. In the present article we employ a different
conformal invariant, extremal length, to provide alternative characterizations of
the domains D for which f, as well as those for which f~!, belongs to a specific
Lipschitz class. Our characterizations are subsequently applied to derive eucli-
dean geometric criteria for Holder continuity. These applications include
simplified proofs and extensions of two recent results due to Lesley [7].

* Part of this research was done while the author was visiting The University of Texas at Austin in
1984-85.
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390 RAIMO NAKKI AND BRUCE PALKA

2. Modulus of an arc family

Let I" be a family of arcs in C. Consider non-negative extended real-valued
Borel functions p in C such that

[ pldz| =1
Y
for each rectifiable arc y in I'. Define

M(I') = inf f p? dx dy.
p Jc

The quantity M(I') is termed the modulus of I', while its reciprocal,

x(r)=M—(1T),

is referred to as the extremal length of I'. We prefer to work with the modulus
rather than with extremal length, although the latter is perhaps a more common
term of reference in the literature. Both the modulus and the extremal length of
an arc family are conformal invariants.

For future reference we compile here some more or less standard modulus
estimates.

The Grotzsch ring domain. For 0<r <1 let
Rs(r)=B\{z=x+iy:0=x=r,y =0}
The domain R;(r) is called the Grotzsch ring domain corresponding to r. Let

ug(r) denote the modulus of the family of arcs joining the boundary components
of Rs(r). Then

2 2
= ps(r)=—. 2)
4 1
log - log -

See [6, p. 64]. Using the identity

1—r
ﬂG(’)I‘G(‘“‘“‘l " r) =8
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[6, p. 63], we obtain from (2)

4  1+r 4(1 + r)
— < < e
2 log 1= pio(r) =~ log S 3)

with the result that

4 1 4 8
log1—<u<~(r) —logT—. 4)

The estimates for ug(r) in (2) are most useful for small » >0; in fact, the lower
bound in (2) is asymptotically sharp as r— 0. For r near 1, however, the estimates
in (3) are better than those in (2).

The Teichmiiller ring domain. For r >0 let
R (r)=C\{z=x+iy:—1=x=0orr=x <=, y=0}

The domain R;(r) is called the Teichmiiller ring domain corresponding to r. Let

pr(r) denote the modulus of the family of arcs joining the boundary components
of Ry(r). Then

pr(r) = 3u0( V) )

See [6, p. 63]. Combining (2) and (5) we obtain

27 27

g 161+ - P =g+ ©)

Arcs joining connected sets in B. Given three sets, E, F and G, we let
A(E, F:G) denote the family of all arcs joining E to F through G. Now let E and
F be nondegenerate connected sets in the closed unit disk B. Then [3]

M[A(E, F:B)]| = M[A(E, F:B)]
=IM[A(E, F:C)]

~1, (1@ c)q(b, d)
= %Mr(q(a, b)q(c, d))’
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where a, b e E and c, d € F and where q designates the chordal metric in the
extended complex plane C defined by

3 |z — wl
q(z, w)= 1+ 2P0 + WP

for points z and w in C and by

(z oo)-.__.____l______
q\z, '(1+|Z’2)1/2'

Since |z — w|/2=¢q(z, w)<|z — w| for z and w in B, we obtain using (6)

M[A(E, F:B)]= ’; _— )

log Sa (E) dia (F)

Inequality (7) is valid for all connected sets E and F in B.

Cross-cuts separating interior points of B. Fix a point z #0 in B and consider
the family I' of cross-cuts of B separating 0 from z in B. Elementary
considerations reveal that

M(T) = ipc(r),
where r = |z|. Invoking (4) and a standard lower bound for M(I') we thus obtain

8

1—r

1 1 1
—log——= o ]
~log —— = M(I') = _log ®)

Next, let I'. denote the subfamily of I' consisting of circular cross-cuts centered at
z/|z|. A direct computation shows that

M= I

t
t — 2 1 _)
(.TL' arc sin 2

from which it can be inferred that

1 1 1 372
;log—l—_—;SM(I})s;log—l—:;. (9)
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Finally, let I'} designate the family of circular arcs in C\ B complementary to the
arcs in I.. Again, an elementary calculation yields
! dt
1Q't(zt + 2 arcsin 5)

which gives rise to the estimates

1 1-r/4 1 1
—1 =M(T'H)= .

- r

Cross-cuts separating boundary points of B. Let z and w be two distinct points
on 9B and let A; and A, be the arcs into which 9B is partitioned by z and w,
labeled so that dia(A,)=<dia(A,). For i=1,2 denote by I; the family of
cross-cuts of B which separate A, from the origin. By [12, p. 196],

ML) = éuc(cos l(fl)>,

M(D) = jug (sm 1(1:1))

where /(A,) designates the length of A,. Since

cos 0 = 42 + (4~ 2 w7
sin 1(2") =32-@-|z-w[)"]"
we deduce from (3) that
; 2(|;t\/l2)_M(I})— 1 loglz 16 wE )
Jlt g(—T—-—\/-z—i)—z_ M(L) + M(I) < 10g|z 32w‘ |

Consequently, if I" designates the family of all cross-cuts of B separating a pair of
boundary points z and w of B from the origin, then

M_M(F)__-l-l g‘zi2 1 (12)

.n' |z — w|
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3. Extremal length characterizations for Holder continuity

In this section we characterize those plane domains D for which a conformal
mapping f of D onto B belongs to Lip, (D) and those for which f~! is a member
of Lipg (B). We advise the reader of one notational convention: throughout this
article the notations D and 3D are used to designate the closure and boundary of
D relative to C, not relative to the extended complex plane.

Let A be a set in a simply connected domain D and let z and w be points on
dD. A cross-cut y of D is said to separate A from z and w if A lies in one of the
two components of D\vy and if the closure of this component contains neither z
nor w.

THEOREM 1. Let f be a conformal mapping of a domain D onto B and let
0<a=1. Then f belongs to Lip,, (D) if and only if, corresponding to some (each)
continuum A in D, there exists a constant a > 0 such that each pair of points z and
w on 8D with |z — w| <a can be separated from A by a cross-cut y of D satisfying

M[A(A, y:D)] s——’-’—;——. (13)

a log

|z —wl

Proof. For the necessity, fix a continuum A in D. We may assume that f is
defined and continuous on D and that f belongs to Lip, (D). Let M >0 be a
Lipschitz constant for f corresponding to the exponent « and let d=
dist [f(A), 3B]. We verify (13) with a = (d/M)"~.

Fix a pair of points z and w on 3D with |z — w| <a. Since

[fz) —fW)|=M |z —w|*<Ma*=d

and since f~! has angular limits almost everywhere in 3B, we can separate
A'=f(A) from f(z) and f(w) by a cross-cut y' of B which is an arc of a circle
centered at f(z) and at the endpoints of which f~' has angular limits. The set
y=f"!(y’) is a cross-cut of D which separates A from z and w. Elementary
properties of the modulus yield

M[A(A, y:D)] = M[A(A’, y': B)] < ”d < T

log—— alo 4
Elf@—fw)] ¥ Bz -

w|
where a = (d/M)"*. This establishes (13).
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For the sufficiency, fix a continuum A in D and choose a > 0 for which (13) is
valid. We begin by demonstrating that f can be extended to a continuous mapping
of D.

Consider a point z of dD and suppose that f fails to have a limit at z. Then we
can choose sequences (z,) and (w,) in D such that z,— z and w,— z, while
f(zx)— z' and f(w,)—w’, where z'#w'. An elementary geometric argument
establishes the existence of end-cuts E, and F, of D joining z, and w,
respectively, to distinct points z; and wi on 8D and satisfying dia (E;)— 0 and
dia (F,)— 0, as k— <. Obviously

lim M[A(A, E,:D)] = 0= lim M[A(4, F.:D)]. (14)
k—x

k—>x

Since B satisfies the modulus condition (7), it follows that dia [f(E,)]— 0 and
dia [f(F;)]— 0. Furthermore, a classical theorem of Koebe asserts that f(E;) and
f(F,) are end-cuts of B terminating at certain points z;, and w; on 9B,
respectively. Since z;— z and wi — z, there is, in view of (13), a sequence (y;)
of cross-cuts of D such that y, separates z; and wi from A and such that the
component G; of D\ y, not containing A satisfies

M[A(A, G,:D)]=M[A(A, y,:D)]—0.

The set y,=f(yx) is a cross-cut of B separating A' =f(A) from G, = f(G;).
Clearly G, contains z; and w;. But since z;— z' and w;—> w’, where z' #w', it
follows that dia (G;)—- 0. The modulus condition (7) then implies that

M[A(4’, G}: B)] 0,

as k— o, This contradiction to the conformal invariance of the modulus shows
that f must have a limit at z, an arbitrary point of 3D. We conclude that f admits
an extension to a continuous mapping of D. The notation f will be retained for
the extended mapping.

We are now in a position to demonstrate that f belongs to Lip, (D). For this,
fix a pair of points z and w on 8D. Assume that |z — w| <a and that f(z) # f(w).
Let y be a cross-cut of D separating A from z and w and satisfying (13). Next let
G be the component of D \y not containing A. Then by (13)

M[A(A, G;D)]s———’l—;—-—. (15)

a log

|z - wl
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We denote A’ = f(A) and G’ =f(G) and use (7) to estimate

, ‘. JT J
M[A(A’, G':B)]= R > - , (16)

e Sa(A) dia (G) BTfz)—f(w)

where b = 128/dia (A’). Since the modulus is a conformal invariant, we infer from
(15) and (16) that

F2) = Fw)] =z = wl*.

The above estimate holds trivially for boundary points z and w of D satisfying
|z—w|=a or f(z)=f(w). Hence the boundary mapping f|dD belongs to
Lip, (3D) and, consequently, f belongs to Lip, (D). (See [5] or [14].)

An analogue to the preceding theorem for mappings from B into the complex
plane is:

THEOREM 2. Let f be a conformal mapping of B onto a domain D and let
0<B =1. Then f belongs to Lipg (B) if and only if, corresponding to some (each)
continuum A in D, there exists a constant b > 0 such that

__fx
b b
log

M[A(A, y: D))= (17)

|z = wl

whenever z and w are distinct points on D and v is a cross-cut of D terminating in
z and w.

Proof. For the necessity, fix a continuum A in D. We may again assume that f
is defined and continuous on B and that f belongs to Lips (B). Let M >0 be a
Lipschitz constant for f corresponding to the exponent . Next, let y be a
cross-cut of D terminating in distinct points z and w. The set f~'(y) is a cross-cut
of B with distinct endpoints { and w. Using the estimate (7) we obtain

M[A(A, y: D)= M[A(f~'(A), f'(y):B)] = 75128
o8 G ) dia [ (7)]
> id = ﬁn

’

lo - log s
fle-owl -l
where ¢ = 128/dia [f~'(A)] and b = cPM. This establishes (17).
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For the sufficiency, fix a continuum A in D and choose a number b >0 for
which (17) is valid. It is an elementary consequence of (17) that D is bounded.
We show first that f can be extended to a continuous mapping of B. To do so, we
modify slightly the argument used in the proof of Theorem 1.

Fix a point z on 3B and suppose that f fails to have a limit at z. Then we can
choose sequences (z;) and (wy) in B such that z;—z and w,—z, while
f(zx)— z' and f(w,)—>w', where z' #w' and |z’ — w'| <b. Select end-cuts E,
and F, of D joining f(z;) and f(w;), respectively, to distinct points z; and w; on
dD and satisfying dia (E,)— 0 and dia (F,)— 0, as k— «. Since (14) holds again
and since B satisfies the modulus condition (7), it follows that dia [f~'(E,)]— 0
and dia [f~!(F;)]—0. Furthermore, classical theorems of Koebe and Lindelof
assert that f~'(E,) and f~'(F,) are end-cuts of B terminating at certain points z;
and wy, respectively, on the unit circle and that f has angular limits z, at z; and
wy at wg. Let y£ be the line segment with endpoints z; and wg. Then

M[A(f™'(A), yi:B)]—0

as k— o, since z; — z and w; — z. On the other hand, f(y;) is a cross-cut of D
with terminal points z; and w;. In light of (17),

n____ Br

M[A(A, f(vk):D)] = >0,

log semmomee Oy
Fla—wil Pl -wl

since z;— z' and w;— w'. This contradiction to the conformal invariance of the
modulus shows that f must have a limit at z, an arbitrary point of dB. We
conclude that f admits an extension to a continuous mapping of B. We retain the
notation f for this extension.

We next verify that f belongs to Lipg (B). Fix a pair of points z and w on B
for which f(z) # f(w). Assume first that |z — w| < d, where d =dist [f~'(A), 9B].
Join z to w by a line segment y, and consider the arc family I =
A(f~'(A), yo: B). By virtue of (17),

Br
b

=M[f(I)]=M(I) =

d )
log

|z - wl|

8 ) — )]

from which we infer that

F2) = F0)| = 5l = wl? (18)
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If |z — w|=d or if f(z) = f(w), then

dia (D) dia(D), _

[f(z) - f(w)| = wlP. (19)

Combining (18) and (19) we see that (1) holds, with M = d~# max {b, dia (D)},
for all z and w on 3B. Thus the boundary mapping f | 3B belongs to Lips (6B). A

classical result due to Hardy and Littlewood allows us to conclude that f is a
member of Lipg (B).

4. Holder continuity and separating cross-cut families

In the section at hand we discuss alternative formulations of Theorems 1 and

THEOREM 3. Let f be a conformal mapping of a domain D onto B and let
0< a = 1. Then f belongs to Lip, (D) if and only if, corresponding to some (each)
point zy in D, there exists a constant a > 0 such that, for each pair of points z and
w on 3D, the family I of cross-cuts of D which separate z, from z and w satisfies

o
M(F)znlog’z_w|. (20)
Proof. To establish the necessity of condition (20), fix a point z, in D. We may
assume that f(z,) = 0. We may further assume that f is defined and continuous on
D and that f belongs to Lip, (D). Let M >0 be a Lipschitz constant for f
corresponding to the exponent a. Fix a pair of points z and w on 8D. Let I
denote the family of cross-cuts of D which separate z, from z and w. Next, let A
denote the family of cross-cuts of B which separate 0 from the shorter of the arcs
into which 9B is partitioned by the points f(z) and f(w). (If f(z) = f(w), the arc
degenerates to a single point.) Finally, let A, designate the family of those
cross-cuts in A whose images under f~! are rectifiable and are, therefore,
cross-cuts of D. Write Iy = f~!(A,). Since f is continuous on D, each cross-cut in
I, separates z, from z and w. The conformal invariance of the modulus, in
caombination with (11) and other elementary properties of the modulus, implies

2(1+V2) Io a
Bl —fw) 7 Clz—w|’

where a = (2(1 + V2)/M)"=. This establishes (20).

M(T) = M(I5) = M(A)) = M(4) =
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Conversely, assume that (20) is satisfied, with zo=f"'(0). We first demon-
strate that f can be extended to a continuous mapping of D.

Fix a point z in dD. Choose a sequence (z,) of distinct points in D
converging to z and choose, for each k, a cross-cut y, of D which separates z and
z, from z, and whose chordal diameter g(y,) satisfies

q(v)—0, (21)

as k— . The existence of such a cross-cut y, is a straightforward consequence of
inequality (20). Let D, denote the component of D\ y, which contains z,. Since
dist (z, Dy) is positive, we can find a sequence (U,) of neighborhoods of z such
that U, N D, = for each k. Combining (21) with standard conformal modulus
considerations yields

dia [f(v)]—0. (22)

Since f(vx) separates f(D N U,) from 0 in B, we infer from (22) that dia [f(D N
U:)]— 0 and, thus, that the cluster set of f at z reduces to a single point. In other
words, f has a limit at z, an arbitrary point of dD. Therefore, f admits a
continuous extension to D. We continue to denote the extended mapping by f.

We now verify that f belongs to Lip, (D). For this, fix a pair of points z and w
on 3D such that f(z) # f(w). Consider the family I" of cross-cuts of D separating
Z, from z and w in D. By virtue of (12) and (20),

1 32
_<_M(F)=M[f(r)]s;logm,

glo
7 Bz —w]

which implies

f(z) - fW) =M |z —w|*,

where M =32/a® This estimate holds trivially for points z and w on 9D with
f(z) = f(w). We infer that the boundary mapping f | 8D belongs to Lip, (3D). As
before, this fact permits us to conclude that f belongs to Lip, (D).

Theorem 2 has the following counterpart in the present setting.
THEOREM 4. Let f be a conformal mapping of B onto a domain D and let

0< B =1. Then f belongs to Lips (B) if and only if, corresponding to some (each)
point z, in D, there exists a constant b > () such that, for each cross-cut y, of D
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with distinct endpoints z and w, the family I of cross-cuts of D which separate z,
from y, in D satisfies

1 b
M(F)Sﬂ—nlogm. (23)

Proof. To establish the necessity of condition (23), fix a point z, in D.
Once again we make the assumption that f(0) = zy. In addition, we may assume
that f is defined on B and that f belongs to Lipg (B). Let M >0 be a Lipschitz
constant for f corresponding to the exponent B. Fix a cross-cut y, of D with
distinct endpoints z and w. Let I" denote the family of cross-cuts of D which
separate z, from y,. By a classical theorem of Koebe, f~'(y,), as well as each
member of the family f~'(I), is a cross-cut of B. Let z* and w* be the endpoints
of f~!(y,). Each arc in f~!(I') separates 0 from f~'(y,) and, by virtue of (12),

1 32 1 b
M(D)=M[f'IN)]s—-log————=—log——
( ) {f ( )] ”Oglz*__w*|<ﬁnloglz_w|)

where b = M32P. This establishes (23).

Conversely, assume that (23) is satisfied, with z,=f(0). We observe, as an
elementary consequence of (23), that dia(D)=b. Once more we begin by
demonstrating that f can be extended to a continuous mapping of B.

Fix a point z in 3B and suppose that f fails to have a limit at z. Then we can
choose sequences (z;) and (wy) in B such that z,—z and w,—z, while
f(zi)— z' and f(w,)— w’, where z' #w’. As in the proof of Theorem 2, we find
distinct points z; and w; on 8D such that z;— z’, w;— w' and such that z; and
wy, respectively, are angular limits of f at certain points z; and w; on 9B, with
zp—z and w;— z. Let y; be the line segment with endpoints z; and w;. We
may assume that y; does not pass through the origin. Denote by I'; the family of
cross-cuts of B separating y; from the origin. It is easily seen that

M(I)— >,

as k — «. On the other hand, f(yZ) is a cross-cut of D with terminal points z; and
w;. Let I; be the family of cross-cuts of D separating z, from f(yz). Since the
paths in the family f(I'y)\ I are non-rectifiable, we can use (23) to estimate

1 b 1 b
MIF(I3)] = ML) <= log ————> — log ——— < .
[f( k)] (k) ﬂ.ﬂ: g'zk'—wkl ﬁn glz _wll



Extremal length and Holder continuity of conformal mappings 401

This contradiction to the conformal invariance of the modulus shows that f must
have a limit at z, an arbitrary point of dB. We conclude that f admits an
extension to a continuous mapping of B. The notation f will be retained for the
extended mapping.

Finally, we verify that f belongs to Lipg (B). Fix a pair of points z and w on
OB for which f(z) #f(w). Assume first that |z —w|<1. Join z to w by a line
segment y, and let I'* denote the family of all cross-cuts of B separating y, from
the origin. Then f(I'*) is contained in I', the family of all cross-cuts of D
separating z, from the cross-cut f(y,) in D. We employ (9) and (23) to estimate

1

—lo B
- g

1
B B —fow)]

lZ_wlsM(r*)=M[f(r"=)]sM(r)f;

This permits us to infer that
f(@)—fw)|=b |z —w|"

If f(z) = f(w) or if |z — w| = 1, this inequality holds trivially, because dia (D) < b.
Thus the boundary mapping f | 9B belongs to Lipg (B). A classical result due to
Hardy and Littlewood allows us to conclude that f is a member of Lipg (B).

Although the condition described by Theorem 4 might strike one as somewhat
awkward, something of this nature is really needed to deal with non-Jordan
domains. Anticipating future reference, we record the following variant of
Theorem 4 valid in the special case where D is a Jordan domain. The proof,

which is a much simplified version of the proof given for Theorem 4, is left to the
reader.

THEOREM 5. Let f be a conformal mapping of B onto a Jordan domain D
and let 0 < B = 1. Then f belongs to Lipg (B) if and only if, corresponding to some
(each) point z, in D, there exists a constant b > 0 such that, for each pair of points
z and w on 3D, the family I of cross-cuts of D which separate z, from z and w
satisfies

b
|z —w|

M(I”)sﬁlglog

A complex-valued function f on a set A in C is called a quasi-isometry if there
is a constant L > 0 such that

E%ﬂsvurfwnSLh—w
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for all z and w in A. We conclude this section by characterizing the plane domains

D with the property that conformal mappings between D and B are quasi-
isometries.

THEOREM 6. Let f be a conformal mapping of a domain D onto B. Then f is
a quasi-isometry if and only if, corresponding to some (each) point z, in D, there
exist constants a >0 and b >0 such that, for each pair of points z and w on 3D,
the family I of cross-cuts of D which separate z, from z and w satisfies

1 a 1 b

(24)

lz—w|’

Proof. The necessity of (24) follows from Theorems 3 and 5. To prove the
sufficiency, we first employ Theorem 3 to infer from the left-hand inequality in
(24) that f belongs to Lip, (D) for a=1. In particular, f has a continuous
extension to D. From the right-hand inequality in (24) we deduce. without
difficulty, that D is bounded and that the extension of f is injective. In other
words, D is a Jordan domain. Theorem 5 then guarantees that f~' belongs to

Lipg (B) for B =1. Consequently, f is a quasi-isometry.

5. Euclidean geometric separation properties

In the remainder of this paper we illustrate how the preceding characteriza-
tions can be used to retrieve information on the Holder continuity of a conformal
mapping from certain euclidean geometric data.

Let D be a simply connected domain in C. Fix a point z, in D and let
0< B =1. If there exists a constant b >0 such that any pair of points z and w on
dD can be separated from z;, by a cross-cut y of D satisfying

dia (y)<b |z — w|?, (25)

we will declare D to have the separation property with exponent . In the special
case f =1 we will say that D has the linear separation property. It is not difficult
to see that, except for the value of the constant b, (25) does not depend on the
choice of z,.

A class of domains satisfying (25) was considered in [9]: domains which are
arcwise connected with exponent B. A domain D in C is said to be arcwise
connected with exponent B if there exists a constant b >0 such that each pair of
points z and w in D can be joined by an arc y in D satisfying (25). If D satisfies
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this condition with B =1, we referred to D in [9] as b-arcwise connected. All
bounded simply connected domains of such types are necessarily Jordan domains.
On the other hand, it is not difficult to exhibit bounded simply connected
non-Jordan domains which have the linear separation property.

THEOREM 7. Let f be a conformal mapping of a domain D onto B and let
0<B=1. If D has the separation property with exponent B, then f belongs to

Lip, (D) for a=B/2. This Holder exponent is the best possible for each S,
0<p<l

Proof. Fix a point z, in D. Let d =dist (z,, D) and let b >0 be a constant
such that (25) holds. Define a >0 by ba” = d/2. We show that each pair of points
z and w on 8D with |z — w| <a can be separated from A = B(z,, d/2), the closed
disk of radius d/2 centered at z,, by a cross-cut y of D satisfying

M[A(A, y:D)] s——-—z”—a——. (26)

B log

|z = wl

Fix such a pair of points z and w. Select a cross-cut y of D which separates z
and w from z, and satisfies (25). Then y separates z and w from A, because
dia (y) <d/2. It is routine to obtain the estimate

27 2
M[A(A,y.D)]SlO — slo —
Edia(y) B2z -wlP

and (26) follows with a as indicated. Theorem 1 now implies that f belongs to
Lip, (D) with o = /2.

Finally, the sharpness of the Holder exponent a for fixed B, 0<f <1, is
demonstrated by a conformal mapping f of D; onto B, where

a

Ds=B\{z=x+iy:0sx=1,0=sy=x"\}.

COROLLARY 1. Let f be a conformal mapping of a domain D with the linear
separation property onto B. Then f belongs to Lip, (D) for a =1/2.

The conclusion of Corollary 1 cannot be improved if D is allowed to vary over
the entire class of domains enjoying the linear separation property. It is natural to
ask what supplementary information is required concerning a domain D from this
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class in order to place f in Lip, (D), where now 1/2 < & =< 1. One possible answer
to this question is supplied by the next theorem. In this result the notation A
designates the hyperbolic distance in D normalized to have curvature —1. As
earlier, dist (z, dD) indicates the euclidean distance of a point z from 3D.

THEOREM 8. Let f be a conformal mapping of a domain D with the linear
separation property onto B and let 1/2< «a =< 1. Then f belongs to Lip, (D) if and
only if, corresponding to some (each) point z, in D, there exists a constant a >0
such that

hp(zo, (27)

)= alog——
= *'98 Gist (z, oD)

for all z in D.

Proof. The necessity of condition (27) is immediate. Indeed, if we fix 2, in D,
if we assume that f(z,) =0, and if we choose a Lipschitz constant M >0 for f
corresponding to &, we obtain for z in D

hp(20, 2) = hp(0, f(2)) = log - [f(i) 3B]

1 a
= alog—
M dist (z, aD)* * °Bdist (z, aD)

= log

where a=M~"".

To prove the sufficiency, fix z, in D for which (27) holds. We may again
assume that f(z,) = 0. By Corollary 1, we may further assume that f is defined on
D and that f belongs to Lip,, (D). Let M;>0 be a Lipschitz constant for f
corresponding to the exponent 1/2. By assumption, there exists a constant b >0
such that each pair of points z and w on 8D can be separated from z, by a
cross-cut y of D satisfying

dia(y)<b |z —w|. (28)
Let ¢ be a constant satisfying 0 < ¢ < 1/bM3.

Consider a pair of points z and w on 3D for which |z — w|<c and for which
f(z) #f(w). Select y as in (28). Then f(y) is a cross-cut of B satisfying

dia [f(y)] =M, dia (y)"> = M,b"*c"? < 1.

It can be inferred from this information that f(y) has two distinct endpoints. Thus
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y must likewise possess two distinct endpoints, say z* and w*. Let y* be the
(necessarily unique) geodesic cross-cut of D with endpoints z* and w*. A
theorem of Gehring and Hayman [4] guarantees that

dia (y*) =k dia(y), (29)

where k>0 is an absolute constant. If w, denotes the point of y* at minimal

hyperbolic distance from z,, we employ (27), (28) and (29), along with
elementary properties of the hyperbolic distance in B, to compute

4 4
log —m o> - _
oF [f(z) —f(w)l log ‘f(z*) __f(w*)l hg(0, f(wy)) = hp(zy, W)

a a a
%8 Sist (m, 3D) ¥ %8 Gia (77 = ¥ 8 prr S

=l

with the result that
f(z) = f(w)| = 4(bkla)* |z — w|*".

This estimate holds trivially for points z and w on 3D with f(z) = f(w). Finally, if
|z —w|=c,

@)~ Fom] = |z = w]*

We conclude that (1) holds, with M = max {4(bk/a)*, 2/c*}, for all points z and
w on 3D. In other words, the boundary mapping f | 3D belongs to Lip, (8D).
Thus f is a member of Lip, (D) [5], [14].

As pointed out in [11], condition (27) by itself affords no guarantee that f will
belong to Lip, (D). The following result describes a more concrete geometric
condition which is sufficient to place a conformal mapping of a domain D
enjoying the linear separation property onto B in Lip, (D) with a > 1/2. At the
same time, it serves to illustrate the use of Theorem 3. (For related results, see

2])

THEOREM 9. Let f be a conformal mapping of a domain D with the linear
separation property onto B and let 1/2 < a = 1. Suppose there exists an R >0 such
that, for each w in 3D and for 0<r <R, no component of D N 3B(w, r) has
length exceeding ntir/a. Then f belongs to Lip, (D). This Hélder exponent is the
best possible.
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Proof. Let b >0 designate a constant corresponding to z,=f"'(0) for which
condition (25) holds with 8 =1. We may assume that 0 <R <min {b, d}, where
d = dist (zy, D). Consider points z and w on 9D, together with the family I' of
all cross-cuts of D which separate z and w from z,. We verify that

@ a
M(I“)znlog‘Z i

where a =R/b. As this is trivially the case when b |z — w| = R, we may assume
that b |z — w| <R. By hypothesis I" contains a cross-cut y, of D which satisfies
dia (yo) =b |z — w|. Let w, be an endpoint of y,. When b |z — w|<r <R we can
select a component y, of D N dB(wy, r) which separates z, from y, in D. Such an
arc y, clearly belongs to I' and, by assumption, its length does not exceed 7r/a.
Letting I'* be the family of such y,, we have

o R
M(D)Y=M(I'*) =—log ———
(D=M(I") = log .

as desired. Theorem 3 insures that f is a member of Lip, (D). The sharpness of
the Holder exponent is demonstrated by taking D = {z:|arg z| < n/2a}.

For a simply connected proper subdomain D of C there is a natural way to
formulate a separation condition dual to the linear separation condition: given a
point z, in D one can simply require the existence of a constant b > 0 such that

dia(y)=b |z — w| (30)

for every pair of points z and w on 3D and for every cross-cut y of D that
separates z and w from z,. It is straightforward to demonstrate that only a
bounded domain can possess this property. The suggestion is that a condition
such as (30) will insure the uniform Holder continuity of a conformal mapping of
B onto D. If D happens to be a Jordan domain, this is actually the case. In order
to accommodate non-Jordan domains, however, condition (30) must be altered
somewhat. One possibility is to demand that (30) hold for cross-cuts y of D
separating points z and w inside D from z,. We prefer a slightly different
modification of (30), one which has the added advantage that the Hoélder
exponent obtained is not far from being optimal. Given a cross-cut y of D, the
notation D, will indicate the component of D\y having smaller diameter.

THEOREM .10. Let f be a conformal mapping of B onto a bounded domain
D. Suppose there exists a constant ¢ > 0 such that

dia (D,) <c dia(y) (31
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for every cross-cut y of D. Then f belongs to Lipg (B) for

== (32)

Proof. Every cross-cut y of D satisfies

2 2

area (D,) =7 [dia (D,) =~ dia (v) < - I(y)’ (33)

19

in view of the isodiametric inequality and (31). Lemma 5 in [9], a refined version
of Wollff’s classical inequality. then implies the existence of a number 7 >0 such
that, if z is a point of B and if 0 <r <R =1, then

R\B| marea (D) |'*
0= (R [ 2ama @)
T R
log —
r

(34)

for some p in (r, R). Here Bis asin (32) and A} = f[B N 3B(z, p)]. The hypothesis
(31) combined with (34) — or merely with the classical Wolff’s inequality, without
the term (R/7)” - readily shows that f admits an extension to a continuous
mapping of B onto D, which extension we will continue to denote by f.

Choose t > 0 such that

[f(z) = f(w)| < & dia (D) (35)

for all z and w in B satistving |z — w| <2r. Next fix distinct points z and w on 3B.
Assume, initially. that

2|z—w|=min {1, 1}. (36)

Invoking (34) with r =]z —w| and R =2r, we infer the existence of p in (r, R)
such that

IAS) <M, |z — wl®, (37)

with M, = (4/1)?[x area (D)/log2]"?. The set y =4} is a cross-cut of D. The
closure of D, contains f(z) and f(w) by virtue of (35). Inequalities (31) and (37)
yield

[f(z) — f(w)| = dia (D,) = c dia (y) = M,c |z — w|". (38)
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Finally, if (36) is not satisfied, one evidently obtains

If(z) = fw)| = M; |z — w|”, (39)

by simply taking M,=2fdia (D) max {t"?, t7°}. We infer from (38) and (39)
that the boundary mapping f | 3B belongs to Lips (3B). Consequently, f belongs
to Lipg (B).

6. Wedge conditions

In this section we demonstrate how two theorems of Lesley in [7] can be
deduced from the results in the present paper.

Let D be a bounded Jordan domain in C and let 0<f =< 1. The domain D is
said to satisfy an interior (respectively, exterior) B-wedge condition if there exists
an R >0 such that, for every point w in 9D, there is a closed circular sector of
radius R, angular opening Ba and vertex w which lies in D (respectively, in
C\D).

Suppose that D satisfies an interior B-wedge condition for some B. Fix a point
z, in D. Then there exists a constant ¢,> 0 such that each point w of 3D is the
terminal point of an end-cut E of D from z, satisfying

dia (E,) = ¢, dist (z, D)

for all points z on E, where E, denotes the subarc of E with z and w as its
endpoints. As observed by Lesley [7], Theorem 1 in [13] then guarantees the
existence of a constant ¢ > 0 such that

dia (y) = c dia [C(z, w)], (40)

whenever z and w are distinct points of 3D and v is a cross-cut of D terminating
in z and w. Here C(z, w) indicates the arc of smaller diameter on 3D with
endpoints z and w. Next, an elementary argument involving (40) shows that any
pair of points z and w in the exterior D* of D can be joined by an arc y* in D*
with

dia (y*) = E;_w_[ .
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This, in turn, insures that D* is b-arcwise connected for any b larger than 1/c.
Similarly, if D satisfies an exterior f-wedge condition for some S8, then D is
b-arcwise connected for some b.

The following result was established by Lesley [7, Theorem 2] using
strip-mapping techniques. In view of the above considerations, it could also be
inferred as a corollary of Theorem 9. For reasons that ought to become clear in
the closing section of this paper, however, we present a short proof in full detail.

THEOREM 11. Let f be a conformal mapping of a bounded Jordan domain
D onto B. Suppose that D satisfies an exterior (-wedge condition for some [,
0< B =1. Then f belongs to Lip,, (D) for a =1/(2 - B).

Proof. Fix z, in D and choose R, 0 <R <dist (z,, D), for which the exterior
pB-wedge condition is satisfied. Next choose b such that D is b-arcwise connected.
Fix a pair of points z and w on 3D. By Theorem 3 it is sufficient to exhibit a
constant a > 0 such that the family I' of cross-cuts of D which separate z, from z
and w satisfies

M=

1 a
7 B)nloglz mw i (41)

We establish this with a = R/2b.

If |z — w|=R/2b, (41) follows trivially. Assume, therefore, that |z — w| <R/
2b. The points z and w are the terminal points of a cross-cut y, of D, which can
be so chosen that

dia (y,) =2b |z — w|.

When 2b |z — w| <r <R, the set D N 3dB(w, r) has a component which separates
v, from z, and which, as a result, belongs to I'. Let S be a closed sector in C\D
with radius R, with angular opening Br, and with vertex w. It is then apparent that
I’ minorizes the family I'* composed of the circular arcs dB(w, r)\S, where
2b |z — w| <r <R. Consequently,

R

o~ 1
M) =M(I' )—(Z—ﬁ)nloga W]’

confirming (41).
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We next show that the second major result in [7] can be obtained using
Theorem 5 in this paper.

THEOREM 12. Let f be a conformal mapping of B onto a bounded Jordan
domain D. Suppose that D satisfies an interior -wedge condition for some p,
0< B <1. Then f belongs to Lipg (B).

Proof. Fix zy in D and choose R, 0 <R <dist (z,, D), for which the interior
p-wedge condition is satisfied. Next choose ¢, 0 <c <1, such that every cross-cut
of D satisfies (40). (Should the endpoints z and w of a cross-cut coincide, we
interpret C(z, w) to mean this single point.) By Theorem 5, it suffices to find a
constant b > 0 such that, for any pair of points z and w on 3D, the family I" of all
cross-cuts of D which separate z, from z and w satisfies

b
|z —w|’

1
N=—I1 42
M(I)=5-log (42)
We establish this with

b=

8R ox [2[3::2 N 168 area (D)]
c log 2 c’R? '

Fix z and w on 8D. Let y be an arc in I" with endpoints z' and w'. Then either
2, lies in the subdomain of D bounded by the Jordan curve y U C(z', w') or else
C(z', w') contains z and w. Thus, by virtue of (40),

1 2
min {R, |z — w|} = dia(y) +dia [(C(z’, w')] = (1 + E) dia(y) < . dia (y). (43)
If |z — w| = R, we have, accordingly,
dia () z%’f (44)

for each y in I', whence

4 area (D)

M(F)S C2R2

and (42) follows without difficulty.
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We proceed assuming |z — w| < R. In light of (43),

clz—w|

dia (v) > —— (45)

for each y in I'. Consider the family
={y e I':y meets B(w, c |z — w|/8)}.

By (45), each y in I; must meet 3B(w, ¢ |z — w|/4). The minorization property of
the modulus gives

2Jr
M(L; .
(I log log 2 (46)
Next, consider the family
R
L= {yer:dia(y)z%}.
Obviously
16 area (D)
ML)s——=—. 47

The family I includes each y in I' that meets both B(w, R/2) and 3B(w, R). It
contains, as well, every y in I" for which there exists a radius of B(w, R/2) lying in
D, but failing to intersect y. In fact, mimicking the argument used to derive (43),
we have under the “omitted radius” condition

R < dia (y) + dia [C(z', ) = (1+2) dia (v) =2 dia (7).

Finally, consider the family I3 =I'\(I; U I3). Choose a closed sector S in D
with radius R, with angular opening Bz, and with vertex w. Each y in [} lies in
the annulus B(w, R)\B(w, c |z — w|/8) and intersects every radius of S, implying
that y must possess a subarc joining the straight sides of S through S. We can
once again invoke the minorization property of the modulus and infer that

1 . 8R
o — —e
M) = logc iz |

B (48)
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As a combination of (46), (47) and (48) we obtain
M(I') = M(L) + M(I3) + M(I3)

2x  l16area(D) 1 8R
= + 2p2 t o log————
log 2 c’R Br Cclz—w|

provided b is as indicated.
The sharpness of the Holder exponents in Theorems 11 and 12 is demon-
strated by choosing for D an appropriate polygon.

7. Disk conditions

We conclude this article with a brief discussion of a class of domains satisfying
a B-wedge condition for all g, 0<B <1.

A bounded Jordan domain D is said to satisfy an interior (respectively,
exterior) disk condition if there exists an R > 0 such that, for every w in dD, there
is a closed disk of radius R containing w which lies in D (respectively, in C\D).
The remarks prior to Theorem 11 in Section 6 remain valid for domains satisfying
disk conditions.

THEOREM 13. Let f be a conformal mapping of a bounded Jordan domain
D onto B. Suppose that D satisfies an exterior disk condition. Then f belongs to

Lip, (D) for a = 1.

Proof. The argument parallels that in the proof of Theorem 11. Under the
present hypotheses the estimate (41) can be improved to read

1 a
M(I)=—log ol (49)

with a = 3R/8b. Indeed, we now take S to be a closed disk in C\D of radius R
containing w, rather than the earlier sector. The corresponding arc family I'* can
then be estimated below using (10) to arrive at (49).

Our methods yield a new proof for the following natural companion to
Theorem 13, a classical result often attributed to Kellogg:
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THEOREM 14. Let f be a conformal mapping of B onto a bounded Jordan
domain D. Suppose that D satisfies an interior disk condition. Then f belongs to
Lipg (B) for B = 1.

Proof. We mimic the proof of Theorem 12. Under the stronger hypothesis of
the present theorem estimate (42) can be sharpened to

8b

|z —wl|’

M) = % log (50)

with b as in (42). To see this, merely replace the sector S in the earlier proof with
a closed disk of radius R contained in D and containing w. The only essential

change to be made, then, occurs in inequality (48), which by virtue of (8) can be
improved to

1 64R
L)ys-log——.
M( 3) J'togCIZ—'WI

This will yield (50).
We close this paper with a combination of the two preceding results.

COROLLARY 2. Let f be a conformal mapping of a bounded Jordan domain
D onto B. Suppose that D satisfies both an exterior and an interior disk condition.
Then f is a quasi-isometry.
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