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The structure of the 2-Sylow-subgroup of K,(¢), 1

MANFRED KOLSTER

Introduction

Let E be a totally real number field with ring of integers «. The object of this
paper is to show that part of the structure of the 2-Sylow-subgroup of the tame
kernel K,(¢) is determined by the arithmetic of the relative quadratic extension
F/E, where F=E (\/—-1), and that this connection has some implications on the
validity of the 2-primary part of the Birch—Tate-conjecture. Our main result is a
formula for the 2"-rank of K,(¢) for all n =2, such that F contains a primitive
2"-th root of unity: Let A(F/E) denote the 2-Sylow-subgroup of the relative
S-class-group of F over E, where S consists of all infinite and all dyadic primes of
E, and let m be the number of dyadic primes of E, which decompose in F. Then
the following formula holds (Theorem 3.1):

rk:(K5(e)) = m + rky-(A(F/E)/im (bA(E)),

where ,A(FE) consists of the elements of order =2 in the S-class-group of E.

These considerations were motivated by results of K. S. Brown [4] on the
p-fractional part (p any prime) of the value of the zeta-function {r at —1.
Combining his results with the rank-formula we get a verification of the 2-primary
part of the Birch—Tate-conjecture in some new cases (Theorem 3.4) including all
fields E, for which the 2-Sylow-subgroup of K,(«) is elementary abelian. This
generalizes results of Browkin-Schinzel [3], Hurrelbrink [7], Hurrelbrink-Kolster
[8], Kolster [9], Urbanowicz [15] and G. Gras [5]. It seems worth mentioning that
the field E is not assumed to be abelian over Q.

1. Elements of 2-power order in K,(¢)

Throughout the paper we use the following notations: E is a totally real
algebraic number field with ring of integers o, F = E(V—1), S (resp. T) is the set
of all infinite and all dyadic primes of E (resp. F), Us (resp. Uy) is the group of
S-units of E (resp. T-units of F) and A(E) (resp. A(F)) is the 2-Sylow-subgroup
of the S-class-group of E (resp. T-class-group of F).
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If H is any finite abelian group, we denote by ,H the subgroup of elements of
order =2 and for t=1 by rk, (H) the 2'-rank of H, i.e. the number of cyclic
components of H, whose order is divisible by 2".

Let

H=(y;) X(y;) X+ x(y,)

be a decomposition of H into a product of cyclic groups (y;). We shall call
Y1, - - - » Yn @ basis for H.

The norm map from A(F) to A(E) is surjective (cf. Washington [16],
Theorem 10.1), and we denote the kernel by A(F/E). Then A(F/E) contains the
image of ,A(E), and we abbreviate the quotient by A'(F/E).

Let n, be the maximal natural number n, such that F contains a primitive
2"-th root of unity §,,. Thus ny=2. Our first aim is to describe elements of order
2" in K,(E) for n = n,. If w € K,(E) has order 2 we have w = {—1, x} for some
x e E* (cf. Tate [14], Theorem 6.1). If we K,(E) has order 4 we have
w?={—1, x} and by a result of Bass and Tate (cf. Milnor [11], Theorem 15.12) x
must be a norm from F. Let x = Ng(z), z € F*, and let Trgz: Ko(F)— K5(E)
denote the transfer map. Then we get

w?={—1, Npe(2)} = Trge ({—1, 2}) = Trpe ({i, 2})%,
i=\/——1, hence

w=Trge ({i, 2}) - {~1, 5}
for some y € E*.

Assume now that w € K,(E) has order 2", 2= n = n,. Proceeding as above we
get

w¥ ' = {—1, Npe(2)} = Trge ({85, Z})znnl:

hence w and Trpz ({,, z}) differ by an element of order =2"~'. Using induction
we get

LEMMA 1.1. Every element w € K,(E) of order 2", 1 =n = n,, has the form

w=Tree({Cn 2}) - {—1, y}

for some z € F*, y € E*.
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Remark 1.2. It is easy to calculate Trpg({(,, z}): Let z=a(1+b¢E,), a,
b e E*. Then we have

{Cn» 2} ={Cn, a} - {Cs, 1+ b} ={L,, a} - {1+ b, —b},
hence
Tree ({&nr 2}) = Trpe ({14 b8, —b}) ={1+b(E, + ) +b%, —b}.

Let s be a finite prime of E with corresponding valuation v,. The tame symbol
7,: K;(E)— (e/p)* is defined by

uv/c(v)

7,({u, v}) = (=1)»®»® mod 4

vty(u)

and w € K,(E) is contained in K;(c) if and only if 7,(w) = 1 for all finite primes /.
Now, if w has 2-power order, the tame symbols vanish at the dyadic primes,
hence in this case it is enough to show 7,(w)=1at all # ¢ S. Assume w = {-1, x}
has order 2. Then w € K5(e) if and only if v,(x) =0(2) at all » ¢ S, hence if we
define

As(E)={x e E*|v,(x)=0(2) for all s ¢ S}
we get a surjective homomorphism
As(E) E**— ,K(e),
whose kernel has order 2 (cf. Tate [14], Theorem 6.3).
LEMMA 1.3. ag:=2+ §,, + C,, generates the kernel of Ag(E)/E**— ,K5(e).

Proof. We have ar = Ngg(1+ €,,), hence ag is an S-unit, in fact the norm of
a T-unit in F. Let {, ., be a primitive 2" -th root of unity such that &3 ,, = §,..
By definition of n, the field E(&,,+, + &,.,+1) has degree 2 over E. Since
ag = (Engs1 + Cnye1)” this field is equal to E(Vay). Hence ay is not a square in E.
In order to show that {—1, a} is trivial, it is enough to show that {—1, 1+, } is
trivial in K,(F). But this is obvious, since —1= (2" and ny=2.
The order of the group Ag(E)/E*? is easily determined from the exact sequence

0— Us/Ui— Ag(E) E**5 A(E),— 0,
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where @([x]) = [IT,¢s4"?%)]. We get
rk, (As(E)/E*?) = |S| + 1k, (A(E)),
hence the well-known formula for the 2-rank of K,(c):
LEMMA 1.4. rk, (Ky()) =|S| =1 + 1k, (A(E)).

To detect elements of higher 2-power order in K,(«) we have to look at
certain subgroups of Ag(E)/E**: Let Ay(E):=As(E) N\ Nge(F*). An element
x € A|(E) is called n-admissible (2=n =n,), if there is z € F* with Ngz(z)=x
and ve(z-z7')=0@2""") for all P¢T. Since vp(z-27")=v,(Npe(2)) -
2us(2) =0(2), all elements from Ay(E) are 2-admissible. In general, for fixed n,
the n-admissible elements form a subgroup of Ay(E). Moreover the property of
being n-admissible depends only on the class mod E*?, so that the n-admissible
classes form a subgroup of Ay(E)/E**. Assume now that [x] is an n-admissible
class and let z € F* satisfy Ng(z) € [x] and vg(z - 27')=0(2""") at all ¢ T. To
[x] and z we attach the following ideal class mod squares:

Ya([x]; 2) = [ n/»“/zn—l)"‘“”(z'rl)] mod A(E)?,

feS

where # ¢ T is any prime dividing /. We define
A(E):={[x] € A(E)/ E**| y,([x]; z) = 0 for some z}.

Clearly for all n, 2= n = n,, this is a subgroup of A,(E)/E**. Moreover, since ag
is the norm of a T-unit, we have [az] € A,(E) for all n.
Our main result in this section is the following:

PROPOSITION 1.5. Let [x] € A(E)/ E** be a non-trivial class different from
[ag]. Then {—1,x} is a 2" '-th power in Ky(»), 2=En=n,, if and only if
[x] € A.(E).

We immediately get the following

COROLLARY 1.6. Let 2=n=n,. Then we have

1k, (Ka(e)) = 1k, (A,(E)) - 1.
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Proof of Prop. 1.5. Let w € K5(¢) satisfy w?"' = {—1, x}. By Lemma 1.1

w=Trge ({€ns 2}) - {-1, y}

with N(z) € [x], y € E*. To go further we have to evaluate the tame symbols 7,
at Trge ({C,, z}) for 4 ¢ S. This can be done using Remark 1.2, but it is simpler
to use the following approach: Let u(E;) (resp. u(Fz)) denote the group of roots
of unity of the local field E, (resp. F») and let A, : K,(E)— u(E,) and Ap : K(F)—
u(Fp) denote the norm residue symbols. According to Bak—Rehmann [1], Prop. 2
for each 4 ¢ S there is a commutative square

where 15 : u(Fp)— u(E,) is raising to the |u(F;)|/|u(E,)|-th power.

Since £ ¢ S, the extension F/E is unramified at 4, hence up to odd torsion the
order of the norm residue symbol coincides with the order of the tame symbol.
Thus if we replace the norm residue symbols by the tame symbols we get a
corresponding square which commutes up to odd torsion.

Now, if 4 ¢ S is inert in F and 2 | we have 15({C,, z}) = £»**’ mod 2 and
T4(Trge ({Eny 2})) is a certain power of this. But this power must be divisible by
2", since if we take any element a € E with v,(a) =1, we have 15({(,, a})=
£, mod ?, whereas Trg({{,., a})=1. Hence we see that Trg ({{,, z}) has
trivial tame symbols at inert 4. Assume now that 4 = PP decomposes in F. Then
we have to take the product of £2**) mod 2 and £**) mod 2 to get the order of
T (Trre ({Ens z}) hence the product of £2**) mod ? and %*'*) mod 2, which is
equal to £2*¢"*") mod.

Since 7,(w)=1 at all 4 ¢S and 7,({—1, y}) =(-1)»"" mods, we see that
va(z - 27Y) E0(2"“) atall ¢ T and (1/2" Ye(z - 27') + v,(y) =0(2), hence [x]
is n-admissible and vy,([x]; z) = 0.

Conversely, the vanishing of y,([x]; z) for some z implies that there is y € E*
such that (1/2" )vg(z - 27') + v,(y) is even at all 4 ¢ S, hence the computations
above show that Trz/z ({C,, z}) - {—1, y} lies in K5(c).
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2. Auxiliary computations

Let A7 (F):={zeF*|va(z)=0(2) for all P¢ T}. We extract some useful
information contained in the commutative diagram

0 —> Up/U% —> A (F)/F*? — ,A(F) —> 0

l l 1 )

0 —> Us/Us — A(E)/E*> — ,A(E) —> 0

where the vertical arrows are the various norm maps.

LEMMA 2.1. The kernel of the norm map from Ar(F)/F** to Ag(E)/E*?* is
isomorphic to Ag(E)/E**U —E*?,

Proof. An application of Hilbert 90 shows that the kernel is contained in the
image of Ag(E)/E*% Moreover if x € As(E) becomes a square in F, then either x
or —x is a square in E.

The kernel of the norm map from ,A(F) to ,A(E) is ,A(F/E) and contains
the image of ,A(E) in ,A(F). Thus if we let c=r1k,(A(E)), ¢'=
rk, (ker (A(E)— A(F)), then this image has 2-rank ¢ — ¢' and we define g =0 by
1k, (A(F/E))=c—c'+g. Since by Lemma 2.1 the kernel of the norm map
Ngg: Ar(F)/F**— Ag(E)/E** has 2-rank |S| + ¢ — 1 and maps onto the image of
2A(E) in ,A(F), which has 2-rank ¢ — ¢’ we get

LEMMA 2.2. The 2-rank of the kernel of Ng:Ur/U%— Us/U% is equal to
IS| + ¢’ — 1.

Let m be the number of dyadic primes of E, which decompose in F. Thus
m=|T|—|S|. We get

COROLLARY 2.3. The image of Uy/U% in Us/ U has 2-rank m — ¢’ + 1.
Now this image contains the S-unit o, hence

COROLLARY 2.4. ¢'=m. In particular: A(E) injects into A(F), if all
dyadic primes of E are undecomposed in F.

Finally, since there are g components in ,A(F/E) which survive in the
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cokernel of Ur/U7— Us/Us3, we get from Corollary 2.3:

COROLLARY 2.5. The group UsN Nge(A+(F))/Us has 2-rank m —c¢' +
1+g

3. Rank formulas for K,(c)
The main result of this paper is the following:
THEOREM 3.1. Let 2=n =n,. Then the following formula holds:
1k,, (Kz(e))=m +1k,,_, (A'(F/E)).
Before we give the proof we derive some consequences. If we take n =2 we see

that rk,(K;(¢))=0 if and only if m=0 and A(F/E)=im,A(E). Now by
Corollary 2.4 m =0 implies that A(E) injects into A(F). Thus we get

COROLLARY 3.2. The 2-Sylow-subgroup of K(¢) is elementary abelian if
and only if all dyadic primes of E are undecomposed in F and A(F/E) =,A(E).

Let m =0 and let A5 denote the order of A(F/E). Then the order of A'(F/FE)
is equal to hg/2°. If the exponent of the 2-Sylow-subgroup of K,(¢) is less than
2", we can compare the orders:

COROLLARY 3.3. Assume that m =0 and that the 2-Sylow-subgroup of
Ku(c) has exponent less than 2. Then its order is equal to 251" - hy.

Let us now describe the consequences of this result towards the 2-primary part
of the Birch-Tate-conjecture: Let {r denote the {-function of E and for each
prime number p let n, be the maximal natural number n, such that the cyclotomic
field E(C,») is quadratic over E. Thus in particular n, coincides with n,. If we put

wy(E):=2%%1. ] p™,

p odd

the Birch—Tate-conjecture predicts that

|Ks(e)] = wiE) - |E6(=1)).

(cf. Birch [2], Tate [13]). The proof of the Main Conjecture in Iwasawa-theory
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given recently by Mazur—Wiles, implies that the conjecture holds for all abelian
number fields up to 2-torsion (cf. Mazur—Wiles [10], Theorem 5). In contrast with
this there are still only a few results on the 2-primary part: It is known to hold for
certain real quadratic number fields by the work of Browkin-Schinzel [3],
Hurrelbrink [7] and Urbanowicz [15] and for certain maximal real subfields of
cyclotomic fields (cf. Kolster [9] and Hurrelbrink—Kolster [8]). In all these
examples the 2-Sylow-subgroup of K,(¢) is elementary abelian. A more general
result in this direction was obtained recently by G. Gras assuming that the
2-Sylow-subgroup of K,(¢) is elementary abelian and of 2-rank [E:Q)], which of
course implies that A(E) is trivial and E has only one dyadic prime.

Combining the rank-formula with results of K. S. Brown we obtain a result
which generalizes those from above:

THEOREM 3.4. If m=0 and hs <2°*™"! the 2-primary part of the
Birch—Tate-conjecture holds. In particular it holds if K,(c) has an elementary
abelian 2-Sylow-subgroup.

Proof. In the case m =0 K. S. Brown (cf. [4], Prop. 9(ii)) has shown that the
2-fractional part of £g(—1)/2151*<=3 is equal to h5/2°*™~'. Since by assumption
hs <2¢7m~! we get

wy(E) - |Ee(—=1)| = hg - 217! up to odd torsion.

Since A'(F/E) has order h5/2° <2™~!  the exponent of the 2-Sylow-subgroup of
K5(~) is less than 2", hence the result follows from Corollary 3.3.

Proof of Theorem 3.1.

We start with the following simple group-theoretic lemma:

LEMMA 3.5. Let H be a finite abelian 2-group of rank n and let N be an

elementary abelian subgroup of rank k. There exists a basis y,,...,y, of H,
ly:| = 2", such that y¥" ', ..., y¥* ' is a basis of N.
Proof. Let z,, ..., z, be an arbitrary basis of H and x,, . . ., x, an arbitrary

basis of N. Furthermore let |z;| = 2™. We may assume that

R
m, ~1
X = HZ,Z !
j=1
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and that m;=m;forj=1,...,s. Let
s -
nh= sz‘zml "
j=1

Then we get y?" '=x, and y,, 2,, . .., z, is again a basis of H. Changing — if
necessary — x; to x;x;, we may assume that (x,) X--:X (x.) is contained in
(z;) X -+ X% {z,), hence the claim follows by induction.

If — in the situation of Lemma 3.5 — we have k =n, we call y;, ..., y, a joint
basis for H and N.

Let us apply Lemma 3.5 to the group A(F/E) and the elementary abelian
subgroup im (;A(E)). We see in particular that A(F/E) has some decomposition
into a product A(F/E); X A(F/E)y, where A(F/E), and im (A(E)) have a joint
basis. Thus

tky-1 (A'(F/E)) =tk (A(F/E)) + tkyn-1 (A(F/E)yy).
In view of Corollary 1.6 we have to show that

tk; (A (E))=m + 1+ 1ky-1 (A'(F/E))
=m+1+ rkz" (A(F/E)]) + rkz"‘l (A(F/E)")
We prove this in two steps using the map ¢ : Ag(E)/E** — ,A(E).
Claim A. 1k, (A (E)Nker @)=m —c' + 1+ 1kp-1(A(F/E)y).
Claim B. 1k, (9p(A,(E)) =c' + tky(ACF/E),).
Proof of Claim A:
We first prove a Lemma:
LEMMA 3.6. [x] e As(E)/E*? is contained in A,(E)Nker ¢ if and only if

there exists u € F* with Npg(u) € [x], such that ve(u)=0(2""") for all ? ¢ T and
(Mper P2 D7) € A(FIE).

Proof. Assume that [x] € A,(E) Nker ¢ and let z € F* satisfy Nge(2) € [x],
ve(z-27H=012""") at all P¢T and vy,([x];z) vanishes mod A(E)> Since
[x] € ker @, we may assume that Ng(z) is an S-unit. Then

[ I‘Iﬁ(IIZ””‘)v_;(z-i“)] — [H/-—(IQ"“Z)UJ(E)]’

SeS ¢S



The structure of the 2-Sylow-subgroup of K,(¢), I 385

hence there is y € E*, such that
1 -
~ 52 vp(Z) +v,(y)=0(2) forall P¢T.

Let u=y*"/z. Then u satisfies the conditions of the Lemma. Conversely, let
u € F* satisfy the conditions of the Lemma. Then it is easy to see that [x] € ker ¢
and that y,([x]; u) vanishes in A(E)/A(E)*

Lemma 3.6 implies in particular that we have the following inclusions
Nre(Ur)/Us = A,(E) Nker ¢ < Us N Npe(Ar)/ US. (* %)

By Corollary 2.3 the group Ng(Uz)/U5 has rank m — ¢’ + 1, hence we have to
show that the rank of the quotient B:=A,(E)Nker ¢/Nge(Ur) is equal to
tk,»-1 (A(F/E)y). Now by (* *) B embeds into the quotient of Ug N Nge(Ar)/ U3
by Nge(Ur)/U%, which by Corollary 2.4 and the definition of A(F/E)y is

isomorphic with the group of elements of order =2 in A(F/E)y, where the
isomorphism is given by

[ I1902| — [Npue(w)] mod N(Uy),

Pe¢T

Let rk, (B) = k. By Lemma 3.5 we find a basis [[[p.r P1*"?™)], 1=i=g, of
A(F/E)y, such that [w] mod Npe(Ur), 1=i=k, is a basis of B. Lemma 3.6
implies that we have n,<n —1 for all i >k, and that for i =k we find w; € F*,
such that [Ngg(u;)] = [NpeW)], ve(uw;) =027 ") at P ¢ T and [[1p,r PHPU2)] is
a 2" 2-th power in A(F/E). Thus n; Zn — 1 for i = k, which proves Claim A.

Proof of Claim B:

We show first that ker (A(E)— A(F)) is contained in @(A,(E)). Thus let
[¢] € ker (A(E)— A(F)). Since the norm map from A(F) to A(E) is surjective, we
find an ideal-class [¢] in A(F), say

[«] = [ n 92:(1/2"')119(‘*')]’

PeT

such that [Npg(a)] = (4], hence [[I,(sp " #™7(* D] = [4]. Since [4] vanishes in
A(F), there is z € F*, such that (1/2™)u,(Npe(w)) =vg(z) at all P¢ T (P |4).
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This implies that ve(z-27')=0 at all ¢ T and that [¢/]= @([Npe(2)]) with
[Nr£(2)] € A, (E). Since ker (A(E)— A(F)) has rank ¢’, we get a contribution of
¢’ to the 2-rank of @(A,(E)).

Assume now, that the image of ¢(A,(E)) in A(F/E), has rank k. By Lemma
3.5 we can find a basis [¢)], ..., [¢.—c] of A(F/E),, |[«;]|=2", such that for
1 =i =k the 2"~ '-th powers of the [¢;] form a basis of the image of @(A,(E)) in
A(F/E)y. In order to prove Claim B we have to show that n,=n for 1=i =k and
n,<n fori>k.

Let [x] € A, (E). Then for a suitable z € F* with Ny (z) € [x] we have

[H/,(llzn—l)ug(z.z—l)] — [A]Z in A(E),

#eS

hence

I:H/l(llz)vy(z-f")] - [A]Z"”‘ in A(E)

#eS

The left-hand side equals @([x]) - [IL,¢s~""*"]. Now in A(F):

[l—[/f””(z’] - [ I gw.;(f)] . [ I (@@)v.»m]

e ;=? /1@@
- [ 11 gwtf-f')] =[]
¢
/p/-'——e?;i’
where ¢ =11 , ¢ @u2hs2"D  Now the norm of [] is equal to [#]72, hence if
p=PP

we denote by [/;] the image of [/] in A(F), we have shown that [/z] e A(F/FE)
and that the image of @([x]) is a 2" '-th power in A(F/E). Thus in particular we
getn,=nfor1Si=k.

Let [«] be any of the ideal-classes [«;] with i >k and assume that the order of
[«] is equal to 2™ with m = n. Thus for some w € F* we have

[e] = [Mzer 227 ™)] and [Npp(e)] = [I1, g5t 20N 0]

vanishes in A(E). Thus there exists y € E*, such that v,(Ng:(w)) = v,(y*"). Since
[«*"'] lies in the image of ,A(E), there exists an ideal-class [-] € A(F), say [] =
[per P2, such that [«*"] is equal to the image of [[1, 52 (Ner())]
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in A(F). This implies the existence of some q € F*, such that

%v (Nee(u)) = up(w) + vs(g) atall P¢T(P|p).

Thus
1 1 1
i} U/(NF/E(M)) = '2—":3 U/(y) + §U/(NF,E(q)) at all /l ¢ S.

Let z =q - y*""". Then the calculations above imply that the image of ([Nz(2)])
in A(F/E), is equal to [«]*""". Furthermore we have

vp(z - 27 ) =va(q - ) = —3up(w - W) =0(2"7")

and

[I‘[/,wz"*')w(z-z“)] = [H/[—(l/z")w(ww*')] = [H/I(uz"-')vy(m]’

/&S /¢S /&S

hence y,([x];z) vanishes in A(E)/A(E)?, since we assumed m =n. Thus
[Npe(z)] lies in A, (E), which gives the desired contradiction. Thus indeed n; <n
for all i > k.
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