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Une observation sur les actions de Up sur les variétés compactes
de caractéristique non nulle

P. MOLINO ET F. J. TURIEL

On se propose de démontrer le résultat suivant: soit M une variété compacte
connexe et sans bord, de dimension 2n et de caractéristique d&apos;Euler-Poincaré non
nulle; alors, toute action de Up sur M a des orbites de dimension &lt;/î — 1.

Ceci généralise le théorème bien connu d&apos;E. Lima [1] d&apos;après lequel deux

champs de vecteurs commutant sur une surface compacte sans bord de

caractéristique non nulle ont toujours une singularité commune. Voir aussi [2].
Le principe de notre démonstration est très simple: on étudie directement la

réunion des isotropies infinitésimales aux différents points de M, en fonction de la

dimension des orbites.
Nous remercions F. Laudenbach pour ses critiques pertinentes d&apos;une première

version de ce papier.

I. Quelques préliminaires

1.1. Soient V un espace vectoriel réel de dimension p, et ®£ la grassmannienne des

A:-plans de V.

Si v e V, on posera Nkv {E e &lt;SÇ/v e £}.

LEMME 1 (i) Pour tout v eV — {0}, Nkv est une sous-variété compacte de ^
de codimension (p — k).

(ii) Si f\M~+Wk est une application différentiable, l&apos;ensemble des v e V pour
lesquels f n&apos;est pas transverse à Nk est négligeable dans V.

Preuve, (i) est immédiat.
Pour démontrer (ii), considérons £, € ^f et un supplémentaire E^ de £, dans

V. Soit °U l&apos;ouvert de ^f formé des graphes d&apos;homorphismes de Ex dans E2. On
identifie % à Hom (Ex, Eq). Comme % est recouverte par un nombre fini de tels

ouverts, il suffit de prouver le résultat si /(M) c °U.

Ceci étant, /est transverse à Nk{VXtVl) si et seulement si l&apos;application M~+E2
définie par x*-*f(x)(vx) admet v2 pour valeur régulière.
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Ainsi, vx étant fixé, l&apos;ensemble des v2 pour lesquels / n&apos;est pas transverse à

N{vuv2) est négligeable dans E^. Il suffit alors, pour obtenir le lemme, d&apos;appliquer

le théorème de Fubini.

1.2. Soit maintenant M une variété compacte connexe.

LEMME 2. Soit X un champ de vecteurs sur M tel que
(i) l&apos;ensemble des zéros de X soit une sous-variété P de M
(ii) pour tout p e P, le linéarisé de X en p prenne ses valeurs dans TPP et ait

pour noyau TPP.

Alors

Preuve. On considère un voisinage tubulaire de P dans M, identifié à un fibre
vectoriel jï:^-^ P. On munit § d&apos;une structure euclidienne, et pour e &gt; 0 on note
Me le fibre en sphères de rayon e. Les fibres en sphères définissent sur le

complémentaire §&apos; de la section nulle un feuilletage &amp;x\ on notera ^2 le

feuilletage supplémentaire sur £&apos; défini par les demi-droites issues de l&apos;origine

dans chaque fibre. Le bifeuilletage ainsi obtenu permet de décomposer la

restriction de X à £&apos; en une composante Xx tangente à 3*x et une composante X2

tangente à 3F2.

L&apos;hypothèse faite sur X entraîne que, pour e assez petit, Xx ne s&apos;annule pas en
restriction à Me. Il est alors facile de construire sur la variété à bord

M&apos;e M-{xet-l\\x\\&lt;e}

un nouveau champ de vecteurs sans singularités, et tangent au bord. D&apos;où

X(M&apos;E) 0. D&apos;où le résultat par Meyer-Vietoris.

II. Le résultat principal

II. 1. M est une variété compacte¦, connexe et sans bord, de dimension 2n et de

caractéristique d&apos;Euler-Poincaré non nulle. On considère une action de IRP sur
M. Pour clarifier les notations, on désignera par V l&apos;algèbre de Lie du groupe de

Lie Rp; on a donc une action infinitésimale de V sur M; pour tout v e V, on
notera X» le champ de vecteurs correspondant sur M.

Soit 2r la réunion des orbites de dimension r. Si ^_r est la grassmannienne des

(p — r)-plans de V, la correspondance qui à me2r associe l&apos;isotropie

infinitésimale en ce point définit une application
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Une orbite de l&apos;action sera dite régulière si les orbites voisines ont la même
dimension, singulière dans le cas contraire. La semi-continuité de la dimension de

Tisotropie infinitésimale entraîne que la réunion R des orbites régulières est un
ouvert dense de M. La réunion des orbites singulières sera notée I.

LEMME 3. (i) Pour tout r, hrest différentiable y
c&apos;est-à-dire s&apos;étend localement

en une application différentiable de M dans ^_r.
(ii) Si r &gt; n + 1, l&apos;ensemble des vecteurs de V qui appartiennent à Visotropie en

un point de 2r est négligeable dans V.

(iii) L&apos;ensemble des vecteurs de V qui appartiennent à Visotropie en un point
de l fl ZM est maigre dans V.

Preuve. Si m eZr, on choisira une base {vly vp) de V telle que
^r+i&gt; • • • y vpi engendrent l&apos;isotropie en m. On peut alors trouver au voisinage de

m des coordonnées locales xïf. x^, telles que XVt d/dxt pour / 1, r.

Pour simplifier, on restreindra ces coordonnées à un voisinage ouvert f de m de
manière que l&apos;image de V par la carte ainsi définie soit un ouvert convexe de
R2&quot;.

Si, pour j r + l, ...,p, on a XVj Jaflifjtid/dxi), les fonctions f;l ne

dépendront pas de xlf xr dans le domaine des coordonnées, et s&apos;annuleront

en m.
Maintenant, si nous regardons les homomorphismes de l&apos;espace engendré par

ur+1,... vp, dans l&apos;espace engendré par vlf vry comme un ouvert °U de

^_r, et si l&apos;on munit °U de la carte définie par les bases {vr+u vp) et
{-Vx, -vr}y alors /ir:2rH V-*^-, a pour composantes les fjh où j
r + 1, p, et / 1, r. On peut restreindre V de façon que /ir(2r H V) c
%; ceci étant, les fonctions^/ définissent une extension différentiable hr de hr à Y.
Ceci prouve (i).

Le fait que les flt ne dépendent pas de xu xr signifie que hr:V-*6U se

factorise en une application dans °tt d&apos;une transversale T à l&apos;orbite de m, définie

par exemple par xt constante pour i 1, r.
Si rj est le fibre canonique sur la grassmannienne ^_r, l&apos;ensemble des vecteurs

de V appartenant à l&apos;isotropie des points de Sr H V (respectivement Ir\Hrr\V)
est l&apos;image de h*r\ |srnr (respectivement h*rj \xrnTni) par l&apos;application h*rj |r-* V
déduite de l&apos;application canonique rj —» V.

Si r ^n + 1, la dimension de T est &lt;h - 1, celle de h*ri \T est &lt;p, et par suite
l&apos;image de h*r\ \^nT est négligeable dans V. D&apos;où le point (ii).

Si r n, la dimension de T est n. Mais dans ce cas 2n H T fl / est un fermé
sans points intérieurs dans T (c&apos;est la frontière du support des fonctions f]h où

j n + 1,. p et / 1,. «). Donc Â*?j |snnrn/ est fermé sans points
intérieurs dans lap-variété h*rj \T. Il suffit alors, pour terminer la démonstration
de (iii), de remarquer que, si/:M-»M&apos; est une application différentiable entre
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variétés de même dimension, et A un fermé sans points intérieurs de Af, alors

f(A) est maigre dans M&apos;.

II.2. Nous démontrerons le résultat annoncé sous la forme précise suivante:

THÉORÈME. Considérons une action infinitésimale non triviale d&apos;une

algèbre de Lie abélienne V de dimension p sur une variété compacte, connexe et

sans bord M, de dimension 2n &gt; 2 et de caractéristique d&apos;Euler-Poincaré non
nulle. Alors tout vecteur v de V appartient à Visotropie infinitésimale d&apos;une orbite
singulière de dimension ^n — 1.

Preuve. Soit V l&apos;ensemble des vecteurs v e V qui appartiennent à l&apos;isotropie

d&apos;une orbite singulière de dimension &lt;n - 1.

Comme / et U/&lt;*-i2/ sont fermés, la compacité de M entraîne que V est
fermé dans V. Raisonnons par l&apos;absurde en supposant V&apos;&amp;V.

Soit V&quot; l&apos;ensemble des v eV qui appartiennent à l&apos;isotropie d&apos;une orbite
singulière de dimension &lt;n; c&apos;est encore (pour la même raison) un fermé dans V.

On ne peut, compte tenu de l&apos;hypothèse V&apos;^V et du lemme 3, (iii), avoir
V&quot;= V. Donc V - V&quot; est un ouvert non vide de V. Utilisant alors le lemme 1,

(ii), et le lemme 3, (ii), on voit qu&apos;on peut choisir v eV - V&quot;, de façon que:
1. Xv ne s&apos;annule sur aucune orbite de dimension &gt;n + l
2. Xv ne s&apos;annule sur aucune orbite singulière de dimension &lt;n

3. Pour tout r, /ir:£rn/?-» ^_r est transverse à Npv~r (on observe que
2r H R est l&apos;intérieur de 2r).

Soit P l&apos;ensemble des zéros de Xv. C&apos;est un compact, et d&apos;après les conditions
ci-dessus, on a P Ur&lt;« h~1(N%~r). Donc P est contenu dans la réunion disjointe
Ur&lt;n (2r H R). Par suite, pour r&lt;«, h~l(Npv~r) est compact; c&apos;est d&apos;ailleurs,

d&apos;après la condition de transversalité 3 et le lemme 1, (i), une sous-variété

compacte de M de codimension r (si h~1(Np~r)¥^0). Enfin, chacune de ces

sous-variétés compactes est stable par l&apos;action considérée.
Etant donné p eh~l{Np,~r)y choisissons une base {vt,..., vp} de V comme

dans la démonstration du lemme 3, avec la condition supplémentaire vr+l v.
Dans les coordonnées xl9. jc^ utilisées dans la même démonstration, les

composantes de hr seront les fonctions {f}l) où y r + 1,. p, et / 1, r.
On peut supposer l&apos;ouvert de coordonnées contenu dans 2r H /?, d&apos;où f}l 0 si

l&gt;r +1. Dans l&apos;ouvert °U de la grassmannienne, Np,~r est formée des matrices
dont la première ligne s&apos;annule. L&apos;hypothèse hrÏÏ\Np~r signifie que 0 est valeur

régulière de l&apos;application F:oc»-&gt;(/r+1&gt;1(x),.. ,/r+i,r(x)).
Le champ X s&apos;écrit en coordonnées E/=i/r+u(3/&lt;9*/). Donc le linéarisé de X»

en p prend ses valeurs dans l&apos;espace tangent à hJx{Npv~r). Comme d&apos;autre part,
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en coordonnées locales, h~l(Npv~r) s&apos;identifie à Fl(Q), le fait que 0 soit valeur

régulière de F entraîne que le linéarisé de Xv en p a pour noyau le tangent à

h;\m-r)
Finalement, le triple (Af, Xvy P) satisfait donc aux hypothèses du lemme 2

(en considérant P comme une sous-variété ayant des composantes connexes de

dimensions différentes, ce qui ne change rien à la démonstration de ce lemme)
Donc

et par suite l&apos;une des composantes connexes des variétés compactes hr \NP r) a

une caractéristique d&apos;Euler-Poincaré non nulle Comme, sur cette variété, toutes
les orbites de l&apos;action ont une même dimension r (en d&apos;autres termes l&apos;action est

régulière sur cette variété), on aboutit à une contradiction, compte tenu du
lemme suivant

LEMME 4 Etant donnée une variété compacte connexe sans bord N&apos; de

caractéristique d&apos;Euler-Poincaré non nulle, toute action infinitésimale non triviale
sur N&apos; d&apos;une algèbre de Lie abéhenne V a des orbites de dimensions différentes

Preuve On pose ém\N&apos; =2n&apos; et dimV=/? Raisonnons par l&apos;absurde en

supposant toutes les orbites de même dimension r &gt; 0 Ici hr est définie sur N&apos;

tout entier Choisissons v e V tel que hr ÏÏ\ Np~r On ne peut avoir h~\Np~r) 0,
sinon Xy serait sans singularités Donc h~x(Npv~r) sera une sous-variété compacte
de codimension r dans N&apos; En appliquant comme dans la démonstration

précédente, le lemme 2 au triple (N&apos;f Xv, h~l(Np~r)), on voit que l&apos;une des

composantes connexes, disons N[t de h~l(Np~r), vérifie xiNiï^O Mais NJ est de

dimension 2n&apos; — r, et l&apos;action induite sur N[ (qui est visiblement stable) a encore
des orbites de dimension constante et égale à r En itérant le procédé, on
construit successivement des variétés N&apos;2, etc A chaque étape la dimension de

la vanété obtenue descend de r unités, elle finira donc par être &lt;r, ce qui est

contradictoire

Ceci achève donc la démonstration du Théorème
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