Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 61 (1986)

Artikel: Une observation sur les actions de ...p sur les variétés compactes de

caractéristique non nulle.

Autor: Molino, P. / Turiel, F.J.

DOI: https://doi.org/10.5169/seals-46937

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Une observation sur les actions de \mathbb{R}^p sur les variétés compactes de caractéristique non nulle

P. MOLINO ET F. J. TURIEL

On se propose de démontrer le résultat suivant: soit M une variété compacte connexe et sans bord, de dimension 2n et de caractéristique d'Euler-Poincaré non nulle; alors, toute action de \mathbb{R}^p sur M a des orbites de dimension $\leq n-1$.

Ceci généralise le théorème bien connu d'E. Lima [1] d'après lequel deux champs de vecteurs commutant sur une surface compacte sans bord de caractéristique non nulle ont toujours une singularité commune. Voir aussi [2].

Le principe de notre démonstration est très simple: on étudie directement la réunion des isotropies infinitésimales aux différents points de M, en fonction de la dimension des orbites.

Nous remercions F. Laudenbach pour ses critiques pertinentes d'une première version de ce papier.

I. Quelques préliminaires

I.1. Soient V un espace vectoriel réel de dimension p, et \mathcal{G}_k^p la grassmannienne des k-plans de V.

Si $v \in V$, on posera $N_v^k = \{E \in \mathcal{G}_k^p / v \in E\}$.

LEMME 1 (i) Pour tout $v \in V - \{0\}$, N_v^k est une sous-variété compacte de \mathcal{G}_k^p de codimension (p - k).

(ii) Si $f: M \to \mathscr{G}_k$ est une application différentiable, l'ensemble des $v \in V$ pour lesquels f n'est pas transverse à N_v^k est négligeable dans V.

Preuve. (i) est immediat.

Pour démontrer (ii), considérons $E_1 \in \mathcal{G}_k^p$ et un supplémentaire E_2 de E_1 dans V. Soit \mathcal{U} l'ouvert de \mathcal{G}_k^p formé des graphes d'homorphismes de E_1 dans E_2 . On identifie \mathcal{U} à Hom (E_1, E_2) . Comme \mathcal{G}_k^p est recouverte par un nombre fini de tels ouverts, il suffit de prouver le résultat si $f(M) \subset \mathcal{U}$.

Ceci étant, f est transverse à $N_{(v_1,v_2)}^k$ si et seulement si l'application $M \to E_2$ définie par $x \mapsto f(x)(v_1)$ admet v_2 pour valeur régulière.

Ainsi, v_1 étant fixé, l'ensemble des v_2 pour lesquels f n'est pas transverse à $N_{(v_1,v_2)}^k$ est négligeable dans E_2 . Il suffit alors, pour obtenir le lemme, d'appliquer le théorème de Fubini.

- I.2. Soit maintenant M une variété compacte connexe.
 - LEMME 2. Soit X un champ de vecteurs sur M tel que
 - (i) l'ensemble des zéros de X soit une sous-variété P de M
- (ii) pour tout $p \in P$, le linéarisé de X en p prenne ses valeurs dans T_pP et ait pour noyau T_pP .

Alors
$$\chi(M) = \chi(P)$$
.

Preuve. On considère un voisinage tubulaire de P dans M, identifié à un fibré vectoriel $\pi: \xi \to P$. On munit ξ d'une structure euclidienne, et pour $\varepsilon > 0$ on note M_{ε} le fibré en sphères de rayon ε . Les fibrés en sphères définissent sur le complémentaire ξ' de la section nulle un feuilletage \mathscr{F}_1 ; on notera \mathscr{F}_2 le feuilletage supplémentaire sur ξ' défini par les demi-droites issues de l'origine dans chaque fibre. Le bifeuilletage ainsi obtenu permet de décomposer la restriction de X à ξ' en une composante X_1 tangente à \mathscr{F}_1 et une composante X_2 tangente à \mathscr{F}_2 .

L'hypothèse faite sur X entraı̂ne que, pour ε assez petit, X_1 ne s'annule pas en restriction à M_{ε} . Il est alors facile de construire sur la variété à bord

$$M'_{\varepsilon} = M - \{x \in \xi / ||x|| < \varepsilon\}$$

un nouveau champ de vecteurs sans singularités, et tangent au bord. D'où $\chi(M'_{\varepsilon}) = 0$. D'où le résultat par Meyer-Vietoris.

II. Le résultat principal

II.1. M est une variété compacte, connexe et sans bord, de dimension 2n et de caractéristique d'Euler-Poincaré non nulle. On considère une action de \mathbb{R}^p sur M. Pour clarifier les notations, on désignera par V l'algèbre de Lie du groupe de Lie \mathbb{R}^p ; on a donc une action infinitésimale de V sur M; pour tout $v \in V$, on notera X_n le champ de vecteurs correspondant sur M.

Soit Σ_r la réunion des orbites de dimension r. Si \mathcal{G}_{p-r}^p est la grassmannienne des (p-r)-plans de V, la correspondance qui à $m \in \Sigma_r$ associe l'isotropie infinitésimale en ce point définit une application

$$h_r: \Sigma_r \to \mathcal{G}^p_{p-r}$$

Une orbite de l'action sera dite régulière si les orbites voisines ont la même dimension, singulière dans le cas contraire. La semi-continuité de la dimension de l'isotropie infinitésimale entraı̂ne que la réunion R des orbites régulières est un ouvert dense de M. La réunion des orbites singulières sera notée I.

- LEMME 3. (i) Pour tout r, h_r est différentiable, c'est-à-dire s'étend localement en une application différentiable de M dans \mathcal{G}_{p-r}^p .
- (ii) Si $r \ge n + 1$, l'ensemble des vecteurs de V qui appartiennent à l'isotropie en un point de Σ_r est négligeable dans V.
- (iii) L'ensemble des vecteurs de V qui appartiennent à l'isotropie en un point de $I \cap \Sigma_n$ est maigre dans V.

Preuve. Si $m \in \Sigma_r$, on choisira une base $\{v_1, \ldots, v_p\}$ de V telle que v_{r+1}, \ldots, v_p , engendrent l'isotropie en m. On peut alors trouver au voisinage de m des coordonnées locales x_1, \ldots, x_{2n} , telles que $X_{v_i} = \partial/\partial x_i$ pour $i = 1, \ldots, r$. Pour simplifier, on restreindra ces coordonnées à un voisinage ouvert \mathcal{V} de m de manière que l'image de \mathcal{V} par la carte ainsi définie soit un ouvert convexe de \mathbb{R}^{2n} .

Si, pour $j = r + 1, \ldots, p$, on a $X_{v_j} = \sum_{l=1}^{2n} f_{jl} (\partial/\partial x_l)$, les fonctions f_{jl} ne dépendront pas de x_1, \ldots, x_r dans le domaine des coordonnées, et s'annuleront en m.

Maintenant, si nous regardons les homomorphismes de l'espace engendré par v_{r+1},\ldots,v_p , dans l'espace engendré par v_1,\ldots,v_r , comme un ouvert $\mathscr U$ de $\mathscr G^p_{p-r}$, et si l'on munit $\mathscr U$ de la carte définie par les bases $\{v_{r+1},\ldots,v_p\}$ et $\{-v_1,\ldots,-v_r\}$, alors $h_r\colon \Sigma_r\cap \mathscr V\to \mathscr G^p_{p-r}$ a pour composantes les f_{jl} , où $j=r+1,\ldots,p$, et $l=1,\ldots,r$. On peut restreindre $\mathscr V$ de façon que $h_r(\Sigma_r\cap \mathscr V)\subset \mathscr U$; ceci étant, les fonctions f_{jl} définissent une extension différentiable $\tilde h_r$ de h_r à $\mathscr V$. Ceci prouve (i).

Le fait que les f_{jl} ne dépendent pas de x_1, \ldots, x_r signifie que $\tilde{h}_r: \mathcal{V} \to \mathcal{U}$ se factorise en une application dans \mathcal{U} d'une transversale T à l'orbite de m, définie par exemple par x_i = constante pour $i = 1, \ldots, r$.

Si η est le fibré canonique sur la grassmannienne \mathscr{G}_{p-r}^p , l'ensemble des vecteurs de V appartenant à l'isotropie des points de $\Sigma_r \cap \mathscr{V}$ (respectivement $I \cap \Sigma_r \cap \mathscr{V}$) est l'image de $h_r^* \eta \mid_{\Sigma_r \cap T}$ (respectivement $h_r^* \eta \mid_{\Sigma_r \cap T \cap I}$) par l'application $\tilde{h}_r^* \eta \mid_T \to V$ déduite de l'application canonique $\eta \to V$.

Si $r \ge n + 1$, la dimension de T est $\le n - 1$, celle de $\tilde{h}_r^* \eta \mid_T$ est < p, et par suite l'image de $h_r^* \eta \mid_{\Sigma_r \cap T}$ est négligeable dans V. D'où le point (ii).

Si r = n, la dimension de T est n. Mais dans ce cas $\Sigma_n \cap T \cap I$ est un fermé sans points intérieurs dans T (c'est la frontière du support des fonctions f_{jl} , où $j = n + 1, \ldots, p$ et $l = 1, \ldots, n$). Donc $\tilde{h}_n^* \eta \mid_{\Sigma_n \cap T \cap I}$ est fermé sans points intérieurs dans la p-variété $\tilde{h}_n^* \eta \mid_T$. Il suffit alors, pour terminer la démonstration de (iii), de remarquer que, si $f: M \to M'$ est une application différentiable entre

variétés de même dimension, et A un fermé sans points intérieurs de M, alors f(A) est maigre dans M'.

II.2. Nous démontrerons le résultat annoncé sous la forme précise suivante:

THÉORÈME. Considérons une action infinitésimale non triviale d'une algèbre de Lie abélienne V de dimension p sur une variété compacte, connexe et sans bord M, de dimension $2n \ge 2$ et de caractéristique d'Euler-Poincaré non nulle. Alors tout vecteur v de V appartient à l'isotropie infinitésimale d'une orbite singulière de dimension $\le n-1$.

Preuve. Soit V' l'ensemble des vecteurs $v \in V$ qui appartiennent à l'isotropie d'une orbite singulière de dimension $\leq n-1$.

Comme I et $\bigcup_{l \le n-1} \Sigma_l$ sont fermés, la compacité de M entraı̂ne que V' est fermé dans V. Raisonnons par l'absurde en supposant $V' \ne V$.

Soit V'' l'ensemble des $v \in V$ qui appartiennent à l'isotropie d'une orbite singulière de dimension $\leq n$; c'est encore (pour la même raison) un fermé dans V. On ne peut, compte tenu de l'hypothèse $V' \neq V$ et du lemme 3, (iii), avoir V'' = V. Donc V - V'' est un ouvert non vide de V. Utilisant alors le lemme 1, (ii), et le lemme 3, (ii), on voit qu'on peut choisir $v \in V - V''$, de façon que:

- 1. X_v ne s'annule sur aucune orbite de dimension $\ge n+1$
- 2. X_v ne s'annule sur aucune orbite singulière de dimension $\leq n$
- 3. Pour tout r, $h_r: \Sigma_r \cap R \to \mathcal{G}_{p-r}^p$ est transverse à N_v^{p-r} (on observe que $\Sigma_r \cap R$ est l'intérieur de Σ_r).

Soit P l'ensemble des zeros de X_v . C'est un compact, et d'après les conditions ci-dessus, on a $P = \bigcup_{r \le n} h_r^{-1}(N_v^{p-r})$. Donc P est contenu dans la réunion disjointe $\bigcup_{r \le n} (\Sigma_r \cap R)$. Par suite, pour $r \le n$, $h_r^{-1}(N_v^{p-r})$ est compact; c'est d'ailleurs, d'après la condition de transversalité 3 et le lemme 1, (i), une sous-variété compacte de M de codimension r (si $h_r^{-1}(N_v^{p-r}) \neq \emptyset$). Enfin, chacune de ces sous-variétés compactes est stable par l'action considérée.

Etant donné $p \in h_r^{-1}(N_v^{p-r})$, choisissons une base $\{v_1, \ldots, v_p\}$ de V comme dans la démonstration du lemme 3, avec la condition supplémentaire $v_{r+1} = v$. Dans les coordonnées x_1, \ldots, x_{2n} utilisées dans la même démonstration, les composantes de h_r seront les fonctions (f_{jl}) où $j = r+1, \ldots, p$, et $l = 1, \ldots, r$. On peut supposer l'ouvert de coordonnées contenu dans $\Sigma_r \cap R$, d'où $f_{jl} = 0$ si $l \ge r+1$. Dans l'ouvert \mathcal{U} de la grassmannienne, N_v^{p-r} est formée des matrices dont la première ligne s'annule. L'hypothèse $h_r \cap N_v^{p-r}$ signifie que 0 est valeur régulière de l'application $F: x \mapsto (f_{r+1,1}(x), \ldots, f_{r+1,r}(x))$.

Le champ X_v s'écrit en coordonnées $\sum_{l=1}^r f_{r+1,l}(\partial/\partial x_l)$. Donc le linéarisé de X_v en p prend ses valeurs dans l'espace tangent à $h_r^{-1}(N_v^{p-r})$. Comme d'autre part,

en coordonnées locales, $h_r^{-1}(N_v^{p-r})$ s'identifie à $\bar{F}^1(0)$, le fait que 0 soit valeur régulière de F entraı̂ne que le linéarisé de X_v en p a pour noyau le tangent à $h_r^{-1}(N_v^{p-r})$.

Finalement, le triple (M, X_v, P) satisfait donc aux hypothèses du lemme 2 (en considérant P comme une sous-variété ayant des composantes connexes de dimensions différentes, ce qui ne change rien à la démonstration de ce lemme). Donc

$$\chi(M) = \sum_{r \le n} \chi(h_r^{-1}(N_v^{p-r}))$$

et par suite l'une des composantes connexes des variétés compactes $h_r^{-1}(N_v^{p-r})$ a une caractéristique d'Euler-Poincaré non nulle. Comme, sur cette variété, toutes les orbites de l'action ont une même dimension r (en d'autres termes l'action est régulière sur cette variété), on aboutit à une contradiction, compte tenu du lemme suivant

LEMME 4. Etant donnée une variété compacte connexe sans bord N' de caractéristique d'Euler-Poincaré non nulle, toute action infinitésimale non triviale sur N' d'une algèbre de Lie abélienne V a des orbites de dimensions différentes.

Preuve. On pose dim N'=2n' et dim V=p. Raisonnons par l'absurde en supposant toutes les orbites de même dimension r>0. Ici h_r est définie sur N' tout entier. Choisissons $v \in V$ tel que $h_r \cap N_v^{p-r}$. On ne peut avoir $h_r^{-1}(N_v^{p-r})=\emptyset$, sinon X_v serait sans singularités. Donc $h_r^{-1}(N_v^{p-r})$ sera une sous-variété compacte de codimension r dans N'. En appliquant comme dans la démonstration précédente, le lemme 2 au triple $(N', X_v, h_r^{-1}(N_v^{p-r}))$, on voit que l'une des composantes connexes, disons N_1' , de $h_r^{-1}(N_v^{p-r})$, vérifie $\chi(N_1') \neq 0$. Mais N_1' est de dimension 2n'-r, et l'action induite sur N_1' (qui est visiblement stable) a encore des orbites de dimension constante et égale à r. En itérant le procédé, on construit successivement des variétés N_2' , etc. . . A chaque étape la dimension de la variété obtenue descend de r unités; elle finira donc par être < r, ce qui est contradictoire.

Ceci achève donc la démonstration du Théorème.

BIBLIOGRAPHIE.

[1] LIMA, E., Common singularities of commuting vector fields on 2-manifolds Comment. Math. Helv. 39 (1964), pp. 97-110.

[2] SACKSTEDER, R., Degeneracy of Orbits of Actions of \mathbb{R}^m on a manifold Comment. Math. Helv. 41 (1966-67), pp. 1-9.

UER de Mathématiques Université des Sc. et Tech. du Languedoc 34060 Montpellier France Seccion de Matematicas Facultad de Ciencias Universidad de Malaga 29080 Malaga España

Reçu le 20 novembre 1985