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The linking number of singular maps

ANDRAS SzUcs

The linking number of a generic smooth map f: M* — R can be defined not
only for kK =1 (as we have done in [6]) but also for k > 1.

DEFINITION 1. Given a generic (see Definition 2) smooth map f:M* —
R** denote by X = 3(f) the set of singular points of f and by f(X) its image. (In
these dimensions all the singular points are of type X' and they constitute a
submanifold of dimension k£ = 1) Let us denote by A = A(f) the closure of the set
of double points of map f, i.e.

Af)=:{xeM|TyeM:y#xandf(x)=f(y)}.

f(A) - the image of A—is a k dimensional immersed submanifold in R* with
f(Z) as its boundary. Let us denote by v a normal vector field of f(£) in f(A)
directed outward from f(A) (see Figure 1.). The endpoints of these vectors form
a (k — 1)-dimensional manifold 5. Denote by I/(f) the linking number of X and
f(M). (This linking number does not depend on the choice of v if v consists of
short enough vectors.) I(f) is an integer if M** is oriented and k is even,
otherwise it is an element of the group Z,. /(f) will be called the linking number
of the map f.

DEFINITION 2. A smooth map of positive codimension (i.e. dim range >
dim domain) is generic if

1) its jet sections are transversal to the Boardman manifolds (see [1]);

2) its self-intersections are transversal;

3) the intersections of its singular submanifolds with one another and with the
nonsingular part are transversal.

We shall deal with the following

PROBLEM. How can be expressed /(f) in terms of the invariants of the
map f?
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This problem is closely related to the following question. What is the
homology class realized by the r-tuple points of a (generic) map? For the case of
immersions the answer was given by Herbert [2]. (See also F. Ronga [4].) When
the target is an Euclidean space this answer sounds like this:

The modulo two homology class of the r-tuple points of a codimension k
generic immersion into an Euclidean space is dual to the class W} ™! where W,
denotes the k"™ normal Stiefel-Whitney class of the immersion.

Ronga proved that the same formula remains valid for the double points even
if the map has singular points.

Our theorem below, which solves the Problem above shows that the homology
class of the triple points of a singular map f: M* — R* already can not be given
by the same formula. (Compare also with [5].)

THEOREM. Given a generic map f:M*— R* the linking number I(f)
defined as above can be expressed by the formula:

I(f) = 2Wi - [AP(f)] (%)

where [A®)(f)] is the 0-dimensional homology class of M** defined by the triple
points, and 9 is the Poincaré duality operator.

(In formula (3) all the entries are integers if k is even and M is oriented,
otherwise both sides belong to the group Z,.)

Remark 1. We shall show that for any manifold M?* there exists a generic
singular map f: M* — R** such that I(f) #0.

Before beginning the proof let me say what I mean by the tubular
neighbourhood of an embedded or immersed submanifold with boundary in an
euclidean space: it is the union of small discs Dy orthogonal to the tangent space
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Fig. 2. The middle line denotes the submanifold with boundary.

T,M for VpeM (k is the codimension of the submanifold). So this tubular
neighbourhood is not a neighbourhood of the submanifold unless the submanifold
is closed. (The points of the boundary of the submanifold may not be interior
points of the tubular neighbourhood (see Figure 2.).)

Proof. The set X is a (k — 1)-dimensional submanifold of the k-dimensional
manifold A. Let us make a cut on A along X (see Figure 3.). We obtain a
manifold A’ with boundary A’. There is a map ¢ :A’— A which is a 1-1 map on
A'\3A’ and @ |;,:0A’— X < A is a double cover. Now first we suppose that f
has no triple points. Then we have X as the fixed-points set of the natural
involution T on A, which is defined by the equation f(Tx) = f(x) Vx € A. T defines
on A’ a free involution which we also denote by 7 such that To@ = @-°T.

Let us denote by & the normal bundle of A in M, by &’ the bundle ¢*& over
A’ and by n = f,§ the bundle over A'/T = f(A) defined as follows:

The fibre over a point [x, Tx]e A"/T (x € A’) is §; D &1,
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Notice that this bundle n splits into a direct sum only locally: in general 7 is
not a direct sum of two k-dimensional bundles. However the subset X of the total
space of n consisting of the union of subsets §, @ 0U 0 ® &7, in every fibre of 7 is
well defined. Then the bundle n = f,§ can be identified with a tubular neighbour-
hood U of f(A) in R*. Moreover f,£ and U can be identified in such a way that
the subset X be identified with f(M) N U.

Any section s of the bundle § naturally defines a section z (which could be
denoted by fis) of the bundle n = f,§ as follows: z([x, Tx]) = (s(x), s(Tx)) e £, D
ETx = N 1x- (Notice that over (3A')/T =f(Z) the section z belongs to the
“diagonal” subbundle of & |5 @ &|s = {(y1, y2) [»1, y- € E|s} defined by the equa-
tion y; = y,.)

If s is transversal to the zero section and avoids X, then z =fis will be
transversal to f(M). The k-dimensional vector bundle & has a nonzero section
over 2. (Indeed, the obstructions for the existence of a nonzero section of the
bundle & |; lie in the groups H'(Z, &,_;(S*!)) which are zero for any i <dim X =
k —1.) Now let us choose an arbitrary nonzero section of § over X and extend it
to a section s of & over the whole base space A so that

_a) s be transversal to the zero section A;

b) s should avoid the triple points of f (when they exist at all);

c) the intersection of the image of s with A should not contain points
corresponding to each other under 7.

Now as we explained earlier this section s defines a section fis of f,§, and f,§
can be identified with a tubular neighbourhood U of f(A). Hence the image of f.s
can be considered as a k-dimensional submanifold N, in R* transversal to f(M ).
The boundary of N, is (f;s)(f(Z)) which we denote by X. It is easy to see that 3
and £ (see definition 1) are isotopic submanifolds in R"**\f(M).

Hence there exists an embedding h: % X I < R of the cylinder £ X I such
that

a) h(Z x0)=2;

b) (£ x1)=2;

¢) h(ExDNfF(M)=4.

Now the union N=h(3 XI)UN, is a k dimensional chain with £ as its
boundary. By definition /(f) equals to the algebraic number of intersection points
of N and f(M). Let us compute this number:

1) h(Z x I) does not intersect f(M) at all, hence N N f(M) = N, N f(M).

2) There is a 1 — 1 correspondence between the points of intersection of the
image of fis with f(M) N U = X on the one hand and the points of intersection of
the image of s with the zero section of § on the other hand. (This correspondence
leaves unchanged the signs of the intersection points —if these signs can be
defined.) Since A represents the homology class Poincare dual to W, (M) the
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intersection represents the class 2W2. The proof is finished for the case when f
has no triple points.

The scheme of this proof can be summed up by the following chain of
equalities:

) =NNf(M)=NNfM)=fsNX=sNA=
the selfintersection of A in M = QW2.

Now consider the case when f has triple points. Then first of all the involution
T can not be defined on A as above. (T is not well defined at the triple points.) In

this case we replace A by the appropriate subset of M X M, i.e. we consider
instead of A the set A defined as follows

A={(x,y)[xeM,yeM;x#y;f(x)=f(y)}

where the bar indicates the closure in M X M.

Instead of the involution T on A we consider an involution T on A given by
the formula T(x, y) = (y, x).

Instead of the bundle & (which was the normal bundle of A in M) we define a
bundle € over A as follows:

At any point (x,y) of M X M one can consider the tangent space of the
(““horizontal’’) submanifold M X y. These tangent spaces define an n-dimensional
vector bundle over M X M, which we shall denote by .

Since n <2k for a generic map f: M"— R"** the submanifold A = M X M has
no tangent vector lying in a horizontal space. Hence the linear space generated by
the tangent space of A and the fibre of 4 has dimension 2n — k at every point
(x, ) € A. So these linear spaces form a (2n — k)-dimensional vector bundle over
A, which we denote by §. Now we define the bundle £ by the equality:

(DE=T(MxM)|s.

(The bundle on the right side is the tangent bundle of M X M restricted over A.)

Let & be the natural projection A— A/T and let 7j be the bundle m,E over
A/T.

In the case when f had no triple points the total space of n(= f,§) could be
identified with a tubular neighbourhood of f(A).

In the present case when f may have triple points the total space E(7}) of the
bundle 7 = m,€ can be mapped onto a tubular neighbourhood U of f(A) by a map
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a:E(77)— U which is

1. One to one off the triple points of f.
2. If x, y, z are triple points with the same image then

a([x, y]) = a(lx, z]) = a(ly, z]) = f(x) (=f() =f(2))

where [x, y] denotes the point 7(x, y) € A/T corresponding to (x, y) € A.

3. « restricted to the zero section coincides with the restriction of the
composition fep to A. Here p: M X M — M denotes the projection onto the first
factor.

Now we compute the linking number /(f) of the map f. For this purpose — like
in the previous special case — we consider a section s of the bundle & which does
not vanish over X(f). This section defines a section z of the bundle % = 7, (see
the case when f has no triple points). Composing this section z with the map a we
obtain a map a°z:A/T— U. The image of this map will be denoted — again — by
N;.

Let us define the map h: 5 X I— R* and the set N = N, Uh(Z x I) as above.

Now the computation of /(f) goes by a chain of equaties almost identical to
the one of the previous case:

1OENFM) BN, N M) @Im (o) n X 2

= (Ims) N A + algebraic number of triple points S

= PW?2 + algebraic number of triple points.

The only difference from the previous case is equality (). Now we explain why
it holds.

In a small neighbourhood of a triple point the picture can be visualized as
follows (see Figure 4.):

In R** (which is a neighbourhood V of a triple point) there are three
pairwisely orthogonal k-dimensional subspaces Rf i =1, 2, 3 through the origin
(= the triple point). These subspaces are f(A) N V. The 2k-dimensional subspaces
generated by any two of these k-dimensional spaces are the three branches of
f(M) lying at the triple point under considerations. The submanifold N, (or more
precisely N,NV) can be visualized (locally) as three k-dimensional spaces R¥
which are parallel to R and disjoint from the subset R U R4 U R of R*. Now it
is easy to see that in the neighbourhood V exactly three new intersection points of
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N, and f(M) arise, namely: R¥ N {R%, R%}, RN {R%, N}, R5N {R%, R}, where
the brackets { , } stand for the generated subspace. These intersection points are
all of the same sign as the triple point itself (if this sign makes sense at all, i.e. if k
is even and M is oriented). The theorem is proved.

It remains to prove Remark 1.

Suppose f: M** — R** is a generic map with a nonempty singular set =. Then
f(2) is a (k — 1)-dimensional closed submanifold of R**. Take a small (2k + 1)-
dimensional disc D?**! centered around a point of f(X£) and orthogonal to f(X).
Denote by $% the boundary of this disc. Form the joint union of this sphere S
with f(M) as follows: joint a point of $°* with a nonsingular simple point of f(M)
by a regular curve y orthogonal at its endpoints to $°* and f(M) respectively.
Now move a small 2k-disc D¥ so that its center P should travel along 7y,
furthermore D% be orthogonal to y and at the endpoints of y this 2k-disc lie in
5% and in f(M) respectively. Let T and H be the union of discs {D% | P € y} and
spheres {8D% | P ey} respectively. Consider M = H U f(M) U S*\(D%¥ U D¥)
where A and B are the endpoints of y (Figure 5.). M is (after an eventual
smoothing) diffeomorphic to M. Denote f: M — R* a map with image M. We
claim that I(f) #[(f). (Hence at least one of them is nonzero.)

Indeed, let W be a (2k + 1)-chain in R* with boundary 6W = f(M). Then
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I(f) = #(W N £) where #( ) denotes the algebraic or mod 2 number of intersec-
tion points.

Let W be the union WU T U D*™! (see Figure 6.). Then W = f(M) and
IH)=#WNnZ)=#(wnN3I)+#(TUD**)NZ) and #(TUD**HNZ)=
+1. Q.E.D.

Now Remark 1 is proved modulo the following

PROPOSITION. For any manifold M** there exists a generic map f: M* —
R>* with a nonempty singular set.

Proof. Notice that it is enough to prove the proposition for the case when
M?* is a sphere S**. Indeed taking the joint union of a singular generic map
$%* — R3* with an arbitrary generic map M* — R we obtain a generic map of
the joint union M*#S5% (which is diffeomorphic to M?*) into R* and this map
surely will have singular points.

Now first we define a map $**!'— R**' which is generic and has nonempty
singular set as follows:

Let :R**'={x, ..., xks1}=>R*" = {3, ..., Yuus1}— dimensional Whit-
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ney-umbrella-map i.e. = (@, ..., Px4+1) and

216 ST Ay =x3 Pie+2(X15 - oy Xps1) =X1X;
QX1 - ooy Xpr1) =X Pr+3(X1y - ooy Xpr) = X1X3
Pre+1(X1, - oo Xper1) = Xia Pae+1(X1, ooy X)) = X1 Xpi1
The map @ has a X! singular point at the origin x, =x,="---=x,,,; =0 which
goes into the origin y,=---=y;.,;=0. Now consider the intersection of the
image of @ with a disc centered around the point y,=---=y,,,, =0. Take two

copies of this 2k + 1-disc — denote them by D, and D, — and attach them to each
other along their boundaries using the identity map between the two copies of the
boundary. We obtain a (2k + 1)-dimensional sphere and a subset in it which is the
image of a generic singular map

g:S' 58 (ImgND,=ImeND, for i=1,2).

Now throwing out an arbitrary point from $**! which does not belong to the
image of g we obtain a map g:5*"' - R**!. Let i:D* "' R*"! be the standard
inclusion of a disc into the euclidean space. Then h =g X i:8**!' x D*"'—> R* is
a generic map with nonempty singular set.

The sphere S** contains an open subset H such that H is diffeomorphic to
S§k*1 x D*71, Let f:$%* — R** be an arbitrary smooth map which agrees with / on
H. Let K be an open subset which is contained compactly in H (i.e. K « H). The
map f can be approximated by a generic map f: 5% — R* which coincides with
on K. This f has all the required properties (it is generic and 2 (f) # 0). Remark 1
is proved.

REFERENCES

[1] J. M. BOARDMAN, Singularities of differentiable maps, Inst. Hautes Etudes Sci. Publ. Math. 33
(1967), 383-419.

[2] R. J. HERBERT, Homology classes of selfintersections, Memoirs AMS Nov. 1981, vol. 34, No. 250.

[3] F. RONGA, La classe duale aux points doubles d’une application, Compositio Mathematica 27
(1973), 223-232.

[4] F. RONGA, On multiple points of smooth immersions, Commentarii Math. Helv. 55 (1980),
521-527.

[S] F. RONGA, Multiple points of real mappings, Proceedings of Symposium in Pure Mathematics.



The linking number of singular maps 369
(6] A. Szics, Surfaces in R, Bull. of London Math. Soc. 18 (1986), 60-66.

Department of Analysis
Eotvds University
Budapest

Muzeum krt. 6-8.,
H-1088, Hungary

Received October 3, 1985



	The linking number of singular maps.

