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Some evaluations of link polynomials

W. B. R. LickorisH and K. C. MiLLETT!

1. Introduction

For every oriented link L in the 3-sphere there is a 2-variable Laurent
polynomial P, (¢, m) € Z[€*', m*']. It is defined uniquely by the formulae

(i) Py =1 for the unknot U,

(i) €P,,+ ¢ 'P,_+mP, =0, where L,, L_, and L, are any three links
identical except within a ball where they are as shown in Figure 1. Details are
given in [F-Y-H-L-M-O] and [L-M 1}.

This two-variable polynomial is related to A;, the Alexander polynomial, and
V., the Jones polynomial, by

Pr(i, i(e"? = t71%)) = AL(1),
P (it™Y, —i(t"? =72 =V, (o).

The purpose of this paper is to evaluate P, for various specific values of (¢, m),
giving where possible the interpretation for V;. The values chosen are such that
P, has an elementary form in terms of other known invariants of the link.
Throughout, ¢(L) denotes the number of components of L.

A few relevant elementary results that can be found in [J] or [L-M 1] are:

P (€, m)= P, (—¢, —m),

P (i, —=2) = Vi(-1) = A (~1) = Det (L),
Pt, —(€+ € ))y=1=V (e ™,
V(1) = (=27

Let D, and T, denote the double and the treble cyclic covers of §°, the
3-sphere, branched over L. Note that two of the expressions appearing above can
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Fig. 1.

be expressed in terms of these covers namely
|Det (L)| = The order of H,(D,; Z)

if Det (L) # 0 (in which case H,(D,; Z) is infinite), and
c¢(L) — 1 = Dimension H,(D,; Z,).

The results that will be proved here are the following three theorems.
THEOREM 1 (H. Murakami [M])

(=V2)s D=1 (=1)A"D) if Arf (L) exists,
0, otherwise.

P.(1, V2) = Vi) = |

THEOREM 2

P(1,1)= (_2)1/2 Dimension Hy(Ty; Z)

THEOREM 3

PL(ei/n/()’ 1) = VL(ei.n'/3) — :tic(L)—-l(i\/3)Dimension H\(Dy; Z3)

The first theorem is included partly for completeness, but also because the
short proof given here avoids knowledge of the connection between the Arf (or
Robertello) invariant and the coefficients of the Conway potential function. It
also produces, as a Corollary to Theorem 1, a very simple axiomatisation of the
Arf invariant. Premonitions of Theorems 1 and 3 are to found in some of the
results of V. F. R. Jones in [J] who, indeed, proved a version of Theorem 3
conjectured by J. S. Birman that did not identify the exponent of V3 appearing in
the formula. Likewise A. Ocneanu conjectured that P, (1, 1) be a power of —2.
During the preparation of this paper H. Murakami announced that he had proved
Theorem 2.
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It has long been known (see [W]) that there are inequalities relating the
unknotting number of a knot and the dimensions of the homology groups of its
cyclic branched covers. In the light of Theorems 2 and 3 it seems unlikely that
new information about unkotting numbers (much sought from P;) can be
obtained from P,(1, 1) or P,(e'™®, 1), though calculation of these may give a
quick way of computing two of the above mentioned dimensions. Similar remarks
apply to considerations of bridge number and of braid index. It is amusing, for

example, to note that for a rational, or two-bridge, link L, P,(1, 1) is always
either 1 or —2.

2. P,(1,V2)

The Arf, or Robertello [R], invariant is defined on only the set & of oriented
links for which each component has even linking number with the union of the
other components.

Note. (a) If Le ¥, and L is constructed by banding together two distinct
components of L, then L € &.

(b) If L e &, and L’ is formed by banding a component of L to itself and L" is

formed in exactly the same way only with one more complete twist in the band
then precisely one of L’ and L" is in &.

If « is a closed curve on a Seifert surface F of an oriented link L, let g[«] be
the linking number modulo two of « and a-pushed-off-F. If Le & (and not
otherwise) this gives a well defined function

q:H\(F; Z,)/i,H\(3F ; Z,) — Z5;
this g is a non-singular quadratic form.

DEFINITION. The Arf invariant of L, s{(L), for L € &, is defined to be the
value, 0 or 1, that g takes the more often.

PROPERTIES OF .

(1) A is a well defined function {:5 — Z,.
(i) (L, # Ly) = A(Ly) + A(Ly).
(iii) (Trefoil knot) = 1.
(iv) If L€ &, and L is constructed as in Note (a), then (L) = s4(L).
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THEOREM 1 (H. Murakami). Let L be an oriented link with c(L)
components.

N (V2B (=)D i Led
P (1, =V, (i)= {
L( VZ) L(l) 0 l:f L ¢ y.
Proof. Let A(L) denote (—1)*™ if L e & and let A(L) be zero otherwise.

Suppose that L., L_, and L, are oriented links identical except within a ball B
where they are as in Figure 1.

CASE (i). Suppose that c¢(L.)<c(L,). In this case both of L, and L_ belong
to & or neither of them belongs to &. If L, € &, Note (a) and Property (iv) imply
that L, and L_ belong to & and all three have the same Arf invariant. Thus

A(L,)+A(L-) -2A(Lo) =0 (*).

This is trivially true when none of the three links is in &. Thus there remains the
possibility that L, € &, L_€ ¥, but Lo ¢ &. However, the component of L, seen
in Figure 1 can be banded to itself to produce X as in Figure 2(i). By Note (b)
Xe ¥, for adding a twist to that band would produce L,. By Property (iv)
A(X)=sA(L,). As in Figure 2(ii), (X# (trefoil)) can have two of its components
banded together to give L_. Thus by Properties (ii), (iii) and (iv), (L) +1=
S(L_) modulo 2. Hence again (*) is satisfied.

CASE (ii). Suppose that c(L,)>c(L,). If Lye & then by Note (b) precisely
one of L, and L_ is in & and that link has, by Property (iv), the same Arf
invariant as L,. If L, ¢ & then by Note (a) neither L, nor L_ can be in &. In
either of these circumstances,

A(L,)+A(L.) - A(Ly) =0 (**).

Fig. 2.
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Now let A(L) = (—V2)*©~'A(L). The formulae (*) and (**) both become
A(L,)+A(L)+V2A(L,) =0.

Of course A(unknot) =1, so that A(L) and P,(1, V2) satisfy the same defining
relationships. Induction on the number of crossings of a link presentation shows
at once that A(L) = P;(1, V2), and this completes the proof.

COROLLARY. Properties (i), (ii), (iii) and (iv) of A given above can be
taken as a complete set of axioms for the Arf, or Robertello, invariant of oriented
links.

Proof. Were there another invariant satisfying these properties it would, by

the proof of Theorem 1, be related to P,(1, V2) in exactly the same way as is the
Arf invariant.

The result of Theorem 1 can be thought of as a resolution of the long standing
mystery of why the Arf invariant is only defined on &. Its generalisation to all
oriented links can be thought of as the invariant P, (1, V2).

3. P(1,1).
For oriented links L, P;(1, 1) is the integer defined in the usual way by
PL+(1) 1) + PL_(]-) 1) + PL()(I) 1) = O
and Py(1, 1) =1 where U denotes the unknot. It was conjectured by A. Ocneanu
that P, (1, 1) be an integral power of —2. That is confirmed in what follows. For
notation let d, be the dimension as a vector space over Z, of H\(T,; Z,), where
T, is the three-fold cover of S° branched over L. The orientation of L means that
T, is well defined as the completion of the cover of $* — L corresponding to the
kernel of the map IT,(S°> — L) — Z, that sends oriented meridians to 1. Then
THEOREM 2. For any oriented link L in S,
P (1, 1) = (-2)"

In the proof of this theorem use will be made of the following two well known
facts concerning arbitrary bounded 3-manifolds. Let M be a compact 3-manifold,
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and let i:0M — M be the inclusion of the boundary into M. Let K denote the
kernel of i, : H,(0M; Z,) - H\(M; Z,).

(a) Dim H,(6M; Z,) =2 dim K.
(b) f xe K and y € K then x - y =0 where x - y is the modulo 2 intersection
number of x and y.

The proof of (a) is a classical application of Poincaré-Lefschetz duality. For (b),
regard x and y as 1-manifolds that bound mutually transverse surfaces in M; there
must be an even number of end-points of the arcs of intersection of these
surfaces.

Proof of Theorem 2. Let L,, L_, and L, be oriented links in $° identical
outside a ball B in which they are as shown in Figure 3. The three diagrams that
constitute Figure 3 are but variants of those of Figure 1; they are often more
convenient when considering covers. Let M be the three-fold cyclic cover of
S> — B branched over (S>— B)N L, Then M is a 3-manifold, 8M has genus 2
and, using the above notation, dim K = 2. Further, Z; acts with generator p as
the group of covering translations on M and K is invariant under p,. Now
T., = M U h;, where h; is a handlebody of genus 2 being the three-fold cyclic cover
of B branched over BN L;. Consider a disc D properly embedded in B and
separating the two components of BN L,. Then D lifts to three discs in 4, and
the boundaries of these discs represent elements ¢y, c¢;, and ¢, of H,(8M; Z,), the
notation being chosen so that p.c, =c,,; mod. 3. Note that ¢,=c; +c,. The
space of interest, H,(T,; Z,) is the quotient of H,(M; Z,) by i,C, where C is the
space spanned by c; and c¢,. Similarly H,(T, _; Z,) and H,(T, _; Z,) are quotients of
H\(M; Z,) by i, A and i,B respectively, where A and B are the spaces spanned by
{a,, a} and {b,, b,}. Here {ay, a,,a,} and {bo, b,, b,} are elements of
H,(0M; Z,) represented by lifts of the boundaries of discs in B that separate the
components of BN L, and B N L_ respectively. The relative positions of curves
representing these various classes on dM is shown in Figure 4, the notation being
chosen so that p.a, = a,,, and p,b, = b, ., modulo 3. Note that by =a,+ c,.

Because p,.K =K, either KNA={0} or A< K. Similarly, KN B = {0} or
Bc K, and KN C= {0} or C c K. Now, because

ag-Co=bg-co=a,-by=1,

o g @

L+ L- Lo
Fig. 3.
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Fig. 4.

no two of the spaces A, B, and C can be contained in K (making use of (b)).
Suppose that none of these spaces is in K: Then K — {0} is in

H\(M;Z,) —(AUBUC)={ag+cqy, a;+cy, a,+ ¢}
U{ag+cy, a,+c,, a, + ¢y}

where the two triples on the right hand side of this expression are the two orbits
under the Z; action. As K is invariant under the action, K must be the union of
{0} and one of these triples. However, by (b), this is not possible because

(ag+co)-(ar+c)=1=(apg+c)) - (a,+cy).

Thus of the spaces A, B, and C, precisely one is contained in K and each of the
other two meet K in the zero element.

The numbers d; , d, , and d,, are the dimensions of the quotients of
H\(M; Z,) by i,A, i.B, and i,C respectively. Of course, K is the kernel of i, so,
by the above analysis, one of these numbers is dim H,(M; Z,) and the other two
are two less than this. Hence

(_2)1/2d,,+ + (_2)1/2d,‘~ + (_2)1/2d,‘“ =(.
Thus (—2)"?4: satisfies the defining formula for P,(1, 1) and agrees with P, (1, 1)

when L is the unknot. The usual induction on the number of crossings in a
presentation for L finishes the proof.
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4. P.(e'™, 1).

The polynomial V; of V. F. R. Jones is, for each oriented link L, related to P,
by the equation

Vi(t) = P (it ™Y, —i(t"2 —112))

so that V,(e"™) = P,(e", 1) and, in what follows, it will be preferable to work
with the Jones polynomial. The reason for that is the reversing result for V;:

The Jones reversing result. If L is obtained from L by reversing the
orientation of one component that has linking number A with the remaining
components of L, then V;=t"V,.

A proof of this can be found in [L-M 2] though beware that the conventions
of that paper replace ¢ by t™'.

The reversing result leads to the “V.” formula first devised by J. S. Birman
that will now be discussed. Here ¢(L) denotes the number of components of a
link L, and as usual L,, L_, L, are three oriented links identical except within a
ball B where they are as in Figure 1.

PROPOSITION (J. S. Birman [B-K]). (i) Suppose that c(L.)<c(L,). Let
L.. be obtained from L, by reversing one of the two components that meet B (with
linking number A with the rest of L,) and banding it to the other as in Figure 5(i).
Then

";—1/2‘/1‘+ _ tlIZVL_ + (t1/2 _ t—l/Z)t3AVLx =0.

(ii) Suppose that c(L.)>c(L,). Let L. be obtained from L. by reversing one
of the components that meet B (which has linking number u with the rest of L)
and banding it to the other as in Figure 5(ii). Then

t_lleL+ _ tuva_ + (tuz _ t—1/2)t3(p—1/2)VLx =0.

Proof. Consider, as usual, a triple of links L,, L_, L, that are identical
except within a ball B where they are as in Figure 1. The defining formula for the

Fig. S.
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Jones polynomial is

tTW,, =tV + (=YY, =0, (D).

Case (i). Suppose that c(L,) <c(Ly).

Now consider the triple of links obtained by placing each of the tangles shown
in Figure 6(a) inside B and using the same configuration as before in §*— B.
Formula (1) applied to this new triple gives

t—le—.tVLo+ (t_llz_tllz)VL+=O, (2)
Reversing the direction of the components that meet B as the right-hand
segments of the diagrams for L, and X leads to the situation of Figure 6(b). The
reversing result implies that the Jones polynomials of L, and X are t~*V, and

t734+Dy,. Thus Formula (1) applied to the triple of Figure 6(b) gives

WV, =tV + (TP = 1P =0, (3).

SN
0
XK

L

(e

Fig. 6.
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Then, the linear combination t~*(1) — t7}(2) — (3) of the above formulae is the
required result.

Case (ii) Suppose that c(L.)>c(L,). Consider the links L_, L,, and L.
obtained by substituting the three tangles of Figure 6(c) into the ball B (this
necessitates reversing one of the arcs in S> — B). The Jones polynomials of [ _
and L, are t7>* YV, and t3*V, respectively. Applying Formula (1) to this
triple of links gives

t—-3(y-—1)—1VL _ t-—3p+lVL + (t—-1/2 _ tl/Z)VL — 0
This is the required formula.
THEOREM 3. Let L be an oriented link in S* with c(L) components. Let D,

be the double cover of S* branched over L and let n, be the dimension (qué vector
space) of Hi(D_; Z5). Then

P (™, 1) = V(™) = £iD7(V3)™,

[The general form of this result was conjectured by J. S. Birman and proved by
V. F. R. Jones without identification of the integer n,.]

Proof. Let L., L_, and L, be a triple of oriented links as shown in Figure 1,
and let L. be that of Figure 5(i) if c(L,)<c(Ly) and that of Figure 5(ii)
otherwise. Let W, = i)V, (/™). Note that when t =", (t'*—t""*) = and
= —1. The latter implies, by way of the reversing result, that (V. (e"™))? is
independant of the orientation of L. Now, with the sign ambiguity depending on
whether or not ¢(L,) > c(L,), the defining formula for V; leads to

ehiﬂ3WL+ - eiﬂBWL_ = iWLo'

The Proposition gives the following, where here the sign ambiguity depends on
the parity of the linking numbers A and u:

emiﬂm“/l‘+ - eianL‘ = iiWL&.

Subtracting the square of this second equation from the square of the first (and
using the fact that e?™? — "™ = —1) gives

(WL, )?+ (W) + (W) + (W, )*=0.

Now, in [B-L-M] a Laurent polynomial invariant Q; € Z[x*'] for unoriented
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links was defined, using the now familiar notation, by

Qr.+01 =x(Qr,+0..)

and Qy =1 for the unknot U. Thus (W,)? and Q,(—1) have identical defining
formulae. The usual induction argument on the crossing number of a link
presentation shows that (W,)*>=Q,(—1). However it is proved in [B-L-M],
Property 5, that Q;(—1) = (—3)": and this completes the proof of the theorem.

Remark. The proof in [B-L-M] uses no special theory of the Q, polynomial
to show that Q,; (—1) = (—3)". It is simply shown that n; is the nullity of a certain
symmetric matrix over Z, associated with a (generalised) Seifert form for L. The
nullities for L,, L_, Ly, and L. are easily shown to be of the form n, n, n, and
(n+1) in some order. So, it is immediate that (—3)". satisfies the defining
formulae for Q; (—1).
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