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Homology of classical Lie groups made discrète, I.(1)

Stability theorems and Schur multipliera

Chih-Han Sah

Let Gô dénote the Lie group G equipped with the discrète topology. As
mentioned in Milnor [18], the (intégral) homology of the classifying space BGÔ

(equivalently, the (intégral) Eilenberg-MacLane homology H*(G) of the abstract

group G) is of interest in at least the following areas: algebraic X-theory, the

study of bundles with flat connections, foliation theory, and the study of scissors

congruences of polyhedra.
In ail such cases, the group G usually belongs to one of the known infinité

séries of classical groups. According to the gênerai philosophy of algebraic
#-theory, the study of the homology groups may be divided into several steps.
The first step is to prove some sort of stability theorems for groups belonging to
each of the infinité séries. The second step is to give some sort of descriptions of
the stable groups. Thèse are then followed by interprétations and/or applications
of the results found. In the case of stability theorems, techniques of algebraic
^-theory appear to hâve reached their limits and improvements seem to be quite
difficult. We use the spécial nature of classical Lie groups and a more naive

approach to obtain somewhat sharper stability results. In the case of the
détermination of the stable groups, we concentrate our efforts on the description
of the Schur multipliers. Our results are closely related to algebraic AT-theory (in
particular, to K2 of fields). The improvement obtained in the stability results is

such that we can eut out i£2-calculations in most cases. When it becomes

unavoidable, we only perform them in the manner first described by Milnor [17].

Interprétations and/or applications are limited to abbreviated comparisons of our
results with known results. The principal motivation of the présent work is the

problem of scissors congruence of polyhedra. The sharpness of our results is

partly due to our insistence on making some headway in this old problem. The

principal results in this work are:
Let F dénote one of the three classical division algebras M, C or H.

THEOREM 1.1. Let n &gt;0. The inclusion map from U{n, F) to U(n +1, F)

1 Work partially supported by a grant from the National Science Foundation.
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induces a surjection from Ht{U{ny F)) to Ht(U{n + 1, F)) for i &lt; n. This map is a

bijection when i &lt; n.

THEOREM 2.1. Under the natural inclusion maps, we hâve bijections:
(a) H2(SPin(3))-&gt;H2(SPin(n))-+H2(SPin(n + 1)), n &gt;5.

(b) H2(SU(2))^H2(SU(n))^H2(SU(n + l)), n&gt;3.

(c) H2(Sp(l))^H2(Sp(n))-+H2(Sp(n + 1)), n &gt;2.

THEOREM 3.8. Lef G(p, 9) t/(p, q, F), F K, C or H. Fix p&gt;0 and
consider the inclusion of G(pt q) into G(p, q +1). The induced map from
Ht(G(p, q)) to Ht(G(p, q + 1)) is then surjective for i &lt; q and bijective for i &lt; q.

THEOREM 4.1. Let G be a connected, simply-connected, absolutely simple
real Lie group. Assume that G is noncompact and of classical type. Then

H2(G) K2(C)* under the universal complexification homomorphism.

Theorem 3.8 includes Theorem 1.1 by taking p 0; however, the proof of
Theorem 3.8 uses Theorem 1.1 both to get it started and to keep the induction
going. Theorems 2.1 and 4.1 exhibit the distinction between the compact and the

noncompact cases. It is known that H2(SU(2)) is divisible and maps onto #2(C)+
under the universal complexification map. (In fact, a more difficult argument
shows that the map is bijective, see the later work by Dupont-Parry-Sah [7].) In
the case of complex simply-connected Lie groups, the Schur multiplier is known
to be K2(C) which is a Q-vector space with continuum dimension. If we combine
thèse with a few other known results, then we hâve the following:

COROLLARY. Let G be any Lie group whose Levi components do not
involve one of 10 exceptional simple Lie groups of types E and F (3 are compact, 7

are noncompact and ail are nonsplit over R). Then Ht(BGô, ¥p) is isomorphic to

P) fori^l.
The preceding corollary confirais a conjecture of Milnor (also called the

Friedlander-Milnor conjecture, see Milnor [18] and Friedlander-Mislin [9])
under the restrictions named. It should be noted that the inclusion of the compact

groups of type G2 and F4 in the preceding corollary requires the unpublished work
of John Hurley (Stony Brook Dissertation, 1983) and of Johan Dupont (1984). In
the stable range, the Friedlander-Milnor conjecture is now known to hold for
GL(n)f SL(n) over IR and C by using the récent results of Suslin [31-34] which

confirmed the Lichtenbaum-Quillen conjecture. This resuit has been extended by
Karoubi by using his Hermitian X-theory [13]. However, in spite of the
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connotation, our results are mostly outside of the stability range results from
algebraic K-thcoty. The main point is that thèse results use coefficients Fp and kill
off unknown Q-vector spaces at the very beginning. In the range of interest to us,
thèse unknown Q-vector spaces are connected with the scissors congruence
problem. Thèse connections will be discussed in greater détail in later works.

The présent work is organized in the following manner. Section 0 gives a rapid
review of the relevant background materials and fixes the notation. It is a bit
lengthy. Except for checking over the notations, readers with some familiarities
of the basic results of géométrie algebra, homological algebra, Lie groups, Lie
algebras, Schur multipliers of algebraic groups and the K2 functor (associated to
fields) of Milnor, can skip this section. Cartan&apos;s classification of simple Lie
algebras will not be reviewed but will be invoked. Section 1 deals with Theorem
1.1 and sets the tone for Section 3. Section 2 deals with Theorem 2.1 and sets the
tone for Section 4. Some technical results needed to complète the proof of
Theorem 4.1 are relegated to Appendix A and Appendix B. In particular,
Appendix B contains an easier proof of a stronger resuit that gives a part of the

stability theorem of Suslin [32].
We thank Wu-Chung Hsiang, Michio Kuga, Dusa McDuff, John Milnor and

Walter Parry for many helpful conversations. We also thank Johan Dupont and
Jack Wagoner for collaborations leading to many valuable ideas. In paricular, the
idea that a chain complex based on unit vectors might be of interest was first
suggested to us by Kuga in a conversation (c. 1972) concerning finite orthogonal
groups acting on finite vector spaces. In an earlier version of the présent work, a

weaker form of Theorem 1.1 was obtained by adapting an idea of Hsiang which
was based on a combinatorial topological approach to tackle the conjecture of
Milnor for SL(n, (R). A variation of this adaptation is implicitly used in Appendix
A. A similar idea was suggested by the référée. Neither of thèse ideas makes an

appearance in the présent work. Nevertheless, both Hsiang and the référée
deserve the crédits for providing inspirations. A number of the technical ideas

(such as the dimension filtration and the spectral séquence machine) hâve already
made their appearances in Dupont [6]. Aside from ail thèse, we would like to
express our deepest appréciation to the unknown référée who toiled heroically
through the several drafts of the présent work and made valuable suggestions and

caught many errors. Needless to say, we take the crédit for the remaining errors
(hopefully, they are of the trivial kind).

0. Preliminaries

This section reviews some basic results in géométrie algebra, homological
algebra, Lie groups, Lie algebras, Schur multipliers of algebraic groups and the
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K2-functor of fields defined by Milnor. Part of this will serve to fix our notations
and part of this will serve to outline our arguments.

F dénotes one of the three classical division algebras R, C or H. A careful
proof analysis shows that our results are valid for division algebras of the same
three types over any Pythagorean field-any ordered field R such that each

positive élément of R is a square in R. The involutions (or antiautomorphisms of
order dividing 2) of F over R are known. The less wellknown ones for H can be
normalized to be ** which sends i, /, k into i, -/, k respectively. We
indiscriminately take * to be one of thèse involutions (including Id over M or C)
for the time being. Later on, the choice will be clear from context. F&quot; dénotes the
right F-vector space formed by ail the column vectors with n entries from F. For

f ±, the nondegenerate e-hermitian *-sesquilinear forms on F&quot; hâve ail been
classified. They are viewed as inner products:

The unitary groups of thèse forms together with the gênerai linear groups account
for ail the simple Lie groups of classical types after we pass to groups that are

locally isomorphic to the commutator subgroups of the connected components of
the groups mentioned. The Theorem of Witt can be stated in the following form:

Let U Eosi&lt;; m,F and V Eo^/&lt;; vfi be nondegenerate F-subspaces of F&quot;.

Suppose that a is unitary with respect to such that a(ul) vn 0&lt;i&lt;j.

Then there exists unitary p on F&quot; with respect to such that p(w,) v, for
0&lt;/&lt;; and such that p(w) w holds for ail w orthogonal to U + V. If
dim (7 dim V and if (us, u,) (vs, vt) holds for O^s, t^j, then a can be

found.

With some mild restrictions when dealing with characteristic 2, Witt&apos;s

Theorem actually holds in gênerai.
Spectral séquences will be one of the basic tools in our investigation. Thèse

arise from double complexes in the first quadrant. In most cases, they are

homology spectral séquences with the first (or column) index as well as the
second (or row) index filtration. To avoid possible confusion, we adopt redundant
notation as needed. For example, a complète notation for a homology spectral

séquence with second index filtration (often called the transposed spectral
séquence) will hâve its £2-terms denoted by nE\} and we write:

&quot;•/2
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The broken arrow is used to remind us of the usual &quot;staircase&quot; description of &quot;d2.

The horizontal doubled arrow signifies that &quot;£^&gt;0 injects into Hn while Hn surjects
onto &quot;£Ô,n. Typically, our transposed spectral séquences arise as follows:

Consider any exact séquence of (left) G-modules for the group G:

&gt;M;-&gt;M;_1-» Afo-»A-»0. (0.1)

This will be called an acyclic G-chain complex M * with augmentation A. The

G-homomorphisms in (0.1) are denoted by dM. We next take any ZG-free (or
ZG-projective) resolution of the G-trivial module Z:

• ¦ -»Ç(G)-&gt;CU(G)-&gt;- • ¦-&gt; CtfG)-* Z-&gt;0. (0.2)

For example, C*(G) can be the standard bar resolution, either homogeneous or
nonhomogeneous, either normalized or nonnormalized. We then form the double
complex C*(G)®gM* with (i,/)-th term Q(G)®GMj and with total boundary
a 3G®l + e®3A/ where e is (-1)1 on Q(G). This yields:

fÉlf0**Hm(G,A) and &apos;El,, 0 for j &gt; 0. (0.3)

Comparison of spectral séquences then yields:

/f,+;(G, A) &lt;= &quot;E}tJ Ht{G, M7), i &quot;d1 edM. (0.4)

We often ignore the sign e in (0.4) with the understanding that some of our maps

may hâve an ambiguous factor of ±1 that cause no problem on our assertions.

Contrary to some conventions, we do not transpose the terms of our spectral

séquences but do transpose the differentials. This is consistent with our emphasis

on the comparison feature of the two différent filtrations. In our applications, M *
may be viewed as the complex of cellular chains on a suitable cell complex
equipped with a cellular group action from G (however, the action is usually not
properly discontinuous). In such cases, Hf(G, M}) in (0.4) can be described

through Shapiro&apos;s Lemma. Namely, if K is any subgroup of G and if N is any
(left) Z#-module, then Shapiro&apos;s Lemma reads:

The interesting case for us usually occurs with K acting trivially on N. In the

setting of transformation groups, Shapiro&apos;s Lemma is just the &quot;Principle of
Réduction to Isotropy&quot;. In the topological setting, the group action is usually
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required to be proper. An explicit map describing (0.5) may be found in
Dupont-Sah [8].

The next resuit is formai. Let &amp;1, i &gt; 0, be an increasing filtration of a chain
complex C* by subcomplexes. It then leads to a spectral séquence with first index
filtration given by the ^&quot;s.

BOOT-STRAPPING LEMMA. Suppose that &amp;l is (i - îyacyclic for i n,
n + 1, and that &apos;£i+i&gt;0 0. Then &amp;*n is in fact n-acyclic.

Proof. Look at the long exact séquence:

/fn+1(*n+1, &amp;n) is just &apos;EUh0. D

Remark. In the preceding lemma, the spectral séquence is merely a con-
venient way to describe the relative groups Hn+Ï(^n+1, &amp;n) Hn+1(3&apos;n+1/3&apos;n).

The spectral séquence formulation is retained partly because fEl+l0 is the
scissors congruence group in the homological algebraic approach to the scissors

congruence problem formulated by Dupont [6]. With trivial coefficients in place
of the twisted coefficients used by Dupont, we hâve killed off the scissors

congruence groups.
Let G dénote any (real) Lie group with connected component G0. There is a

&quot;functorial&quot; définition of the universal complexification Gc of G, see Bourbaki
[4; III.6.10]. (G°)c and (Gc)° are then isomorphic under the functorial homo-

morphism and G/G°^GC/Gc. In gênerai, the universal complexification homo-

morphism does not hâve to be injective. However, its kernel is always a discrète
normal subgroup of G0 so that it is part of the center of G0 (though not
necessarily part of the center of G).

Suppose that G is a connected, simply-connected, simple, nonabelian real Lie

group. Gc is then connected and simply-connected. Gc is either simple or
isomorphic G x G. In the first case, G is said to be absolutely simple (when there
is no chance of confusion, any Lie group locally isomorphic to such a G is also

called absolutely simple). The second case occurs exactly when G is a complex
Lie group viewed as a real Lie group. In gênerai, the Lie algebra of G is the fixed

point set of a real involution of the (real) Lie algebra of Gc. This real Lie algebra
involution can be integrated into an involution r\ of the real Lie group Gc. Under
the universal complexification homomorphism, G is then mapped onto the
connected component (Gg)0 of the fixed point set G£ of rj. When G is complex
but viewed as a real Lie group, then r\ exchanges the two simple factors G of Gc
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and G G^ where the latter represents the diagonal subgroup of G x G. Since G
is always a perfect group, the relation between H2(G) and H2(GC) is clear when G
is complex. Namely, H2{G) H2(GC)T1- Similar relations can be obtained by using
Kûnneth&apos;s Theorem as long as we hâve some control on the Tor terms. Our
interests will be concentrated on the cases where G is absolutely simple. The
gênerai outline is that H2(G) will be determined by using the map induced by the
universal complexification homomorphism. It turns out that this program is best
divided into two parts aecording to G is compact or not. In both cases, we restrict
ourselves to those G that are of classical types and replace each G by the

appropriate group of ail &quot;isometries&quot; of appropriate &quot;inner products&quot;. We
therefore need to know something about H2(GC) before the replacements are
carried out.

Assume that G is absolutely simple so that Gc is a simple, connected,
simply-connected, complex Lie group. In this case, Gc is an example of a

universal Chevalley group G(0, F) associated to the connected (or irreducible)
root System 4&gt; over a field F by taking F C and letting 0 be the root System
associated to the Dynkin diagram of Gc. Explicit descriptions of H2(G(&lt;P, F)) are
known from the works of Steinberg [29, 30], Moore [19] and Matsumoto [15].
With the exception of a small number of cases (when both # (F) and rank (0)
are small), the descriptions are given by generators and defining relations, see

Steinberg [30; p. 86]. In ail cases, H2(G(&lt;P, F)) is the homomorphic image of
H2(SL(2, F)) by means of a &quot;long root homomorphism&quot; of SL(2, F) into
G(#, F) as long as we avoid the finite number of exceptional cases. When 4&gt; is of
type Cn, n^l (note: i4i C1 and B2 C2), the homomorphism is actually an

isomorphism. When &lt;P is not of type Cn, n^l, we obtain the same quotient
group denoted by K2(F). Thèse techniques can be summarized as &quot;réduction to
rank 1 though algebraic group theory&quot;. With a large amount of work, this process
has been extended by Deodhar [5] to the &quot;quasi-split&quot; cases. In gênerai, the cases

of G(&lt;t&gt;, F) cover the &quot;split&quot; case. For our purposes, the technical définitions are
not important. It is enough to know that SL(n, F) and Sp(2n, F) are &quot;split&quot; while
SO(p, q, M) is &quot;R-split&quot; if and only if \p - q\ &lt; 1 and is &quot;R-quasi-split&quot; if and

only if |p— q\^2. Moreover, the compact cases are the analogues of the
&quot;anisotropic&quot; cases in algebraic group theory where the procédures from
algebraic group theory give no information. This cornes about because the

algebraic group theory is based on having enough unipotent éléments (in
particular, having sufficiently rich supply of SL(2, F)&apos;s) in the group. Our
procédure is roughly that of replacing the &quot;réduction of rank 1 by algebraic group
theory&quot; by the &quot;stability results via géométrie algebra&quot;. In the compact cases, we
end up with H2(SU(2)) and in the noncompact cases, we end up with
K2(C)+ - the fixed points under the action of complex conjugation automorphism
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of C. For our purpose, the following resuit will be used a number of times. It can
be deduced from Milnor [18; Lemma 6]:

Assume that G is the universal covering group of G&apos; and that G is ,v
connected and semisimple. Then H2(Gf) H2(G)rlljïl(Gf).

^ &apos;

&apos;

In practice, H2(G&apos;) will be seen (in the cases of interest to us) to be a direct sum
of jïi(G&apos;) and a divisible group so that H2(G) is uniquely determined as the
divisible part of H2(G&apos;). Variations of this thème will be used in some cases
where G and G&apos; are not connected but are semidirect products by a compatibly
defined group whose actions are known.

We end this section with a short review of the #2-functor of Milnor [17]. It is a

covariant functor from associative rings with unit to abelian groups. We restrict
ourselves to the case of fields (also some division rings in Appendix B) where
additional properties are available, see also Kervaire [14] and Suslin [32]. By
définition, K2(F) is the Schur multiplier H2(SL(F)) where SL(F) is the union of
ail SL(n, F) under the stabilization homomorphisms. If we leave out a few small
finite fields, then H2(SL(F)) stabilizes surjectively at H2(SL(2, F)) and bijectively
at H2(SL(3, F)). In ail cases, K2(F) is generated by the &quot;i^-symbols&quot; {w, v}, u,
v e Fx with defining relations: {u&gt; v} is bimultiplicative in m, v and {uy 1 — u) 1

if m #0, 1. Hère K2(F) is viewed as a multiplicative abelian group. We note that
thèse relations are simpler than the ones given in [30; p. 86]. The symbol {u, v} is

interpreted below.
Let G be any abstract group. When G is perfect, H2(G) can be described as

the kernel of a universal central extension. For a lucid exposition, see Milnor [17;
§5]. For a gênerai G, we can follow Schur [27, 28]. Let C* dénote the standard

nonhomogeneous complex that computes //*(G) so that C* is G-trivial. We can
construct the following central exact séquence:

The construction is canonical in the sensé that we use the 2-cocycle / defined by
the rule: f(xfy) [jc \y] mod 3C3. In the Hochschild-Serre spectral séquence
associated to the preceding exact séquence with trivial coefficient Z,
rd2t0:H2(G)-+C2/dC3 is just the obvious injection that identified H2(G) as the
kernel of d: Q/SCa-^Ci. We therefore obtain the exact séquence from the

spectral séquence:

0-* H2{G)-+ CV 3Ç,-» ifi(G*)-» Hi(G)-&gt; 0.
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This shows that H2(G) (C2/dC3)n[G*f G*]. When G is perfect, the com-
mutator subgroup [G*f G*] is the universal central extension of G. In gênerai, we
note that CildC-$ H2(G) U 3Q because Q is a free abelian group based on the
symbols [x], x eG (or x eG — {1} if C* is normalized). This splitting is not
canonical. If we sélect such a splitting of OildC3 and quotient out the factor
corresponding to SQ, we then hâve a central extension:

In this exact séquence H2(G) c [G, G] and the détermination of H2(G) (up to
isomorphism) can be carried out in the manner described in Milnor [17], Except
when G is perfect, the preceding central extension is usually not universal and G
is usually not unique up to isomorphism. Nevertheless, this was the method used

by Schur in the case of finite symmetric groups. Topologically, C* is the complex
of cellular chains of an Eilenberg-MacLane K(G, l)-space BGÔ. Eléments of
H2(X) for any CW-complex X can be realized as the image of the fundamental
class of a map of a compact orientable surface Sg of genus g into X. This dépends
on the fact that we are dealing with H2 and the fact that compact orientable
2-manifolds are classified by the genus. Since BGÔ has trivial higher homotopy
groups, we can assume g &gt;0 when dealing with H2(G) H2(BGÔ). Sg is also an

Eilenberg-MacLane space when g&gt;0. nx{Sg) can be generated by 2g éléments

x» y» l^i^g, with the single defining relation Hi[xtt yt] l&gt; where [x, y]
XyX-iy-i^ ^S a resui^ éléments of H2(G) can be described in terms of group
homomorphisms of Jtt(Sg) into G, g &gt; 0. This explains the topological significance
of the group theoretic results. By means of commutator manipulations in G, it is

sometimes possible to show that H2(G) can be generated by the images of the
fundamental class of 3t\{Sg) with g 1. This process can be called &quot;réduction to
genus 1&quot;. The success of this procédure often dépends on knowing a good
présentation of G (or of some candidate for G). This is the procédure for the

description of K2{F) when F is not too small so that K2(F) ss H2(SL(3, F)) is a

quotient of H2(SL(2, F)). In particular, let T St so that ni(T) is the free
abelian group of rank 2 based on the generators x and y. H2(T) is generated by
the class of the fundamental 2-cycle [jc | y] - [y \ x]. If o: T-* G, then the élément
of H2(G) determined by [a(x) | o(y)] - [o(y) \ o(x)] is denoted by o(x) + o(y).
In terms of the fixed choice G, o(x) if o(y) is just the commutator [o(x), o(y)] in
G where a(x) and o(y) are arbitrary lifts of o{x) and a(y) from G to G. We can
avoid the noncanonical choice of G by working with G*. As shown in Milnor
[17; §8], *-product is defined on pairs of éléments of G that commute. As such, it
is skew-symmetric and bimultiplicative. We note that the bimultiplicativity only
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requires each of the factors on the left side to commute with each of the factors
on the right side; it does not require factors on the same side to commute with
each other. When K2(F) //2(5L(3, F)), the symbol {u, v) is just
diag(w, u&quot;1, l)*diag(u, 1, v~l). We note that thèse factors do not make sensé
in 5L(2, F) in that we can not simultaneously conjugate them into 5L(2, F) by an
élément of SL(3, F). Upon stabilization and simple computation,
diag (m, m&quot;1) *diag (u, u&quot;1) is mapped onto {w, v}. {m&quot;1, v~1} {uy v}2.

Suppose that Fx (Fx)2. The discussion at the end of the preceding
paragraph already implies that H2(F*) maps surjectively onto K2(F) where Fx
dénotes the diagonal subgroup of 5L(2, F). In fact, it is known that K2
H2(SL(2, F)) is uniquely 2-divisible, see Matsumoto [15], Bass-Tate [3]. In such

cases, K2(F) may be viewed as a quotient of A|(FX) with u av mapped onto
{u, u}. This ignores a factor of 2 (unimportant because K2(F) is uniquely
2-divisible). However, such factors of 2 cannot be dismissed so lightly for a

gênerai F or in dealing with subgroups of SL(n, F) in the absence of prior
information on Schur multipliers. Every so often, such factors of 2 may be

mentioned. Thèse usually arise because they hâve some connections (not
explained) with 2-torsion problems in scissors congruence groups. We only note
(without detailed explanations) that extraneous 2-torsions in appropriate places
would provide simultaneous counterexamples to the proposed solution of the
third problem of Hilbert (appropriately modified) as well as the conjecture of
Friedlander-Milnor.

In the case of F C (or any algebraically closed field), K2(C) is a Q-vector

space by a theorem of Bass-Tate [3]. Since K2 is a covariant functor, we hâve a

natural map of K2(U) into K2(C). This map is in fact induced by the

complexification homomorphism. The image is K2(C)+ and the kernel is Z/2Z
jtt(SO(n))f n&gt;3. In fact, K2(U) K2(C)+UZ/2I. Similarly, H2(SL(2,
K2(C)+UZ where Z ^(5O(2)). We note that ^(5L(n, U^
because SO(n) is a maximal compact subgroup of SL(N, U) and SL(n, U)/SO(n)
is contractible as a topological space. By (0.6), we see that H2(G) K2(C)+
where G is the universal covering group of SL(n, U), w&gt;2. Thèse examples
serve as illustrations on the use of (0.6). In particular, in our détermination of the
Schur multipliers, we will exclude both SL(n, 1R), Sp(2n, R) as well as G(#, C).

1. Homology stability in the compact cases

This section deals with our basic example. Let F R, C or H. For n &gt;0, let
p+1 2] ef be equipped with the standard *-hermitian symmetric positive
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definite inner product given by the rule:

jai&gt; 2 ejPj) 2 a*Pj&gt; where * dénotes the standard involution.
J

&apos;

J

ejai&gt;

J

Let U(n 4-1, F) dénote the associated unitary group acting on the left of P+1

through matrix multiplication. e} is the standard unit column vector with entry 1

in the ;-th position, 0&lt;j&lt;n. SU(n + 1, F) is the perfect commutator subgroup of
U(n + 1, F) and U(n + 1, F) splits over SU(n 4-1, F) with quotient groups 0(1),
U(l) and 1 respectively. When précision is needed, we use the conventional
notation of O(n 4- 1), U(n + 1) and Sp(n 4- 1) respectively.

Let S(¥n+l) be the space of ail unit vectors in Frt+1 so that S(F&quot;+1) is

topologically a sphère of real dimension (n + 1) • |F:R| - 1. Let C* C*(S(Fn+1))
be the normalized Eilenberg-MacLane chain complex based on the set S(Fn+1).

Q is therefore the free abelian group based on the set of ail ordered (t 4- l)-tuples
(v0,. vt) of points of 5(Fn+1) with the understanding that such a f-cell is 0 if
yg vt_t holds for some i. We use the usual boundary operator:

When there is no chance of confusion, dc is written as d. C* can be identified as

the complex of cellular chains on a CW-complex, see May [16]. For our purposes,
it is just as easy to work formally. As is wellknown, C* is acyclic with
augmentation Z. We can filter C* by subcomplexes 9\ O^i^n, where a r-cell

(vQ,...,vt) belongs to 91 if and only if dimF Eo^/^^F^/ 4-1. Evidently,
CjCzSF1 holds for /&lt;*&apos; and SFll3F~l begins in degree i as a free abelian group
spanned by the independent f-cells (v0,..., vt). In the présent context,
independent means the v09.. ,vt are F-linearly independent. The filtration ^&apos;,

Ç}si&lt;n, will be called the (F-) dimension filtration. Evidently, for any group G
acting on C* through the action of U(n H-1, F) on Fn+1, the action will be

compatible with dc and will préserve the dimension filtration. Moreover, 91 is a

G-direct summand of C* when C* is viewed as a G-module. In view of the
discussion in Section 0, C* can be used to compute H*(G) by means of a

transposed spectral séquence with &quot;EltJ^Ht(G, C;). The main resuit of the

présent section is:

THEOREM 1.1. Let n ^0. The inclusion map front U(n, F) to U(n + 1, F)
induces a surjection front Hf(U(nf F)) to Ht(U(n + 1, F)) for i&lt;n. This map is a

bijection when i &lt; n.
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By the transposée! spectral séquence described above for G U(n + 1, F),
Theorem 1.1 follows formally from the next assertion.

THEOREM 1.2. In the transposée spectral séquence &quot;E\ the i-th column &quot;£**

is (n — i)-acyclic with augmentation Ht{U(n, F)), 0&lt; i &lt; n.

We begin our proofs with the observation:

&quot;E/.o s//,(!/(*, F)), is&gt;0. (1.3)

This is just Shapiro&apos;s Lemma because U(n H-1, F) acts transitively on S(F&quot;+1) and
the stability subgroup of eQ is U(n, F). More generally, if (u0, vt) spans an

F-subspace of dimension / + l&lt;f + l, then the stability subgroup of the f-cell
(v{),. vt) is conjugate to U(n —j, F) in U(n 4-1, F). Since conjugation is an
abstract group G induces the identity automorphism on its homology groups
(taken with trivial coefficients), ail thèse stability embeddings are compatible and

we can always sélect a particular embedding. This is the meaning of the inclusion

map in Theorem 1.1. We assert next that:

&quot;^ 0 sothat &quot;Elo &quot;Elo, /^0. (1.4)

By Shapiro&apos;s Lemma, &quot;E)A l\a,b)H,(G{atb)) ©(a, b) where (a, b) ranges over
the distinct U(n 4-1, F)-orbits of 1-cells and G{a&lt;b) dénotes the stability subgroup
in U(n + 1, F) of the représentative 1-cell (a, b). If c is an /-cycle of G(flfe), then
{-\y&quot;d)A dc sends c ® (a, b) onto c ® (b) - c (8) (a). By Shapiro&apos;s Lemma (in
reverse), each of thèse two terms represents an élément of Ht(U(n + 1, F), Q).
By Witt&apos;s Theorem, we can find a in U(n + 1, F) so that o centralizes G^afb) and

a(a) b. Since conjugation by a on U(n + 1, F) together with application of a on
Cq induce the identity automorphism on Ht(U{n +1, F), Q), we may conclude
that c ® (a) and c ® (b) are homologous so that their différence is 0 in
Ht(U{n + 1, F), Co) &quot;Elo- This gives us (1.4) and shows that we hâve the correct
augmentation as described in Theorem 1.2.

We next observe that the dimension filtration 3F* induces a filtration on the
double complex C*(G) ®G C*, G U(n + 1, F). This in turn induces a filtration
&amp;î on the i-th column &quot;£*

*. We begin the attack on Theorem 1.2 by taking i 0

and observing that we hâve &quot;£q,* H0(G, C*) C* ®GZ and &quot;dl* 3C. Since

^3 &quot;£o,*&gt; we can use Witt&apos;s Theorem to identify ^(J with a subcomplex of
^o+1- To be précise, we take the obvious embedding of F&quot; into Fn+1 and pass to
the direct limit F30. This induces an embedding of CS,(5(F&apos;1)) into C*{S{¥n+l)).
The power of Witt&apos;s Theorem is such that the other embeddings are &quot;conjugate&quot;



320 CHIH-HAN SAH

to the one named. As long as G is transitive on the set of ail possible embeddings,
there is no problem with our identification process. We assert that:

^3 &quot;El* is (n - l)-acyclic, n &gt; 0. (1.5)

Remark. As it will become clear, (1.5) is valid as long as G 3 SU(n + 1, F).

The proof of (1.5) is based on the Orthogonal Join Construction. We prove a

stronger resuit. Let c be any f-cycle of C*®GZ lying in $Fn~l. Any f-cell
appearing in c can be moved by G to the hyperplane E,&gt;o^F- We may therefore
assume that c is supported on Ei&gt;o^F. This allows us to form the orthogonal join
eo#c, namely each f-cell (i/0, vt) in c is replaced by (e0, v0,. vt).
3c(e0 # c) c — e0 # dcc- Since c is a t-cycle in C* &lt;8&gt;G Z, the cells appearing in
dcc must cancel out in pairs under the action of G. Since thèse cells actually lie
on the chosen hyperplane orthogonal to e0, Witt&apos;s Theorem tells us that the
cancellation phenomenon can be assumed to be realized by éléments of G that fix
e0. In other words, e0 # dcc represents 0 in C* ®G Z. When t &lt; n - 1, any f-cycle
of C*®GZ automatically lies in P&quot;&apos;1. We therefore hâve (1.5). In fact, dcc
automatically lies in &amp;n~2 so that we even hâve enough room to adjust for the
déterminant to take care of the remark.

(1.5) can be improved to the following assertion:

^3 &quot;E\* is n-acyclic, n &gt; 0. (1.6)

Namely, the preceding argument actually gives us short exact séquences:

^i&apos;l)^Ht^{^-1)^^ t&gt;\. (1.7)

It is enough to show that Hn(&amp;ll&lt;&amp;l~x) 0. ^g/^g&quot;1 begins in degree n and is a

free abelian group based on the set of ail G-équivalence classes of independent
n-cells (i/0,.. vn) in P&quot;1&quot;1. We shall show that each such n-cell represents a

boundary in SFqISFq&quot;1. Our argument is based on the Circumcenter Construction.
(There is a similar, less inductive, but &quot;simpler&quot; Inscribed Center Construction.)

Since v0,..., vn form an F-basis of Fn+\ the orthogonal complément of
£/&gt;o(vj — uo)F is 1-dimensional over F and can be taken to be z¥ with (z, z) 1.

It follows that (z, v^ is a constant independent of y, 0&lt;y&apos;^n. Since our inner
product is nondegenerate, this constant is not 0. If we multiply 2 by a suitable
élément of norm 1 in F, we may assume that (z, i/;) r is a positive real number.
From Schwarz&apos;s inequality, r &lt; 1. This uniquely determined z is called the
circumcenter of the independent n-cell (vQ,... vn). Modulo dc(z, v0&gt;..., vn),



Homology of classical Lie groups made discrète, I 321

(i/0,. vn) becomes an intégral linear combination of cells of the form:

(z, wlf wn), (z, Wj) is a constant independent of ;&apos;, 1 ^j^n. (1.8)

If we let zx be the circumcenter of the independent (n — l)-cell (wlf wn) in
S; wyF and look at the boundary of (z, zu wlf wn), then the independent
n-cell in (1.8) becomes an intégral linear combination of independent n -cells of
the form (z0, zlt y2, yn) where (zlf y,) dépends on i but not on y, 2 &lt;y ^ n.
We note that a number of dépendent n-cells hâve been absorbed by 9q&quot;1 and the
given n-cell has been modified by a boundary. This process can clearly be

continued until we reach the stage of an independent n-cell of the form:

(ZO, Zn_2, Kn-i, Un), (zn Mn-i) &lt;Zf, «„ 0 &lt; I &lt;/I - 2. (1.9)

If zn_! dénotes the &quot;midpoint&quot; or the circumcenter of (an_i, wn), then Witt&apos;s

Theorem and inner product computations imply that (z0, zn_x, wn_i) and
(z0, zn~i, un) are G-congruent. The independent n-cell in (1.9) is just
(-1)&quot;&quot;1 3c(z0, zn-u un-u un) in 9%l9%-\ This proves (1.6) via (1.7).

We now tackle Theorems 1.1 and 1.2 in tandem by complète induction. The
induction hypothesis is that we hâve proved Theorem 1.1 for ail integers less than
n. To complète the induction, we only hâve to verify Theorem 1.2. In view of
(1.4) and (1.6), the index i in Theorem 1.2 may be restricted to the range
l&lt;j&lt;n-l. For this range, &quot;£&quot;** can be replaced by its subcomplex 2F?~l

because 2F&quot;~l^&quot;Ë\tJ for j-^n — i. By Shapiro&apos;s Lemma, 9^~l is a direct sum of
abelian groups of the form Ht{Gc) Te) Ht{Gc) ® Zc where c ranges over the
distinct G-orbits of cells (u0, vt) lying in 9*n~\ and Gc is the stability
subgroup of (i/o, •, vt)- By Witt&apos;s Theorem, (u0, vt) can be assumed to lie
on a fixed F-subspace F+1~\ If t &lt;n -1, it does not lie in g?n&quot;/~1 if and only if
t — n — i and (u0, vt) is independent. In this spécial case, the coefficient

group is the unstable group B(i) Ht(U(i, F)). In ail other cases, the coefficient

groups are the stable group C(/) //l(f/(i +1, F)). At this point, we hâve
invoked the induction hypothesis and the restrictions on the range of i. We let
A(i) dénote the kernel of the stabilization map carrying B(i) onto C(i). An
inspection shows that we hâve the following exact séquence of chain complexes:

0-*i4(i) ® ^T&quot;1-* B(i) ® ^JT1-* ®Tl~* 0, 1 &lt; i &lt; n - 1. (1.10)

The usual long exact homology exact séquences follows from (1.10). We note that

^0 is a Z-free chain complex. By (1.6), fP0 isy-acyclic. By the universal coefficient
theorem, &amp;1~l is (n — i)-acyclic. As indicated before, this gives Theorem 1.2 and

complètes the inductive proof of Theorem 1.1.
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Remark 1.11. The independent (n + l)-cells of the form (z(), zn, un)
described after (1.9) are the &quot;orthoschemes&quot; of L. Schàfli when F R. The
circumcenter argument is an adaptation of a classical argument used to show that
the scissors congruence groups are 2-divisible, see Sah [24]. As shown in Dupont
[6], if F R and if twisted coefficients are used, then H1(9\J9q&apos;19 Z&apos;) can be

identified with a quotient of the scissors congruence group in /-dimensional

spherical space. This group has a rather complicated structure. With the use of
trivial coefficient groups, we hâve effectively killed off this scissors congruence
group. To retain this group, we can use SO in place of O.

Remark 1.12. In the spécial cases considered hère, Theorem 1.1 extends the
work of Vogtmann [36]. Our more précise range of stability is a conséquence of
the spécial nature of our division algebras. Some of our surjectivity statements
can be improved to bijectivity statements. Milnor raised the question: Is it true
that the stability results are valid with the F-dimension replaced by the

appropriate topological dimension?

Remark 1.13. There is no problem proving the corresponding stability results
for trivial coefficient groups other than Z. The point to note is that our stability
resuit is based on acyclicity results. The universal coefficient theorem may be

applied in thèse cases. However, the corresponding results for nontrivial
coefficient groups would require more care. The problem rests with the inductive
nature of our arguments involving the use of Shapiro&apos;s Lemma. In the study of
the scissors congruence problem, nontrivial coefficient groups do appear, see

Dupont [6]. In spécial cases, the &quot;center kills&quot; lemma gets around the difficulty.

It would be désirable to hâve some sort of gênerai theory of the Eilenberg-
MacLane homology (or cohomology) of algebraic groups with algebraic
coefficient modules. Such a theory does exist over absolutely algebraic fields of
positive characteristics. The main point is the fact that finite fields are Galois
extensions of the prime fields with Galois groups generated by the Frobenius
automorphism. Conceivably, this theory can be extended to cyclic extensions of
the rational numbers. In any case, one would like to hâve précise results rather
than stable results. In this last aspect, beyond the knowledge on the level of Schur

multipliers, our knowledge is very fragmentary.

2. Schur multipliers of compact classical groups

The principal resuit in the présent section is the following theorem:

THEOREM 2.1. Under the natural inclusion maps, we hâve bijections:
(a) H2(SPin(3))--»H2(SPin(n))-+H2(SPin(n + 1)), n &gt;5;
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(b) H2(SU(2))~*H2(SU(n))-*H2(SU(n + 1)), n &gt; 3; and

(c) H2(Sp(l))^H2(Sp(n))-*H2(Sp(n + 1)), n =&gt;2.

AH thèse maps are compatible with the identification of our compact groups as

the maximal compact subgroup of the corresponding complex Lie groups. On the
level of Schur multipliers, ail of our groups are then mapped onto K2(C)+. (in
fact, thèse maps are bijective, see Dupont-Parry-Sah [7].)

Remark 2.2. There is a functorial procédure to complexify a real Lie group,
see Bourbaki [4; III.6.10]. Since the functorial approach do not always give
injective maps, care must be exercised. Our approach is more naive and concrète.
To avoid possible confusion, we will usually use complexification to indicate that
we hâve mapped our Lie groups into some similarly defined complex Lie group.
Theorem 2.1 is also valid for compact groups of type G2 and F4 in the sensé that
their Schur multipliers are isomorphic to H2(SU{2)). The case of G2 is due to
John Hurley in his 1983 Ph.D. dissertation at SUNY, Stony Brook. The case of F4

is due to Johan Dupont (1984, unpublished). Both are based on the geometries of
suitable compact symmetric spaces associated to the corresponding groups.

We begin the proof of Theorem 2.1 by recalling the split exact séquence:

l-+SU(n, F)-» U(n, ¥)«±U(n, ¥)/SU(n, F)-» 1, n =&gt; 1 (2.3)

The quotient map is given by the déterminant (trivial when F H). SU(n, F) is

connected and is simply-connected when F C or H. The universal covering

group of SO(n) is SPin(n), n &gt; 3, with kernel Jt^SOty)) of order 2. We hâve the

following &quot;exotic isomorphisms&quot;, see Helgason [12; p. 519]:

SU(2) Spin(3), Sp(2) SPin(S)9

SPin(4) SPin(3) x SPin(3), SU(4) s SPin(6). (2.4)

In view of (2.4) and Theorem 2.1, we hâve the immédiate corollary:

COROLLARY 2.5. If G is a nontrivial, connected, simply-connected, compact

Lie group of classical type, then H2(G) is naturally isomorphic to H2(SU(2))
under an inclusion map of SU(2) into G. (This corresponds to a suitable choice of
roots in the Dynkin diagram.)

Each of the three cases of Theorem 2.1 has some spécial feature of its own.
We therefore treat them separately.

CASE 1. F R. The proof of Theorem 1.1 depended strongly on the
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rt-aeyclicity of C* ® G Z, G O(n +1). If we use the pair SO(n) and SO(n + 1),
then (1.5) is still valid. Namely, we hâve just enough room to adjust for the
déterminant in the orthogonal join construction. This observation easily gives:

H2(SO(n)) H2(SO(n + 1)), n &gt; 5. (2.5)

In gênerai, we may examine the Hochschild-Serre spectral séquence associated

to the universal covering séquence. In the présent case, we obtain the exact

séquence:

)-+0, n &gt;3. (2.6)

As shown by Milnor [18], (2.6) always splits so that we hâve:

H2(SPin(n)) Un^SOin)) H2(SO(n))f n s&gt; 3. (2.7)

By (2.5) and (2.7), we hâve (a) of Theorem 2.1 for n &gt;5. We next observe that
O(2t + 1) s SO(2t + 1) x /2r+1, r 25 1. We obtain from Kunneth&apos;s Theorem:

H2(O(2t + 1)) H2(SO(2t -h 1)), f &gt; 1. (2.8)

By Theorem 1.1, we obtain: H2(SO(3)) H2(O(3)) as #2(O(5)) //2(SO(5)). (a)
of Theorem 2.1 now follows from putting together the preceding isomorphisms
with (2.7) and the compatibility of the universal covering séquences.

Remark 2.9. Assertion (a) with n&gt;5 has also been obtained by Roger
Alperin (unpublished) along the Une of arguments used in Alperin [1], If we

carry out our argument for n 2, then we obtain easily the surjectivity of the

following map:

H2(U(l))-»H2(SU(2)), H2(U(l)) A|(R/Z) is a Q-vector space. (2.10)

Hère f/(l), SU(2) doubly cover SO{2) and SO(3) respectively. (2.10) was first

proved by Mather (unpublished but see Alperin-Dennis [2]) by looking at the

geometry of 51/(2). Our argument uses the geometry of the 2-sphere.

Remark 2.11. The skipping of n 4 in (a) of Theorem 2.1 is necessary. To see

this, we identify*H and R4 so that (w, v) trH/R (w* • v)/2. Sp(l) is the group of
unit quaternions. Sp(l) x Sp(l) acts on H through the rule:

u-q*v-1~wq-v*f çeH, u,veSp(l). (2.12)
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This defines a homomorphism of Sp(l) x Sp(l) into S0(4) with kernel
((—1, —1)) of order 2. Computation of dimensions together with connectivity
show that this map is surjective. The involution * on H defines a complément of
5O(4) in 0(4). This involution clearly exchanges the two Sp(l) factors.

Evidently, we hâve a split exact séquence:

l^SPm(4)-*SPm(4)- &lt;*)s±&lt;*) —1. (2.13)

SPin{4) • (*) doubly covers O(4) and its subgroup SPin(3) x (*) doubly covers
the subgroup 0(3) pf O(4). Hère SPin(3) dénotes the diagonal of Sp(l) x Sp(l).
As indicated in the beginning of Case 1, we can replace 0(3) and 0(4) by the pair
just described. Theorem 1.1 then gives:

H2(SPin(3)) a Ho((*&gt;, H2(SPin(4))). (2.14)

The right hand side of (2.14) is obtained through the Hochschild-Serre spectral

séquence associated to (2.13). It can also be obtained by using Kiinneth&apos;s

Theorem. Since Ht(Sp(l)) 0, it is immédiate that the right hand side of (2.14) is

also isomorphic to H2(Sp(l)) through either one of the two factors embedded in
SPin(4). Since SPin(3) is embedded in SPin(4) through the diagonal, (2.14)
contains the assertion:

H2(SPin(3)) H2(SU(2)) s H2(Sp(l)) is uniquely 2-divisible. (2.15)

Assertion (2.15) is implicitly contained in Dupont [6]. It is now clear that (a) of
Theorem 2.1 must skip over n 4. If we use the Hochschild-Serre spectral

séquence associated to (2.3), then (2.5) and (2.8) imply that:

O(n) acts trivially on H2(SO(n))&gt; n &gt; 5 or n 3.

H2(O(n)) H2(SO(n)) H2(O(4)), n &gt; 5 or n 3. (2.16)

CASE 2. F C. The quotient group in (2.3) can be identified with 1/(1).
Since C is divisible, each élément of U(l) acts on SU(n) through an inner
automorphism of SU(n). It follows that:

H,(SU(n))) s H,(SU(n)), i ^ 0. (2.17)

By the Hochschild-Serre spectral séquence associated to (2.3), we hâve:

H2( (/(«)) H2(SU(n)) U H2( (/(!)), «al. (2.18)
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If we view C as R2&quot;, then we hâve the commutative diagram below:

5(7(n)-»5(7(n + l)
1 1 *&gt;2. (2.19)

O(2n)-»O(2n + 2)

The map in (2.19) from SU(n) to O(2n) factors through SO(2n). In terms of the

description in Remark 2.11 and the assertion (2.15), H2(SO(4)) is the direct sum
H2(SU(2))UH2(SO(3)) where 5(7(2) is either one of the two factor embeddings
on the universal covering level; alternately, H2(SO(4)) is the direct sum of the ±
eigenspaces under the action of 0(4)/50(4)s (±1). Hère H2(50(3)) is the +
eigenspace while H2(SU(2)) is isomorphic to the — eigenspace under the

projection map and is mapped injectively into the + eigenspace also under the

projection map. For thèse purposes, (2.15) is essential. In particular, H2(O(4))
H2(5(7(2))UZ/2Z. By (2.5) and (2.16) we can go the other way in (2.19) to
conclude that:

H2(SU(n))-»H2(SU(n + 1)) is injective, n &gt; 2. (2.20)

(b) of Theorem 2.1 now follows from (2.18), (2.20) and Theorem 1.1.

Remark, (b) of Theorem 2.1 improves the resuit of Alperin [1] and answers a

question of Milnor [18].

CASE 3. F H. We hâve the following commutative diagram of maps:

Sp(n)-&gt; Sp(n + l)
l i n&gt;l (2.21)

5(7(2n)--»S(7(2rt + 2)

Consider n 1. The column on the left is just 5p(l) 5(7(2) as described in

(2.4). By (b), H2(Sp(l))~H2(SU(n)), n&gt;2, and H2(Sp(l))^H2(Sp(2)) is

injective. By (2.4), Sp(2)^SPin(5). This arises from looking at the induced
action on A|(C4)) C6 and noticing that Sp(4, C) is mapped onto 50(5, C). Even

though 5p(l) s 5Fm(3), the map of Sp(l) into Sp(2) does not correspond to the

universal covering map of 50(3) into 50(5). Instead, it corresponds to one of the

two factor embeddings of 5(7(2) into 50(4). Since 0(4) can be embedded in

50(5), the discussions in Case 2 and Remark 2.11 imply that H2(Sp(l))~*
H2(Sp(2)) is bijective. In particular, H2(Sp(2))^H2(SU(4)) holds in (2.21). This
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gets us started in (2.21) for n &gt; 2 and we can repeat the argument as in Case 2 to
get (c) of Theorem 2.1.

The rest of the assertions are straightforward. In particular, the assertion
about the image being K2(C)* was proved in Sah-Wagoner [26]

COROLLARY 2.22. Let G be any compact Lie group without a simple
comportent of exceptional types E, F or G. Then,

H*(BGÔ, ¥P)-*H*(BG, ¥p) is bijective for * &lt;2.

Namely, our arguments are valid with ¥p in place of Z when G is as in
Theorem 2.1. The gênerai case follows as in Milnor [18]. In fact, if we quote the

unpublished resuits of Hurley and Dupont, components may include types F and
G.

Remark 2.23. In Dupont-Parry-Sah [7], it will be shown that H2(SU(2)) is

isomorphic to K2(C)+ under the inclusion of SU(2) into 5L(2, C). If IR is replaced
by the real closure R flÛ of Q, then we can conclude from the vanishing of
K2(Û) 0 that H2(SU(2, Q)) 0. This also uses the deep resuits of Garland [10],
Quillen [22], Bass-Tate [3]. See also Harris [11] for related resuits.

3. Homology stability in some noncompact cases

We are interested in some noncompact analogues of Theorem 1.1. Let ¥p&apos;q

dénote the right F-vector space of ail column vectors with p + q entries from F

together with the *-hermitian symmetric inner product )p%q of signature (p, q)
defined by the rule:

(u, v)p,q &apos;u* - IPtq • u, u, v e ¥p&apos;q.

Hère /p&gt;&lt;? is the diagonal matrix with first p eigenvalues -1 and last q eigenvalues
+ 1 and * dénotes the standard involution on F. U(p, q, F) is the subgroup of ail
F-linear automorphisms of ¥p&gt;q preserving )p&gt;q. This group is compact if and

only if min (p, q) 0. The commutator subgroup of U(p, q, F) is denoted by
SU(p, q, F), Since -&lt; )Piq is équivalent to &lt; )q&gt;p) U(p, q, F) and SU(p, q, F)

are both symmetric in (p, q) in the sensé of isomorphism. We hâve the split exact

séquence:

q, F)-+ U(p, q, ¥)*±U(p, q, ¥)/SU(p, qy F)-»l. (3.1)
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We concentrate our attention on the noncompact cases where l^min(p, q).
However, the compact subgroups will play a rôle. The commutator quotient
groups are respectively 0(1) x O(l), (7(1) and 1. The quotient maps are given by
spinor norm (F R) and déterminant (F R or C). The commutator subgroup
SU(p, q, F) is always connected and is pefect except when p q 1 and F R.

SU(l, l,R)sR. When F R, Ol(p} q) dénotes the kernel of the spinor norm
map so that SOl(p, q) SU(p, q, R). In gênerai, Ol(py q) is not symmetric in

(P,q).
For e ±, let S€(p, q, F) S6(P&apos;*) dénote the set of ail MeP? with

(m, n)M el. U(p,q,F) is transitive on S€(p, qy F) with isotropy subgroups
U(p — 1, q, F) and U(p, q — 1, F) corresponding to e — and + respectively.
Except when 1 min (py q) and F R, S€(p, q, F) is connected. 5~(1, n, R) has

two connected components and we use S+(l, ny R) to dénote the &quot;forward&quot;

cône. S+(l, n, R) is then a model for the real hyperbolic n-space.
In analogy with Section 1, let C* C%{py q, F) dénote the normalized chain

complex so that C€t is the free abelian group based on the set of ail ordered

(t + l)-tuples (w0, ut) of éléments of S€(p, q, F) satisfying the normalization
condition as well as the foliowing condition:

For any subset of {uOy ut}y the F-linear subspace spanned by this
subset is nondegenerate with respect to )pq. (3.2)

Similarly, let C*&gt;+ Ci*{p, q, F) dénote the normalized chain complex so that
Cf&quot;&quot;+ is the free abelian group based on the set of ail ordered (r + s + 2)-tuples
(vOf. vr, w0, ws) with vt e S~(p, q, F), w; e S+(p, q, F) and such that both
the normalization condition and the condition (3.2) hold for the faces of
(v0,.. vr, H&apos;o, ws), -1 &lt;r, 5, and 0&lt;r + s + l f. Whenp - 1 and F R,
we define +C* and +C*&quot;1* by using 5+(l, q, R) in place of 5~(1, qy R). We note
that +C* and +C* + admit action from Ol(l,q) only. Thèse are used in

Appendix A only. (3.2) allows us to speak of the signature (a, b) of a cell. More
generally, a cell is said to be supported on a ïa&apos;b when the F-subspace spanned by
the vertices of the cell is isometric to a subspace of fa&apos;b. C* + is a restricted form
of the ordered join of C* and CJ. We note that,

(3.2) is automatically satisfied by ail subsets of S~(l, qy F).
Cï&apos;*(l, q, F) and +C*+(1, qy R) are respectively the ordered join of
C;(l, qy F), +Ç*(1, qy R) and the corresponding C£(l, #, F). (3.3)

We assert that:

CJ, C^+, and +C* + are ail acyclic with augmentation Z. (3.4)
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The proof of (3.4) is the same for ail five complexes. Let uOy. ut span a

nondegenerate subspace U of ¥p&gt;q. Let z eS€(pf q, F) or S+(l, qy R) and let z&apos;

dénote the components of z in t/x. If zF+ U is degenerate, then z&apos;^0 and

(zf, z&apos;)Ptq 0. Degeneracy therefore forces 2 to lie in a proper Zariski closed

(over U) subset of S€(p, q, F) or S+(l, g, U). A f-cycle in each of our five chain
complexes détermines a finite number of nondegenerate subspaces of V&apos;q. The
preceding discussion therefore assures us of the existence of a suitable 2 so that
one of the joins 2 * c or c * 2 will make sensé in the appropriate complex. Up to a

sign, c is the boundary of one of 2 * c or c * 2 (whichever makes sensé). (3.4) then
follows.

With (3.4) at hand, we proceed as in Section 1 and prove a number of
acyclicity results under the assumption 1 &lt; min (p, q).

Let G U(p, q, F) or SU(py q, C), 1 &lt; min (p, q). Then C* ®G Z and
C* ® GZ are respectively (p — 1)- and {q — l)-acyclic with augmenta- (3.5)
tion Z.

By symmetry, we only need to consider C£ ®GZ. The assertion on
augmentation follows from (3.4). Let (w0, wt) be a f-cell appearing in a

r-cycle of C* &lt;8&gt;

G Z, t &lt; q - 1. Except when t q -1 and (w0, vv^) has

signature (0, q), (w0, vvr) is supported on the orthogonal complément of a

suitable 2 eS+ (p, q, F). In the exceptional case, we note that £/(0, q, F) can be

embedded in G because 1 ^ min (p, q) (this is needed when G SU(p, qy C)).
The circumcenter construction of Section 1 allows us to modify c by boundaries
and replace (w0, wg-i) of signature (0, q) by an intégral linear combination
of cells supported on an F-subspace of signature (0, q -1). By means of the

transitivity of G on 5+(p, qy F), c may be assumed to be supported on the

orthogonal complément of a single 2 eS+(p, qy F). As in Section 1, we can use
Witt&apos;s Theorem to show that c is the boundary of c # 2 up to a sign. (3.5)
follows.

Remark 3.6. (3.5) dépends on the use of the circumcenter construction. It
would save some work if the acyclicity results in (3.5) can be strengthened to

something like (p +q- l)-acyclicity as in the compact cases. Unfortunately, this
is false for C*(l, 2, C) &lt;8&gt;GZ, G 1/(1, 2, C) or SU(ly 2, C). Namely, 2-

acyclicity in thèse cases would imply the surjectivity of the map H2{SU(2))-*
H2(SU(iy 2)). This latter is false since H2(SU(2)) is divisible while H2(SU(ly 2))
has a direct summand Z nx(SU{\, 2)) so that it is not divisible.

Since O(0, q)f SO(py 0) can b embedded in Ol{py q)y we can imitate (3.5) and
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show:

Let G Ol(p, q), 1 ^ min (p, q). Then C; ® G Z and C* ® G Z are
respectively (p — 2)- and (g — l)-acyclic with augmentation Z. (3.7)

We now extend Theorem 1.1.

THEOREM 3.8. Let G(p, q) U(p, q,¥), F R, C or H. Fix p &gt;0 anrf
consider the inclusion of G(p, q) into G(p, q + 1). The induced map from
Ht{G{p, q)) to H,(G(p, q + 1)) is then surjective for i &lt; q and bijective for i &lt; q.

Proof Theorem 1.1 takes care of p 0. The gênerai case proceeds by
induction on p. We restrict ourselves to the case p 1 and leave the detailed
induction to the careful reader.

We compute the homology of G(l, q + 1) by using C% C£(l, q + 1, F). This
leads to a transposed spectral séquence with &quot;E}tJ Ht(G(l, q 4-1), Cy+). As in
Theorem 1.1, &quot;£** has augmentation &quot;Elo3èH,(G(l,q))&amp;&quot;Elo. By (3.5),
&quot;£i,0sC* ®G(M+1)Z is ç-acyclic. It is enough to show that &quot;£** is (q-i)-
acyclic for 1 &lt; i ^ &lt;? - 1. We note that the isotropy subgroup of a cell is conjugate
in G(l, q + 1) to either G(l, s) or to U(s, F).

Let Po,* dénote the subcomplex of &quot;E\^ spanned by cells of signatures (0, t),
l&lt;f&lt;ç + l. The quotient complex Qo * is therefore spanned by cells of
signatures (1,0* 1 — &apos;

— 9 + 1- Both of thèse are Z-free and our description shows

that we hâve exact séquences of chain complexes that are Z-free and Z-split. As
in (3.5) or as in the proof of Theorem 1.1, Po,* is g-acyclic. By means of the long
homology exact séquence associated to a short exact séquence of chain
complexes, &lt;20,* is also #-acyclic and augments to 0 (since it begins in degree 1).
For i &gt;0, let Ph* and Qlt* dénote the subcomplex and quotient complex of &quot;E}t*

induced respectively by POf* and C?o,*- By Shapiro&apos;s Lemma, QltJ is a direct sum
of terms spanned by /-cells from QOtJ together with a coefficient group isomorphic
to Ht(U(q + 1 -1, F)), t^j. Since go,* is ç-acyclic, we can use Theorem 1.1 and
the universal coefficient theorem to conclude that Qlt* is {q - /)-acyclic with
augmentation 0, l&lt;/&lt;# (in fact, it is even (q 4-1 - /)-acyclic). The (q-i)-
acyclicity of &quot;£,% is therefore reduced to the (q — 0-acyclicity of P/f*, l&lt;*&apos;&lt;

q-\. A /-cell of Pf* has coefficient group H,(G(1, q -t))y l&lt;f&lt;/\ At
this point, the argument proceeds formally as in the compact cases treated in
Section 1.

For gênerai p &gt; 1, each of the columns can be filtered by using the index p.
The desired acyclicity results on the quotients are obtained by induction while the
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&quot;bottom&quot; subcomplex is treated by the formai argument used in Theorem 1.1 just
as the case of p 1. We omit further détails. D

Remark 3.9. We can state Theorem 3.8 in the symmetric form:

Let 1 &lt;/?&lt;/?&apos;, l&lt;q&lt;q&apos;. The inclusion of U(p, qy F) into U(p&apos;,qf, F)
induces surjective maps on //, for i &lt; min {p, q) and the map is

bijective when i &lt; min (p, q). In the case of SU(p, q&gt; C), min (p, q) has

to be replaced by min (p, q) — 1 in the conclusions. In the case of
SOl(p, q, R), min(p, q) has to be replaced by min(p, q) — 2 in the
conclusions. (3.10)

We note that both C* and Ct are used in the preceding symmetric versions. In
the cases of SU or S0\ we need to hâve enough room to adjust for déterminants
as well as spinor norms.

4. Schur multipliera of noncompact classical groups

The principal resuit in the présent section is:

THEOREM 4.1. Let G be a connected, simply-connectée, absolutely simple
real Lie group. Assume that G is noncompact and of classical type. Then

H2(G) K2(Cy under the universal complexification homomorphism.

Simple Lie algebras were classified by E. Cartan. We follow the notation of
Helgason [12; p. 519] (or the &quot;dictionary&quot; [37; p. 1412]). The classical ones over
C are sl(n, C), n&gt;2, so(n, C), n&gt;5, and sp{2ny C), n&gt;3. (Our sp(2n, C)
corresponds to sp(n, C) in Helgason [12].) The real analogues sl(nf M) and

sp(2n, U) are &quot;R-split&quot; and absolutely simple. The remaining noncompact ones

are among the ones listed below:

su(p, q, F), l^min(p, q) and 3^p + #; su*(2n) sl(n, H), n&gt;l; and

so*(2n) so*(n, H), n&gt;2.

In the case of su(p, q, F), we drop F and use so, su and sp respectively. Among
thèse noncompact cases, there are some &quot;exotie&quot; isomorphisms:

so(lf 2) s«i(l, l)as$/(2, R)=s/?(2, R); so(l, 3)asj/(2, C)&amp;sp(2, C).
5m(1, 3)=s&lt;?*(6); so(1, 4) sp(l, 1); so(l, 5) su*(4) s/(2, H);
*&gt;(2, 2) =5/(2, R) x sl(2f R); so(2, 3) sp(4, R); so(2, 4) =sm(2, 2);
so(2, 6)=so*(8); 50(3, 3) =5/(4, R); 5&lt;?*(4) 5m(2) X5/(2, R). (4.2)
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An inspection of (4.2) together with the outline described in Section 2 indicate
that sw(l, n, F) is at the heart of the matter. Each of the three cases of F has some

spécial features. As in the compact cases, we treat them separately.

CASE 1. F R. We first note that 0(p, q) Ol(pf q) x ±Ip+q whenp is odd.
The exotic isomorphisms in (4.2) lead to:

O\h 2) P5(/(1, 1) • (p); O\h 3) F5L(2, C)
O\\, 4)sPSp(l, 1) • &lt;p&gt;; and O\\, 5)^P5L(2, H) • (p). (4.3)

In (4.3), p is an automorphism of order 2 induced by the following map:

w

In ail cases, O^l, n) is the full isometry group of the real hyperbolic n-space
^&quot;(R) and SO1(1, n) is the subgroup of index 2 consisting of ail the orientation
preserving isometries.

We first consider H2(O(p, q)). Since we are only concerned with the

noncompact cases, min (p, q) ^ 1. Let us first consider the case where

min(p, q)^2. Since SOX(2, 2) is not simple, see (4.2), we may assume that
max(p, ?)^3. By the symmetrized version of Theorem 3.8, we see that

H2(O(p,q)) stabilizes to H2(O(2, 3)). Now, O(2, 3) SO(2, 3) x ±/5 and

5O(2, 3) is the semidirect product of $O\2, 3) and 1121. It is then easy to
describe H2(O(2, 3)) by means of Kiinneth&apos;s Theorem and the Hochschild-Serre
spectral séquence associated to a split exact séquence of groups. By (4.2),
SOl(2, 3) PSp(4, R). This exotic isomorphism is seen to be induced by the
action of Sp(4, R) on Ar(R4) together with the symmetric inner product induced

by exterior product because Ap»(IR4) R is trivial under Sp(4, R). There is no
problem seeing that H2(O(2, 3)) is the direct sum of AT2(C)* and a finitely
generated abelian group (in fact, (Z/2Z)2). The divisible part K2(C)+ can be

detected either directly by complexification or indirectly by enlarging Sp(4, R) to
5L(4, R) first. We note that the fundamental group of PSp(4, R) SO\2, 3) is Z
and it is negated by a suitable élément of O(2, 3). Thèse are straightened out by a

careful examination of the spectral séquence and we get the desired resuit on the
universal covering group of SOl(p, q) when min(p,q)&gt;2 and max(p, q)&gt;3.

By symmetry,*we are left with 0(1, q), q^2. As indicated before, 0(1, q)
0X(1, q) x ±Iq+1. By Theorem 3.8, we only hâve to consider the two cases where

9 2 and 9*3. By (4.2) and (4.3), Ol(l, 2)^PGL{2, R) and O\l,3)
PSL(2, C) • (p), p complex conjugation. As in the preceding cases, there is no
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problem showing that H2(O(l, q)) K2(Cy U (Z/2Z)2, q &gt; 2. We again hâve the
desired resuit on the universal covering group of SO\1, q), q&gt;2 and q #3. We
note that 5L(2, C) is not absolutely simple; nevertheless, we can use it in
analyzing O\\9 q), q ^3. A crucial rôle is played by the Galois automorphism p
of C over R in this analysis.

For ease of référence, we summarize the results:

H2{SOl{p, q)) a K2(Cy U ^{SO&apos;ip, q)), min (p, q) &gt; 1,

and p + q 3 or &gt;5. (4.4)

CASE 2. F C. (/(p, &lt;?) is the semidirect product of SU(p, q) and C/(l)
through the déterminant map. (7(1) acts on SU(p, q) through inner automorph-
isms of SU(p, q). As in the compact case, we hâve:

H2{U{p, q))^H2(SU(p, q))UH2(U(l)). (4.5)

Compatibility shows that stability theorems for H2(U(p, q)) are équivalent to
stability theorems for H2(SU(p,q)). By (4.2), 5f/(l, 1) 5L(2, R) so that
H2(SU(l, 1)) a K2(C)+ U JTi. Similarly, SU{2, 2) 5Ox(2, 4) so that H2(SU(2, 2))

#2(C)+1-1.7^. In thèse two cases, both kx are isomorphic to Z and are
matched. An examination of Case 1 shows that we in fact hâve H2(SU(l, 1))
H2(SU(2, 2)) under the inclusion of 51/(1, 1) into SU(2f 2). By Theorem A.5 of
Appendix A, the inclusion SU(1, 1) c 5t/(l, 2) c St/(2, 2) must therefore induce

isomorphsms on H2. This assertion is by far the most difficult case. Once we hâve

this, we note that H2(SU(2,2)) maps surjectively to the stable group
H2(SU(p, q)) where min(p, ç)&gt;2 and max(p, q)^3. Since X2(C)^ is not
touched when SU(p,q) is complexified to SL(p + qy C), we in fact hâve the
desired statement on the level of the universal covering groups. The argument is

similar to Case 1 and the compact cases of Section 1. We summarize the results:

H2(SU(p, q)) K2(C)+ U nx(SU{p, q)), 1 ^ min (p, q). (4.6)

CASE 3. F H. By (4.2), Sp(l, 1) is the universal covering group of
SO\1,4)- By (0.6) and (4.4), H2(Sp(l, 1)) K2(C)+ and the isomorphism is

induced by the universal complexification homomorphism. By Theorem A.3 of
Appendix A together with complexification, we hâve H2(Sp(l, 1)) //2(5p(l, 2)).
By adapting the proofs of (1.6), (3.5) and Theorem A.3, we may show the

surjectivity of the map from H2(Sp(2, 1)) onto H2(Sp(2, 2)). Since K2(Cy is not
disturbed under complexification, we obtain the injectivity.

At this point, the argument of Case 2 can be imitated word by word. We
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simply record the resuit:

H2(Sp(p, q)) s *2(C)+, 1 ^ min (p, q). (4.7)

We next consider the infinité séries SL(n, M), n &gt; 2. We note that 5L(1, H)
5p(l) 5f/(2) is compact. We also note that GL(nt H) 5L(n, H)xR+. Thus,
we hâve:

H2(GL(n, H)) a H2(SL(n, H)) H //2(R+), « &gt; 1. (4.8)

By compatibility, the stability theorem in Appendix B for Ht{GL{ny H)) is in fact
équivalent to stability theorem for Ht(SL(n, H)). By (4.2) and (4.3), 5L(2, H) is

the universal covering group of SOl(l, 5). By (4.4) and Theorem B.l of
Appendix B, we obtain the resuit:

H2(SL(n, H)) a K2(Cy, n&gt;2. (4.9)

Remark 4.10. (4.9) also follows from the resuit of Alperin-Dennis [2] where
is was shown that K2(H) K2(C)*. The main point is that Theorem B.l improves
the stability range of Alperin-Dennis and does not involve any &quot;X2-calculations&quot;.

Ultimately, (4.9) will be improved to n&gt;l, see Dupont-Parry-Sah [7]. This
latter improvement is much more difficult.

The last séries of Lie groups is SO*(2n) or SO(n, H), n &gt; 2. It is the group of
ail H-linear automorphisms of H&quot; preserving a **-hermitian symmetric inner

product )** on HP. Hère, ** dénotes the involution of H fixing 1, /, k and

mapping j onto -/.(,)** is defined by the rule:

(w, u)** &apos;w** .Vf u,veW.

We proceed as in the case of U(p, q) and define C% C*(Hn, **) so as to
satisfy the analogue of (3.2). The involution ** can be used to define a norm from
H to RI + Ui -f Mk. It is easy to see that this map is surjective. Essentially, this
amounts to showing that quadratic équations over C can be solved. The argument
leading to (3.5) can be adapted to show that C* ®G Z is (n - 2)-acyclic. This then
leads to a stability theorem similar to Theorem 1.1 with stability range roughly
n/2. However, there is no problem showing:

H2{SO(n, H))-+H2(SO(n 4-1, H)) is surjective for n &gt;3 and bijective
forn&gt;4. (4.11)
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The point to note is that SO(n, H) is perfect for n&gt;2. By (4.2), (4.4), (4.6),
(4.11), we obtain the resuit:

H2(SO(n, H)) K2(Cy U Jz{(SO(n, H)), n =&gt; 3. (4.12)

Thèse results complète the proof of Theorem 4.1.

Appendix A

LEMMA A.O. Let G Ol(l, q), q&gt;l. Then +C* ®GZand +Cl-+ ®G Z are
respectively 1- and q-acyclic. If G SOl(l, q)&gt; q^2, then we hâve 1- and

(q — l)~acyclicity respectively. Similarly, CX ®g^ is (q — 2)-acyclic. In ail cases,

the augmentations are Z.

Proof. We recall from (3.3) that (3.2) automatically holds for hyperbolic
g-space. The assertion about CX ®g^ follows from (3.7). We first examine the

case of + C* ®g^. Every 1-cell (v0, Vi) represents a 1-cycle. (v0, Vi) is the

boundary of (u0, vu v2) for the unique midpoint v2 of (u0, t^) because (v0, v2)
and (vl9 v2) are congruent under a hyperbolic reflection when q 1 and under a

hyperbolic rotation when q &gt;2. This argument is valid for any symmetric space.
We now consider +Cv+ &lt;8&gt;GZ for G Ol(l, q). The case of G SO\lf q) is

similar and will be omitted. The proof will proceed by induction on q. Let c be a

f-cycle of +Cv+ &lt;8&gt;GZ, t&lt;q.

Suppose that c (v) # C! + c2# (w), u e 5+(l, ^, R), w e S+(l, ç, R), where

C! is a (r - l)-chain of C£(l, ^, R) supported on the orthogonal complément of v,
and where c2 is a (r- l)-chain of +C*&gt;+(1, qf, R) supported on the orthogonal
complément of w. This case covers the situation when t &lt; q or when t q and c is

made up from dépendent ç-cells. Namely, we can modify each f-cell appearing in

c by the boundary of an orthogonal join (with (v) or with (w) at the appropriate
end). In doing this, we may further assume that every cell appearing in cx has

signature (0, q) (in particular, cx 0 when t&lt;q) and is not an orthogonal join
with (w). Since 0 de cx + (-l)&apos;c2 ~ (v) # dci + 3c2 # (w), we may take Ci 0

in ail cases and we can assume c c&apos; # (w&apos;) # (w). If f 1, then c is a boundary
though the midpoint argument. If t &gt; 1, then de&apos; 0. If Lemma A.O were proven
for smaller values of q or if q 2, then c&apos; da for some chain a supported on the

orthogonal complément of w and w&apos; and c 3(a # (wf) # (w)) as desired. Thus,

to complète the proofs of the case q 1 as well as the inductive step, we must

consider the case t q and some independent ç-cells appear in c. Let

(vQf... vri wOf. ws) be an independent q-cell appearing in c with r, s ^ — 1,
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r + s q - 1, vt € 5;(1, q, R), and hj € 5+(l, #, R). If 5 &gt; 0, then we shall reduce

the problem to one with smaller s. If s #, we randomly sélect v0 e S+(l, g, R)
and modify c by 3(uo&gt; h&gt;0, wq). We may therefore assume that s &lt; q and

CASE 1. Suppose that (w0,. ws) has signature (1,5). Let ur+1e
S+(E, mjR) be arbitrary and modify c by 9(u0,. vr+i, w0, w5).

(i/0,... iv, vv0, ws) is then replaced by an intégral linear combination of
independent g-cells with smaller s and a number of dépendent ç-cells.

CASE 2. Suppose that (w0,... ws) has signature (0, s + 1). For each i &lt; r,
let vleSZ(l,q,M) so that v,&apos;R 1 (E; w; R) vlR + (E; mjR). This is possible
because of the independence and the signature conditions. We then successively

modify c by the boundaries of (vq, •
v&apos;ny vn, vr, vv0,.. ws), 0&lt; n &lt; r, so

that (u0, vr, vv0,. w5) is replaced by the orthogonal join (v&apos;o, v&apos;r) #
(w0,.. ws) and an intégral linear combination of independent #-cells with small

s and some dépendent ç-cells. If s &gt; 0, then the circumscribed center construction

on (vv0,. ws) can be performed to replace our orthogonal join by an intégral
linear combination of dépendent ç-cells. If s — 1, then r &gt;0 and it is classically
known that a géodésie ç-simplex in real hyperbolic qr-space has an inscribed

center. By dropping perpendiculars from the inscribed center to the codimen-
sional 1 faces, the independent ç-cell (v0,..., vq) is replaced modulo boundaries

by an intégral linear combination of dépendent ç-cells and différences of
independent ç-cells that are congruent under hyperplane reflections.
Thèse cancel out under G O1(l, q). Finally, for 5=0, our cycle c has been

reduced to a linear combination of dépendent ç-cells and cells of the form

(i/0,... vq-i) # (w). This type of cycle was handled at the beginning of our
proof. We hâve concluded the proof of Lemma A.O.

LEMMA A.l. Let F C or H and let G (7(1, q, F).

(a) Ifqzzl, then C*(l, q, F) ®GZ is l-acyclic with augmentation Z.

(b) //1 &lt;9 &lt;2, then C*+(1, q, $)®GZis q-acyclic with augmentation Z.

Proof. The idea is to show that a cycle is necessarily homologous to an

orthogonal join, hence to a boundary as in Lemma A.O.
We begin with the proof of (a) and note that every 1-cell (i/0, vx) of C* ®G Z

is a 1-cycle. Modulo the boundary of (t/0, vt, v2) for a generic choice of v2 in

S~(l, q, F), we can assume that (i/0, vt) is an independent 1-cell and that q 1.

Since t/(l, q, F) is transitive on S~(l, q, F), we can assume Vo eo and

v1 eoa + etp with -|ar|2 + |j8|2 -1, f3 #0. (u0, fO will hâve a midpoint v2 (no
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longer uinique) if and only if 0&lt; (vo-vu vo-vx)hx -|1 ~ ût|2+ |0|2 -2 +
tr (a) where tr (a) oc + ar* and \a\2 a*, a is the multiplicative norm from F to
U + Since every subfield of F over R is conjugate to U or to C, we can assume

a € C. Since |ar|2 1 + |j3|2 &gt; 1, it is évident that for a fixed |)8| &gt; 0, a midpoint v2
of (u0, vx) will exist when arg (a) is sufficiently close to 0. If we use the boundary
of 2-cells of the form (v0, vx exp(i0i), uoexp(i02)) and (vo, uoexp(i02), vx),
(u0, f 1) can be replaced by the following sum:

(u0, v! exp (i0i)) + (vx exp (i0O, u0 exp (i02)) + (^0 exp (i02), vx).

We note that |)3| is unchanged in each of thèse new independent 1-cells. It is easy
to see that 6X and 62 can be selected so that ail three new 1-cells hâve arguments
at most |arg (ar)|/2. In a finite number of steps, any 1-cell becomes homologous to
an intégral linear combination of 1-cells so that each of them has a midpoint. As
in Lemma A.0, (v0, vx) is then homologous to 0.

We now go to the proof of (b) and let c be a f-cycle of C*&apos;+&lt;8&gt;GZ. By
Theorem 1.2 or by (3.5), we only hâve to consider the case oft q. If t 1, then
the argument used to prove Lemma A.0 can be adapted to show that
c c&apos; + m-(v0) # (vv0) for a suitable integer m and a suitable 1-chain c&apos; of
C*(l, 1, F). Since c is a cycle, m must be 0 and c is then a boundary by (a).

Suppose t 2 q. The proof of Lemma A.0 can be adapted to show that
c c&apos; + c1 # (Hb) + (t/0) # c2 with c&apos;eC2~(l, 2, F), cxeCï{\, 1, F) and c2e
Cr(0, 2, F). Since C;(1, 1, F) &lt;8&gt;G Z and CJ(0, 2, F)®GZ are both l-acyclic
(note: G has a différent interprétation in thèse two cases and thèse are meant to
be identified with their images in C*+(l, 2, F)), we can assume Ci 0 c2

because each 1-cell in each of thèse complexes is a 1-cycle, hence a boundary. By
the orthogonal join construction, this shows that ail appearances of dépendent
2-cells in c can be ignored and that c can be assumed to be made up from
independent 2-cells of C2 (1, 2, F). Let (vQf vX) v2) be such an independent 2-cell
that appears in c. We can find oct e U(l, F) so that (v0, tw)! 2 e R, i — 1, 2. If we
modify c successively by the boundaries of (vOt vx, v2, v2oc2) and
(i&gt;0, vly vxocXi v2a2)&gt; then (v0) vx, v2) is replaced by (v0, vxax&gt; v2a2) and a linear
combination of dépendent 2-cells that can be ignored. This means that the

independent 2-cells making up c can be assumed to satisfy the added condition
that (v0, vt)Xt2eR for i 1, 2. If we collect ail such cells with a fixed value of
(vx&gt; v2)X2$U and if we then use the fact that c is a cycle, it follows that thèse

cells must occur in pairs and each pair must hâve the form:

(vô, vXf v2) - (v0, vXf v2), (vu v2)Xt2 i U.
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We note that it may be necessary to apply éléments of 1/(1, 2, F) to the cells. The
stability subgroup of the independent 1-cell (vu v2) is isomorphic to U(l, F). If
we apply a suitable élément of this stability subgroup to (t&gt;o&gt; V\, v-i), we can

arrange to hâve (vq, vo)Xt2€ R. If we modify c by the boundary of
(vq, v0, vlf i/2), the above pair is then replaced by a pair of independent 2-cells
where ail the inner products belong to R. Such 2-cells can be viewed as 2-cells of
5~(1, 2, R). If we now multiply each of the vertices by ±1 and repeat the

argument involving the multiplication of vertices by at e (7(1, F), we can even

assume that the 2-cells hâve vertices in S+(l, 2, R). Such 2-cells hâve inscribed
centers. If we use the inscribed center construction as in Lemma A.O, each such

2-cell can be replaced by a linear combination of dépendent 2-cells modulo
boundaries. In this manner, c itself becomes a linear combination of dépendent
2-cells after a finite number of modifications. As mentioned before, c is then a

boundary and we hâve proved (b).

Remark A.2. For higher acyclicity, extension of Lemma A.l runs into
bookkeeping problems. The first part of the preceding proof resembles &quot;moun-

tain climbing&quot; while the second part of the preceding proof is an adaptation of an

argument used in a preliminary version of a weak form of Theorem 1.1.

CJ(1, 2, C) ®G Z is definitely not 2-acyclic while C* (1, 2, H) &lt;8&gt;G Z happens to be

2-acyclic. Roughly, the différence is that S~(l, 2, C) is homotopic to S1 while
5&quot;(1, 2, H) is homotopic to S3.

THEOREM A.3. Under the stabilization map, H2(Sp(l, l))-&gt;H2(Sp(l, 2)) is

surjective.

Proof. We compute the homology of Sp(l, 2) (7(1, 2, H) by using the
transposed spectral séquence associated to C*&gt;+(1, 2, H). From Lemma A.l,
&quot;Ejf*sCï&apos;+(l, 2, H)®GZ is 2-acyclic with augmentation Z. Since ail the
stability subgroups of cells are either trivial or perfect, &quot;£},* &quot;£2,0 —

H2(Sp(l, 1) • (wo)ÏÎH2(Sp(2)) - (v0). &quot;d2ti is nonzero only on summands of the
form H2(Sp(l)) • (v0, w0). We note that cells of the form (t;0, vv0) must be

independent and hâve signatures (1,1). By Theorem 2.1, the image of &quot;d2A is (up
to a sign) the graph of the map from H2(Sp(2))^H2(Sp(l)) into H2(Sp(l, 1)).
Thus, &quot;E203zH2(Sp(l, 1)) • (w0) because the graph is not changed (actually, it
matters little because it is enough to know that &quot;£2,0 *s a quotient of
H2(Sp(l. 1)) • (nb)). Since the spectral séquence converges to H*(Sp(l, 2)), the
desired assertion follows.

LEMMA A.4. Under the stabilization mapsf the image of H2(SU(2)) in
H2(SU(1, 2)) is contained in the image of H2(SU(l, 1)) in H2(SU(l, 2)).
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Proof. Our argument is based on &quot;K2-type calculations&quot;. By (2.10),
H2(U(l))-&gt; H2(SU(2)) is surjective when (7(1) is mapped into SU(2) along the
diagonal. It is therefore enough to replace SU(2) by the diagonal subgroup (7(1)
of 5(7(2). If we use the basis e0, eu e2 of C12, SU(2) is the stability subgroup of
e0 while 5(7(1, 1) is the stability subgroup of e2. £7(1) is the subgroup consisting of
the matrices:

diag(l, m, u~l), ueU{\).

By (4.2), 5(7(1, 1) 5L(2, R) so that //2(5(7(1, 1)) s H2(SL(2, U)) K2(C)+U
jt,. As shown in Sah-Wagoner [26], the symbolic part K2(Cy of //2(5L(2, U)) is

covered by H2(SO(2)). Up to conjugation in 5(7(1, 1), 50(2) can be identified
with:

diag(ii,ir\l), u €(7(1).

Since e2 and e0 are not équivalent under 5(7(1, 2), this 50(2) is not conjugate
to the (7(1) inside 5(7(2). However, diag (1, v&gt; v~l) diag (u~2, u, u) •

diag (v2, 1, u~2) holds in 5(7(1, 2), Since diag (u~2, u, u) commutes with the per-
fect subgroup 5(7(2) in 5(/(l, 2), we know that diag(l, w, w&quot;1)*diag(u~2, v, v)
is 0 in //2(5(7(1, 2)). As a resuit, we hâve:

diag (1, m, m&quot;1) • diag (1, u, u&quot;1) diag (1, w, u~l) * diag (u2, 1, v~2).

Similarly, we hâve:

diag (*, x~\ 1) • diag (y, y&apos;\ 1) diag (*, jc&quot;1, 1) • diag (1, y&quot;2, y2).

Moreover, 5(7(1, 2) contains P that maps e0 onto -e0 and exchanges ex and e2.

Since conjugation by P induces the identity on H2(SU(l, 2)), we see that

diag(x,jr\ l)*diag(y,y&quot;1, l) diag(jc, 1, jc&quot;x)*diag(l,y2, y&apos;2).

Since * is a skew-symmetric and bimultiplicative (when our abelian groups are
written multiplicatively), the preceding equalities imply that the generators of the

image of H2(SU(2)) are contained in the image of //2(5(7(1, 1)) in //2(5(7(1, 2))
because (7(1) is a divisible group and w, u, x, y range over (7(1). We note that the
rôles of 5(7(2) and 5(7(1, 1) cannot be interchanged because of the présence of
7tx. U
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THEOREM A.5. Under the stabilization map, H2(SU(l, l))-*H2(SU(l,2))
is surjective.

Proof. As noted after (4.5), it is enough to show the surjectivity of
H2(U(l, l))-*H2(U(l, 2)). The proof of Theorem A.3 can be imitated with a

différence occurring with &quot;d2tl. The map /f2((/(l))-»H2(U(2)) has image exactly
equal to the complément of H2(SU(2)) in H2(U(2)). As a resuit, we can only
conclude that H2(U(l,2)) is the image of H2(U(l, l))UH2(SU(2)). Since

H2(U(l,j)) H2(U(l))UH2(SU(l,j)), ; 1, 2, the compatibility of the
déterminant maps together with Lemma A.4 imply the surjectivity of the map

Remark A.6. Lemma A.O covers more ground than Lemma A.l. The main

point is that géodésie simplices in real hyperbolic spaces hâve inscribed centers

(but may not hâve circumscribed centers). Complex and quaternionic hyperbolic
geometries are more complicated, see Mostow [20] for complex hyperbolic plane.
S€(l, 2, C) fibers over the complex hyperbolic plane and its geometry is even
more complicated. The arguments used to prove Lemma A.l bypasses the

géométrie difficulties. It is possible to show that +C~(1, q,U) ®G 2 is ç-acyclic
when q ^ 3 and G O\l, q), see Dupont-Parry-Sah [7]. Obvious extensions to

q &gt; 3 are open.

Appendix B

Homology stability for gênerai linear groups over division rings.

THEOREM B.l. Let D be a division ring with an infinité center. Then,
(a) Ht(GL(n, D))-»Ht(GL(n +1, D)) is bijective for i &lt; n ;

(b) the inclusion of GL(n - 1, D) x GL(1, D) into GL(n, D) &quot;along the

diagonal&quot; induces a surjective map from Hn-x{GL{n-\, D))®HX(GL{\. D))
onto the quotient group Hn(GL(nf D))/im Hn(GL(n - 1, D));

(c) the inclusion of GL(1, D)xn &quot;along the diagonal&quot; of GL(n, D) induces a

surjective map from H^GLil, D))®n onto Hn{GL{n, D))/im Hn(GL(n - 1, D)).

Remark B.2. For finite fields with more than 2 éléments, a resuit of this type
was first obtained by Quillen as a prélude to his #-theory. For infinité fields, a

more précise forni of the preceding theorem was found by Suslin [32] as a prélude
of his resolution of the Lichtenbaum-Quillen conjecture. In fact, Suslin identified
the quotient Hn(GL(n, F))/im Hn(GL(n - 1, F)) with the Milnor AT-group K%(F)
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of the infinité field F. An extensive discussions of the basic properties of K
can be found in Bass-Tate [3]. We note that Milnor&apos;s définition of K%(F) makes

sensé for any division ring (its significance is not clear when the division ring has

infinité dimension over its center). Namely, for any division ring D (no restriction
on the size of its center), we can define K%(D) to be the universal associate ring
(with unit) generated by the symbols l(a)y a e Dx GL(1, D), and satisfying the

defining relations:
(Rx) l(ab) l(a) + l(b),a,beDx;
(R2) l(a) • l(b) 0 if a, b e Dx satisfy a + b 1.

There is no difficulty deriving the further relations (see Bass-Tate [3]):
(R3) l(a)l(-a) 0; equivalently, l{af l(a)l(-l)f aeDx;
(R4) l(a)l(b)=-l(b)l(a);
(R5) l(ax) • • • l(at) 0 if at + • • • 4- at 0 or 1, t &gt; 2, at e Dx.

In particular, K%(D) is a graded, graded commutative ring and is covariant with
respect to homomorphisms of division rings. Kçf(D) K0(D) Z under the

augmentation map sending ail l(a) onto 0. By Dieudonne&apos;s theory of noncom-
mutative déterminant, K™(D) KX{D)^Hx{GL(ny D)), n &gt; 1, is naturally iso-

morphic to the commutator quotient group of Dx with l(a) mapped onto the
coset a[Dx, Dx] in Dxl[Dxy Dx]. For a field F, K?(F) is isomorphic to K2(F).
Both K%(F) and K*(F) are generalizations of the X2-functor of Milnor when the
associative ring is restricted to be a field. In the case of a commutative ring A,
Quillen&apos;s K-theory admits a graded commutative product so that K*(A) is a

graded and graded commutative ring. It follows that we hâve a natural ring
homomorphism from K%(F) to K*(F) in the case of a field F. In gênerai, Kn(F)
and K%*(F) are différent when n &gt;2. For example, when F F^ is a finite field
when q éléments, Quillen showed that K2l{fq) 0 and K2l^q)^Zl(ql - 1) • Z
for i &gt; 0. In contrast, /^(F^) 0 for / &gt; 1. In the case of an infinité field F, Suslin

[32] exhibited a natural group homomorphism from Kn(F) to K^(F) such that,

Kn(F)^Kn(F)-^Kl!f(F) compose to multiplication by (-1)&quot;&quot;1 • (n - 1)!.

(B.3)

This shows that K^{F) is the 4tdecomposable part of Kn{F) up to factorial&quot;. The

composition in (B.3) is not a ring homomorphism. For a gênerai division ring D,

K*(D) no longer has a ring structure. As a resuit, no analogue to the first map in

(B.3) is known. However, the second map in (B.3) has an analogue in the form of
a group homomorphism from Kn(D) to the quotient Hn(GL(n, D))/
im Hn(GL(n — 1, D)) when D has an infinité center. Namely, we begin with the

Hurewicz homomorphism from Kn(D) nn(BGL+(D)) to Hn(BGL+(D)). The
functorial properties of the Quillen plus-construction identifies Hn(BGL+(D))
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with Hn(BGL(D)). (a) of Theorem B.l then identifies Hn(BGL(D)) with
Hn(GL(n, D)). The desired group homomorphism is then obtained by composing
the preceding maps with the natural projection map. The présence of the
Hurewicz homomorphism prevents us from having a ring homomorphism in

(B.3). It appears natural to ask:

Let D be a division ring with an infinité center. How is K%{D) related
to Hn(GL(n, D))/im Hn(GL(n - 1, D)), n &gt; 1? (B.4)

For a commutative ring /?, stability theorems for GL(n, R) are usually
phrased in terms of the Krull dimension d of R. A very gênerai discussion of
results in this direction can be found in van der Kallen [35]. They are based on
acyclicity results described in a uniform manner in terms of n and d. In the case of
an arbitrary division ring D, we will show that a sharper acyclicity resuit exists

when n &gt; 1.

Let D be an arbitrary division ring (no assumption on the size of its center is

made). Let G(n) GL(n, D). Let C*(n) dénote the normalized Eilenberg-
MacLane chain complex based on the set D&quot;-{0}. For 1 &lt; i &lt; n, let 9? dénote the
D-dimension filtration on C*(n) as well as on C*(n)®G{n)Z. Namely, a f-cell
(i/o,. vt) belongs to 9* if and only if dimD £y v,D &lt; i. We observe the
elementary resuit:

Let W be any D-subspace of Dn. Let uly..., ut and vlf. vt be

éléments of Dn spanning D-subspaces U and V respectively. Let
o: l/—&gt; V be a Z)-linear isomorphism such that o(u}) vJf 1 &lt;/ &lt; i. Let

p € Aut/&gt; (W). o and p are the restrictions of a common élément of
GL{n, D) if and only if p and o coincide in W n £/. (B.5)

We note that the D-linear independence of ut,..., u, and of vi,. vt are not
needed; however, W DU and W DV must be D-linearly isomorphic. We note
also that Witt&apos;s Theorem is a weak form of (B.5). We finally note that C*(n) is an

acyclic G(n)-resolution of the G(n)-trivial module Z and this resolution is

G(n)-free when n 1. Thus,

ïtn 1, then H*(C*(1) 0G{l)I) H,(DX), Dx G(l) GL(1, D). (B.6)

We assert:

THEOREM B.7. If n &gt; 1, ffcen €*(«) ®G(w)Z iy n-acyclic.
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Proof. Let c be any f-cycle of C*(n) ®C(|I)Z. Suppose that t e &amp;n~\ By (B.5),
c may be assumed to be supported on E;&gt;i ^O so that c becomes the boundary of
e{ *c. This involves another application of (B.5) and is analogous to the argument
used in Section 1.

By an abuse of notation, set y 3F(C1|I(/!)®G(II)Z), i^n. The preceding

argument yields the following exact séquences of abelian groups:

The quotient complex 3Pn/&amp;n~l begins in degree n - 1 as Z • (eu en). For
n &gt; 1, (&lt;?!, ...,£?„) a(ei + e2, *i,... en) in &amp;n/&amp;n~l. This gives us the (n - 1)-

acyclicity of 2Fn. By (B.8), Theorem B.7 is équivalent to:

Hn(&amp;n/&amp;&quot;-1) 0 for n &gt; 3. (B.9)

For any f-cell (w0, wf), its rank is defined to be dimD E; w,D. The

following assertion is easy to prove:

Let (u0, vn) be any n-cell of rank n. There is a unique s-face F
of Oo,. vn) such that,
(a) Fhasrank5, l&lt;s&lt;rc;

(b) every codimension 1 face of F also has rank s. (B.10)

The uniquely determined face in F in (B.10) will be called the singular face of
(v0,. vn). It is possible that F has repeated adjacent vertices (this forces s to
be 1). We next note that (B.9) follows formally from the assertion below:

Let *(*) (e, + e2, eu en) ®G(n)Z + 3(Cn+1 ®C(l0Z) + 9n~\
Then every n-cell (u0, vn) of rank n belongs to R(n), n ^ 3. (B.ll)

The proof of (B.ll) is broken down to several steps.
Step 1. If rank (v2,... ,vn) n-2, then (u0,. ,vn)e R(n). For this, we

look at d(v0 4- vx, v0,. urt) and use (B.5).
Step 2. If 1/,+2 ^i&gt; then (u0,. vn) e R(n).

If i &gt; 1, this follows from Step 1. If i 0, then d(v0 4- vu vQ, viy u0, u3,..., un)
together with (B.5) and Step 1 take care of this case, (recall that C*(n) is

normalized). Assume i 1. By (B.5) and look at d(vo + vx -h v2, v0, vlf v2,.
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we see that (vOf vlf v2, v0,.. € R(n). By combining this with the case i 0 and

looking at d(v0, vïf v0, v2, v0, we obtain the case of i 1.

Step 3. vt, vl+u 4- Vi+i, vt,.. 6 R(n).
For this, use 3(. vt, vt+i, vt,.. and Step 2.

Step 4. u,,...)-(..., *W.. e /?(n).
For this, use 3(..., uf, t^ar,...) and Steps 1 and 3.

With Steps 3 and 4 at hand, the gênerai case of an n-cell (v0,.. vn) of rank
n with a singular face of rank s can be studied under the added assumption that
5 n-lorn. Moreover, in the relation among the vertices of the singular face,
the coefficients can be modified at will over Dx. In particular, we may assume
that (i/0,. vs) is the singular face and the case of s 2 is already taken

care of. We can take s&gt;3 and assume vs Eo=£/=£5-i vr By (B.5) and

d(v0 + vu v0,. vn), the gênerai case is then reduced to the case 5 2.

Proof of Theorem B.l. We imitate the argument used in Section 1. In
the transposed spectral séquence associated to C5|c(n +1) and G(n 4-1)
GL{n + 1, D), we hâve &quot;E\t0^H*{GL{n, D)) through the use of the ucenter
kills&quot; lemma, see Suslin [32]. This dépends on the assumption that D has an

infinité center. In gênerai, the homology of the stability subgroup of a f-cell

(vo,...,vt) of rank r&lt;f + l has the form of H*(GL(n +1 - r, D)). By
induction on (a) of Theorem B.l, &quot;£** has a subcomplex isomorphic to:

Ht(GL(i, D)) ® (C*(n + 1-/) ®C(n+1-0Z), i &gt; 0. (B.12)

This subcomplex is spanned by ail the cells of rank at most n + 1 - /. The form of
the coefficient groups arises from Shapiro&apos;s Lemma, the lemma on &quot;center kills&quot;

and the induction hypothesis. By Theorem B.7 and the universai coefficient
theorem, this subcomplex is (n 4-1 — /)-acyclic for 0 &lt; i &lt; n — 1 and the augmentation

is just Ht{GL{ny D)). The quotient complex begins in degree n + 1 — i and
is spanned by (etf... en+2-/)« When i &lt; n - 1, this cell has the same coefficient

group Ht(GL(i - 1, D)) as (ex + e2, elf..., en+2-i)- In the quotient complex,
(eu ew+2_,) d{ex + e2y eu en+2-t). It follows that &quot;E2ltJ 0 holds for
l&lt;/&lt;n + l-/, 0:&lt;*&apos;&lt;tt-l. The same analysis also shows that &quot;E2n$1 is a
suitable quotient group of Hn(GL(n, D))®Ht(Dx) by the use of (B.5) and

(B.6). Assertions (a) and (b) are therefore formai conséquences of the form of
&quot;E2ltP /+/&lt;n + l, in our inductive argument. Assertion (c) follows from (b)
together with induction.

COROLLARY B.13. Let D be a division ring with an infinité center. Suppose
that H2(GL(l, D))-+H2(GL(2, D)) is surjective. (For example, D H, Û, or any
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infinité algebraic extension of¥p). Then&gt; for n &gt; 1,

Hl(GL(n,D))-+Hl(GL(n + l,D)) is surjective for i&lt;/i + 1, and
bijective for i &lt; n. (B. 14)

When D H, (B.14) is valid also for SL in place of GL.

Proof. When n 1, (B.14) follows either by hypothesis (i 2), by
Dieudonne&apos;s theory of noncommutative déterminants (i 1), or by définition
(i 0). The bijectivity assertion of (B.14) is part of Theorem B.l. We only need

to show surjectivity of Hn+l(GL(n, £&gt;))-»//n+1(GL(n + 1, D)) for n &gt; 1. This is

done by induction. The hypothesis takes care of n 1. By the proof of Theorem

B.l, it is enough to show that &quot;£^=0 for n^2 in the transposed spectral

séquence associated to C*(n + 1) and GL(n +1, D). &quot;E\ti is the direct sum of
Hn(GL(n, D)) &lt;g&gt; (eu exoc)y with oc e Dx-{1} and Hn(GL(n - 1, D)) &lt;g&gt; (eu e2). If
we inductively assume that Hn(GL(n -1, £&gt;)) maps surjectively onto
Hn(GL(n, D)), then &quot;dln}2 carries c &lt;8&gt; (eXy exay e2) onto c®{eXyexoc) for ce
Hn(GL(n -1, D)) and the image ranges over ail of Hn(GL(n, D))®(ely exoc).

Evidently, &quot;dln&gt;2 carries Hn(GL(n - 1, D))® {ex + e2, eu e2) on Hn(GL(n-
1, D))&lt;2)(ej, e2). Thèse imply &quot;£^ 0 and complète the inductive step. By
Kùnneth&apos;s Theorem and the fact that GL(ny H) SL(n, H) x IR+, the last
assertion follows from (B.14) with D H.

Remark B.15. It is not difficult to see that K%(U) 0 for « &gt;2. The critical
case is n 2 and the proof is essentially contained in Sah-Wagoner [26;

Proposition 1.23]. The main point is that l(q) l(\q\) holds for q e Hx. We note
that (B.4) is answered by Suslin [32] for infinité fields. When D has finite
dimension over its center, some information can be obtained by using the
&quot;transfer homomorphism&quot;. When D has infinité dimension over its center, we
hâve very little information on (B.4).

For small values of iy a better picture of Ht(GL(ny D)) can be obtained with
more work by an examination of the action of GL(nt D) on the projective space
Pn~l(D). In spécial cases, it is just as easy to work with SL(ny D). Theorem B.7
was first observed in this setting for n 2 by using the 3-transitivity of GL(2, D)
on Pl(D). The more detailed results will be reported elsewhere. For example, in

Dupont-Parry-Sah [7], the detailed study of the action of SL(2y H) on P^H)
leads to H2(SU(2)) #2(C)+ under the complexification homomorphism. With
the help of this and some other results, it is then possible to show that
H3(SL(2t R)) H3(SL(2y C))+ while H3(SU(2)) maps surjectively onto
H3(SL(2, C))+. Both maps are induced by the complexification homomorphisms.
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In fact, K3(C) #f(C) U H3(SL(2, C)) so that H3(SL(2, C)) is the direct sum of
Q/Z and a suitable Q-vector space (of at least countably infinité dimension). This
last resuit will be reported in Sah [25]. AH of thèse dépend on the présent
work as well as the various works of Dupont-Parry-Sah [6, 7, 8, 21] and Suslin

[31-34].
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