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Homology of classical Lie groups made discrete, 1.
Stability theorems and Schur multipliers

CHiH-HAN SaH

Let G° denote the Lie group G equipped with the discrete topology. As
mentioned in Milnor [18], the (integral) homology of the classifying space BG®
(equivalently, the (integral) Eilenberg—MacLane homology H,(G) of the abstract
group G) is of interest in at least the following areas: algebraic K-theory, the
study of bundles with flat connections, foliation theory, and the study of scissors
congruences of polyhedra.

In all such cases, the group G usually belongs to one of the known infinite
series of classical groups. According to the general philosophy of algebraic
K-theory, the study of the homology groups may be divided into several steps.
The first step is to prove some sort of stability theorems for groups belonging to
each of the infinite series. The second step is to give some sort of descriptions of
the stable groups. These are then followed by interpretations and/or applications
of the results found. In the case of stability theorems, techniques of algebraic
K-theory appear to have reached their limits and improvements seem to be quite
difficult. We use the special nature of classical Lie groups and a more naive
approach to obtain somewhat sharper stability results. In the case of the
determination of the stable groups, we concentrate our efforts on the description
of the Schur multipliers. Our results are closely related to algebraic K-theory (in
particular, to K, of fields). The improvement obtained in the stability results is
such that we can cut out K,-calculations in most cases. When it becomes
unavoidable, we only perform them in the manner first described by Milnor [17].
Interpretations and/or applications are limited to abbreviated comparisons of our
results with known results. The principal motivation of the present work is the
problem of scissors congruence of polyhedra. The sharpness of our results is
partly due to our insistence on making some headway in this old problem. The
principal results in this work are:

Let F denote one of the three classical division algebras R, C or H.

THEOREM 1.1. Let n=0. The inclusion map from U(n, F) to U(n +1, F)
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induces a surjection from H(U(n, F)) to H(U(n + 1, F)) for i<n. This map is a
bijection when i <n.

THEOREM 2.1. Under the natural inclusion maps, we have bijections:
(a) Hy(SPin(3))— Hy(SPin(n))— Hy(SPin(n + 1)), n =5.

(b) Hy(SU(2))— H,(SU(n))— H,(SU(n + 1)), n=3.

(c) Hy(Sp(1))— Hx(Sp(n))— Hy(Sp(n + 1)), n =2.

THEOREM 3.8. Let G(p,q)=U(p,q,F), F=R, C or H. Fix p=0 and
consider the inclusion of G(p, q) into G(p,q+1). The induced map from
H(G(p, q)) to H(G(p, q + 1)) is then surjective for i < q and bijective for i <q.

THEOREM 4.1. Let G be a connected, simply-connected, absolutely simple
real Lie group. Assume that G is noncompact and of classical type. Then
H,(G) = K,(C)" under the universal complexification homomorphism.

Theorem 3.8 includes Theorem 1.1 by taking p = 0; however, the proof of
Theorem 3.8 uses Theorem 1.1 both to get it started and to keep the induction
going. Theorems 2.1 and 4.1 exhibit the distinction between the compact and the
noncompact cases. It is known that H,(SU(2)) is divisible and maps onto K,(C)*
under the universal complexification map. (In fact, a more difficult argument
shows that the map is bijective, see the later work by Dupont—Parry—Sah [7].) In
the case of complex simply-connected Lie groups, the Schur multiplier is known
to be K,(C) which is a Q-vector space with continuum dimension. If we combine
these with a few other known results, then we have the following:

COROLLARY. Let G be any Lie group whose Levi components do not
involve one of 10 exceptional simple Lie groups of types E and F (3 are compact, 7
are noncompact and all are nonsplit over R). Then H(BG?, [,) is isomorphic to
H,(BG, F,) fori=2.

The preceding corollary confirms a conjecture of Milnor (also called the
Friedlander—Milnor conjecture, see Milnor [18] and Friedlander-Mislin [9])
under the restrictions named. It should be noted that the inclusion of the compact
groups of type G, and F, in the preceding corollary requires the unpublished work
of John Hurley (Stony Brook Dissertation, 1983) and of Johan Dupont (1984). In
the stable range, the Friedlander—Milnor conjecture is now known to hold for
GL(n), SL(n) over R and C by using the recent results of Suslin [31-34] which
confirmed the Lichtenbaum—Quillen conjecture. This result has been extended by
Karoubi by using his Hermitian K-theory [13]. However, in spite of the
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connotation, our results are mostly outside of the stability range results from
algebraic K-theory. The main point is that these results use coefficients [, and kill
off unknown Q-vector spaces at the very beginning. In the range of interest to us,
these unknown Q-vector spaces are connected with the scissors congruence
problem. These connections will be discussed in greater detail in later works.

The present work is organized in the following manner. Section 0 gives a rapid
review of the relevant background materials and fixes the notation. It is a bit
lengthy. Except for checking over the notations, readers with some familiarities
of the basic results of geometric algebra, homological algebra, Lie groups, Lie
algebras, Schur multipliers of algebraic groups and the K, functor (associated to
fields) of Milnor, can skip this section. Cartan’s classification of simple Lie
algebras will not be reviewed but will be invoked. Section 1 deals with Theorem
1.1 and sets the tone for Section 3. Section 2 deals with Theorem 2.1 and sets the
tone for Section 4. Some technical results needed to complete the proof of
Theorem 4.1 are relegated to Appendix A and Appendix B. In particular,
Appendix B contains an easier proof of a stronger result that gives a part of the
stability theorem of Suslin [32].

We thank Wu-Chung Hsiang, Michio Kuga, Dusa McDuff, John Milnor and
Walter Parry for many helpful conversations. We also thank Johan Dupont and
Jack Wagoner for collaborations leading to many valuable ideas. In paricular, the
idea that a chain complex based on unit vectors might be of interest was first
suggested to us by Kuga in a conversation (c. 1972) concerning finite orthogonal
groups acting on finite vector spaces. In an earlier version of the present work, a
weaker form of Theorem 1.1 was obtained by adapting an idea of Hsiang which
was based on a combinatorial topological approach to tackle the conjecture of
Milnor for SL(n, R). A variation of this adaptation is implicitly used in Appendix
A. A similar idea was suggested by the referee. Neither of these ideas makes an
appearance in the present work. Nevertheless, both Hsiang and the referee
deserve the credits for providing inspirations. A number of the technical ideas
(such as the dimension filtration and the spectral sequence machine) have already
made their appearances in Dupont [6]. Aside from all these, we would like to
express our deepest appreciation to the unknown referee who toiled heroically
through the several drafts of the present work and made valuable suggestions and
caught many errors. Needless to say, we take the credit for the remaining errors
(hopefully, they are of the trivial kind).

0. Preliminaries

This -section reviews some basic results in geometric algebra, homological
algebra, Lie groups, Lie algebras, Schur multipliers of algebraic groups and the
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K,-functor of fields defined by Milnor. Part of this will serve to fix our notations
and part of this will serve to outline our arguments.

[ denotes one of the three classical division algebras R, C or H. A careful
proof analysis shows that our results are valid for division algebras of the same
three types over any Pythagorean field — any ordered field R such that each
positive element of R is a square in R. The involutions (or antiautomorphisms of
order dividing 2) of F over R are known. The less wellknown ones for H can be
normalized to be ** which sends i, j, k into i, —j, k respectively. We
indiscriminately take * to be one of these involutions (including Id over R or C)
for the time being. Later on, the choice will be clear from context. F” denotes the
right F-vector space formed by all the column vectors with n entries from F. For
€ = £, the nondegenerate e-hermitian *-sesquilinear forms on F” have all been
classified. They are viewed as inner products:

(, )P X > F".

The unitary groups of these forms together with the general linear groups account
for all the simple Lie groups of classical types after we pass to groups that are
locally isomorphic to the commutator subgroups of the connected components of
the groups mentioned. The Theorem of Witt can be stated in the following form:

Let U= Yo=i=;u;,F and V = F.,<;v,F be nondegenerate F-subspaces of F".
Suppose that o is unitary with respect to ( , ) such that o(y;)) =v;,, 0=i=<j.
Then there exists unitary p on " with respect to ( , ) such that p(u;) = v; for
0=<i=j and such that p(w)=w holds for all w orthogonal to U+ V. If
dim U=dim V and if (u,, u,) = (v,, v,) holds for 0=s,t=<j, then o can be
found.

With some mild restrictions when dealing with characteristic 2, Witt’s
Theorem actually holds in general.

Spectral sequences will be one of the basic tools in our investigation. These
arise from double complexes in the first quadrant. In most cases, they are
homology spectral sequences with the first (or column) index as well as the
second (or row) index filtration. To avoid possible confusion, we adopt redundant
notation as needed. For example, a complete notation for a homology spectral
sequence with second index filtration (often called the transposed spectral
sequence) will have its E*-terms denoted by "E?; and we write:

I_IH-j ¢ nEij, l__I nd2
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The broken arrow is used to remind us of the usual “staircase” description of "d?

The horizontal doubled arrow signifies that "E}, ; injects into H,, while H,, surjects

onto "Eg ,. Typically, our transposed spectral sequences arise as follows:
Consider any exact sequence of (left) G-modules for the group G:

...-)M-—)M__l—-)---——)MO—-)A—)O. (01)

This will be called an acyclic G-chain complex M, with augmentation A. The
G-homomorphisms in (0.1) are denoted by 3,,. We next take any ZG-free (or
ZG-projective) resolution of the G-trivial module Z:

e+ C(G)— C_i(G)— - - - > C(G)—> Z—0. (0.2)

For example, C,(G) can be the standard bar resolution, either homogeneous or
nonhomogeneous, either normalized or nonnormalized. We then form the double
complex C,(G) ®s M, with (i, j)-th term C(G) ®; M; and with total boundary
3=09;®1+ € ® 3, where € is (—1)" on C(G). This yields:

'E%o¢=H,(G,A) and 'E%;=0 forj>0. (0.3)
Comparison of spectral sequences then yields:
H.,(G,A)<"E};=H(G, M;), | "d'=e€dy. (0.4)

We often ignore the sign € in (0.4) with the understanding that some of our maps
may have an ambiguous factor of +1 that cause no problem on our assertions.
Contrary to some conventions, we do not transpose the terms of our spectral
sequences but do transpose the differentials. This is consistent with our emphasis
on the comparison feature of the two different filtrations. In our applications, M,
may be viewed as the complex of cellular chains on a suitable cell complex
equipped with a cellular group action from G (however, the action is usually not
properly discontinuous). In such cases, H;(G, M;) in (0.4) can be described
through Shapiro’s Lemma. Namely, if K is any subgroup of G and if N is any
(left) ZK-module, then Shapiro’s Lemma reads:

H.(G, ind¢ N)=H (K, N).

The interesting case for us usually occurs with K acting trivially on N. In the
setting of transformation groups, Shapiro’s Lemma is just the ‘Principle of
Reduction to Isotropy”. In the topological setting, the group action is usually
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required to be proper. An explicit map describing (0.5) may be found in
Dupont-Sah [8].

The next result is formal. Let &', i =0, be an increasing filtration of a chain
complex C, by subcomplexes. It then leads to a spectral sequence with first index
filtration given by the F"s.

BOOT-STRAPPING LEMMA. Suppose that ' is (i — 1)-acyclic for i =n,
n+1, and that 'E, ., ,=0. Then F" is in fact n-acyclic.

Proof. Look at the long exact sequence:
c e e n+1(9;-n+1’ g;n)__)Hn(gn)___)Hn(g,*n+l)__) e
Hn+l(9:n+1: 97") is juSt ,ErIH-I,O- O

Remark. In the preceding lemma, the spectral sequence is merely a con-
venient way to describe the relative groups H,.(¥"*', ¥") = H, (F"*/F").
The spectral sequence formulation is retained partly because 'E},,, is the
scissors congruence group in the homological algebraic approach to the scissors
congruence problem formulated by Dupont [6]. With trivial coefficients in place
of the twisted coefficients used by Dupont, we have killed off the scissors
congruence groups.

Let G denote any (real) Lie group with connected component G°. There is a
“functorial” definition of the universal complexification G¢ of G, see Bourbaki
[4; 111.6.10]). (G%¢ and (G¢)° are then isomorphic under the functorial homo-
morphism and G/G®= G./G{. In general, the universal complexification homo-
morphism does not have to be injective. However, its kernel is always a discrete
normal subgroup of G° so that it is part of the center of G° (though not
necessarily part of the center of G).

Suppose that G is a connected, simply-connected, simple, nonabelian real Lie
group. Gg¢ is then connected and simply-connected. G¢ is either simple or
isomorphic G X G. In the first case, G is said to be absolutely simple (when there
is no chance of confusion, any Lie group locally isomorphic to such a G is also
called absolutely simple). The second case occurs exactly when G is a complex
Lie group viewed as a real Lie group. In general, the Lie algebra of G is the fixed
point set of a real involution of the (real) Lie algebra of G¢. This real Lie algebra
involution can be integrated into an involution 7 of the real Lie group G¢. Under
the universal complexification homomorphism, G is then mapped onto the
connected component (G2)° of the fixed point set G2 of n. When G is complex
but viewed as a real Lie group, then n exchanges the two simple factors G of G¢



314 CHIH-HAN SAH

and G = G¢ where the latter represents the diagonal subgroup of G X G. Since G
is always a perfect group, the relation between H,(G) and H,(G¢) is clear when G
is complex. Namely, H,(G) = H,(G¢)". Similar relations can be obtained by using
Kiinneth’s Theorem as long as we have some control on the Tor terms. Our
interests will be concentrated on the cases where G is absolutely simple. The
general outline is that H,(G) will be determined by using the map induced by the
universal complexification homomorphism. It turns out that this program is best
divided into two parts according to G is compact or not. In both cases, we restrict
ourselves to those G that are of classical types and replace each G by the
appropriate group of all “isometries” of appropriate ‘“‘inner products”. We
therefore need to know something about H,(G¢) before the replacements are
carried out.

Assume that G is absolutely simple so that G. is a simple, connected,
simply-connected, complex Lie group. In this case, Gc is an example of a
universal Chevalley group G(@, F) associated to the connected (or irreducible)
root system @ over a field F by taking F = C and letting @ be the root system
associated to the Dynkin diagram of G¢. Explicit descriptions of H,(G(®, F)) are
known from the works of Steinberg [29, 30], Moore [19] and Matsumoto [15].
With the exception of a small number of cases (when both # (F) and rank (®)
are small), the descriptions are given by generators and defining relations, see
Steinberg [30; p. 86]. In all cases, H,(G(®, F)) is the homomorphic image of
H,(SL(2, F)) by means of a “long root homomorphism” of SL(2, F) into
G (9, F) as long as we avoid the finite number of exceptional cases. When ® is of
type C,, n=1 (note: A;=C, and B,=(,), the homomorphism is actually an
isomorphism. When @ is not of type C,, n =1, we obtain the same "quotient
group denoted by K,(F). These techniques can be summarized as “reduction to
rank 1 though algebraic group theory”. With a large amount of work, this process
has been extended by Deodhar [5] to the “quasi-split” cases. In general, the cases
of G(®, F) cover the “‘split” case. For our purposes, the technical definitions are
not important. It is enough to know that SL(n, F) and Sp(2n, F) are “split” while
SO(p, q, R) is “R-split” if and only if |p —g| =1 and is “R-quasi-split” if and
only if |p —q|=2. Moreover, the compact cases are the analogues of the
‘““anisotropic”’ cases in algebraic group theory where the procedures from
algebraic group theory give no information. This comes about because the
algebraic group theory is based on having enough unipotent elements (in
particular, having sufficiently rich supply of SL(2, F)’s) in the group. Our
procedure is roughly that of replacing the “reduction of rank 1 by algebraic group
theory” by the “stability results via geometric algebra”. In the compact cases, we
end up with Hy(SU(2)) and in the noncompact cases, we end up with
K,(C)™ - the fixed points under the action of complex conjugation automorphism
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of C. For our purpose, the following result will be used a number of times. It can
be deduced from Milnor [18; Lemma 6]:

Assume that G is the universal covering group of G' and that G is (0.6)
connected and semisimple. Then H)(G') = H,(G)rU n,(G’). '
In practice, H,(G') will be seen (in the cases of interest to us) to be a direct sum
of m,(G') and a divisible group so that H,(G) is uniquely determined as the
divisible part of H,(G'). Variations of this theme will be used in some cases
where G and G’ are not connected but are semidirect products by a compatibly
defined group whose actions are known.

We end this section with a short review of the K,-functor of Milnor [17]. It is a
covariant functor from associative rings with unit to abelian groups. We restrict
ourselves to the case of fields (also some division rings in Appendix B) where
additional properties are available, see also Kervaire [14] and Suslin [32]. By
definition, K,(F) is the Schur multiplier H>(SL(F)) where SL(F) is the union of
all SL(n, F) under the stabilization homomorphisms. If we leave out a few small
finite fields, then H,(SL(F)) stabilizes surjectively at H,(SL(2, F)) and bijectively
at H,(SL(3, F)). In all cases, K,(F) is generated by the “K,-symbols” {u, v}, u,
v € F™ with defining relations: {u, v} is bimultiplicative in u, v and {u, 1 —u} =1
if u#0, 1. Here K,(F) is viewed as a multiplicative abelian group. We note that
these relations are simpler than the ones given in [30; p. 86]. The symbol {u, v} is
interpreted below.

Let G be any abstract group. When G is perfect, H,(G) can be described as
the kernel of a universal central extension. For a lucid exposition, see Milnor [17;
§5]. For a general G, we can follow Schur [27, 28]. Let C, denote the standard
nonhomogeneous complex that computes H,(G) so that C, is G-trivial. We can
construct the following central exact sequence:

0-G/oCG—>G*>G—-1

The construction is canonical in the sense that we use the 2-cocycle f defined by
the rule: f(x,y)=[x|y]mod 3C;. In the Hochschild-Serre spectral sequence
associated to the preceding exact sequence with trivial coefficient Z,
'd3.o: Hy(G)— C,/3C; is just the obvious injection that identified H,(G) as the
kernel of 3: C,/3C;— C,. We therefore obtain the exact sequence from the
spectral sequence:

0— Hy,(G)— G,/3C— H|(G*)— H(G)— 0.
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This shows that H,(G)=(G/3C)N|[G*, G*]. When G is perfect, the com-
mutator subgroup [G*, G*] is the universal central extension of G. In general, we
note that C,/3C; = H,(G) L1 3C, because C, is a free abelian group based on the
symbols [x], x€ G (or xe G — {1} if C, is normalized). This splitting is not
canonical. If we select such a splitting of C,/3C; and quotient out the factor
corresponding to 3C,, we then have a central extension:

0— Hy(G)»G—>G—1

In this exact sequence H,(G)c [G, G] and the determination of H,(G) (up to
isomorphism) can be carried out in the manner described in Milnor [17]. Except
when G is perfect, the preceding central extension is usually not universal and G
is usually not unique up to isomorphism. Nevertheless, this was the method used
by Schur in the case of finite symmetric groups. Topologically, C, is the complex
of cellular chains of an Eilenberg-MacLane K(G, 1)-space BG°. Elements of
H,(X) for any CW-complex X can be realized as the image of the fundamental
class of a map of a compact orientable surface S, of genus g into X. This depends
on the fact that we are dealing with H, and the fact that compact orientable
2-manifolds are classified by the genus. Since BG?® has trivial higher homotopy
groups, we can assume g >0 when dealing with H,(G) = H,(BG?). S, is also an
Eilenberg-MacLane space when g >0. 7,(S;) can be generated by 2g elements
x;, ¥i» 1=i=g, with the single defining relation [I;[x;, y;] =1, where [x, y]=
xyx~'y~l. As a result, elements of H,(G) can be described in terms of group
homomorphisms of 7,(S,) into G, g > 0. This explains the topological significance
of the group theoretic results. By means of commutator manipulations in G, it is
sometimes possible to show that H,(G) can be generated by the images of the
fundamental class of 7,(S,) with g = 1. This process can be called “reduction to
genus 1”. The success of this procedure often depends on knowing a good
presentation of G (or of some candidate for G). This is the procedure for the
description of K,(F) when F is not too small so that K,(F)= H,(SL(3, F)) is a
quotient of Hy(SL(2, F)). In particular, let T =S5, so that x;(T) is the free
abelian group of rank 2 based on the generators x and y. H,(T) is generated by
the class of the fundamental 2-cycle [x | y] — [y | x]. If 0: T— G, then the element
of Hy(G) determined by [o(x) | o(y)] — [0(y) | o(x)] is denoted by o(x) * a(y).
In terms of the fixed choice G, o(x) * a(y) is just the commutator [o(x), o(y)] in
G where o(x) and o(y) are arbitrary lifts of o(x) and o(y) from G to G. We can
avoid the noncanonical choice of G by working with G*. As shown in Milnor
[17; §8], *-product is defined on pairs of elements of G that commute. As such, it
is skew-symmetric and bimultiplicative. We note that the bimultiplicativity only
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requires each of the factors on the left side to commute with each of the factors
on the right side; it does not require factors on the same side to commute with
each other. When K,(F)=H,(SL(3, F)), the symbol {u,v} is just
diag (u, u™', 1) * diag (v, 1, v™!). We note that these factors do not make sense
in SL(2, F) in that we can not simultaneously conjugate them into SL(2, F) by an
element of SL(3,F). Upon stabilization and simple computation,
diag (u, u~') * diag (v, v™') is mapped onto {u, v}. {u~', v} = {u, v}~

Suppose that F*=(F>)°. The discussion at the end of the preceding
paragraph already implies that H,(F™) maps surjectively onto K,(F) where F*
denotes the diagonal subgroup of SL(2, F). In fact, it is known that K,=
H,(SL(2, F)) is uniquely 2-divisible, see Matsumoto [15], Bass—Tate [3]. In such
cases, K,(F) may be viewed as a quotient of A%(F*) with u A v mapped onto
{u, v}. This ignores a factor of 2 (unimportant because K,(F) is uniquely
2-divisible). However, such factors of 2 cannot be dismissed so lightly for a
general F or in dealing with subgroups of SL(n, F) in the absence of prior
information on Schur multipliers. Every so often, such factors of 2 may be
mentioned. These usually arise because they have some connections (not
explained) with 2-torsion problems in scissors congruence groups. We only note
(without detailed explanations) that extraneous 2-torsions in appropriate places
would provide simultaneous counterexamples to the proposed solution of the
third problem of Hilbert (appropriately modified) as well as the conjecture of
Friedlander-Milnor.

In the case of F =C (or any algebraically closed field), K,(C) is a Q-vector
space by a theorem of Bass—Tate [3]. Since K, is a covariant functor, we have a
natural map of K,(R) into K,(C). This map is in fact induced by the
complexification homomorphism. The image is K,(C)* and the kernel is Z/2Z =
n;(S0(n)), n=3. In fact, K,(R)=K,(C)*"11Z/2Z. Similarly, H,(SL(2, R))=
K,(C)*1Z where Z=m,(SO(2)). We note that m,(SL(n, R))=m,(SO(N))
because SO(n) is a maximal compact subgroup of SL(N, R) and SL(n, R)/SO(n)
is contractible as a topological space. By (0.6), we see that H,(G)=K,(C)"
where G is the universal covering group of SL(n, R), n=2. These examples
serve as illustrations on the use of (0.6). In particular, in our determination of the
Schur multipliers, we will exclude both SL(n, R), Sp(2n, R) as well as G(®, C).

1. Homology stability in the compact cases

This section deals with our basic example. Let F =R, C or H. For n =0, let
F"*'=Y,eF be equipped with the standard *-hermitian symmetric positive
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definite inner product { , ) given by the rule:

<z ea;, >, e,-ﬁ,> = > & B;, where * denotes the standard involution.
j j

J

Let U(n +1, F) denote the associated unitary group acting on the left of F**'
through matrix multiplication. ¢; is the standard unit column vector with entry 1
in the j-th position, 0=<j=n. SU(n + 1, ) is the perfect commutator subgroup of
U(n+1,F) and U(n + 1, F) splits over SU(n + 1, F) with quotient groups O(1),
U(1) and 1 respectively. When precision is needed, we use the conventional
notation of O(n + 1), U(n + 1) and Sp(n + 1) respectively.

Let S(F**') be the space of all unit vectors in F**' so that S(F"*') is
topologically a sphere of real dimension (n + 1) - [F:R| — 1. Let C, = C(S(F**"))
be the normalized Eilenberg—-MacLane chain complex based on the set S(F**").
C, is therefore the free abelian group based on the set of all ordered (t + 1)-tuples
(vo, - . . , v,) of points of S(F"*") with the understanding that such a ¢-cell is 0 if
v; = v;_, holds for some i. We use the usual boundary operator:

dc(Vo, -+, v)=2 (1Y (..., 0;...)

When there is no chance of confusion, d. is written as 3. C, can be identified as
the complex of cellular chains on a CW-complex, see May [16]. For our purposes,
it is just as easy to work formally. As is wellknown, C, is acyclic with
augmentation Z. We can filter C, by subcomplexes %, 0=<i =<n, where a r-cell
(vo, ..., v,) belongs to ¥ if and only if dimg Xo<j<, v;F =i+ 1. Evidently,
C;c % holds for j=<i and #/%~' begins in degree i as a free abelian group
spanned by the independent i-cells (vy,...,v;). In the present context,
independent means the v, . . ., v; are F-linearly independent. The filtration %',
0=i=n, will be called the (F-) dimension filtration. Evidently, for any group G
acting on C, through the action of U(n +1,F) on F*!, the action will be
compatible with ¢ and will preserve the dimension filtration. Moreover, ' is a
G-direct summand of C, when C, is viewed as a G-module. In view of the
discussion in Section 0, C, can be used to compute H,(G) by means of a

transposed spectral sequence with "E} ;= H,(G, C;). The main result of the
present section is:

THEOREM 1.1. Let n=0. The inclusion map from U(n,F) to U(n +1, F)
induces a surjection from H(U(n, F)) to H(U(n + 1, F)) for i <n. This map is a
bijection when i <n.
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By the transposed spectral sequence described above for G = U(n + 1, F),
Theorem 1.1 follows formally from the next assertion.

THEOREM 1.2. In the transposed spectral sequence "E', the i-th column "E!
is (n — i)-acyclic with augmentation H(U(n, F)), 0<i=<n.

We begin our proofs with the observation:
"Eio=H(U(n,F)), i=0. (1.3)

This is just Shapiro’s Lemma because U(n + 1, F) acts transitively on S(F"*') and
the stability subgroup of e, is U(n, F). More generally, if (v, ..., v,) spans an
[F-subspace of dimension j+1=t¢+1, then the stability subgroup of the t-cell
(vg, - - ., v,) is conjugate to U(n —j, F) in U(n + 1, F). Since conjugation is an
abstract group G induces the identity automorphism on its homology groups
(taken with trivial coefficients), all these stability embeddings are compatible and
we can always select a particular embedding. This is the meaning of the inclusion
map in Theorem 1.1. We assert next that:

"d!, =0 sothat "E2,="E!,  i=0. (1.4)

By Shapiro’s Lemma, "E}, =11,y H(G.s)) D (a, b) where (a, b) ranges over
the distinct U(n + 1, F)-orbits of 1-cells and G, ) denotes the stability subgroup
in U(n + 1, F) of the representative 1-cell (a, b). If c is an i-cycle of G, ), then
(—1)"d}, = 3¢ sends ¢ ® (a, b) onto ¢ @ (b) — ¢ ® (a). By Shapiro’s Lemma (in
reverse), each of these two terms represents an element of H(U(n + 1, F), ().
By Witt’s Theorem, we can find o in U(n + 1, F) so that o centralizes G, ;) and
o(a) = b. Since conjugation by o on U(n + 1, F) together with application of o on
G, induce the identity automorphism on H(U(n +1, F), (,), we may conclude
that c® (a) and ¢ ® (b) are homologous so that their difference is 0 in
HU(n +1, F), G) ="E},. This gives us (1.4) and shows that we have the correct
augmentation as described in Theorem 1.2.

We next observe that the dimension filtration #* induces a filtration on the
double complex C,(G) ®;C,, G =U(n + 1, F). This in turn induces a filtration
! on the i-th column "E} ,. We begin the attack on Theorem 1.2 by taking i =0
and observing that we have "E} , = Hy(G, C,)=C,®;Z and "d} , = 3¢. Since

6="Eg «, we can use Witt’s Theorem to identify ¥ with a subcomplex of
F*'. To be precise, we take the obvious embedding of F* into F**! and pass to
the direct limit F*. This induces an embedding of C,(S(F")) into C,(S(F**")).
The power of Witt’s Theorem is such that the other embeddings are “‘conjugate”
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to the one named. As long as G is transitive on the set of all possible embeddings,
there is no problem with our identification process. We assert that:

6="E{ « is (n — 1)-acyclic, n=0. (1.5)
Remark. As it will become clear, (1.5) is valid as long as G o SU(n + 1, F).

The proof of (1.5) is based on the Orthogonal Join Construction. We prove a
stronger result. Let ¢ be any t-cycle of C,®;7Z lying in F*~'. Any t-cell
appearing in ¢ can be moved by G to the hyperplane };.(¢;F. We may therefore
assume that c is supported on Y, ¢;F. This allows us to form the orthogonal join
eo# c, namely each t-cell (vy,...,v,) in c is replaced by (e, vy, ..., V,).
dcleo# c)=c—ey# 3cc. Since c is a t-cycle in C, @ Z, the cells appearing in
dc¢c must cancel out in pairs under the action of G. Since these cells actually lie
on the chosen hyperplane orthogonal to e,, Witt’s Theorem tells us that the
cancellation phenomenon can be assumed to be realized by elements of G that fix
eo. In other words, ey # d.c represents 0 in C, ®; Z. When t =<n — 1, any t-cycle
of C, ®;Z automatically lies in F*~'. We therefore have (1.5). In fact, dcc
automatically lies in %" so that we even have enough room to adjust for the
determinant to take care of the remark.

(1.5) can be improved to the following assertion:

6 ="E{ « is n-acyclic, n=0. (1.6)
Namely, the preceding argument actually gives us short exact sequences:
0— H(F3)— H(Fy Fe Y>> H_(F5~H— 0, t>1. (1.7)

It is enough to show that H,(F3/F;~ ") =0. Fo/F3 ! begins in degree n and is a
free abelian group based on the set of all G-equivalence classes of independent
n-cells (vg, ..., v,) in F"*!. We shall show that each such n-cell represents a
boundary in F3/%;~'. Our argument is based on the Circumcenter Construction.
(There is a similar, less inductive, but “simpler”’ Inscribed Center Construction.)

Since vg, ..., v, form an F-basis of F**!, the orthogonal complement of
¥,>0 (v; — vo)F is 1-dimensional over F and can be taken to be zF with (z, z) = 1.
It follows that (z, v;) is a constant independent of j, 0=j=n. Since our inner
product is nondegenerate, this constant is not 0. If we multiply z by a suitable
element of norm 1 in F, we may assume that (z, v;) =r is a positive real number.
From Schwarz’s inequality, r <1. This uniquely determined z is called the
circumcenter of the independent n-cell (v, . . ., v,). Modulo d¢(z, vy, ..., v,),
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(vo, . - -, U,) becomes an integral linear combination of cells of the form:
(z, w1, ..., W), (2, w;) is a constant independent of j, l1<j=<n. (1.8)
If we let z; be the circumcenter of the independent (n — 1)-cell (wy, ..., w,) in

2wl and look at the boundary of (z, z;, wy, ..., w,), then the independent
n-cell in (1.8) becomes an integral linear combination of independent n-cells of
the form (2o, z;, ¥, . . . , y») Where (z;, y;) depends on i but not on j,2<j=n.
We note that a number of dependent n-cells have been absorbed by %;~! and the
given n-cell has been modified by a boundary. This process can clearly be
continued until we reach the stage of an independent n-cell of the form:

(20, + + s Zn2y Up—1, Uy), (ziy Up—1) ={z;, U,), O<i<n-2. (1.9)

If z,_, denotes the “midpoint” or the circumcenter of (u,_,, u,), then Witt’s
Theorem and inner product computations imply that (z,, ..., z,-, 4,-;) and
(zo, - - - » 2Zp—1, u,) are G-congruent. The independent n-cell in (1.9) is just
(D" 18c(zp, . -« ) Zy_1, Un_q, Uy,) in FG/F5~ . This proves (1.6) via (1.7).

We now tackle Theorems 1.1 and 1.2 in tandem by complete induction. The
induction hypothesis is that we have proved Theorem 1.1 for all integers less than
n. To complete the induction, we only have to verify Theorem 1.2. In view of
(1.4) and (1.6), the index i in Theorem 1.2 may be restricted to the range
1=i=<n-—1. For this range, "E}, can be replaced by its subcomplex F7~*
because ¥} 'o"E}; for j <n —i. By Shapiro’s Lemma, %} is a direct sum of
abelian groups of the form H(G,, Zc) = H(G.) ® Zc where ¢ ranges over the
distinct G-orbits of cells (v, ..., v,) lying in F*~, and G. is the stability
subgroup of (v, . . ., v,). By Witt’s Theorem, (v, . . ., v,) can be assumed to lie
on a fixed F-subspace F**'~". If t=n —i, it does not lie in #"~'~! if and only if
t=n—1i and (vy,...,v,) is independent. In this special case, the coefficient
group is the unstable group B(i) = H,(U(i, F)). In all other cases, the coefficient
groups are the stable group C(i)=H,(U(i +1, F)). At this point, we have
invoked the induction hypothesis and the restrictions on the range of i. We let
A(i) denote the kernel of the stabilization map carrying B(i) onto C(i). An
inspection shows that we have the following exact sequence of chain complexes:

0-ADRF; " '>B))RF; > F >0, 1=i=n-1 (1.10)

The usual long exact homology exact sequences follows from (1.10). We note that
i is a Z-free chain complex. By (1.6), %) is j-acyclic. By the universal coefficient
theorem, %7 " is (n — i)-acyclic. As indicated before, this gives Theorem 1.2 and
completes the inductive proof of Theorem 1.1.
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Remark 1.11. The independent (n + 1)-cells of the form (zy, ..., z,, u,)
described after (1.9) are the ‘“orthoschemes” of L. Schifli when F=R. The
circumcenter argument is an adaptation of a classical argument used to show that
the scissors congruence groups are 2-divisible, see Sah [24]. As shown in Dupont
[6], if F=R and if twisted coefficients are used, then H(Fy/ ¥, ', Z') can be
identified with a quotient of the scissors congruence group in i-dimensional
spherical space. This group has a rather complicated structure. With the use of
trivial coefficient groups, we have effectively killed off this scissors congruence
group. To retain this group, we can use SO in place of O.

Remark 1.12. In the special cases considered here, Theorem 1.1 extends the
work of Vogtmann [36]. Our more precise range of stability is a consequence of
the special nature of our division algebras. Some of our surjectivity statements
can be improved to bijectivity statements. Milnor raised the question: Is it true
that the stability results are valid with the [F-dimension replaced by the
appropriate topological dimension?

Remark 1.13. There is no problem proving the corresponding stability results
for trivial coefficient groups other than Z. The point to note is that our stability
result is based on acyclicity results. The universal coefficient theorem may be
applied in these cases. However, the corresponding results for nontrivial
coefficient groups would require more care. The problem rests with the inductive
nature of our arguments involving the use of Shapiro’s Lemma. In the study of
the scissors congruence problem, nontrivial coefficient groups do appear, see
Dupont [6]. In special cases, the ‘“‘center kills”” lemma gets around the difficulty.

It would be desirable to have some sort of general theory of the Eilenberg—
MacLane homology (or cohomology) of algebraic groups with algebraic
coefficient modules. Such a theory does exist over absolutely algebraic fields of
positive characteristics. The main point is the fact that finite fields are Galois
extensions of the prime fields with Galois groups generated by the Frobenius
automorphism. Conceivably, this theory can be extended to cyclic extensions of
the rational numbers. In any case, one would like to have precise results rather
than stable results. In this last aspect, beyond the knowledge on the level of Schur
multipliers, our knowledge is very fragmentary.

2. Schur multipliers of compact classical groups
The principal result in the present section is the following theorem:

THEOREM 2.1. Under the natural inclusion maps, we have bijections:
(a) Hy(SPin(3))-» Hy(SPin(n))— H,(SPin(n + 1)), n =5;
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(b) Hy(SUQ2))— H,(SU(n))— Hy(SU(n + 1)), n=3; and
(c) Hy(Sp(1))— Hy(Sp(n))— Hy(Sp(n + 1)), n=2.

All these maps are compatible with the identification of our compact groups as
the maximal compact subgroup of the corresponding complex Lie groups. On the
level of Schur multipliers, all of our groups are then mapped onto K,(C)". (In
fact, these maps are bijective, see Dupont—Parry—Sah [7].)

Remark 2.2. There is a functorial procedure to complexify a real Lie group,
see Bourbaki [4; II1.6.10]. Since the functorial approach do not always give
injective maps, care must be exercised. Our approach is more naive and concrete.
To avoid possible confusion, we will usually use complexification to indicate that
we have mapped our Lie groups into some similarly defined complex Lie group.
Theorem 2.1 is also valid for compact groups of type G, and F, in the sense that
their Schur multipliers are isomorphic to H,(SU(2)). The case of G, is due to
John Hurley in his 1983 Ph.D. dissertation at SUNY, Stony Brook. The case of F,
is due to Johan Dupont (1984, unpublished). Both are based on the geometries of
suitable compact symmetric spaces associated to the corresponding groups.

We begin the proof of Theorem 2.1 by recalling the split exact sequence:

1-8U(n, F)=Un, H)2U(n, F)/SU(n, F)—1, n=1 (2.3)

The quotient map is given by the determinant (trivial when F=H). SU(n, F) is
connected and is simply-connected when F=C or H. The universal covering
group of SO(n) is SPin(n), n =3, with kernel 7,(SO(n)) of order 2. We have the
following ‘‘exotic isomorphisms”, see Helgason [12; p. 519]:

Sp(1) = SU(2) = Spin(3), Sp(2) = SPin(5),
SPin(4) = SPin(3) X SPin(3), SU(4) = SPin(6). (2.4)

In view of (2.4) and Theorem 2.1, we have the immediate corollary:

COROLLARY 2.5. If G is a nontrivial, connected, simply-connected, com-
pact Lie group of classical type, then Hy(G) is naturally isomorphic to H,(SU(2))
under an inclusion map of SU(2) into G. (This corresponds to a suitable choice of
roots in the Dynkin diagram.)

Each of the three cases of Theorem 2.1 has some special feature of its own.
We therefore treat them separately.

CASE 1. F=R. The proof of Theorem 1.1 depended strongly on the
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n-acyclicity of C, ®5Z, G = O(n + 1). If we use the pair SO(n) and SO(n + 1),
then (1.5) is still valid. Namely, we have just enough room to adjust for the
determinant in the orthogonal join construction. This observation easily gives:

Hy(SO(n)) = Hy(SO(n +1)), n=5. (2.5)

In general, we may examine the Hochschild—Serre spectral sequence associated
to the universal covering sequence. In the present case, we obtain the exact
sequence:

0— H,(SPin(n))— H,(50(n))— 7,(SO(n))—0, n = 3. (2.6)
As shown by Milnor [18], (2.6) always splits so that we have:
H,(SPin(n)) 1 x,(SO(n)) = Hy(SO(n)), n =3. 2.7)

By (2.5) and (2.7), we have (a) of Theorem 2.1 for n =5. We next observe that
O2t+1)=S0Q2t+1) X L,,,, t=1. We obtain from Kiinneth’s Theorem:

H(0Qt + 1)) =Hy (SOt + 1)), t=1. (2.8)

By Theorem 1.1, we obtain: H,(SO(3)) = H,(0(3)) = H,(0(5)) = H,(SO(5)). (a)
of Theorem 2.1 now follows from putting together the preceding isomorphisms
with (2.7) and the compatibility of the universal covering sequences.

Remark 2.9. Assertion (a) with n=5 has also been obtained by Roger
Alperin (unpublished) along the line of arguments used in Alperin [1]. If we
carry out our argument for n =2, then we obtain easily the surjectivity of the
following map:

H,(U(1))— Hy(SU(2)), Hy(U(1)) = A%(R/Z) is a Q-vector space. (2.10)

Here U(1), SU(2) doubly cover SO(2) and SO(3) respectively. (2.10) was first
proved by Mather (unpublished but see Alperin—Dennis [2]) by looking at the
geometry of SU(2). Our argument uses the geometry of the 2-sphere.

Remark 2.11. The skipping of n = 4 in (a) of Theorem 2.1 is necessary. To see
this, we identify-‘H and R* so that (u, v) = tryg (u* - v)/2. Sp(1) is the group of
unit quaternions. Sp(1) X Sp(1) acts on H through the rule:

1.

(u,v){q}=u-q-v'=u-q-v* qeH, u, v eSp(l). (2.12)
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This defines a homomorphism of Sp(1) X Sp(1l) into SO(4) with Kkernel
((—1, —1)) of order 2. Computation of dimensions together with connectivity
show that this map is surjective. The involution * on H defines a complement of
SO(4) in O(4). This involution clearly exchanges the two Sp(1) factors.
Evidently, we have a split exact sequence:

1— SPin(4)— SPin(4) - (*) =2 (*)—> 1. (2.13)

SPin(4) - (*) doubly covers O(4) and its subgroup SPin(3) x (*) doubly covers
the subgroup O(3) pf O(4). Here SPin(3) denotes the diagonal of Sp(1) X Sp(1).
As indicated in the beginning of Case 1, we can replace O(3) and O(4) by the pair
just described. Theorem 1.1 then gives:

Hy(SPin(3)) = Hy((*), Hy(SPin(4))). (2.14)

The right hand side of (2.14) is obtained through the Hochschild—Serre spectral
sequence associated to (2.13). It can also be obtained by using Kiinneth’s
Theorem. Since H,(Sp(1)) =0, it is immediate that the right hand side of (2.14) is
also isomorphic to H,(Sp(1)) through either one of the two factors embedded in
SPin(4). Since SPin(3) is embedded in SPin(4) through the diagonal, (2.14)
contains the assertion:

H,(SPin(3)) = H,(SU(2)) = H,(Sp(1)) is uniquely 2-divisible. (2.15)

Assertion (2.15) is implicitly contained in Dupont [6]. It is now clear that (a) of
Theorem 2.1 must skip over n =4. If we use the Hochschild-Serre spectral
sequence associated to (2.3), then (2.5) and (2.8) imply that:

O(n) acts trivially on H,(SO(n)), n=S5orn=3.
H,(O(n)) = Hy(SO(n)) = H,(0(4)), n=5orn=3. (2.16)
CASE 2. F=C. The quotient group in (2.3) can be identified with U(1).

Since C is divisible, each element of U(1) acts on SU(n) through an inner
automorphism of SU(n). It follows that:

Hy(U(1), H(SU(n))) = H(SU(n)),  i=0. (2.17)

By the Hochschild—Serre spectral sequence associated to (2.3), we have:

Hy(U(n)) = Hy(SU(n)) L Hy(U(1)), n=1. (2.18)
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If we view C" as R?", then we have the commutative diagram below:

SU(n)—>SU(n+1)
! [ n=2. (2.19)
0O(2n)— 0O(2n +2)

The map in (2.19) from SU(n) to O(2n) factors through SO(2n). In terms of the
description in Remark 2.11 and the assertion (2.15), H,(SO(4)) is the direct sum
H,(SU(2)) L1 H,(SO(3)) where SU(2) is either one of the two factor embeddings
on the universal covering level; alternately, H,(SO(4)) is the direct sum of the +
eigenspaces under the action of O(4)/S0(4) = (x1). Here H,(SO(3)) is the +
eigenspace while H,(SU(2)) is isomorphic to the — eigenspace under the
projection map and is mapped injectively into the + eigenspace also under the
projection map. For these purposes, (2.15) is essential. In particular, H,(O(4)) =
Hy,(SU(2))L1Z/2Z. By (2.5) and (2.16) we can go the other way in (2.19) to
conclude that:

H,(SU(n))— H,(SU(n + 1)) is injective, n=2, (2.20)

(b) of Theorem 2.1 now follows from (2.18), (2.20) and Theorem 1.1.

Remark. (b) of Theorem 2.1 improves the result of Alperin [1] and answers a
question of Milnor [18].

CASE 3. F=H. We have the following commutative diagram of maps:

Sp(n)— Sp(n+1)
i) ! , n=1 (2.21)
SU(2n)—> SU(2n +2)

Consider n=1. The column on the left is just Sp(1) =SU(2) as described in
(2.4). By (b), Hy(Sp(1))=Hy(SU(n)), n=2, and Hy(Sp(1))— Hy(Sp(2)) is
injective. By (2.4), Sp(2) = SPin(5). This arises from looking at the induced
action on AZ(C*)) = C° and noticing that Sp(4, C) is mapped onto SO(S, C). Even
though Sp(1) = SPin(3), the map of Sp(1) into Sp(2) does not correspond to the
universal covering map of SO(3) into SO(5). Instead, it corresponds to one of the
two factor embeddings of SU(2) into SO(4). Since O(4) can be embedded in
SO(5), the discussions in Case 2 and Remark 2.11 imply that H,(Sp(1))—
H,(Sp(2)) is bijective. In particular, H,(Sp(2)) = H,(SU(4)) holds in (2.21). This
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gets us started in (2.21) for n =2 and we can repeat the argument as in Case 2 to
get (c) of Theorem 2.1.

The rest of the assertions are straightforward. In particular, the assertion
about the image being K,(C)* was proved in Sah—Wagoner [26] O

COROLLARY 2.22. Let G be any compact Lie group without a simple
component of exceptional types E, F or G. Then,

H,(BG? F,)— H (BG, [,) is bijective for * <2.

Namely, our arguments are valid with [, in place of Z when G is as in
Theorem 2.1. The general case follows as in Milnor [18]. In fact, if we quote the

unpublished results of Hurley and Dupont, components may include types F and
G.

Remark 2.23. In Dupont-Parry-Sah [7], it will be shown that H,(SU(2)) is
isomorphic to K»(C)™ under the inclusion of SU(2) into SL(2, C). If R is replaced
by the real closure RN Q of Q, then we can conclude from the vanishing of
K,(Q) =0 that H,(SU(2, @)) = 0. This also uses the deep results of Garland [10],
Quillen [22], Bass—Tate [3]. See also Harris [11] for related results.

3. Homology stability in some noncompact cases

We are interested in some noncompact analogues of Theorem 1.1. Let [
denote the right F-vector space of all column vectors with p + g entries from F
together with the *-hermitian symmetric inner product { , ), , of signature (p, q)
defined by the rule:

— 0, %, . P.q
(U, v)pq=u*-L,-v, u,vel’

Here 1, , is the diagonal matrix with first p eigenvalues —1 and last g eigenvalues
+1 and * denotes the standard involution on F. U(p, q, F) is the subgroup of all
F-linear automorphisms of F”? preserving ( , ), ,. This group is compact if and
only if min (p, g) =0. The commutator subgroup of U(p, q, F) is denoted by
SU(p, g, F), Since —( , ),., is equivalent to ( , ),,, U(p, g, F) and SU(p, q, F)
are both symmetric in (p, q) in the sense of isomorphism. We have the split exact
sequence:

1-8U(p,q, )= U(p, q, H)=2U(p, q, F)/SU(p, q, F)— 1. (3.1
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We concentrate our attention on the noncompact cases where 1=min (p, q).
However, the compact subgroups will play a role. The commutator quotient
groups are respectively O(1) X O(1), U(1) and 1. The quotient maps are given by
spinor norm (F =R) and determinant (F =R or C). The commutator subgroup
SU(p, q, F) is always connected and is pefect except when p =g =1 and F =R.
SU(1,1, R)=R. When F=R, O'(p, q) denotes the kernel of the spinor norm
map so that SO'(p, q) =SU(p, q, R). In general, O'(p, q) is not symmetric in
@, 9)-

For e=4, let S¢(p, q, F) =S(F”"7) denote the set of all uel”? with
(u,u),,=¢€l. Up,q, F) is transitive on S<(p, ¢, F) with isotropy subgroups
Up-1,4q,F) and U(p, q — 1, F) corresponding to € =— and + respectively.
Except when 1 =min (p, q) and F=R, S¢(p, q, F) is connected. S™(1, n, R) has
two connected components and we use S7(1, n, R) to denote the ‘“forward”
cone. S7(1, n, R) is then a model for the real hyperbolic n-space.

In analogy with Section 1, let C5 = Ci(p, g, F) denote the normalized chain
complex so that C; is the free abelian group based on the set of all ordered
(¢t + 1)-tuples (uy, . . ., u,) of elements of S€(p, q, F) satisfying the normalization
condition as well as the following condition:

For any subset of {u,, ..., 4}, the F-linear subspace spanned by this
subset is nondegenerate with respect to { , ), .- (3.2)

Similarly, let Cy'* = C " (p, q, F) denote the normalized chain complex so that
C;* is the free abelian group based on the set of all ordered (r + s + 2)-tuples
(Wos - -+ Upy Wo, - . ., W,) With v; € S7(p, g, F), w; € S*(p, ¢, F) and such that both
the normalization condition and the condition (3.2) hold for the faces of
(o, .- -, Uy Wy, ..., W), —1=r,s,and0=<r+s+1=¢t Whenp=1and F =R,
we define ,C; and ,Cy’" by using S7(1, g, R) in place of S7(1, g, R). We note
that .C; and ,C;’* admit action from O'(1,q) only. These are used in
Appendix A only. (3.2) allows us to speak of the signature (a, b) of a cell. More
generally, a cell is said to be supported on a F® when the F-subspace spanned by
the vertices of the cell is isometric to a subspace of F*>. C;** is a restricted form
of the ordered join of C, and C;. We note that,

(3.2) is automatically satisfied by all subsets of S7(1, g, F).
C:'7(1,q,F) and ,Cy (1, g, R) are respectively the ordered join of
C:(1,q,F), +C:(, g, R) and the corresponding C;(1, q, F). (3.3)

We assert that:

C,, +C,,Cs, Cy%, and ,Cy* are all acyclic with augmentation Z. (3.9
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The proof of (3.4) is the same for all five complexes. Let u,, ..., u, span a
nondegenerate subspace U of 9. Let z e S(p, q, F) or S;(1, q, R) and let z'
denote the components of z in U*. If zF + U is degenerate, then z’' #0 and
(z',2'),.4=0. Degeneracy therefore forces z to lie in a proper Zariski closed
(over R) subset of S(p, q, F) or S7(1, g, R). A t-cycle in each of our five chain
complexes determines a finite number of nondegenerate subspaces of F”'9. The
preceding discussion therefore assures us of the existence of a suitable z so that
one of the joins z *c or c * z will make sense in the appropriate complex. Up to a
sign, c is the boundary of one of z *c or ¢ * z (whichever makes sense). (3.4) then
follows.

With (3.4) at hand, we proceed as in Section 1 and prove a number of
acyclicity results under the assumption 1 <min (p, q).

Let G=U(p, q, F) or SU(p, q, C), 1 =min (p, q). Then C; ®;Z and
Ci ® ¢ Z are respectively (p — 1)- and (g — 1)-acyclic with augmenta- (3.5)
tion Z.

By symmetry, we only need to consider C; ® ;Z. The assertion on

augmentation follows from (3.4). Let (w,, ..., w,) be a t-cell appearing in a
tcycle of Cy ® cZ, t=q—1. Except when t=¢g —1 and (wy, ..., w,_;) has
signature (0, q), (wy, ..., w,) is supported on the orthogonal complement of a

suitable z € S* (p, g, F). In the exceptional case, we note that U(0, g, F) can be
embedded in G because 1 =<min (p, q) (this is needed when G =SU(p, q, C)).
The circumcenter construction of Section 1 allows us to modify ¢ by boundaries
and replace (W, . .., w,_,) of signature (0, g) by an integral linear combination
of cells supported on an F-subspace of signature (0,q —1). By means of the
transitivity of G on S*(p, q, F), ¢ may be assumed to be supported on the
orthogonal complement of a single z € S$*(p, g, F). As in Section 1, we can use
Witt’s Theorem to show that c¢ is the boundary of ¢ # z up to a sign. (3.5)
follows.

Remark 3.6. (3.5) depends on the use of the circumcenter construction. It
would save some work if the acyclicity results in (3.5) can be strengthened to
something like (p + g — 1)-acyclicity as in the compact cases. Unfortunately, this
is false for C4(1,2,C) ®sZ, G=U(1,2,C) or SU(1,2,C). Namely, 2-
acyclicity in these cases would imply the surjectivity of the map H,(SU(2))—
H,(SU(1, 2)). This latter is false since H,(SU(2)) is divisible while H,(SU(1, 2))
has a direct summand Z = 7,(SU(1, 2)) so that it is not divisible.

Since O(0, q), SO(p, 0) can b embedded in O'(p, q), we can imitate (3.5) and
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show:

Let G=0'(p,q), 1=min(p, q). Then C; ®;Z and C} @ ;Z are
respectively (p — 2)- and (g — 1)-acyclic with augmentation Z. (3.7

We now extend Theorem 1.1.

THEOREM 3.8. Let G(p,q)=U(p,q,F), F=R, C or H. Fix p=0 and
consider the inclusion of G(p, q) into G(p,q+1). The induced map from
Hi(G(p, q)) to H(G(p, q + 1)) is then surjective for i = q and bijective for i <q.

Proof. Theorem 1.1 takes care of p=0. The general case proceeds by
induction on p. We restrict ourselves to the case p =1 and leave the detailed
induction to the careful reader.

We compute the homology of G(1, ¢ + 1) by using C; = C{(1, g + 1, F). This
leads to a transposed spectral sequence with "E};= H(G(1, g + 1), C{). As in
Theorem 1.1, "E}, has augmentation "E},=H,(G(1, q))="E?,. By (3.9),
"E+,0=Ct ® gu.4+1nZ is g-acyclic. It is enough to show that "E}, is (g —i)-
acyclic for 1 =i =q — 1. We note that the isotropy subgroup of a cell is conjugate
in G(1, g +1) to either G(1, s) or to U(s, ).

Let P, , denote the subcomplex of "Ej , spanned by cells of signatures (0, ¢),
1=t=q+1. The quotient complex Q,, is therefore spanned by cells of
signatures (1,¢), 1 =t =g + 1. Both of these are Z-free and our description shows
that we have exact sequences of chain complexes that are Z-free and Z-split. As
in (3.5) or as in the proof of Theorem 1.1, P, , is g-acyclic. By means of the long
homology exact sequence associated to a short exact sequence of chain
complexes, Q, . is also g-acyclic and augments to 0 (since it begins in degree 1).
For i >0, let P, , and Q;, denote the subcomplex and quotient complex of "E} ,
induced respectively by P, . and Q, «. By Shapiro’s Lemma, Q;; is a direct sum
of terms spanned by j-cells from Q, ; together with a coefficient group isomorphic
to H(U(q +1—1t, [F)), t=j. Since Qy « is g-acyclic, we can use Theorem 1.1 and
the universal coefficient theorem to conclude that Q;, is (g —i)-acyclic with
augmentation 0, 1=<i=gq (in fact, it is even (q + 1 —i)-acyclic). The (q —i)-
acyclicity of "E}, is therefore reduced to the (g —i)-acyclicity of P;,, 1<i<
q—1. A j-cell of P;, has coefficient group H/(G(1,q—1t)), 1=t=<j. At
this point, the argument proceeds formally as in the compact cases treated in
Section 1. )

For general p > 1, each of the columns can be filtered by using the index p.
The desired acyclicity results on the quotients are obtained by induction while the
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“bottom’” subcomplex is treated by the formal argument used in Theorem 1.1 just
as the case of p = 1. We omit further details. O

Remark 3.9. We can state Theorem 3.8 in the symmetric form:

Let 1=p=p’, 1=q=gq’. The inclusion of U(p, q, F) into U(p’, q', F)
induces surjective maps on H; for i<min(p, q) and the map is
bijective when i <min (p, q). In the case of SU(p, g, C), min (p, q) has
to be replaced by min(p, g) —1 in the conclusions. In the case of

SO'(p, q, R), min (p, q) has to be replaced by min (p, g) —2 in the
conclusions. (3.10)

We note that both C; and C; are used in the preceding symmetric versions. In

the cases of SU or SO', we need to have enough room to adjust for determinants
as well as spinor norms.

4. Schur multipliers of noncompact classical groups

The principal result in the present section is:

THEOREM 4.1. Let G be a connected, simply-connected, absolutely simple
real Lie group. Assume that G is noncompact and of classical type. Then
H,(G) = K5(C)* under the universal complexification homomorphism.

Simple Lie algebras were classified by E. Cartan. We follow the notation of
Helgason [12; p. 519] (or the “dictionary” [37; p. 1412]). The classical ones over
C are si(n,C), n=2, so(n,C), n=S5, and sp(2n, C), n=3. (Our sp(2n, C)
corresponds to sp(n, C) in Helgason [12].) The real analogues si/(n, R) and

sp(2n, R) are “R-split” and absolutely simple. The remaining noncompact ones
are among the ones listed below:

su(p,q,F), 1=min(p, q) and 3=p +gq; su*(2n)=sl(n, H), n>1; and
so*(2n)=so*(n, H), n >2.

In the case of su(p, q, F), we drop F and use so, su and sp respectively. Among
these noncompact cases, there are some “exotic’”’ isomorphisms:

so(1,2)=su(l, 1)=sl(2, R)=sp(2, R); so(1, 3)=sl(2, C)=sp(2, C).

su(1, 3) =s0*(6); so(1, 4) =sp(1, 1); so(1, 5) =su*(4) =sl(2, H);
so(2,2)=sl(2, R) xsl(2, R); so(2, 3) =sp(4, R); so(2, 4) =s5u(2, 2);

so(2, 6) =so*(8); so(3, 3) =sl(4, R); so*(4) =su(2) xsl(2, R). 4.2)
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An inspection of (4.2) together with the outline described in Section 2 indicate
that su(1, n, F) is at the heart of the matter. Each of the three cases of [ has some
special features. As in the compact cases, we treat them separately.

CASE 1. F =R. We first note that O(p, q) = O'(p, q) X £1,,, when p is odd.
The exotic isomorphisms in (4.2) lead to:

0'(1,2)=PSU(1,1) - (p); 0'(1,3)=PSL(2,C) - (p);
0'(1, 9 =PSp(1,1) - {p); and O'(1, 5)=PSL(2, H) - {p). (4.3)

In (4.3), p is an automorphism of order 2 induced by the following map:

o(A)=w- (A" -w™,  AeGLQRF), w= ((1’ "(1)).

In all cases, O'(1, n) is the full isometry group of the real hyperbolic n-space
#"(R) and SO'(1, n) is the subgroup of index 2 consisting of all the orientation
preserving isometries.

We first consider H,(O(p, q)). Since we are only concerned with the
noncompact cases, min(p,q)=1. Let us first consider the case where
min (p, g) =2. Since SO'(2,2) is not simple, see (4.2), we may assume that
max (p, q) =3. By the symmetrized version of Theorem 3.8, we see that
H,(O(p, q)) stabilizes to H,(0O(2,3)). Now, O(2,3)=S50(2,3)x +I and
S$O(2, 3) is the semidirect product of SO'(2,3) and Z/2Z. 1t is then easy to
describe H,(O(2, 3)) by means of Kiinneth’s Theorem and the Hochschild-Serre
spectral sequence associated to a split exact sequence of groups. By (4.2),
SO'(2, 3) =PSp(4, R). This exotic isomorphism is seen to be induced by the
action of Sp(4, R) on A%(R*) together with the symmetric inner product induced
by exterior product because A{(R*)=R is trivial under Sp(4, R). There is no
problem seeing that H,(O(2, 3)) is the direct sum of K,(C)* and a finitely
generated abelian group (in fact, (Z/2Z)*. The divisible part K,(C)* can be
detected either directly by complexification or indirectly by enlarging Sp(4, R) to
SL(4, R) first. We note that the fundamental group of PSp(4, R)=S0'(2,3) is Z
and it is negated by a suitable element of O(2, 3). These are straightened out by a
careful examination of the spectral sequence and we get the desired result on the
universal covering group of SO'(p, q) when min (p, ¢) =2 and max (p, q) = 3.

By symmetry, ‘we are left with O(1, q), g =2. As indicated before, O(1, q) =
0'(1, q) X £1,,,. By Theorem 3.8, we only have to consider the two cases where
g=2 and ¢=3. By (4.2) and (4.3), O'(1,2)=PGL(2,R) and O'(1,3)=
PSL(2,C) - (p), p =complex conjugation. As in the preceding cases, thére is no
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problem showing that H,(O(1, q)) = K,(C)* L1(Z/2Z)?, q =2. We again have the
desired result on the universal covering group of SO'(1, q), ¢ =2 and q #3. We
note that SL(2, C) is not absolutely simple; nevertheless, we can use it in

analyzing O'(1, q), ¢ =3. A crucial role is played by the Galois automorphism p
of C over R in this analysis.

For ease of reference, we summarize the results:

Hy(SO'(p, q)) = K5(C)* U x,(SO'(p, q)), min (p, q) =1,
and p+g=3or=5. (4.4)

CASE 2. F=C. U(p, q) is the semidirect product of SU(p, q) and U(1)
through the determinant map. U(1) acts on SU(p, q) through inner automorph-
isms of SU(p, q). As in the compact case, we have:

Hy(U(p, 9)) = H(SU(p, q)) L1 Hy(U(1)). (4.5)

Compatibility shows that stability theorems for H,(U(p, q)) are equivalent to
stability theorems for H,(SU(p, q)). By (4.2), SU(1,1)=SL(2, R) so that
H,(SU(1, 1)) = K,(C)* L1 &,. Similarly, SU(2, 2) = SO'(2, 4) so that H,(SU(2, 2))
=K,(C)*LIm,. In these two cases, both s, are isomorphic to Z and are
matched. An examination of Case 1 shows that we in fact have H,(SU(1, 1)) =
H,(SU(2, 2)) under the inclusion of SU(1, 1) into SU(2, 2). By Theorem A.S of
Appendix A, the inclusion SU(1, 1) = SU(1, 2) = SU(2, 2) must therefore induce
isomorphsms on H,. This assertion is by far the most difficult case. Once we have
this, we note that H,(SU(2,2)) maps surjectively to the stable group
H,(SU(p, q)) where min (p, ¢)=2 and max (p, g) =3. Since K,(C)* is not
touched when SU(p, q) is complexified to SL(p + ¢, C), we in fact have the
desired statement on the level of the universal covering groups. The argument is
similar to Case 1 and the compact cases of Section 1. We summarize the results:

Hy(SU(p, q)) = Kx(C)" L x,(SU(p, 9)),  1=min(p, q). (4.6)

CASE 3. F=H. By (4.2), Sp(1,1) is the universal covering group of
SO'(1,4). By (0.6) and (4.4), H,(Sp(1,1))=K,(C)* and the isomorphism is
induced by the universal complexification homomorphism. By Theorem A.3 of
Appendix A together with complexification, we have Hx(Sp(1, 1)) = H,(Sp(1, 2)).
By adapting the proofs of (1.6), (3.5) and Theorem A.3, we may show the
surjectivity of the map from H,(Sp(2, 1)) onto H,(Sp(2, 2)). Since K,(C)* is not
disturbed under complexification, we obtain the injectivity.

At this point, the argument of Case 2 can be imitated word by word. We
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simply record the result:
HySp(p, 9))=K>(C)*,  1=min(p, q). (4.7)

We next consider the infinite series SL(n, H), n =2. We note that SL(1, H) =
Sp(1) = SU(2) is compact. We also note that GL(n, H) =SL(n, H) X R*. Thus,
we have:

Hy(GL(n, H)) = Hy(SL(n, H)) L1 Hy(R*), n=1. (4.8)

By compatibility, the stability theorem in Appendix B for H,(GL(n, H)) is in fact
equivalent to stability theorem for H;(SL(n, H)). By (4.2) and (4.3), SL(2, H) is
the universal covering group of SO'(1,5). By (4.4) and Theorem B.1 of
Appendix B, we obtain the result:

Hy(SL(n, H)) = K,(C)*, n = 2. (4.9)

Remark 4.10. (4.9) also follows from the result of Alperin—-Dennis [2] where
is was shown that K,(H) = K,(C)*. The main point is that Theorem B.1 improves
the stability range of Alperin—Dennis and does not involve any “‘K,-calculations”.
Ultimately, (4.9) will be improved to n =1, see Dupont-Parry-Sah [7]. This
latter improvement is much more difficult.

The last series of Lie groups is SO*(2n) or SO(n, H), n =2. It is the group of
all H-linear automorphisms of H" preserving a **-hermitian symmetric inner
product { , )** on H". Here, ** denotes the involution of H fixing 1, i, k and
mapping j onto —j. { , )** is defined by the rule:

(u, v)** ="u** - v, u, veH"

We proceed as in the case of U(p, q) and define Cy = C;(H", **) so as to
satisfy the analogue of (3.2). The involution ** can be used to define a norm from
H to R1+ Ri + Rk. It is easy to see that this map is surjective. Essentially, this
amounts to showing that quadratic equations over C can be solved. The argument
leading to (3.5) can be adapted to show that Cy ® Z is (n — 2)-acyclic. This then
leads to a stability theorem similar to Theorem 1.1 with stability range roughly
n/2. However, there is no problem showing:

Hy(SO(n, H))— Hx(SO(n + 1, H)) is surjective for n =3 and bijective
for n = 4. (4.11)
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The point to note is that SO(n, H) is perfect for n =2. By (4.2), (4.4), (4.6),
(4.11), we obtain the result:

Hy(SO(n, H)) = K,(C)* LL7,(SO(n, H)), n=3. (4.12)

These results complete the proof of Theorem 4.1.

Appendix A

LEMMA A.0. Let G=0'(1,q), q=1. Then ,C, ®;Z and ,Cy'* @5 Z are
respectively 1- and q-acyclic. If G=S0'(1,q), q=2, then we have 1- and
(g — D-acyclicity respectively. Similarly, Cy Qs Z is (q — 2)-acyclic. In all cases,
the augmentations are Z.

Proof. We recall from (3.3) that (3.2) automatically holds for hyperbolic
q-space. The assertion about C; ®; Z follows from (3.7). We first examine the
case of ,Cy, ® s Z. Every 1-cell (v, v,) represents a 1l-cycle. (v, v,) is the
boundary of (vy, v,, v,) for the unique midpoint v, of (v,, v;) because (vy, v,)
and (v,, v,) are congruent under a hyperbolic reflection when ¢ =1 and under a
hyperbolic rotation when g =2. This argument is valid for any symmetric space.

We now consider ,C;'* ®Z for G = O'(1, q). The case of G =S0O'(1, q) is
similar and will be omitted. The proof will proceed by induction on g. Let c be a
t-cycle of ,Cy'* ®sZ,t=q.

Suppose that ¢ =(v)#c, +c,#(w), veSi(1,q,R), weS™(1, q, R), where
c, is a (t — 1)-chain of C;(1, g, R) supported on the orthogonal complement of v,
and where ¢, is a (t — 1)-chain of . Cy (1, q, R) supported on the orthogonal
complement of w. This case covers the situation when t <q or when t =q and c is
made up from dependent g-cells. Namely, we can modify each ¢-cell appearing in
¢ by the boundary of an orthogonal join (with (v) or with (w) at the appropriate
end). In doing this, we may further assume that every cell appearing in c¢; has
signature (0, g) (in particular, ¢, =0 when ¢ <g) and is not an orthogonal join
with (w). Since 0= dc = ¢, + (—1)'c, — (v) # 3c, + 3c, # (w), we may take ¢, =0
in all cases and we can assume ¢ =c' # (w') # (w). If t =1, then c is a boundary
though the midpoint argument. If ¢ > 1, then 3¢’ = 0. If Lemma A.0 were proven
for smaller values of g or if g =2, then ¢’ = da for some chain a supported on the
orthogonal complement of w and w’ and ¢ = 3(a # (w') # (w)) as desired. Thus,
to complete the proofs of the case ¢ =1 as well as the inductive step, we must
consider the case t=q and some independent g-cells appear in c. Let
(vo, ..., V,, W, ..., w,) be an independent g-cell appearing in ¢ with r, s = -1,
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r+s=q-1,v,€57(1, q, R), and w; € S*(1, g, R). If s >0, then we shall reduce
the problem to one with smaller s. If s =¢q, we randomly select v, € S3(1, q, R)
and modify ¢ by 3(vo, wy, ..., w,). We may therefore assume that s <gq and
r=0.

CASE 1. Suppose that (wp,...,w,) has signature (1,s). Let v, €
S7(E;wR) be arbitrary and modify ¢ by 9J(vo,..., Ui, Wo, ..., W).
(vo, - -, Uy, W, ..., W;) is then replaced by an integral linear combination of
independent g-cells with smaller s and a number of dependent g-cells.

CASE 2. Suppose that (w, . .., w;) has signature (0,s + 1). For each i<,
let v; € S7(1, g, R) so that v;R L (¥;w;R)=v,R + (&; wR). This is possible
because of the independence and the signature conditions. We then successively
modify ¢ by the boundaries of (vg, ...,V Vp, ..., U, Wy, ..., W), 0=n=r, so
that (vo, ..., VU,, W, ..., W) is replaced by the orthogonal join (vy, ..., v,)#
(Ws, - - - , w;) and an integral linear combination of independent g-cells with small
s and some dependent g-cells. If s >0, then the circumscribed center construction
on (up, . .., W,) can be performed to replace our orthogonal join by an integral
linear combination of dependent g-cells. If s = —1, then r >0 and it is classically
known that a geodesic g-simplex in real hyperbolic g-space has an inscribed
center. By dropping perpendiculars from the inscribed center to the codimen-
sional 1 faces, the independent g-cell (v, . . ., v,) is replaced modulo boundaries
by an integral linear combination of dependent g-cells and differences of
independent g-cells that are congruent under hyperplane reflections.
These cancel out under G = O'(1, q). Finally, for s =0, our cycle ¢ has been
reduced to a linear combination of dependent g-cells and cells of the form
(vo, .. ., Ug—1) #(w). This type of cycle was handled at the beginning of our
proof. We have concluded the proof of Lemma A.0. O

LEMMA A.l. Let F=CorHand let G=U(], q, F).
(a) If g=1, then C,(1, q, F) ®s Z is 1-acyclic with augmentation Z.
(b) If1=q =2, then C;""(1, q, F) ®; Z is q-acyclic with augmentation Z.

Proof. The idea is to show that a cycle is necessarily homologous to an
orthogonal join, hence to a boundary as in Lemma A.0.

We begin with the proof of (a) and note that every 1-cell (vo, v,) of C;, ®5Z
is a 1-cycle. Modulo the boundary of (vo, vy, v,) for a generic choice of v, in
S7(1, q, F), we can assume that (v, v,) is an independent 1-cell and that g = 1.
Since U(1, q, F) is transitive on S7(1,q,F), we can assume vy,=¢, and
v; = eoax + €, with —|a|* + |B]*= —1, B #0. (vo, v,) will have a midpoint v, (no



Homology of classical Lie groups made discrete, I 337

longer uinique) if and only if 0< (vo— vy, Vo— V1)1 =—|1— &) +|B]*= -2+
tr (o) where tr (o) = @ + a* and |@|* = a*. « is the multiplicative norm from F to
R*. Since every subfield of F over R is conjugate to R or to C, we can assume
a € C. Since |¢|*=1+|B|*>1, it is evident that for a fixed |8| >0, a midpoint v,
of (vo, v,) will exist when arg («) is sufficiently close to 0. If we use the boundary
of 2-cells of the form (v,, v, exp (16,), voexp (16,)) and (vy, voexp (16,), vy),
(ve, v,) can be replaced by the following sum:

(vo, vy exp (16,)) + (v, exp (16,), vo exp (16,)) + (voexp (16,), v,).

We note that |8| is unchanged in each of these new independent 1-cells. It is easy
to see that 6, and 6, can be selected so that all three new 1-cells have arguments
at most |arg («)|/2. In a finite number of steps, any 1-cell becomes homologous to
an integral linear combination of 1-cells so that each of them has a midpoint. As
in Lemma A.0, (vo, v,) is then homologous to 0.

We now go to the proof of (b) and let ¢ be a t-cycle of Cy'* ®;Z. By
Theorem 1.2 or by (3.5), we only have to consider the case of t =q. If t =1, then
the argument used to prove Lemma A.0 can be adapted to show that
c=c'+m-(vy) # (wy) for a suitable integer m and a suitable 1-chain ¢’ of
C+(1, 1, F). Since c is a cycle, m must be 0 and c is then a boundary by (a).

Suppose ¢t =2 =gq. The proof of Lemma A.0 can be adapted to show that
c=c'+c, # W)+ (vg) #c, with ¢'eC;(1,2,F), ¢c;eC7(1,1,F) and c,€e
C7(0,2,F). Since C,(1,1,F)®cZ and C;(0,2,F)®;Z are both 1l-acyclic
(note: G has a different interpretation in these two cases and these are meant to
be identified with their images in Cy'*(1, 2, F)), we can assume c;=0=c,
because each 1-cell in each of these complexes is a 1-cycle, hence a boundary. By
the orthogonal join construction, this shows that all appearances of dependent
2-cells in ¢ can be ignored and that ¢ can be assumed to be made up from
independent 2-cells of C5 (1, 2, F). Let (v, vy, v,) be such an independent 2-cell
that appears in ¢. We can find «; € U(1, F) so that (v, via;)1,€R, i=1, 2. If we
modify ¢ successively by the boundaries of (v,, vy, vy, vya;) and
(vo, V1, V103, V,a5), then (vy, v,, v,) is replaced by (vy, v,a;, v,a,) and a linear
combination of dependent 2-cells that can be ignored. This means that the
independent 2-cells making up ¢ can be assumed to satisfy the added condition
that (v, v;);,€R for i =1, 2. If we collect all such cells with a fixed value of
(v;, v2)12 ¢ R and if we then use the fact that c is a cycle, it follows that these
cells must occur in pairs and each pair must have the form:

(v, v1, v2) — (Vo, vy, V,), (Ul, U2>1,2¢ R.
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We note that it may be necessary to apply elements of U(1, 2, F) to the cells. The
stability subgroup of the independent 1-cell (v,, v,) is isomorphic to U(1, F). If
we apply a suitable element of this stability subgroup to (vg, v,, v;), We can
arrange to have (vg, vo),,€R. If we modify ¢ by the boundary of
(vo, Vo, V4, U,), the above pair is then replaced by a pair of independent 2-cells
where all the inner products belong to R. Such 2-cells can be viewed as 2-cells of
S7(1, 2, R). If we now multiply each of the vertices by +1 and repeat the
argument involving the multiplication of vertices by «; € U(1, F), we can even
assume that the 2-cells have vertices in S7(1, 2, R). Such 2-cells have inscribed
centers. If we use the inscribed center construction as in Lemma A.0, each such
2-cell can be replaced by a linear combination of dependent 2-cells modulo
boundaries. In this manner, c itself becomes a linear combination of dependent
2-cells after a finite number of modifications. As mentioned before, c is then a
boundary and we have proved (b). O

Remark A.2. For higher acyclicity, extension of Lemma A.l runs into
bookkeeping problems. The first part of the preceding proof resembles ‘“moun-
tain climbing” while the second part of the preceding proof is an adaptation of an
argument used in a preliminary version of a weak form of Theorem 1.1.
C:(1, 2, C) @ Z is definitely not 2-acyclic while C, (1, 2, H) ®; Z happens to be
2-acyclic. Roughly, the difference is that S™(1, 2, C) is homotopic to S' while
5~(1, 2, H) is homotopic to S°.

THEOREM A.3. Under the stabilization map, H,(Sp(1, 1))— H,(Sp(1, 2)) is
surjective.

Proof. We compute the homology of Sp(1,2)=U(l, 2, H) by using the
transposed spectral sequence associated to Cy'*(1, 2, H). From Lemma A.1,
"Es«=Cy*(1,2,H)®5Z is 2-acyclic with augmentation Z. Since all the
stability subgroups of cells are either trivial or perfect, "E;,=0. "E} =
Hy(Sp(1, 1) - (wp) L Hy(Sp(2)) - (vg). "d3,, is nonzero only on summands of the
form H,(Sp(1)) - (vo, wp). We note that cells of the form (v,, wy) must be
independent and have signatures (1, 1). By Theorem 2.1, the image of "d} , is (up
to a sign) the graph of the map from H,(Sp(2)) = H,(Sp(1)) into H,(Sp(1, 1)).
Thus, "E3 o= H,(Sp(1, 1)) - (w,) because the graph is not changed (actually, it
matters little because it is enough to know that "E3, is a quotient of

Hy(Sp(1. 1)) - (wp)). Since the spectral sequence converges to H,(Sp(1, 2)), the
desired assertion follows. [

LEMMA A.4. Under the stabilization maps, the image of H,(SU(2)) in
H,(SU(1, 2)) is contained in the image of H,(SU(1, 1)) in H,(SU(1, 2)).
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Proof. Our argument is based on “K,-type calculations”. By (2.10),
H,(U(1))— Hy(SU(2)) is surjective when U(1) is mapped into SU(2) along the
diagonal. It is therefore enough to replace SU(2) by the diagonal subgroup U(1)
of SU(2). If we use the basis e,, e, e, of C'?, SU(2) is the stability subgroup of
ey while SU(1, 1) is the stability subgroup of e,. U(1) is the subgroup consisting of
the matrices:

diag (1, u, u™"), uelU(Q).

By (4.2), SU(1, 1) =SL(2, R) so that H,(SU(1, 1))=H,(SL(2, R))=K,(C)* LI
ar,. As shown in Sah—Wagoner [26], the symbolic part K,(C)* of H,(SL(2, R)) is
covered by H,(SO(2)). Up to conjugation in SU(1, 1), SO(2) can be identified
with:

diag(u, u", 1), ueUQ).

Since e, and e, are not equivalent under SU(1, 2), this SO(2) is not conjugate
to the U(1) inside SU(2). However, diag(l,v,v™")=diag(v? v, v)-
diag (v, 1, v™?) holds in SU(1, 2), Since diag (v 2, v, v) commutes with the per-
fect subgroup SU(2) in SU(1, 2), we know that diag (1, u, u™") * diag (v™2, v, v)
is 0 in H,(SU(1, 2)). As a result, we have:

diag (1, u, u~") * diag (1, v, v~ ') = diag (1, u, u~') % diag (v?, 1, v™2).
Similarly, we have:
diag (x, x~!, 1) * diag (y, y !, 1) = diag (x, x ', 1) * diag (1, y %, y?).

Moreover, SU(1, 2) contains P that maps e, onto —e, and exchanges e; and e,.
Since conjugation by P induces the identity on H,(SU(1, 2)), we see that

diag (x, x™!, 1) * diag (y, y ', 1) = diag (x, 1, x~!) * diag (1, y%, y ).

Since * is a skew-symmetric and bimultiplicative (when our abelian groups are
written multiplicatively), the preceding equalities imply that the generators of the
image of H,(SU(2)) are contained in the image of H,(SU(1, 1)) in H,(SU(1, 2))
because U(1) is a divisible group and u, v, x, y range over U(1). We note that the
roles of SU(2) and SU(1, 1) cannot be interchanged because of the presence of
x,. O
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THEOREM A.5. Under the stabilization map, H,(SU(1, 1))— H,(SU(1, 2))
is surjective.

Proof. As noted after (4.5), it is enough to show the surjectivity of
H,(U(1, 1))— H,(U(1, 2)). The proof of Theorem A.3 can be imitated with a
difference occurring with "d} ;. The map H,(U(1))— H,(U(2)) has image exactly
equal to the complement of H,(SU(2)) in H,(U(2)). As a result, we can only
conclude that H,(U(1,2)) is the image of H,(U(1, 1)) L1 H,(SU(2)). Since
Hy(U(1,j))=Hy(UQ1)) L1 H,(SU(1,j)), j=1, 2, the compatibility of the deter-
minant maps together with Lemma A.4 imply the surjectivity of the map
H,(SU(1, 1))— H,(SU(1,2)). O

Remark A.6. Lemma A.0 covers more ground than Lemma A.1. The main
point is that geodesic simplices in real hyperbolic spaces have inscribed centers
(but may not have circumscribed centers). Complex and quaternionic hyperbolic
geometries are more complicated, see Mostow [20] for complex hyperbolic plane.
S€(1, 2, C) fibers over the complex hyperbolic plane and its geometry is even
more complicated. The arguments used to prove Lemma A.1 bypasses the
geometric difficulties. It is possible to show that ,C™(1, q, R) ® Z is g-acyclic
when ¢ =3 and G = O'(1, q), see Dupont-Parry-Sah [7]. Obvious extensions to
q >3 are open.

Appendix B
Homology stability for general linear groups over division rings.

THEOREM B.1. Let D be a division ring with an infinite center. Then,

(a) H(GL(n, D))— H(GL(n + 1, D)) is bijective for i<n;

(b) the inclusion of GL(n—1, D)x GL(1, D) into GL(n, D) ‘“‘along the
diagonal” induces a surjective map from H,_,(GL(n —1, D)) ® H,(GL(1. D))
onto the quotient group H,(GL(n, D))/im H,(GL(n — 1, D));

(c) the inclusion of GL(1, D)™" ‘““along the diagonal” of GL(n, D) induces a
surjective map from H,(GL(1, D))®" onto H,(GL(n, D))/im H,(GL(n — 1, D)).

Remark B.2. For finite fields with more than 2 elements, a result of this type
was first obtained by Quillen as a prelude to his K-theory. For infinite fields, a
more precise form of the preceding theorem was found by Suslin [32] as a prelude
of his resolution of the Lichtenbaum-Quillen conjecture. In fact, Suslin identified
the quotient H,(GL(n, F))/im H,(GL(n — 1, F)) with the Milnor K-group KY(F)
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of the infinite field F. An extensive discussions of the basic properties of K¥(F)
can be found in Bass—Tate [3]. We note that Milnor’s definition of K¥(F) makes
sense for any division ring (its significance is not clear when the division ring has
infinite dimension over its center). Namely, for any division ring D (no restriction
on the size of its center), we can define K¥(D) to be the universal associate ring
(with unit) generated by the symbols l(a), a € D™ = GL(1, D), and satisfying the
defining relations:

(R,) l(ab) =1(a)+1(b), a, be D™,

(Ry) l(a) - I(b)=0if a, be D> satisfya+b =1.
There is no difficulty deriving the further relations (see Bass—Tate [3]):

(Rs) l(a)l(—a)=0; equivalently, I(a)*=[(a)l(—1), a e D*;

(Ry) l(a)l(b) = —1(b)I(a);

(Rs) l(ay) - -l(a)=0ifa,+---+a=00r1,t=2, a,eDD™.
In particular, K¥(D) is a graded, graded commutative ring and is covariant with
respect to homomorphisms of division rings. K(D)=Ky(D)=Z under the
augmentation map sending all /(a) onto 0. By Dieudonne’s theory of noncom-
mutative determinant, K¥(D)= K,(D) = H,(GL(n, D)), n =1, is naturally iso-
morphic to the commutator quotient group of D™ with /(a) mapped onto the
coset a[D*, D*] in D*/[D*, D*]. For a field F, K)(F) is isomorphic to K,(F).
Both K¥(F) and K ,(F) are generalizations of the K,-functor of Milnor when the
associative ring is restricted to be a field. In the case of a commutative ring A,
Quillen’s K-theory admits a graded commutative product so that K,(A) is a
graded and graded commutative ring. It follows that we have a natural ring
homomorphism from KY(F) to K,(F) in the case of a field F. In general, K,,(F)
and K}(F) are different when n >2. For example, when F =F,, is a finite field
when g elements, Quillen showed that K,(F,) =0 and K,,_,(F,)=2Z/(¢'-1)-Z
for i > 0. In contrast, KY(F,) = 0 for i > 1. In the case of an infinite field F, Suslin
[32] exhibited a natural group homomorphism from K,(F) to K}(F) such that,

KM(F)— K, (F)— K)(F) compose to multiplication by (—1)"""- (n — 1)!.
(B.3)

This shows that K¥(F) is the ‘“decomposable part of K, (F) up to factorial”. The
composition in (B.3) is not a ring homomorphism. For a general division ring D,
K ,.(D) no longer has a ring structure. As a result, no analogue to the first map in
(B.3) is known. However, the second map in (B.3) has an analogue in the form of
a group homomorphism from K,(D) to the quotient H,(GL(n, D))/
im H,(GL(n — 1, D)) when D has an infinite center. Namely, we begin with the
Hurewicz homomorphism from K, (D)= r,(BGL*(D)) to H,(BGL*(D)). The
functorial properties of the Quillen plus-construction identifies H,(BGL*(D))
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with H,(BGL(D)). (a) of Theorem B.1 then identifies H,(BGL(D)) with
H,(GL(n, D)). The desired group homomorphism is then obtained by composing
the preceding maps with the natural projection map. The presence of the
Hurewicz homomorphism prevents us from having a ring homomorphism in
(B.3). It appears natural to ask:

Let D be a division ring with an infinite center. How is K¥(D) related
to H,(GL(n, D))/im H,(GL(n — 1, D)), n>1? (B.4)

For a commutative ring R, stability theorems for GL(n, R) are usually
phrased in terms of the Krull dimension d of R. A very general discussion of
results in this direction can be found in van der Kallen [35]. They are based on
acyclicity results described in a uniform manner in terms of n and d. In the case of
an arbitrary division ring D, we will show that a sharper acyclicity result exists
when n > 1.

Let D be an arbitrary division ring (no assumption on the size of its center is
made). Let G(n)=GL(n, D). Let C,(n) denote the normalized Eilenberg—
MacLane chain complex based on the set D"-{0}. For 1 =i <n, let ¥ denote the
D-dimension filtration on C,(n) as well as on C,(n) g, Z. Namely, a r-cell
(vo, ..., v,) belongs to & if and only if dim, ¥;v;D <i. We observe the
elementary result:

Let W be any D-subspace of D". Let u,,...,u; and v,,...,v; be
elements of D" spanning D-subspaces U and V respectively. Let
o:U— V be a D-linear isomorphism such that o(u;)) =v;, 1=j=i. Let
p € Autp (W). o and p are the restrictions of a common element of
GL(n, D) if and only if p and o coincide in W N U. (B.5)

We note that the D-linear independence of u,, ..., u; and of vy, .. ., v; are not
needed; however, WN U and W NV must be D-linearly isomorphic. We note
also that Witt’s Theorem is a weak form of (B.5). We finally note that C,(n) is an
acyclic G(n)-resolution of the G(n)-trivial module Z and this resolution is
G(n)-free when n =1. Thus,

Ifn=1, then H,(C,(1)®cu)Z)=H (D*), D* = G(1) = GL(1, D). (B.6)
We assert:

THEOREM B.7. If n > 1, then C (n) @) Z is n-acyclic.
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Proof. Let c be any t-cycle of C,(n) ® . Z. Suppose that t € F"~'. By (B.5),
¢ may be assumed to be supported on Y, ¢;D so that ¢ becomes the boundary of
e, *c. This involves another application of (B.5) and is analogous to the argument
used in Section 1.

By an abuse of notation, set ¥ = %'(C,(n) ®GmZ), i =n. The preceding
argument yields the following exact sequences of abelian groups:

0— H(F")—> H(F"IF" Y>> H_(F")—0,t>1;

(B.8)
0— H(F")— H(F" | F ) —0.

The quotient complex #"/%"~' begins in degree n —1 as Z- (e,, . . ., e,). For
n>1, (e, ...,e,)=09(e,+ey ey, ...,e,)in F'/F L. This gives us the (n — 1)-
acyclicity of #". By (B.8), Theorem B.7 is equivalent to:

H(F"1F"") =0 for n=3. (B.9)

For any t-cell (wp,...,w), its rank is defined to be dimp Y;w;D. The
following assertion is easy to prove:

Let (vy, . .., v,) be any n-cell of rank n. There is a unique s-face F
of (vy, ..., v,) such that,
(@) Fhasrank s, 1 =5 =n;
(b) every codimension 1 face of F also has rank s. (B.10)

The uniquely determined face in F in (B.10) will be called the singular face of
(v, . . ., v,). It is possible that F has repeated adjacent vertices (this forces s to
be 1). We next note that (B.9) follows formally from the assertion below:

Let R(n) = (el +e,,6e4,..., e,,) ®G(,,)Z + 8(C,,+1 ®G(n) Z) + F" L
Then every n-cell (v, . .., v,) of rank n belongs to R(n), n =3. (B.11)

The proof of (B.11) is broken down to several steps.

Step 1. If rank (v,,...,v,)=n—2, then (vy,...,v,) € R(n). For this, we
look at d(vy + vy, vy, . . ., U,) and use (B.S5).

Step 2. If v,, = v, then (vy, ..., v,) € R(n).
If i > 1, this follows from Step 1. If i =0, then 3(vq + v, vy, Uy, Vg, U3, ..., U,)
together with (B.5) and Step 1 take care of this case. (recall that C,(n) is
normalized). Assume i = 1. By (B.5) and look at d(vo+ v, + vy, vg, Uy, Uy, . . .),
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we see that (vg, vy, Vs, Vg, . . .) € R(n). By combining this with the case i =0 and
looking at (v, v,, Vg, Vs, Vy, . . .), We obtain the case of i = 1.

Step 3. (.., U, Vi1, .. )+ (.., Vigq, U, ...) €ER(N).
For this, use (. . ., v;, vi4y, v;, . . .) and Step 2.

Stepd. (...,v,...)—(..,va,...)eR(n).
For this, use (. . ., v;, v;a, . . .) and Steps 1 and 3.

With Steps 3 and 4 at hand, the general case of an n-cell (v, .. ., v,) of rank
n with a singular face of rank s can be studied under the added assumption that
s =n — 1 or n. Moreover, in the relation among the vertices of the singular face,
the coefficients can be modified at will over D*. In particular, we may assume

that (vo, ..., v) is the singular face and the case of s =2 is already taken
care of. We can take s=3 and assume v, = Yo=j=-1V;. By (B.5) and
(v + vy, vy, - . . , U,), the general case is then reduced to the case s =2. O

Proof of Theorem B.1. We imitate the argument used in Section 1. In
the transposed spectral sequence associated to C,(n+1) and G(n+1)=
GL(n + 1, D), we have "E} o= H ,(GL(n, D)) through the use of the “center
kills” lemma, see Suslin [32]. This depends on the assumption that D has an
infinite center. In general, the homology of the stability subgroup of a ¢-cell
(vg,...,v,) of rank r=t+1 has the form of H,(GL(n+1-r, D)). By
induction on (a) of Theorem B.1, "E] , has a subcomplex isomorphic to:

H(GL(i, D)) @ (Cy(n +1-1i) OG(n+1-»2Z), i >0. (B.12)

This subcomplex is spanned by all the cells of rank at most n + 1 — i. The form of
the coefficient groups arises from Shapiro’s Lemma, the lemma on “center kills”
and the induction hypothesis. By Theorem B.7 and the universal coefficient
theorem, this subcomplex is (n + 1 —i)-acyclic for 0<i=n —1 and the augmen-
tation is just H;,(GL(n, D)). The quotient complex begins in degree n + 1 —i and
is spanned by (ey, ..., €,+2-;). When i =n — 1, this cell has the same coefficient
group H,(GL(i —1, D)) as (e, +e,, €q,...,e€,42-;). In the quotient complex,
(€1, o) =0(e;+e€y,€y,...,€,4,;). It follows that "E?;=0 holds for
l1<jsn+1-i, 0si=n-1. The same analysis also shows that "E%, is a
suitable quotient group of H,(GL(n, D)) ® H,(D*) by the use of (B.5) and
(B.6). Assertions (a) and (b) are therefore formal consequences of the form of
"E?,, i+j=n+1, in our inductive argument. Assertion (c) follows from (b)
together with induction.

COROLLARY B.13. Let D be a division fing with an infinite center. Suppose
that Hy(GL(1, D))— H,(GL(2, D)) is surjective. (For example, D =H, Q, or any
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infinite algebraic extension of t,). Then, for n=1,

H/(GL(n, D))— H(GL(n + 1, D)) is surjective for i=n+1, and
bijective for i =n. (B.14)

When D =H, (B.14) is valid also for SL in place of GL.

Proof. When n=1, (B.14) follows either by hypothesis (i=2), by
Dieudonne’s theory of noncommutative determinants (i =1), or by definition
(i =0). The bijectivity assertion of (B.14) is part of Theorem B.1. We only need
to show surjectivity of H, . ,(GL(n, D))— H,.;(GL(n + 1, D)) for n=1. This is
done by induction. The hypothesis takes care of n = 1. By the proof of Theorem
B.1, it is enough to show that "E2 ;=0 for n=2 in the transposed spectral
sequence associated to C,(n+ 1) and GL(n + 1, D). "E} , is the direct sum of
H,(GL(n, D)) ® (e, e,a), with a €e D*-{1} and H,(GL(n —1, D)) ® (e, e,). If
we inductively assume that H,(GL(n—1, D)) maps surjectively onto
H,(GL(n, D)), then "d}, carries ¢ ® (e, e;a, e;) onto ¢ @ (ey, e;a) for ce
H,(GL(n — 1, D)) and the image ranges over all of H,(GL(n, D)) ® (e;, e, ).
Evidently, "d}, carries H,(GL(n—1,D))® (e;+e,, e,,e;) on H,(GL(n -
1, D)) ® (e;, e;). These imply "E2 ;=0 and complete the inductive step. By
Kiinneth’s Theorem and the fact that GL(n, H)=SL(n, H) X R™, the last
assertion follows from (B.14) with D=H. O

Remark B.15. It is not difficult to see that K¥(H) =0 for n =2. The critical
case is n=2 and the proof is essentially contained in Sah—Wagoner [26;
Proposition 1.23]. The main point is that /(q) = I(|q|) holds for ¢ € H*. We note
that (B.4) is answered by Suslin [32] for infinite fields. When D has finite
dimension over its center, some information can be obtained by using the
“transfer homomorphism”. When D has infinite dimension over its center, we
have very little information on (B.4).

For small values of i, a better picture of H,(GL(n, D)) can be obtained with
more work by an examination of the action of GL(n, D) on the projective space
P"~!(D). In special cases, it is just as easy to work with SL(n, D). Theorem B.7
was first observed in this setting for n =2 by using the 3-transitivity of GL(2, D)
on P'(D). The more detailed results will be reported elsewhere. For example, in
Dupont—Parry-Sah [7], the detailed study of the action of SL(2, H) on P'(H)
leads to H,(SU(2)) = K,(C)" under the complexification homomorphism. With
the help of this and some other results, it is then possible to show that
Hy(SL(2, R))=H,(SL(2, C))* while H5(SU(2)) maps surjectively onto
H5(SL(2, C))*. Both maps are induced by the complexification homomorphisms.
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In fact, K5(C) = K% (C) L1 Hy(SL(2, C)) so that Hy(SL(2, C)) is the direct sum of
Q/Z and a suitable Q-vector space (of at least countably infinite dimension). This
last result will be reported in Sah [25]. All of these depend on the present
work as well as the various works of Dupont-Parry-Sah [6, 7, 8, 21] and Suslin
[31-34].
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