
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 61 (1986)

Artikel: Wann sind die Grunskyschen Koeffizientenbedingungen hinreichend für
Q-quasikonforme Fortsetzbarkeit?

Autor: Kühnau, Reiner

DOI: https://doi.org/10.5169/seals-46933

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 04.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-46933
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Comment. Math. Helvetici 61 (1986) 290-307 0010-2571 /86/020290-18S01.50 + 0.20/0

© 1986 Birkhauser Verlag, Basel

Wann sind die Grunskyschen Koeffizientenbedingungen
hinreichend fur Q-quasikonforme Fortsetzbarkeit?

Herrn Prof. Dr. Helmut Grunsky zum 80. Geburtstage gewidmet

Reiner Kùhnau(1)

§1. Einleitung

Es sei w w(z) ^ z eine durch

(1)

hydrodynamisch normierte schlichte konforme Abbildung der Klasse 21, die
|z|&gt;l aufs ÀuBere &amp; einer geschlossenen Jordankurve (£ transformiert. Wir
setzen © als analytisch voraus (was allerdings fur einzelne SchluBweisen nicht
notwendig ist). S sei so orientiert, da8 © zur Linken liegt. Der (kleinste
nichttriviale nichtnegative) Fredholmsche Eigenwert von S sei A &gt; 1 und k 1/A.

Wie iiblich werden aus der Entwicklung

aklz-*z&gt;-&apos; (2)

die &quot;Grunsky-Koeffizienten&quot; akl entnommen und hieraus CM akiv(kl) gebildet.
Bekanntlich [8], [14] gilt dann fur jedes System komplexer Zahlen xk mit

£k|2&lt;oo (3)

stets

00 00

Zr ^klXfcXl — &amp; 2j \Xk\ • (4)

1 Nach einem Vortrage im Mathematischen Kolloquium der Universitât Zurich am 12.7.1984. Der
Verf. dankt dem Forschungsinstitut ftir Mathematik der ETH Zurich fur die freundliche
Unterstùtzung.
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g-quasikonforme Fortsetzbarkeit 291

Hierbei ist auf der rechten Seite k nicht fur aile derartigen Système xk durch
einen kleineren Faktor ersetzbar. Ist die Abbildung w(z) zusàtzlich noch ins
Innere von |z| l hinein g-quasikonform fortsetzbar, gehôrt also zur Klasse

2{Q), gilt nach [1]

K^q mit q (Q-l)/(Q + l), (5)

so daB eine notwendige Bedingung fur die (?-quasikonforme Fortsetzbarkeit
lautet:

2j CkiXkXi W\2 (6)

fur aile (3) erfûllenden Système xk (vgl. [6], [13], S.287 ff., [4], S.lll). Jedoch ist

(6) nach [8] nicht immer hinreichend fur Q-quasikonforme Fortsetzbarkeit. Wir
wollen die &quot;inneren Grande&quot; hierfur aufhellen und fur (also hier analytisch
vorausgesetztes) (£ eine notwendige und hinreichende Charakterisierung der-
jenigen Fàlle angeben, fur die (6) hinreichend fur g-quasikonforme Fortsetzbarkeit

ist. Dièse Charakterisierung wird formulierbar in einer Bedingung an die
nach H. Grôtzsch &quot;môglichst konforme&quot; (nach O. Teichmûller auch &quot;extremal

quasikonforme&quot;) Fortsetzung unserer Abbildung nach |z|&lt;l. Dièse môglichst
konforme Fortsetzung, fur die also die Maximaldilatation minimal ausfâllt,
existiert und ist (fiir also analytisches (£) eindeutig bestimmt nach [16], wobei sich
die komplexe Dilatation durch ein quadratisches Differential beschreiben làBt mit
endlicher Norm (d.h.: die Abbildung ist &quot;teichmiillersch&quot;). Dièse also von (£

abhàngende minimale Maximaldilatation sei q*. Nach (5) gilt

K^q*, (7)

und es folgt also aus (6) genau dann fiir die betreffende Abbildung w{z) stets

(d.h. fur aile in (6) môglichen Werte q) die Q-quasikonforme Fortsetzbarkeit,
wenn in (7) das Gleichheitszeichen steht.

Wir werden beweisen (vgl. Sàtze 2 und 3), daB in (7) das Gleichheitszeichen

genau dann vorliegt, wenn die môglichst konforme Fortsetzung von w(z) ein
beschreibendes quadratisches Differential hat, welches nur Nullstellen gerader
Ordnung innerhalb \z\ &lt; 1 besitzt.

Da dièses Kriterium ziemlich implizit ist, geben wir noch eine mehr explizite
Charakterisierung einiger Fàlle mit Gleichheit in (7) an, wobei allerdings nur ein
hinreichendes Kriterium herausspringt.
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§2. Die komplexen Eigenfunktionen von fë

Nach Satz 5 in [7] (vgl. auch [5]) lassen sich die nichtnegativen nichttrivialen

Eigenwerte kn (nicht nur der uns unten eigentlich allein interessierende kleinste
solche A) so charakterisieren. Es gibt zu jedem solchen kn &gt; 1 und nur fur dièse

Werte eine in (S regulàre Funktion Wn(w)&amp;0 mit Wn(oo) 0, die eine stetige
(notwendig orientierungsumkehrende, nicht notwendig schlichte) quasikonforme
Fortsetzung Wn(w) ins Innere von © gestattet, fur die Wn(w) - knWn{w) regulàr
ist. Es ist dann jeweils die Wn(w) auf S Eigenfunktion im gewôhnlichen Sinne

zum Neumannschen Kerne. Die Funktion Ww(w) wird komplexe Eigenfunktion
von © genannt.

Der Zusammenhang der Wn(w) mit den in [3], S.71 ff. betrachteten
Eigenfunktionen &lt;pn ergibt sich dort iiber (121) und (128): Dièse (pn stimmen bis

auf einen konstanten Faktor mit den Funktionen W&apos;n(w) iiberein.
Die zum kleinsten Eigenwert À &gt; 1 gehôrige komplexe Eigenfunktion sei

furderhin W(w).
Wir betrachten im folgenden wesentlich mit die Integraloperation

die aus jedem in ($ regulâren f(w) mit /(&lt;») 0 eine daselbst regulàre Funktion

f*(w) mit /*(°°) 0 erzeugt. Fur die Eigenfunktion W folgt aus der Regularitât
von W - kW innerhalb H sofort W*(w) W(w).

Nun entwickeln wir

(9)
k=\

Wegen der Regularitât noch auf \z\ 1 ist £ |x*|2 &lt; ».
Durch einfache Rechnung (vgl. hierzu auch [11]) ergibt sich mit den

Faberschen Polynomen &lt;Pk(w) zu (# (vgl. [13], S.57)

-ki 2 xk[zk - 4&gt;k(w)]/Vk
k=l

(10)
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Ausnutzung von W* W liefert durch Koeffizientenvergleich

oc

«/= 2 cki*k- (ii)

Hieraus folgt

-=«iw2. d2)

Also stellt das System der xk ein &quot;Maximalsystem&quot; zu (4) dar, d.h. realisiert dort
das Gleichheitszeichen - vgl. hierzu auch [10].

Umgekehrt folgt aus (12) wie in [10] das System (11), so daB W(w) durch
einfachen RûckschluB als eine komplexe Eigenfunktion zum Eigenwert A erkannt
werden kann. Damit haben wir den

SATZ 1. ht W(z) eine komplexe Eigenfunktion zum (kleinsten) Eigenwert A,

dann gilt

W(w)

i 2 xkz~kNkfûr w auBerhalb S (|z| &gt; 1),

kl — A La:=1
~ A

(13)

fur w innerhalb 6,

wobei xk ein (11) bzw. (12) erfûllendes &quot;Maximalsystem&quot; ist. Stellen die xk
umgekehrt ein solches &quot;Maximalsystem&quot; dary liefert (13) eine komplexe Eigen-

funktion zu A.

Die zweite Zeile in (13) ergibt sich noch, da fur die erste Zeile auf S gilt

oc oc

W(w) - kW(w) W* - XW Ai 2 xk[*k(w) - zk]Nk + ki 2 xkz~k/\/k

Es muB noch bemerkt werden, daB sich Satz 1 auch aus den fundamentalen,
etwas anders aufgezogenen Ûberlegungen von M. Schiffer in [14] gewinnen lâBt.
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Man kann den Zusammenhang zwischen den komplexen Eigenfunktionen und
der Ungleichung (4) noch unmittelbarer zum Ausdruck bringen, wenn man dièse

Ungleichung in eine âquivalente Form umgieBt. Nach [6], S.96 gilt bei Benutzung
eines Gedankens von P. R. Garabedian und M. Schiffer fur jede auf F^ {\z\ 1}

vorgegebene stetige Funktion ju(z) als kontinuierlicher Grenzfall eines Verzer-

rungssatzes vom Golusinschen Typ

r-T
(14)

(jeweils zweimalige Kurvenintegration lângs rauszufiihren). Man erhàlt hieraus
nach dem Residuensatze wieder (4) durch Einsetzen von

(14&apos;)

falls dièse Reihe einen Konvergenzradius &gt;1 hat.
Aus Satz 1 flieBt somit

SATZ T. ht W(w) eine komplexe Eigenfunktion von G zum (kleinsten)
d

Eigenwert À, dann steht fur fx(z) — W(w(l/z)) in (14) das Gleichheitszeichen.

Steht umgekehrt dort fur ein ju des betrachteten Typs (14&apos;) das Gleichheitszeichen,

dann ist eia • Jo/2(lv) ju(£) dÇ eine komplexe Eigenfunktion zu A (geeignetes réelles

a).

§3. Zusammenhang des Problems der moglichst konformen Fortsetzung einer

Abbildung aus 1 mit dem Problem der moglichst konformen Abbildung
bei gegebener Randabbildung nach Teichmuller und Strebel

Wir gehen zuerst aus von einer Abbildung w w(z) der Klasse 2(Q). Das

Innere von S werde konform aufs Innere des Einheitskreises einer to-Ebene
schlicht konform abgebildet. Setzt man noch ïv(w) im ÀuBeren von S konform
an z.B. mit tv(w(z))^z, so entsteht (vgl. Abb.l) durch die Zusammensetzung

Kj-^^-^-^l/jf^w-*^ d.h. also durch die Funktion to(w(l/fv)) eine Q-
quasikonforme Abbildung von |ft)| ^ 1 nach |tof ^ 1. Insbesondere wird so aus der

analytischen Jordankurve (£ eine reell-analytische Abbildung mit nicht verschwin-
dender Ableitung von |ft)| 1 auf \to\ 1 erzeugt. Dazu wird auBerdem durch



lzl-1 Q-quasikonform

Q-quasikonforme Fortsetzbarkeit

konform

konform *2(Q) konform

z Ebene w-Ebene

Abb 1

295

Ebene

w(l/z(w)) eine Q-quasikonforme Spiegelung an G erzeugt. Da man aile
Ùberlegungen auch umkehren kann und man von einer gegebenen reell-
analytischen Abbildung mit nicht verschwindender Ableitung von \tv\ 1 auf
|lx&gt;| 1 durch konforme Verheftung ruckwàrts zu einer analytischen Jordankurve
(£ gelangt, entsprechen sich die drei Abbildungen im folgenden Schéma

gegenseitig. (2)

^l regulâren und
Schéma :

1. Q-quasikonforme Fortsetzung einer gegebenen fur
schlichten Abbildung aus I.

2. g-quasikonforme Spiegelung an der gegebenen (analytischen) Jordankurve S.
3. g-quasikonforme orientierungsumkehrende Abbildung des ÀuBeren des Ein-

heitskreises aufs Innere bei vorgegebener (eineindeutiger und orien-
tierungserhaltender) reell-analytischer Randabbildung mit nicht verschwindender

Ableitung.
Die Aufgabe der Bestimmung der môglichst konformen Fortsetzung bzw.

Spiegelung bzw. Abbildung lâBt sich also auch in dreifach âquivalenter Weise
betrachten bzw. lôsen. Insbesondere sind die bei den drei Zeilen des

Schémas kleinstmôglichen g-Werte identisch. Den mit dem minimalen (?-Wert
gebildeten Ausdruck

kann man-was durch Zeile 2 des Schémas auBerordentlich naheliegt - als

2 Dièse einfache Zuordnung lâBt sich auch - was hier nicht weiter gebraucht wird - ohne die

Voraussetzung der Analytizitàt von (£ herstellen: Bei gegebener Abbildung aus X(g) bzw.

zugehôriger Jordankurve (Quasikreis) (S entsteht auf |m| 1 dann eine quasisymmetrische Abbildung,
und aus einer solchen erhâlt man durch konforme Verheftung ein (£ (vgl. [12], S.96),
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&quot;Spiegelungskoeffizient&quot; bezeichnen. Dièses &quot;Kurvenfunktional&quot; hat mit dem

reziproken Fredholmschen Eigenwert manche Eigenschaft gemeinsam. Der
Spiegelungskoeffizient ist z.B. auch invariant bei linearer Transformation und ist

stets &gt;0 bzw. &lt;1 mit Gleichheit genau fur einen Kreis (£. GemâB (7) gilt stets

reziproker Fredholmscher Eigenwert &lt; Spiegelungskoeffizient (15)

Die zentrale Frage dieser Mitteilung ist die nach dem Gleichheitszeichen in
(15).

Im Falle von Zeile 3 des Schémas wurden zur Frage nach den môglichst
konformen Abbildungen entsprechend einer alten Problemstellung von O.
Teichmûller grundlegende Ergebnisse seit der Arbeit [15] von K. Strebel erzielt.
In dem hier nur betrachteten Falle analytischer Kurven (£ ergibt sich aus [16] als

ganz einfacher Spezialfall: Es gibt zu der gegebenen (analytischen) Randabbil-
dung mit nicht verschwindender Ableitung genau eine môglichst konforme

Abbildung to(tt)*) von |to*| &gt; 1 auf |to| &lt; 1; dièse und nur dièse lâBt sich durch
eine quadratisches Differential beschreiben. Das heiBt: Es gibt eine fur |to|&lt;l
regulàre Funktion Q(to), so daB infinitésimale Kreise durch tv(ïv*) in
infinitésimale Ellipsen in \tv\ &lt; 1 mit konstantem Achsenverhàltnis Q &gt; 1

(ibergehen, wobei die groBen Achsen auf der Kurvenschar 3m &lt;P(tv) const mit

&lt;P(tv) J VO(to) dtv (16)

liegen (die Nullstellen von Q(tv) dabei ausgenommen). Zudem gilt

JJ |4&gt;&apos;(to)|2 do &lt; oo (da Flàchenelement). (17)

Mi
Fur dièse Funktion 4&gt;(to) gilt noch zusâtzlich der

HILFSSATZ. Falls &lt;P(tv) fiir \tv\ &lt; 1 regulâr und auch eindeutig ist, dann

sogar fur \t$\ &lt; R mit einem R&gt;1.

Beweis. Aus (17) ergibt sich bei &lt;P(tv) E û«lî)n

(18)
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und also nach der Schwarzschen Ungleichung fiir |tt)| &lt; 1

(19)

X«kl2-iog(i/(i-|jt.|2))

Wir definieren nun in einem gewissen Ring 1 &lt; |2B| &lt; R die Funktion

(20)

mit q (Q ~ l)/((? + 1) (konstanter Betrag der komplexen Dilatation von
lt&gt;*(ît))). Dabei sei ro(s-û?) eine solche die Einheitskreislinie punktweise festlas-
sende orientierungsumkehrende schlichte quasikonforme Abbildung von 1 &lt;

|3B|&lt;/? ins Innere von |ro|&lt;l, wobei der Betrag der komplexen Dilatation
ebenfalls =# ist und infinitésimale Kreise durch 3&gt;(to(2B)) in horizontal gelegene
infinitésimale Ellipsen ubergehen. (Die Existenz solcher Abbildungen ergibt sich

wegen der vorausgesetzten Analytizitât der Randabbildung aus ïv(tv*) durch
zusàtzliche schlichte konforme Abbildung eines âuBeren Uferstreifens.) Es ist

*f(ÏÏB) analytisch, da dies in (20) die Summe der ersten beiden Terme ist.
Wir weisen nun nach, daB die fur 1/Rf &lt; |Ç| &lt;R&apos; mit 1&lt;R&apos;&lt;R als

Cauchy-Integral regulâre Funktion von Ç

r

(positive Orientierung der Integrationswege) innerhalb des Einheitskreises mit
2ni • 4&gt;(Ç), auBerhalb mit 2ni • W{t) ubereinstimmt. Dann wàre W analytische

Fortsetzung von &lt;P und der Beweis des Hilfssatzes erbracht. Dies ergibt sich in
der Tat nach der Cauchyschen Integralformel wegen (1&lt;R&quot;&lt; R&apos;)

lim | ——- d2B - r dtv 01 0. (22)
/?&quot;—1 U|v&amp;*|=/?&quot; -05 — Ç J\ïv\ vr&quot;W

&quot;&quot; Q J

Dies hinwiederum folgt aus dem gleichmâBigen Nach-Null-Streben der
Differenz der Integranden, nachdem man tv (l//?&quot;)eiqp, SB 1/ffi R&quot;el&lt;p gesetzt
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hat und dièse Differenz als Funktion von q&gt; betrachtet:

(SB-

Hier ist dièses Nach-Null-Streben beim zweiten Summanden sofort erkennbar

wegen (19) und |to — 2B| R&quot; — R&quot;&apos;1. Beim ersten Summanden ergibt es sich aus

(vgl- (20))

=n+i
Vvav(h)(2!B)v-tov)/Vv

Hier tut dies nâmlich bei festem « der erste Summand, wâhrend sich zuvor das

Quadrat des zweiten Betrages durch die Schwarzsche Ungleichung abschâtzen

làBt durch

v=«+l

2 v«*2v&lt;

/v&lt; X v|av|2- |rD(SB)-ru|2
v=n+l

v|av|2-|m(2B)-tt3|2-R*2(l-/î*2)-2. (23)

Hiebei bezeichnet iî* &lt; 1 eine gemeinsame Schranke fur |ro| und |to(2B)|. Da sich

lî)(l/SS) zu einer quasikonformen Abbildung der vollen Einheitskreisscheibe auf
sich fortsetzen lâBt (vgl. [12], S. 100), die den Rand fest làBt, erhàlt man durch
lineare Transformation der Einheitskreisscheibe in sich aus einem dies-

beziiglichen klassischen Teichmiillerschen Verschiebungssatze [17], S.704 ff.
(hier nur qualitativ benôtigt) leicht mit Konstanten clf c2 (0&lt;c2&lt;l) dièse

Ungleichungen:

M),

so da6 insbesondere R* \ïv\ -f c2 • (1 - |tt&gt;|) gewàhlt werden kann und in (23)
hinter E v |av|2 ein fur |tu|-* 1 beschrânkter Faktor steht.
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Damit ist der Hilfssatz vollstândig bewiesen.

Zusatzbemerkung. Nach dem Hilfssatze besitzt &lt;P(tv) insbesondere auch fur
|to| &lt; 1 hôchstens endlich viele Nullstellen, und abgesehen von diesen ist also die
Umkehrabbildung to*(to) von M —1 auf |to*|&gt;l noch im Real- und im
Imaginàrteil reell-analytisch.

§4. Charakterisierung der Kurven © bzw. Abbildungen vv(z) mit Gleichheit in
(7)

Bei gegebener Abbildung w(z)e2 (bei w(z)&amp;z) mit analytischem S als Bild
von \z\ 1 existiert nach §3 eine eindeutig bestimmte môglichst konforme
Fortsetzung nach |z|&lt;l, und dièse wird durch ein quadratisches Differential
3,(w) dw2 beschrieben. Dabei ist der Zusammenhang mit dem in §3 genannten
quadratischen Differential zu Zeile 3 des Schémas natiirlich gegeben durch
â(w) dw2 Q(to) dtv2.

Unser erstes Hauptresultat ist nun der

SATZ 2. Wenn â(w) im Bilde von \z\ &lt; 1 keine oder nur Nullstellen gerader
Ordnung hatf so daB

[
&gt; dw (24)

eine dort eindeutige Funktion ist, dann steht in (7) dos Gleichheitszeichen, d.h.
dann folgt bei der Abbildung w(z) aus der Gûltigkeit der Grunskyschen
Koeffizientenbedingungen (6) fur aile Système xk die Existenz einer Q-
quasikonformen Fortsetzung.

Beweis. Wir definieren fur |z|&lt;l noch die zunâchst nur fur |z|^l vor-
liegende Abbildung w(z) durch die genannte môglichst konforme Fortsetzung.
Deren Dilatation ^1 sei Q*. Im ÀuBeren von S entsteht dann durch (24), hier
eingesetzt w(l/z(w)) (vgl. Abb. 1), eine nach dem Hilfssatze von §3 noch auf ©

stetige Fortsetzung der fur&apos;s Innere von (S erklârten und regulâren Funktion (24).
Dièse Fortsetzung ist orientierungsumkehrend und transformiert infinitésimale
Kreise in infinitésimale Ellipsen des Achsenverhâltnisses Q* und mit zur reellen
Achse parallelen groBen Achsen, so daB (24) mit dieser Fortsetzung im Sinne von
§2 nach Affinitât der Bildebene eine komplexe Eigenfunktion von S darstellt.
Mithin stellt l/q* (Q* + 1)/(Ô* -1) einen Eigenwert von © dar, so daB
A &lt;!/&lt;?* bzw. K&gt;q* gilt. Wegen (7) gilt also K q*t so daB in (7) das
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Gleichheitszeichen steht. Der Rest der Behauptung ergibt sich aus den

Erôrterungen der Einleitung.
Der Satz 2 lâfit sich wie folgt umkehren.

SATZ 3. Fur die Abbildung w(z)&amp;z bzw. die zugehôrige analytische Kurve
(£ stehe in (7) das Gleichheitszeichen, d.h. zu jedem q mit 0&lt;g &lt; 1, fur das die

Grunskyschen Koeffizientenbedingungen (6) fur aile Système xk gelten, existiere
eine Q-quasikonforme Fortsetzung mit Q (1 + q)/(l - q)- Dann besitzt das

quadratische Differential zur môglichst konformen Fortsetzung von w(z) im
Innern von S nur Nullstellen gerader Ordnung (oder gar keine).

Beweis. Es ist k 1/À also der Betrag der komplexen Dilatation der

môglichst konformen Fortsetzung. Sei xk ein &quot;Maximalsystem&quot; (vgl. §2) mit
Gleichheit in (4), so daB also z.B.

Wir durchleuchten nun zu diesem festgehaltenen System xk den Beweis in [13],
S.289 ff. im Hinblick auf die Diskussion des Gleichheitszeichens. Falls dort in
(21) Gleichheit besteht, dann auch in der Ungleichung in der Mitte von S.290. Es

gilt also in der dortigen Bezeichnung fiir z e D

gssw Kgzswf h-z Khz,

Letztere Differentialgleichung beinhaltet, daB tatsàchlich die Abbildung be-
schrieben wird durch das quadratische Differential St{w) dw2 (h&apos;(w) dw)2,
welches wegen der Eindeutigkeit von h{w) nur Nullstellen gerader Ordnung
besitzt.

Freilich muB bei der ganzen Ûberlegung nach [13] zunâchst noch ûberlegt
werden, daB dièse auch fiir unendliche Système kk mit £ |A*|2/Ar &lt; x gûltig bleibt,
falls-wie bei uns gegeben-die Bildkurve S analytisch ist. (In [3], S.289 ff.
werden beim Grunskyschen Funktional nur endlich viele kk betrachtet.) In der
Tat ergibt sich fiir solch einen Fall fiir die auftretenden Koeffizienten usw. ein

problemloses Abklingen aus den Ûberlegungen in [10]. Darnach gilt mit einer
Konstanten c &gt; 0 und bei einer Konstanten p mit 0 &lt; p &lt; 1 stets |**| ^ c • pk&lt; also

in den Bezeichnungen von [13] |Â*| ^c*\Jkpk. Ferner ist |Q/| ^ p/f+/, also in den

Bezeichnungen von [13] \bkl\ ^ pk&apos;¥lI^Jkl. Demnach folgt fur die Faberschen

Polynôme &lt;Pk(w) nach (11) auf S.58 in [13] fur l&lt;\z\&lt;R&lt; 1/p die Ungleichung

\0k(w)\ ^ |z|* + k £ p*+1 |z|-&apos;/VW ^Rk + V*Pk
1 l=\
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Dies gilt nach dem Maximumprinzipe dann auch fur |z|&lt;#. Daraus ergibt sich
die gleichmàBige Konvergenz der h(w) in [13] unter (16) definierenden Reihe fur
\z\&lt;R. Es gilt (17) in [13] dadurch fur 1 &lt; \z\&lt;R, (18) gilt auch fur unendlich
viele solche Xk usw.

Damit ist der Beweis von Satz 3 vollbracht.

§5. Erlâuteningen und Beispiele

a.) Durch Satz 3 sind wir in die Lage gesetzt, in ûppiger Fùlle Beispiele von
Abbildungen w(z) e E zu erzeugen, bei denen zwar (6) fur aile Système xk erfùllt
ist, die aber nicht Q-quasikonform fortsetzbar sind. Nehmen wir z.B. die

Abbildung

(25)

mit 0&lt;q*&lt;ll Ganz analog wie im Spezialfalle n 3 [8] ist hier die môglichst
konforme Fortsetzung anschreibbar, wobei der Spiegelungskoeffizient des

zugehôrigen n-fach symmetrischen S gleich q* ist. Das zugehôrige quadratische
Differential hat nur eine Nullstelle in w 0, und dièse ist von der Ordnung n — 2.

Also: Genau fur gerade n gilt in (7) das Gleichheitszeichen. Der Fredholmsche
Eigenwert der Kurve S ist also fur gerade n gleich llq*, wâhrend er fur ungerade
n grôBer ist. (Der genaue Wert ist fur ungerade n unbekannt, kann allerdings
nach [10] numerisch mit beliebiger Genauigkeit und Fehlerabschâtzung berechnet
werden; in [10] Genaueres fur n 3.) Weich ein merkwûrdiger Unterschied
zwischen geraden und ungeraden n liegt hier vor!

b.) Man kann so weitere Beispiele konstruieren, bei denen das quadratische
Differential Nullstellen ungerader Ordnung besitzt. Man gehe aus von einem
solchen quadratischen Differential in der Einheitskreisscheibe und fûhre eine

Beltramiabbildung aufs ÀuBere des Einheitskreises (in der to-Ebene) so durch,
daB infinitésimale Ellipsen konstanten Achsenverhâltnisses, wobei die groBen
Achsen auf den Trajektorien des quadratischen Differentials liegen, in
infinitésimale Kreise iibergehen. Die gemàB dem Schéma des §3 ûber konforme

Verheftung entstehende zugehôrige Abbildung € I leistet dann das Verlangte. So

kann man z.B. Beispiele konstruieren, die zeigen, daB die Bedingung (6) auch

nicht etwa fur ungerade Abbildungen immer hinreichend fur ô-quasikonforme
Fortsetzbarkeit ist.

c.) Die Frage nach dem Gleichheitszeichen in (7) fur nichtanalytische Kurven
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S bleibt hier vôllig ungeklârt. Immerhin sind Beispiele von nichtglatten Kurven (£

mit Gleichheit in (7) bekannt: Nach [10] tut dies z.B. eine Quadratlinie (£.

d.) Im AnschluB an [9] definieren wir 2(k) (Modifizierung der Bezeichnung
2(Q)) als die Teilklasse der Abbildungen aus 2&quot;, bei denen eine Q-
quasikonforme Fortsetzung nach |z|&lt;l môglich ist mit k (Q - 1)/(Q + 1),

I(k) als die Teilklasse der Abbildungen aus 21, bei denen \z\ 1 in eine
Jordankurve ûbergeht, deren Fredholmscher Eigenwert ^1/jk ist. Dabei ist

Nun sei fur dièse Abbildungen ein réelles Funktional %(w) erklârt. Dann gilt

sup g(w)^ sup $(w). (26)

Wir fragen: Wann steht hier das Gleichheitszeichen, d.h., wann besitzt das

Extremalproblem 3f(w)—»max in den beiden Teilklassen die gleiche Lôsung?
Unsere obigen Ûberlegungen ermôglichen eine Teilantwort in Form der

folgenden notwendigen Bedingung: Wenn (bei 0&lt; k &lt; 1)

(i) in (26) das Gleichheitszeichen steht,
(ii) die Extremalfunktionen zu $(H&gt;)-»max in 2(k) durch ein quadratisches

Differential (in Grôtzsch-Teichmullerscher Manier, wie z.B. bei

Koeffizientenproblemen) beschrieben werden, wobei der Betrag der

komplexen Dilatation k ist,
(iii) bei den entsprechenden Extremalfunktionen in Z(k) das Bild von \z\ 1

jeweils den Fredholmschen Eigenwert \Ik hat,
dann kann das quadratische Differential im Bilde von |z|&lt;l hôchstens Null-
stellen gerader Ordnung besitzen.

Denn: Die Extremalfunktionen in 2(k) sind dann auch Extremalfunktionen
in I(k), d.h. fur die Extremalfunktionen von 2(k) steht in (7) das

Gleichheitszeichen, so daB nach Satz 3 nur Nullstellen gerader Ordnung im Bilde von
\z\ &lt; 1 auftreten kônnen.

So ergibt sich das schon in [9] bemerkte Phànomen, daB die Ungleichung
\a2\ ^ (2/3)k in I(k) fur den in (1) auftretenden Koeffizienten a2 nicht auch in
der Klasse 2(k) gelten kann (also auch nicht mit den Grunskyschen
Koçffizientenbedingungen der Klasse I(k) allein bewiesen werden kann). Denn
in I(k) werden die Extremalfunktionen durch (25) und die hieraus durch

Drehung entstehenden Funktionen mit n 3 gegeben, und hier besitzt das

quadratische Differential im Bilde von |z|&lt;l in w =0 eine einfache Nullstelle.
Man kann so sofort weitere Extremalprobleme z.B. bezûglich Koeffizienten
angeben, bei denen das gleiche Phànomen auftritt.
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§6. Ein hinreichendes Kriterium

Man mu6 zugeben: Die durch die Sàtze 2 und 3 gegebene notwendige und
hinreichende Bedingung an die Abbildung w(z)eZ fur Gleichheit in (7) ist
ziemlich implizit, da man das Verhalten des zugehôrigen quadratischen
Differentials nicht unmittelbar an der Abbildung w(z) bzw. an S erkennen kann.
Wir wollen uns deshalb weiters anheischig machen, noch eine - zugegeben nun
wieder ziemlich grobe - hinreichende Bedingung herzuleiten, die leichter
nachpriifbar ist.

Nach [9] (Satz 7) gilt sicher dann Gleichheit in (7), wenn die komplexe
Eigenfunktion (9) fur \z\ &gt; 1 schlicht ist. Das fûhrt uns zu

SATZ 4. Es gilt sicher dann Gleichheit in (7), wenn die betreffende Abbildung
w(z) e S nach \z\ &gt; p (p &lt; 1) analytisch und schlicht fortsetzbar istt wobei mit

np) f S P&quot;V(« + 2))2 + (1 - pVJp&apos;/U - p2) (27)

gilt

(28)

Beweis. Nach einem ganz primitiven Kriterium (vgl. z.B. [13], S.44) ist (9)
sicher dann fiir \z\ &gt; 1 schlicht, wenn

2 Vu kl s M. (29)
n 2

Zur Vereinfachung der Schreibung sei fûrder o.E.d.A. E«=i \xn\2 1. Nach [10]

(dort (12)) gilt fur w(z) bei Voraussetzung der im Satze genannten &quot;p-

Bedingung&quot;

VnkN/c-&apos;Vnp&quot;+1(l-p2r1/2, (30)

also

i Vn k| =s r-(l - p2)-1&apos;2 • X Vn p&quot;+1, (31)
n=2 «=2

iil-p2). (32)
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Damit ist (29) sicher wegen (31), (32) erfûllt, wenn

«=2

[* -il/2 r « -i 1/2

î-ir^P^/tt-p2) &lt; 1-2W2 =kl-
n=2 J L n=2 J

Dièse Bedingung - etwas umgeschaufelt - liefert (28).

Ertâuterungen und Folgerungen. a.) Wegen der auf M. Schiffer

zuriickgehenden Ungleichung je &lt;p2 (vgl. [9]) kann (28) nur erfiillbar sein, wenn
fur die (monoton steigende) Funktion W(p)/p4 gilt W(p)/p4&lt;l, was zu

p &lt; 0,352. fûhrt. Fur grôBere p ist Satz 4 also wertlos.
b.) Es gilt W(p)/p6&gt;3, weil W{p)lp6 auch monoton steigend ist und den

Grenzwert 3 fur p—»0 besitzt.
Fur das Beispiel der Funktion (25) mit n 3 ist k2 &gt; (8/9)p6; also ist

jedenfalls - wie es sein muB - die Bedingung (28) nicht erfùllt.
c.) Man kann durch weitere geringe Vergrôberung die Bedingung (28) noch

in eine leichter nachprufbare Form bringen, die nicht mehr die (i. allg. schwer

bestimmbare) GrôBe k enthalt. Wegen En|an|2&lt;jc2 [8] ist nàmlich statt (28)
auch

n l
(33)

hinreichend fur Gleichheit in (7), oder auch einfach *P(p)&lt; \ai\2. Dièse

Bedingung ist z.B. erfiillt fur kreisnahe Ellipsen S.

d.) In [9] (dort nach Satz 4) war u.a. die Frage aufgeworfen worden, ob aus

w(z) 61 bei 0 &lt; p &lt; 1 stets folgt pw(z/p) e I(p2). In dieser Richtung ergibt sich

jetzt aus dem bei (33) Stehenden wegen pn&gt;(z/p) z + axp2lz + • • • und weil
der ic-Wert dieser Abbildung nach [9] (dort Satz 4) &lt;p2 ist: Es gilt sicher dann

pw(z/p)eZ(p2), wenn tf/(p)^E^=i« |^|2p2n+2 gilt, was bei jeder Abbildung
mit ax =£0 zumindest fur hinreichend kleine p erfullt ist.

e.) Es sei nun w(z)~z +ao + aiZ~1 + a2^~2 + * • * &amp;z eine fur |z|&gt;l

schlichte konforme Abbildung, bei der w 0 kein Bildpunkt ist. Dann ist bei
hinreichend kleinen positiven p bei a^Q (z.B. fur ^(Vp)^ \ao\2p2/4) die

Abbildung p • w(z/p) z 4- pa0 + p2at/z + • • • fur \z\ &gt; 1 ebenfalls schlicht und
ins Komplement quasikonform fortsetzbar mit h&gt;(0) 0, wobei der Betrag der

komplexen Dilatation &lt;p ist. Denn auf Vw(z2) z + (ao/2)z~1 + • • • gfez ist das

oben unter d. Angegebene anwendbar, und die dort bei Vp • Vw((z/Vp)2)
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entstehende quasikonforme Fortsetzung (mit dem Betrag der komplexen Dilatation

^p) muB wegen der eindeutigen Bestimmtheit zentrisch symmetrisch zum
Nullpunkt sein, diesen also festhalten.

Durch Sturzung erhalten wir hieraus folgende Teilantwort auf eine in [2] unter
6.79 auf S.560 gestellte Frage: Wenn W(Z) Z + B2Z2 + • • • eine Abbildung der
Klasse 5 ist, dann fur hinreichend kleine positive p bei B2=£0 (z.B. fur
W{\Jp) &lt; \B2\2 p2/4) auch W(pZ)/p, wobei nach \Z\&gt;\ mit W(oo) oo eine

quasikonforme Fortsetzung mit Betrag der komplexen Dilatation &lt;p existiert.

§7. Verhalten der GrôBen k und q* bei Quadratwurzeloperation

In der w-Ebene liège eine geschlossene analytische Jordankurve Sw vor, die

w 0 im Innern enthàlt und zentrisch symmetrisch zu w 0 ist. Durch tv w2

entsteht dann eine Jordankurve iim. Fur die zugehôrigen Spiegelungskoeffizienten

qt bzw. q^ (vgl. §3) gilt dann

ql^qt (34)

mit Gleichheit genau dann, wenn in der w-Ebene das die môglichst konforme
Spiegelung an (£„ beschreibende quadratische Differential in w 0 eine Nullstelle
besitzt (notwendig von gerader Ordnung).

Denn: Die môglichst konforme Spiegelung an &amp;w ist endeutig bestimmt, also

zentrisch symmetrisch (so daG insbesondere in ^ 0 eine Nullstelle gerader
Ordnung bzw. gar keine vorliegt), so daB vermôge tv w2 die entsprechende

môglichst konforme Spiegelung an (î^ entsteht, wenn nicht in »v 0 keine
Nullstelle vorliegt. Im letzten Falle erhàlt man nâmlich fur die so entstehende

Spiegelung an (£m einen Pol erster Ordnung, so daB dièse Spiegelung nicht
môglichst konform sein kann nach den einschlàgigen Strebelschen Sàtzen.

Als Gegenstùck zu (34) gilt fiir die *r-Werte von &amp;w und (£„ auch

kw^kw. (35)

Dies ergibt sich z.B. ûber die Définition des Fredholmschen Eigenwertes uber

den Quotienten aus den Dirichletschen Integralen fur auBerhalb bzw. innerhalb

der betreffenden Kurve harmonische Funktionen, die auf der Kurve
iibereinstimmen. Denn ein solches System harmonischer Funktionen bei Sm gibt

vermôge w Vft&gt; AnlaB zu einem System bei (£„, woraus sich wegen der

Invarianz der Dirichletschen Intégrale bei konformer Abbildung (35) ergibt.
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Die Diskussion des Gleichheitszeichens bei (35) ist freilich nicht so einfach
wie bei (34). Immerhin kônnen wir mit Hilfe von Satz 2 hierzu folgendes sagen:

(i) Es ist kw &lt; Kwf wenn das quadratische Differential in w 0 keine
Nullstelle besitzt und ansonsten innerhalb iiw hôchstens Nullstellen gerader
Ordnung. Denn dann ist Km&lt;q?v, sowie q%~Kw nach Satz 2. Aber nach dem
nach (34) Gesagten gilt q*v &lt; q%.

(ii) Es ist kw KWi wenn des quadratische Differential in w 0 eine

Nullstelle einer Ordnung der Form 4/c 4- 2 (k ^ 0 ganze Zahl) hat und ansonsten
innerhalb (£w hôchstens Nullstellen gerader Ordnung. (Dièse Voraussetzung liegt
z.B. vor, wenn das quadratische Differential innerhalb (£ro keine Nullstelle hat.)
Denn dann gilt q^ — yt nach dem hinter (34) Bemerkten, sowie Kw qZ und

*ro #m nach Satz 2 (letzteres, da auch innerhalb (£m nur Nullstellen gerader
Ordnung auftreten kônnen, in ïv 0 speziell von der Ordnung 2k).

(iii) Als Kontrast zu (ii) erwâhnen wir noch das Beispiel der Kurve C£w, die
sich vermôge (25) mit n 6 ergibt. Hier haben wir in w 0 eine Nullstelle 4.

Ordnung beim quadratischen Differential, und tatsâchlich gilt hier fur das

zugehôrige dreifach symmetrische Sm nach [8] (vgl. oben die Bemerkungen unter
§5.a) kw&lt;kw.

(iv) Noch ein Beispiel einer nicht analytischen Jordankurve ï£w mit Gleichheit
in (35): Qw Quadratlinie. Hier gilt nach [10] kw kw 1/2.
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