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Wann sind die Grunskyschen Koeffizientenbedingungen
hinreichend fiir Q-quasikonforme Fortsetzbarkeit?

Herrn Prof. Dr. Helmut Grunsky zum 80. Geburtstage gewidmet

ReENer Konnau®?

§1. Einleitung

Es sei w = w(z) # z eine durch
a a
=z4+=2+—=+---
wz)=z+2+% M

hydrodynamisch normierte schlichte konforme Abbildung der Klasse X, die
|z] >1 auf’'s AuBere & einer geschlossenen Jordankurve € transformiert. Wir
setzen € als analytisch voraus (was allerdings fiir einzelne SchluBweisen nicht
notwendig ist). € sei so orientiert, daB & zur Linken liegt. Der (kleinste
nichttriviale nichtnegative) Fredholmsche Eigenwert von € sei A =1 und x = 1/A.
Wie iiblich werden aus der Entwicklung

oc

log W(Z):M’,(Z ):____ _ 2 aklz—-sz—l (2)
Z—2z k,I=1

die “Grunsky-Koeffizienten” a,, entnommen und hieraus C, = a,,V(kl) gebildet.
Bekanntlich [8], [14] gilt dann fiir jedes System komplexer Zahlen x; mit

> <o (3)
k=1
stets
z Ck,xkx, =<K 2 'xklz. (4)

! Nach einem Vortrage im Mathematischen Kolloquium der Universitit Ziirich am 12.7.1984. Der
Verf. dankt dem Forschungsinstitut fiir Mathematik der ETH Ziirich fiir die freundliche
Unterstiitzung,.
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Q-quasikonforme Fortsetzbarkeit 291

Hierbei ist auf der rechten Seite x nicht fiir alle derartigen Systeme x, durch
einen kleineren Faktor ersetzbar. Ist die Abbildung w(z) zusitzlich noch ins

Innere von |z| =1 hinein Q-quasikonform fortsetzbar, gehort also zur Klasse
2(Q), gilt nach [1]

k=q mit g=(Q-1)/(Q+1), ©)

so daB eine notwendige Bedingung fiir die Q-quasikonforme Fortsetzbarkeit
lautet:

2 CrrX Xy

k,l=1

Sq k}_:l |xk|2 (6)

fiir alle (3) erfiillenden Systeme x, (vgl. [6], [13], S.287 ff., [4], S.111). Jedoch ist
(6) nach [8] nicht immer hinreichend fiir Q-quasikonforme Fortsetzbarkeit. Wir
wollen die “inneren Griinde” hierfiir aufhellen und fiir (also hier analytisch
vorausgesetztes) ¢ eine notwendige und hinreichende Charakterisierung der-
jenigen Fille angeben, fiir die (6) hinreichend fiir Q-quasikonforme Fortsetz-
barkeit ist. Diese Charakterisierung wird formulierbar in einer Bedingung an die
nach H. Grotzsch “moglichst konforme” (nach O. Teichmiiller auch ‘“‘extremal
quasikonforme’) Fortsetzung unserer Abbildung nach |z| <1. Diese méglichst
konforme Fortsetzung, fiir die also die Maximaldilatation minimal ausfillt,
existiert und ist (fiir also analytisches ) eindeutig bestimmt nach [16], wobei sich
die komplexe Dilatation durch ein quadratisches Differential beschreiben 148t mit
endlicher Norm (d.h.: die Abbildung ist “teichmiillersch’’). Diese also von ¢
abhingende minimale Maximaldilatation sei g*. Nach (5) gilt

K=q*, (7

und es folgt also aus (6) genau dann fiir die betreffende Abbildung w(z) stets
(d.h. fiir alle in (6) moglichen Werte q) die Q-quasikonforme Fortsetzbarkeit,
wenn in (7) das Gleichheitszeichen steht.

Wir werden beweisen (vgl. Sitze 2 und 3), daB in (7) das Gleichheitszeichen
genau dann vorliegt, wenn die moglichst konforme Fortsetzung von w(z) ein
beschreibendes quadratisches Differential hat, welches nur Nullstellen gerader
Ordnung innerhalb |z| <1 besitzt.

Da dieses Kriterium ziemlich implizit ist, geben wir noch eine mehr explizite
Charakterisierung einiger Fille mit Gleichheit in (7) an, wobei allerdings nur ein
hinreichendes Kriterium herausspringt.
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§2. Die komplexen Eigenfunktionen von €

Nach Satz 5 in [7] (vgl. auch [5]) lassen sich die nichtnegativen nichttrivialen
Eigenwerte A, (nicht nur der uns unten eigentlich allein interessierende kleinste
solche A) so charakterisieren. Es gibt zu jedem solchen A, > 1 und nur fiir diese
Werte eine in @ regulire Funktion W,(w)#0 mit W,(©) =0, die eine stetige
(notwendig orientierungsumkehrende, nicht notwendig schlichte) quasikonforme
Fortsetzung W, (w) ins Innere von € gestattet, fiir die W,(w) — A,W,(w) regular
ist. Es ist dann jeweils e W, (w) auf € Eigenfunktion im gewohnlichen Sinne
zum Neumannschen Kerne. Die Funktion W, (w) wird komplexe Eigenfunktion
von € genannt.

Der Zusammenhang der W,(w) mit den in [3], S.71 ff. betrachteten
Eigenfunktionen ¢, ergibt sich dort iiber (121) und (128): Diese @, stimmen bis
auf einen konstanten Faktor mit den Funktionen W, (w) iiberein.

Die zum kleinsten Eigenwert A>1 gehorige komplexe Eigenfunktion sei
fiirderhin W (w).

Wir betrachten im folgenden wesentlich mit die Integraloperation

A (f@
2ni Je w —w

fr(w)= (8)

die aus jedem in & reguldren f(w) mit f() =0 eine daselbst regulire Funktion
f*(w) mit f*(») =0 erzeugt. Fiir die Eigenfunktion W folgt aus der Regularitit
von W — AW innerhalb € sofort W*(w) =W (w).

Nun entwickeln wir

Ww(z)) =i i %z} IVEk. )

Wegen der Regularitit noch auf |z| =1 ist T |x;|* <ce.
Durch einfache Rechnung (vgl. hierzu auch [11]) ergibt sich mit den
Faberschen Polynomen ®,(w) zu & (vgl. [13], S.57)

W*(w)=—i i x(z7)* IV =—Ai i xi[z% = @ (w))/ VK

[~ [~ 4

= A,l Z xk\/z Z ak,Z~k. | ‘ (10)

k=1
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Ausnutzung von W* = W liefert durch Koeffizientenvergleich

K = 2 CriX- (11)
k=1

Hieraus folgt

E CuXyx; =K kZl kalz. (12)

k=1

Also stellt das System der x, ein ‘‘Maximalsystem’ zu (4) dar, d.h. realisiert dort
das Gleichheitszeichen — vgl. hierzu auch [10].

Umgekehrt folgt aus (12) wie in [10] das System (11), so daB W(w) durch
einfachen Riickschluf} als eine komplexe Eigenfunktion zum Eigenwert A erkannt
werden kann. Damit haben wir den

SATZ 1. Ist W(z) eine komplexe Eigenfunktion zum (kleinsten) Eigenwert A,
dann gilt

i Y %z */Vk fiir w auBerhalb € (|z| = 1),
k=1

W(w)= (13)

: iu,xz [i X @)/ Vi — A 2 xkd)k(w)/\/k]

fiir w innerhalb G,

wobei x, ein (11) bzw. (12) erfiillendes ‘‘Maximalsystem’ ist. Stellen die x,
umgekehrt ein solches ‘‘Maximalsystem” dar, liefert (13) eine komplexe Eigen-
funktion zu A.

Die zweite Zeile in (13) ergibt sich noch, da fiir die erste Zeile auf € gilt

W(w) — AW (w)=W* — AW = Ai 5: xi [ Pe(W) — 2¥)/ VK + Ai i X2 *¥IVk
k=1

k=1

=Ai D, %, D(W)/Vk.
k=1

Es muB noch bemerkt werden, daB sich Satz 1 auch aus den fundamentalen,
etwas anders aufgezogenen Uberlegungen von M. Schiffer in [14] gewinnen 1:8t.
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Man kann den Zusammenhang zwischen den komplexen Eigenfunktionen und
der Ungleichung (4) noch unmittelbarer zum Ausdruck bringen, wenn man diese
Ungleichung in eine dquivalente Form umgneBt Nach [6], S.96 gilt bei Benutzung
eines Gedankens von P. R. Garabedian und M. Schiffer fiir jede auf I' = {|z| = 1}
vorgegebene stetige Funktion u(z) als kontinuierlicher Grenzfall eines Verzer-
rungssatzes vom Golusinschen Typ

wdz dc‘ = —xfrfrﬁ?'z_)u(é) log (1 - *1‘) dz dt

44
(14)

(jeweils zweimalige Kurvenintegration ldngs I" auszufithren). Man erhélt hieraus
nach dem Residuensatze wieder (4) durch Einsetzen von

(Z)M(C) log

u(z) =i g Vk 5,257, (14")

falls diese Reihe einen Konvergenzradius >1 hat.
Aus Satz 1 flieBt somit

SATZ 1'. Ist W(w) eine komplexe Eigenfunktion von & zum (kleinsten)
d
Eigenwert A, dann steht fiir u(z) = W(w(1/2)) in {14) das Gleichheitszeichen.

Steht umgekehrt dort fiir ein u des betrachteten Typs (14') das Gleichheitszeichen,
dann ist €' - [*™ (&) d¢ eine komplexe Eigenfunktion zu A (geeignetes reelles
@).

§3. Zusammenhang des Problems der moglichst konformen Fortsetzung einer
Abbildung aus 2 mit dem Problem der moglichst konformen Abbildung
bei gegebener Randabbildung nach Teichmiiller und Strebel

Wir gehen zuerst aus von einer Abbildung w = w(z) der Klasse 2(Q). Das
Innere von € werde konform auf’s Innere des Einheitskreises einer iv-Ebene
schlicht konform abgebildet. Setzt man noch w(w) im AuBeren von € konform
an z.B. mit w(w(z)) =2z, so entsteht (vgl. Abb.1) durch die Zusammensetzung
w—->w—>z—->1/Z->w-1pn, d.h. also durch die Funktion m(w(1/ib)) eine Q-
quasikonforme Abbildung von || = 1 nach || = 1. Insbesondere wird so aus der
analytischen Jordankurve € eine reell-analytische Abbildung mit nicht verschwin-
dender Ableitung von || =1 auf || =1 erzeugt. Dazu wird auBerdem durch
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konform

Izl=1 Q-quasikonform

konform e2(Q) kontorm

z-Ebene w -Ebene w - Ebene

Abb. 1

w(1/z(w)) eine Q-quasikonforme Spiegelung an © erzeugt. Da man alle
Uberlegungen auch umkehren kann und man von einer gegebenen reell-
analytischen Abbildung mit nicht verschwindender Ableitung von |m|=1 auf
|| =1 durch konforme Verheftung riickwirts zu einer analytischen Jordankurve
¢ gelangt, entsprechen sich die drei Abbildungen im folgenden Schema
gegenseitig.®

Schema:

1. Q-quasikonforme Fortsetzung einer gegebenen fiir |z| =1 reguliren und

schlichten Abbildung aus 2.

2. Q-quasikonforme Spiegelung an der gegebenen (analytischen) Jordankurve €.

3. Q-quasikonforme orientierungsumkehrende Abbildung des AuBeren des Ein-
heitskreises auf’s Innere bei vorgegebener (eineindeutiger und orien-
tierungserhaltender) reell-analytischer Randabbildung mit nicht verschwin-
dender Ableitung.

Die Aufgabe der Bestimmung der mdglichst konformen Fortsetzung bzw.
Spiegelung bzw. Abbildung 14Bt sich also auch in dreifach dquivalenter Weise
betrachten bzw. 16sen. Insbesondere sind die bei den drei Zeilen des
Schemas kleinstmdéglichen Q-Werte identisch. Den mit dem minimalen Q-Wert
gebildeten Ausdruck

" =(@-1DI(Q+1)

kann man —was durch Zeile 2 des Schemas auBerordentlich naheliegt — als

2Diese einfache Zuordnung 1Bt sich auch - was hier nicht weiter gebraucht wird - ohne die
Voraussetzung der Analytizitit von € herstellen: Bei gegebener Abbildung aus X(Q) bzw.
zugehoriger Jordankurve (Quasikreis) € entsteht auf || = 1 dann eine quasisymmetrische Abbildung,
und aus einer solchen erhilt man durch konforme Verheftung ein € (vgl. [12], S5.96).
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“Spiegelungskoeffizient” bezeichnen. Dieses ‘“Kurvenfunktional” hat mit dem
reziproken Fredholmschen Eigenwert manche Eigenschaft gemeinsam. Der
Spiegelungskoeffizient ist z.B. auch invariant bei linearer Transformation und ist
stets =0 bzw. <1 mit Gleichheit genau fiir einen Kreis €. GemaB8 (7) gilt stets

reziproker Fredholmscher Eigenwert = Spiegelungskoeffizient (15)

Die zentrale Frage dieser Mitteilung ist die nach dem Gleichheitszeichen in
(15).

Im Falle von Zeile 3 des Schemas wurden zur Frage nach den mdglichst
konformen Abbildungen entsprechend einer alten Problemstellung von O.
Teichmiiller grundlegende Ergebnisse seit der Arbeit [15] von K. Strebel erzielt.
In dem hier nur betrachteten Falle analytischer Kurven € ergibt sich aus [16] als
ganz einfacher Spezialfall: Es gibt zu der gegebenen (analytischen) Randabbil-
dung mit nicht verschwindender Ableitung genau eine moglichst konforme
Abbildung w(fv*) von |w*|>1 auf || <1; diese und nur diese 148t sich durch
eine quadratisches Differential beschreiben. Das heit: Es gibt eine fiir || <1
regulire Funktion £(tv), so daB infinitesimale Kreise durch mw(iv*) in in-
finitesimale Ellipsen in |w|<1 mit konstantem Achsenverhiltnis Q=1
iibergehen, wobei die groBen Achsen auf der Kurvenschar Im @(iv) = const mit

& () = f VQ(iv) div (16)
liegen (die Nullstellen von (1) dabei ausgenommen). Zudem gilt

f |@'(1v)|*do <= (do = Flichenelement). (17)

Jmj<1
Fiir diese Funktion ®(iv) gilt noch zusétzlich der

HILFSSATZ. Falls ®(1v) fiir |w| <1 regulir und auch eindeutig ist, dann
sogar fiir || <R mit einem R > 1.

Beweis. Aus (17) ergibt sich bei @(iv) =Y, a, 0"

- 3

2 nla,ff <o (18)

n=0
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und also nach der Schwarzschen Ungleichung fiir || <1

|D(w)| = |ao| + 21 Vn la,] - w2V

x 172 (19)
<lal + | S laof - tog (/1 = [f) |
n=1
Wir definieren nun in einem gewissen Ring 1 < |®| < R die Funktion
] — e 1 ——
P(W) = ¢(w(W)) - 5 d(1(W)) +-C; P(1/%) (20)

mit ¢ =(Q —1)/(Q +1) (konstanter Betrag der komplexen Dilatation von
w*(1v)). Dabei sei (W) eine solche die Einheitskreislinie punktweise festlas-
sende orientierungsumkehrende schlichte quasikonforme Abbildung von 1<
|®| <R ins Innere von |w|<1, wobei der Betrag der komplexen Dilatation
ebenfalls =q ist und infinitesimale Kreise durch ®@(1v(®)) in horizontal gelegene
infinitesimale Ellipsen iibergehen. (Die Existenz solcher Abbildungen ergibt sich
wegen der vorausgesetzten Analytizitit der Randabbildung aus mw(iv*) durch
zusitzliche schlichte konforme Abbildung eines dufleren Uferstreifens.) Es ist
Y (1Y) analytisch, da dies in (20) die Summe der ersten beiden Terme ist.

Wir weisen nun nach, daB die fir 1/R'<|§{|<R’ mit 1<R'<R als
Cauchy-Integral reguldre Funktion von §

R
[ [ S,
|®|=R

21
S~ & wj=1r 10— § @)

(positive Orientierung der Integrationswege) innerhalb des Einheitskreises mit
27i - @(§), auBerhalb mit 27 - ¥({) tibereinstimmt. Dann wire ¥ analytische
Fortsetzung von @ und der Beweis des Hilfssatzes erbracht. Dies ergibt sich in
der Tat nach der Cauchyschen Integralformel wegen (1 <R"<R’)

. Y(¥) o(1w)
im ([ I [ 00 o)y »
R}’-r-nd || =R" m— C Iw|=vR" 1D — C ( )

Dies hinwiederum folgt aus dem gleichmédBigen Nach-Null-Streben der
Differenz der Integranden, nachdem man v = (1/R")e’?, W = 1/1b = R"e'? gesetzt
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hat und diese Differenz als Funktion von @ betrachtet:

w(%)%—qs(m)%%qw—«p)

B (-
Bt P B-Ow-0)

Hier ist dieses Nach—Null-Streben beim zweiten Summanden sofort erkennbar
wegen (19) und | — W| = R” — R"~'. Beim ersten Summanden ergibt es sich aus

(vel. (20))

() - o)< (1+2) - [2(o) - o)

" (1 + ;) 2 a (@) - )

+(1+;1I-)

Hier tut dies ndmlich bei festem n der erste Summand, wihrend sich zuvor das
Quadrat des zweiten Betrages durch die Schwarzsche Ungleichung abschitzen
148t durch

i Vva,(0(B)” - m")/Vv

v=n+1

*® x ax

2 viaf 2 @) -wf/ivs ¥ viaf - [n®) - wfP

v=n+1 v=n+1 v=n+1

X O v-R*= > wvla | |m(®)-mw|* R**(1-R*})™2. (23)

v=n+1 v=n+1

Hiebei bezeichnet R* <1 eine gemeinsame Schranke fiir |tv| und |to(2W)|. Da sich
w(1/W) zu einer quasikonformen Abbildung der vollen Einheitskreisscheibe auf
sich fortsetzen 148t (vgl. [12], S.100), die den Rand fest 148t, erhidlt man durch
lineare Transformation der Einheitskreisscheibe in sich aus einem dies-
beziiglichen klassischen Teichmiillerschen Verschiebungssatze [17], S.704 ff.
(hier nur qualitativ bendétigt) leicht mit Konstanten c¢,, ¢, (0<c,<1) diese
Ungleichungen:

[ro(BW) — w| =¢; - (1 - |m)),
I (W)| =< |w| +c, - (1 - |w]),

so daB insbesondere R* = ||+ ¢, (1 —|m|) gewihit werden kann und in (23)
hinter ¥ v |a,|? ein fiir [w|— 1 beschrinkter Faktor steht.
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Damit ist der Hilfssatz vollstindig bewiesen.

Zusatzbemerkung. Nach dem Hilfssatze besitzt ®(tv) insbesondere auch fiir
|| =1 hochstens endlich viele Nullstellen, und abgesehen von diesen ist also die
Umkehrabbildung w*(iv) von |w|=<1 auf |w*|=1 noch im Real- und im
Imaginirteil reell-analytisch.

§4. Charakterisierung der Kurven € bzw. Abbildungen w(z) mit Gleichheit in
)

Bei gegebener Abbildung w(z) € &' (bei w(z) # z) mit analytischem € als Bild
von |z|=1 existiert nach §3 eine eindeutig bestimmte méglichst konforme
Fortsetzung nach |z|<1, und diese wird durch ein quadratisches Differential
9(w) dw? beschrieben. Dabei ist der Zusammenhang mit dem in §3 genannten
quadratischen Differential zu Zeile 3 des Schemas natiirlich gegeben durch
9(w) dw?* = Q(iv) div?.

Unser erstes Hauptresultat ist nun der

SATZ 2. Wenn 2(w) im Bilde von |z| <1 keine oder nur Nullstellen gerader
Ordnung hat, so daB3

j Va(w) dw (24)

eine dort eindeutige Funktion ist, dann steht in (7) das Gleichheitszeichen, d.h.
dann folgt bei der Abbildung w(z) aus der Giiltigkeit der Grunskyschen
Koeffizientenbedingungen (6) fiir alle Systeme x, die Existenz einer Q-
quasikonformen Fortsetzung.

Beweis. Wir definieren fiir |z| <1 noch die zunichst nur fiir |z|=1 vor-
liegende Abbildung w(z) durch die genannte mdéglichst konforme Fortsetzung.
Deren Dilatation =1 sei Q*. Im AuBeren von € entsteht dann durch (24), hier
eingesetzt w(1/z(w)) (vgl. Abb. 1), eine nach dem Hilfssatze von §3 noch auf €
stetige Fortsetzung der fiir’s Innere von € erklarten und reguldren Funktion (24).
Diese Fortsetzung ist orientierungsumkehrend und transformiert infinitesimale
Kreise in infinitesimale Ellipsen des Achsenverhiltnisses O* und mit zur reellen
Achse parallelen groBen Achsen, so daB (24) mit dieser Fortsetzung im Sinne von
§2 nach Affinitit der Bildebene eine komplexe Eigenfunktion von € darstelit.
Mithin stellt 1/¢* =(Q*+1)/(Q* —1) einen Eigenwert von ¢ dar, so daB
A=<1/q* bzw. k=q* gilt. Wegen (7) gilt also x=g* so daB in (7) das
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Gleichheitszeichen steht. Der Rest der Behauptung ergibt sich aus den
Erorterungen der Einleitung.
Der Satz 2 148t sich wie folgt umkehren.

SATZ 3. Fiir die Abbildung w(z)# z bzw. die zugehorige analytische Kurve
€ stehe in (7) das Gleichheitszeichen, d.h. zu jedem q mit 0<q <1, fiir das die
Grunskyschen Koeffizientenbedingungen (6) fiir alle Systeme x, gelten, existiere
eine Q-quasikonforme Fortsetzung mit Q =(1+q)/(1 —q). Dann besitzt das
quadratische Differential zur moglichst konformen Fortsetzung von w(z) im
Innern von § nur Nullstellen gerader Ordnung (oder gar keine).

Beweis. Es ist k =1/A also der Betrag der komplexen Dilatation der
moglichst konformen Fortsetzung. Sei x; ein “Maximalsystem” (vgl. §2) mit
Gleichheit in (4), so daB also z.B.

Re D Cuxixi=x D, x>
k,1=1 k=1

Wir durchleuchten nun zu diesem festgehaltenen System x; den Beweis in [13],

S.289 ff. im Hinblick auf die Diskussion des Gleichheitszeichens. Falls dort in

(21) Gleichheit besteht, dann auch in der Ungleichung in der Mitte von S.290. Es

gilt also in der dortigen Bezeichnung fiir z € D

g5, = Kg,5,,  h;=Kh,.

Letztere Differentialgleichung beinhaltet, daf tatsdchlich die Abbildung be-
schrieben wird durch das quadratische Differential 2(w) dw?= (h'(w) dw)?,
welches wegen der Eindeutigkeit von A(w) nur Nullstellen gerader Ordnung
besitzt.

Freilich muB bei der ganzen Uberlegung nach [13] zunichst noch iiberlegt
werden, daB diese auch fiir unendliche Systeme A, mit ¥ |A,|*/k <= giiltig bleibt,
falls — wie bei uns gegeben — die Bildkurve € analytisch ist. (In [3], S.289 ff.
werden beim Grunskyschen Funktional nur endlich viele A, betrachtet.) In der
Tat ergibt sich fiir solch einen Fall fiir die auftretenden Koeffizienten usw. ein
problemloses Abklingen aus den Uberlegungen in [10]. Darnach gilt mit einer
Konstanten ¢ >0 und bei einer Konstanten p mit 0< p <1 stets |x,| <c - p*, also
in den Bezeichnungen von [13] |A«| = ¢ Vk p*. Ferner ist |Cy| < p**', also in den
Bezeichnungen von [13] |by|=p**'/Vkl. Demnach folgt fiir die Faberschen
Polynome @,(w) nach (11) auf S.58 in [13] fiir 1 =|z| <R < 1/p die Ungleichung

| B (W) <|z]F +k ;1 p** 2|~ IVkl = R* + Vk p* Z‘ p'IVL.
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Dies gilt nach dem Maximumprinzipe dann auch fiir |z| <R. Daraus ergibt sich
die gleichméBige Konvergenz der A(w) in [13] unter (16) definierenden Reihe fiir
|z| <R. Es gilt (17) in [13] dadurch fiir 1=<|z| <R, (18) gilt auch fiir unendlich
viele solche A, usw.

Damit ist der Beweis von Satz 3 vollbracht.

§5. Erliuterungen und Beispiele

a.) Durch Satz 3 sind wir in die Lage gesetzt, in iippiger Fiille Beispiele von
Abbildungen w(z) € X zu erzeugen, bei denen zwar (6) fiir alle Systeme x, erfiillt

ist, die aber nicht Q-quasikonform fortsetzbar sind. Nehmen wir z.B. die
Abbildung

w(z)=z-(1+q*z7")*" (25)

mit 0 <g* <1! Ganz analog wie im Spezialfalle n =3 [8] ist hier die moglichst
konforme Fortsetzung anschreibbar, wobei der Spiegelungskoeffizient des
zugehorigen n-fach symmetrischen € gleich g* ist. Das zugehorige quadratische
Differential hat nur eine Nullstelle in w =0, und diese ist von der Ordnung n — 2.
Also: Genau fiir gerade n gilt in (7) das Gleichheitszeichen. Der Fredholmsche
Eigenwert der Kurve € ist also fiir gerade n gleich 1/g*, wihrend er fiir ungerade
n groBer ist. (Der genaue Wert ist fiir ungerade n unbekannt, kann allerdings
nach [10] numerisch mit beliebiger Genauigkeit und Fehlerabschidtzung berechnet
werden; in [10] Genaueres fiir n =3.) Welch ein merkwiirdiger Unterschied
zwischen geraden und ungeraden n liegt hier vor!

b.) Man kann so weitere Beispiele konstruieren, bei denen das quadratische
Differential Nullstellen ungerader Ordnung besitzt. Man gehe aus von einem
solchen quadratischen Differential in der Einheitskreisscheibe und fiihre eine
Beltramiabbildung auf’s AuBere des Einheitskreises (in der mw-Ebene) so durch,
daB infinitesimale Ellipsen konstanten Achsenverhiltnisses, wobei die groBen
Achsen auf den Trajektorien des quadratischen Differentials liegen, in in-
finitesimale Kreise iibergehen. Die gemidfl dem Schema des §3 iiber konforme
Verheftung entstehende zugehorige Abbildung € X leistet dann das Verlangte. So
kann man z.B. Beispiele konstruieren, die zeigen, daB die Bedingung (6) auch
nicht etwa fiir ungerade Abbildungen immer hinreichend fiir Q-quasikonforme
Fortsetzbarkeit ist.

c.) Die Frage nach dem Gleichheitszeichen in (7) fiir nichtanalytische Kurven
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€ bleibt hier vollig ungeklért. Immerhin sind Beispiele von nichtglatten Kurven ¢
mit Gleichheit in (7) bekannt: Nach [10] tut dies z.B. eine Quadratlinie €.

d.) Im AnschluB an [9] definieren wir £ (k) (Modifizierung der Bezeichnung
2(Q)) als die Teilklasse der Abbildungen aus X, bei denen eine Q-
quasikonforme Fortsetzung nach |z| <1 méglich ist mit x=(Q —1)/(Q + 1),
X(x) als die Teilklasse der Abbildungen aus X, bei denen |z|=1 in eine
Jordankurve iibergeht, deren Fredholmscher Eigenwert =1/k ist. Dabei ist
J(x)cZ{(x) und I(x) # (k).

Nun sei fiir diese Abbildungen ein reelles Funktional §(w) erklart. Dann gilt

weZ(x)

sup F(w) = L3P 5(w). (26)

Wir fragen: Wann steht hier das Gleichheitszeichen, d.h., wann besitzt das
Extremalproblem &(w)— max in den beiden Teilklassen die gleiche Losung?

Unsere obigen Uberlegungen ermoglichen eine Teilantwort in Form der
folgenden notwendigen Bedingung: Wenn (bei 0 < x <1)

(i) in (26) das Gleichheitszeichen steht,

(ii) die Extremalfunktionen zu &(w)— max in (k) durch ein quadratisches
Differential (in Grotzsch-Teichmiillerscher Manier, wie z.B. bei
Koeffizientenproblemen) beschrieben werden, wobei der Betrag der
komplexen Dilatation x ist,

(iii) bei den entsprechenden Extremalfunktionen in (k) das Bild von |z| =1
jeweils den Fredholmschen Eigenwert 1/k hat,

dann kann das quadratische Differential im Bilde von |z| <1 hochstens Null-
stellen gerader Ordnung besitzen.

Denn: Die Extremalfunktionen in (k) sind dann auch Extremalfunktionen
in ¥(x), d.h. fiir die Extremalfunktionen von X(k) steht in (7) das Gleich-
heitszeichen, so daB nach Satz 3 nur Nullstellen gerader Ordnung im Bilde von
|z] < 1 auftreten konnen.

So ergibt sich das schon in [9] bemerkte Phédnomen, da8 die Ungleichung
la,| = (2/3)x in Z(k) fiir den in (1) auftretenden Koeffizienten a, nicht auch in
der Klasse X(x) gelten kann (also auch nicht mit den Grunskyschen
Koeffizientenbedingungen der Klasse X'(x) allein bewiesen werden kann). Denn
in 3(x) werden die Extremalfunktionen durch (25) und die hieraus durch
Drehung entstehenden Funktionen mit n =3 gegeben, und hier besitzt das
quadratische Differential im Bilde von |z| <1 in w =0 eine einfache Nullstelle.
Man kann so sofort weitere Extremalprobleme z.B. beziiglich Koeffizienten
angeben, bei denen das gleiche Phanomen auftritt.
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§6. Ein hinreichendes Kriterium

Man muB zugeben: Die durch die Sitze 2 und 3 gegebene notwendige und
hinreichende Bedingung an die Abbildung w(z) € 2 fiir Gleichheit in (7) ist
ziemlich implizit, da man das Verhalten des zugehorigen quadratischen
Differentials nicht unmittelbar an der Abbildung w(z) bzw. an € erkennen kann.
Wir wollen uns deshalb weiters anheischig machen, noch eine — zugegeben nun
wieder ziemlich grobe - hinreichende Bedingung herzuleiten, die leichter
nachpriifbar ist.

Nach [9] (Satz 7) gilt sicher dann Gleichheit in (7), wenn die komplexe
Eigenfunktion (9) fiir |z| > 1 schlicht ist. Das fiihrt uns zu

SATZ 4. Es gilt sicher dann Gleichheit in (7), wenn die betreffende Abbildung
w(z) € X nach |z| > p (p <1) analytisch und schlicht fortsetzbar ist, wobei mit

w(p)=[(Z o Vin + z))2 +(1- ) o1 - ) 27)

n=—0
gilt
W(p) =< K* (28)

Beweis. Nach einem ganz primitiven Kriterium (vgl. z.B. [13], S.44) ist (9)
sicher dann fiir |z| > 1 schlicht, wenn

S, Va il = il @)

Zur Vereinfachung der Schreibung sei fiirder 0.E.d.A. X, |x,|* = 1. Nach [10]
(dort (12)) gilt fiir w(z) bei Voraussetzung der im Satze genannten “‘p-
Bedingung”

Vn x| < k™' Vi p"i(1 - p?) 712, (30)
also

2 \/n ‘xn‘ < K—-l(l _ p2)-1/2 . 2 \/n pn+l’ (31)

n=2 n=2

> =k Y p2(1 - p?). 32)
n=2 n=2
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Damit ist (29) sicher wegen (31), (32) erfiillt, wenn
K—l(l _pz)—uz . E Vn pn+1
n=2
x 12 @ 172
<[1-x73 u1-p9)] <[1- 3 1P| =1l
n=2 n=2

Diese Bedingung — etwas umgeschaufelt - liefert (28).

Erlduterungen und Folgerungen. a.) Wegen der auf M. Schiffer
zuriickgehenden Ungleichung k < p? (vgl. [9]) kann (28) nur erfiillbar sein, wenn
fir die (monoton steigende) Funktion W(p)/p* gilt W(p)/p*=1, was zu
p =0,352. fiihrt. Fiir groBere p ist Satz 4 also wertlos.

b.) Es gilt ¥(p)/p®=3, weil ¥(p)/p® auch monoton steigend ist und den
Grenzwert 3 fiir p — 0 besitzt.

Fiir das Beispiel der Funktion (25) mit n=3 ist x*>(8/9)p®% also ist
jedenfalls — wie es sein muf3 — die Bedingung (28) nicht erfiilit.

c.) Man kann durch weitere geringe Vergroberung die Bedingung (28) noch
in eine leichter nachpriifbare Form bringen, die nicht mehr die (i. allg. schwer
bestimmbare) GroBe k enthalt. Wegen ¥, n |a,|* < k® [8] ist nimlich statt (28)
auch

x

Y(p)= 2, nla, (33)

n=1

hinreichend fiir Gleichheit in (7), oder auch einfach W(p)=<|a,|>. Diese
Bedingung ist z.B. erfiillt fiir kreisnahe Ellipsen €.

d.) In [9] (dort nach Satz 4) war u.a. die Frage aufgeworfen worden, ob aus
w(z) € X bei 0< p <1 stets folgt pw(z/p) € (p?). In dieser Richtung ergibt sich
jetzt aus dem bei (33) Stehenden wegen pw(z/p) =z +a,p*/z+ - und weil
der x-Wert dieser Abbildung nach [9] (dort Satz 4) =p? ist: Es gilt sicher dann
pw(z/p) € 2(p?), wenn W(p)=<YX>_n|a,* p>*** gilt, was bei jeder Abbildung
mit a, # 0 zumindest fiir hinreichend kleine p erfiillt ist.

e.) Es sei nun w(z)=z+ao+a,z ' +a,z27%+---%z eine fir |z|>1
schlichte konforme Abbildung, bei der w =0 kein Bildpunkt ist. Dann ist bei
hinreichend kleinen positiven p bei a,#0 (z.B. fir ¥(Vp)=|ao* p*/4) die
Abbildung p - w(z/p) =z + pag + p®a/z + - - - fiir |z|>1 ebenfalls schlicht und
ins Komplement quasikonform fortsetzbar mit w(0) =0, wobei der Betrag der
komplexen Dilatation <p ist. Denn auf Vw(z%) =z + (ag/2)z~' + - - - #z ist das
oben unter d. Angegebene anwendbar, und die dort bei Vp - Vw{(z/Vp)?)



Q-quasikonforme Fortsetzbarkeit 305

entstehende quasikonforme Fortsetzung (mit dem Betrag der komplexen Dilata-
tion =p) muB wegen der eindeutigen Bestimmtheit zentrisch symmetrisch zum
Nullpunkt sein, diesen also festhalten.

Durch Stiirzung erhalten wir hieraus folgende Teilantwort auf eine in [2] unter
6.79 auf S.560 gestellte Frage: Wenn W(Z) = Z + B,Z* + - - - eine Abbildung der
Klasse S ist, dann fiir hinreichend kleine positive p bei B,#0 (z.B. fiir
W(Vp) <|B,|* p?/4) auch W(pZ)/p, wobei nach |Z|>1 mit W(x) = eine
quasikonforme Fortsetzung mit Betrag der komplexen Dilatation <p existiert.

§7. Verhalten der Grofien x und g* bei Quadratwurzeloperation

In der w-Ebene liege eine geschlossene analytische Jordankurve €, vor, die
w =0 im Innern enthilt und zentrisch symmetrisch zu w =0 ist. Durch o = w?
entsteht dann eine Jordankurve €,,. Fiir die zugehorigen Spiegelungskoeffizienten
qw bzw. qy, (vgl. §3) gilt dann

=4 (34)

mit Gleichheit genau dann, wenn in der w-Ebene das die maoglichst konforme
Spiegelung an §,, beschreibende quadratische Differential in w =0 eine Nullstelle
besitzt (notwendig von gerader Ordnung).

Denn: Die moglichst konforme Spiegelung an €, ist endeutig bestimmt, also
zentrisch symmetrisch (so daB insbesondere in w =0 eine Nullstelle gerader
Ordnung bzw. gar keine vorliegt), so daB vermodge v =w? die entsprechende
moglichst konforme Spiegelung an €,, entsteht, wenn nicht in w=0 keine
Nullstelle vorliegt. Im letzten Falle erhdlt man nédmlich fiir die so entstehende
Spiegelung an ¢, einen Pol erster Ordnung, so dafl diese Spiegelung nicht
moglichst konform sein kann nach den einschldgigen Strebelschen Sétzen.

Als Gegenstiick zu (34) gilt fiir die x-Werte von €, und €,, auch

Kp=<K,. (35)

Dies ergibt sich z.B. iiber die Definition des Fredholmschen Eigenwertes iiber
den Quotienten aus den Dirichletschen Integralen fiir auBerhalb bzw. innerhalb
der betreffenden Kurve harmonische Funktionen, die auf der Kurve
iibereinstimmen. Denn ein solches System harmonischer Funktionen bei €,, gibt
vermoge w =V AnlaB zu einem System bei €,, woraus sich wegen der
Invarianz der Dirichletschen Integrale bei konformer Abbildung (35) ergibt.
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Die Diskussion des Gleichheitszeichens bei (35) ist freilich nicht so einfach
wie bei (34). Immerhin kénnen wir mit Hilfe von Satz 2 hierzu folgendes sagen:

(i) Es ist kx,,<k,, wenn das quadratische Differential in w =0 keine
Nullstelle besitzt und ansonsten innerhalb €, hochstens Nullstellen gerader
Ordnung. Denn dann ist k,, =g, sowie g, = k,, nach Satz 2. Aber nach dem
nach (34) Gesagten gilt g, <q..

(i) Es ist k,=k,, wenn des quadratische Differential in w=0 eine
Nulistelle einer Ordnung der Form 4k + 2 (k =0 ganze Zahl) hat und ansonsten
innerhalb €, hochstens Nullstellen gerader Ordnung. (Diese Voraussetzung liegt
z.B. vor, wenn das quadratische Differential innerhalb ¢, keine Nullstelle hat.)
Denn dann gilt ¢} =g, nach dem hinter (34) Bemerkten, sowie k, =g, und
K =¢m nach Satz 2 (letzteres, da auch innerhalb ¢, nur Nullstellen gerader
Ordnung auftreten konnen, in v = 0 speziell von der Ordnung 2k).

(iii) Als Kontrast zu (ii) erwdhnen wir noch das Beispiel der Kurve €, die
sich vermoge (25) mit n = 6 ergibt. Hier haben wir in w =0 eine Nullstelle 4.
Ordnung beim quadratischen Differential, und tatsédchlich gilt hier fiir das
zugehorige dreifach symmetrische €, nach [8] (vgl. oben die Bemerkungen unter
§5.a) Kk, <K,

(iv) Noch ein Beispiel einer nicht analytischen Jordankurve ¢, mit Gleichheit
in (35): €, = Quadratlinie. Hier gilt nach [10] k,, = kx, = 1/2.
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