Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 61 (1986)

Artikel: A non-quasicircle with almost smooth mapping functions.
Autor: Lesley, F. David

DOl: https://doi.org/10.5169/seals-46932

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 18.10.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-46932
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helvetici 61 (1986) 279-289 0010-2571/86/020279-11$01.50 + 0.20/0
© 1986 Birkhiuser Verlag, Basel

A non-quasicircle with almost smooth mapping functions

F. DAviD LESLEY

1. Introduction

A Jordan curve I' in the w-plane is a quasicircle (or quasiconformal curve) if,

for all w,, w, € I' and any w on C(w,, w,), the arc of smaller diameter between
w, and w,,

lw, — o]+ |0 — o,

<M, 1.1
|0)|"w2| (1.1)

for a constant M > 0 depending on I.

Let f be a conformal mapping of the disk D = {§:|{| <1} onto £, the interior
of I', and let f* be a conformal mapping of D*={&:|{|>1} onto Q*, the
exterior of I'. Since I' is a Jordan curve, these functions extend continuously to
homeomorphisms of oD with I'. We shall say that a function g is Lip («), or

Holder continuous with exponent « in its domain if there exist K >0 and a >0
for which

lg(x) —g(WI=K|x —y|* (1.2)

for all x and y in the domain of g.

It is well known that if I' is a quasicircle, then f, f~', f* and f*~' are Holder
continuous on the closure of their domains, and in fact the Holder exponents can
be expressed in terms of the M in (1.1) ([5, 8]). The question then arose as to
whether Holder continuity of the four functions implies that I' is a quasicircle.
This is true if f and f~' (or f* and f*~') are Lip (1). The question was settled by
Becker and Pommerenke [1] who constructed a curve I" which is not a quasicircle,
but for which the functions are all Holder continuous. The exponents, however,
are less than j, and the question remained as to how large the exponents can be
with I not a quasicircle. Since f~' and f*~' are Lip («) for a >} whenever I'is a
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280 F. DAVID LESLEY

quasicircle [S], one might conjecture that I' is a quasicircle if the exponents are
sufficiently large (but still less than 1). We prove the following

THEOREM. There exists a non-quasicircle T for which the mapping f of D
onto Q is Lip (&) for all a <1 and the mapping f* of D* onto Q* is Lip (1). The
inverse mappings f~' and f*~' are Lip (@) for all « <1 on Q and Q* respectively.
In fact, |f'(e'®)| is exponentially integrable while 1/|f'(e'®)|, |f*'(e'®)| and
|1/f*'(e'®)| are uniformly bounded on 3D.

Let u be Lebesgue measure on [0, 27) and define
m(A, f')=u({0 €[0, 27):|f'(e")| > A}), (1.3)
to be the distribution function of |f’|. Using the fact that for constant A,

2n *
f AN de =2n + A | em(A, f') dA, (1.4)
(

) 0

the exponential integrability of |f’| follows if there exists M such that for A > M
and B> A,

m(A, f')y<e B, (1.5)

We shall construct I" such that an inequality like (1.5) holds for any B >0, so that
the integral in (1.4) will be finite for any A > 0. I" will be constructed so that |f’| is
non-zero and finite on 8D and m(A, f') will be estimated using the techniques in
[4] and [6], where curves were constructed with all mappings Lip (1), but I
respectively not smooth or “asymptotically conformal.” In the last section we
shall mention some other phenomena exhibited by the example, in connection
with the Muckenhoupt A.. condition for |f’|.

2. Construction of the curve and estimation of derivatives

Let S,={z=x+iy:|ly|<a/2} and S,={z=x+iy:x/2<y<3m/2}. We
shall construct a strip domain &', in the w = u + iv plane, which is bounded by
C,={w:v=—na/2} and a Jordan arc C, with —= and + as endpoints. This C,
will be very close to the line v = x/2. The strip 2, will be the “complementary”
strip bounded by C, and C; = {w:v =3x/2}.

We then define wy(z) =u,(z) +iv,(z) and wy(z) = u,(z) + iv,(z) to be the
conformal mappings of S, and S, respectively onto 2 and X,, with w(—x) = —x,
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w(+) =+, w(mi/2)=ni/2 € 3Z; for j=1, 2. We denote by z;(w) the inverse
of w(z), forj=1, 2.

Next, define
e” —1
w(w)=eW+1, weX UZX,
and
e’ —
C(Z)=ez+1, ZES]USZ.

Then §; and S, correspond to the interior and exterior of the unit disk in the
¢ = & + in plane, while X, and X, correspond to the interior £ and exterior * of
a closed Jordan curve I' in the w = s + it plane. C,; will be constructed so that the
image I' of C,UG, is not a quasicircle. The function f({)=w(w(z({))) is a
conformal mapping of D onto Q and f*({) = w(w»(z({))) is a conformal mapping
of D* onto Q*. Both functions may be assumed to be extended continuously to
the closures of their domains.
Now, by the chain rule we have, for { # %1,

ﬂ(;)l_ d_wl dw| |dz
d¢ dwl| | dz | |dg
| 2e” dw,| |(e* + 1)
(e” +1)* | dz 2e’
- filﬁ x=uy(z) 1+e7*)?
dz 1+e™
_ M| e 1+o0(1
ik (1+0(1), as x— +wx. (2.1)

Our goal here is to estimate the distribution function (1.3) and to show that
1/|f'(e’®)| is bounded uniformly from above, so that we must estimate |dw,/dz|
and x — u,(z) for points on 3. Similar considerations connect |f*'| to |dwy/dz|
and x — u,(z) on 3%,.

We now construct C,. We start with “building blocks” as in [6]. For each
k =3 consider the following circles in the @ =s + it plane.

Ti:(t—n)P+(s—k)Y=(x—-k™1?)?

2 .7[2

T2:t2+(s—u2)2={£-, B:t2+(s——u3)2=-4—
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where wu,=k—((x/2—k "V +2n(x/2 -k~ ") and us=k+((7/2-
k™22 4+ 2a(x/2—k~"*))", so that T, and T; are tangent to T;. Let L=
{s+it:s=0, t=m/2}. We trace a curve I} as follows. Starting at xi/2 move to
the right, first along L to T;, thenon 75 to T}, on T, to T3, on T; to L and then on
L to +o. Let I'; be the reflection of I; across the s-axis and let €, be the ‘“‘half
strip” bounded by I; U I'; U {4 : |t| = /2}. (See the figure, upper left.)

@ (@) N
—
\ 7/ wi(s)
/\
%
Qk Sk

z;(w)

Wy - Zy
NS T N w (Z) I
1
Dk ~N \—-//
21 S]

For @€ Q, let w(@)=—ie ®+w, for w,=g(k)+ xi/2. The function
g(k)=e*"* will guarantee (1.5). Other choices of g(k) will yield corresponding
integrability of |f’|, as will be evident. We shall work with g(k) =e*™* for our
purposes. Let D, be the image of €, under this w(®). Let E={w=u+
iv:|lv|<m/2}. Delete from X the half disks {w:|w—w|<1, v<x/2} and
replace them with the D,. The resulting domain is then X,, and we let
S,={w=u+iv:—n/2<v<3m/2} — Z,. The upper boundary of X, is then the
curve C;, with a sequence of shrinking and narrowing double bumps going to +x=.
Under the mapping w = (e™ — 1)/(e™ + 1), X, corresponds to a domain £ which
is nearly a unit disk, with a sequence of double bumps converging to w = 1. It is
clear that (1.1) fails for 382, because the bottlenecks on the £, have width 2/Vk.
A rigorous argument can be easily obtained from that on page 229 of [6].

As previewed above we consider the conformal mappings w;(z) (j =1, 2) from
S; onto X; with w(—x) = —%, w;(+x) =+ and w;(ni/2) = ni/2, and define f and
f* on D and D* accordingly. We shall work with |f’| and 1/|f’|; the proofs for the
exterior mappings-are simpler, as will be noted later. In order to use (2.1) we first
observe that there exists K,, constant, such that for all z € §,,

"‘K1<x‘u1(Z)<K1. (2.2)
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The upper bound follows as in Lemma 5 of [6] from the Ahlfors upper inequality
(see [2]) while the lower bound follows similarly from the Ahlfors lower
inequality (the Ahlfors distortion theorem). We now turn to the estimation of
|dw,/dz|, which depends on the Q. For each k (=3) let z, = z;(w,) and define
C«(z) =Log (1/(z — z)) — ni/2 for z €S, so that |[Im {,(z)| <n/2. For w(®)=
—ie™® + w;, the function (@) = §i(z(wi(®))) maps £, conformally onto a half
strip S, which is bounded by the horizontal rays from §,(mi/2) and &,(—mi/2) to
+2 and by an arc y, in {|Im | <m/2}. As with (2.1) we see that for z € z;(D,),
with z,(w) the inverse of w;(z) and w,(&) the inverse of {,(®), we have

dw,
dz

_|do
|

s, (2.3)

Here { = {,(z) and w,(8) =s,(& +in) + ite(§ + in).

In order to estimate & — s5,({) on the horizontal boundary of S, we shall again
use the Ahlfors inequalities. For a given €, we let o(s) denote the vertical
crosscut {Re @ =s} N Q. Let 8,(s) be the length of o(s). We then define

E(s)=min&(®) @eo(s), &E(s)=max&(d) @ eo(s)
where §,(@) = Re §;(®). We first prove
LEMMA 1. For { =& +in € S,, we have, for constant K,

—K, <& —s:(§) <K,k for each k. (2.4)
Proof. We begin by showing that there exists K; for which

—~Ky<E(if) <K, forall k. (2.5)

Because 2, is so nearly a parallel strip z,(w) has an unrestricted derivative at
x:z;(w)—w—l as w— for a real [ ([10],[11]). Choose M such that for
Rew > M and w € £, we have

lzl(w)— W“1|<T%,

and choose N such that for k > N, all D, lie in the half plane {Re w > M}. Then
for |t|<nx/2,

|z (—ie™" + w) — (—ie™" + w) — 1| <15
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and from |z, — w, — I| <1, we obtain
[(zi(—ie™ + w) — z) = (—ie )| <
Thus
§<|zi(—ie™" +w) —z,| <

and

log 2 < & (it) = —log |z,(—ie™" + w) — z,| <log 3

from which (2.5) follows.
From the Ahlfors distortion theorem we have

S

56) —E0)= [ a2
so that
@) —s= [ 2220 4 _on i g0

o 0k(t)

and the left side of (2.4) follows from (2.5) and the fact that 7 — 6,(t) = 0. Next

we apply the Ahlfors upper inequality as expressed in Theorem 3 of [2], to see
that

_ S dt b4
$)—E0)=| —+ k—=+ ak'?,
&)~ 0= | Gos+k;
so that
oy ‘r—6() T 12
Ex(@)—s= L 8(0) dt + > k+ k' + §k(0).

Then the right inequality of (2.4) follows from the above, (2.5) and the
construction of Q.

LEMMA 2 There exist positive K, and M, independent of k, such that for
Eeds, withReE>M,

1

~ < dwk
Ky

— | <K'
dF K.k
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The proof of Lemma 2 is essentially that of Lemma 3 of [4]. (See also Lemma
7 of [6].) Briefly, the right inequality holds because for each @ € 88, with
Re @ > /2, one may inscribe a circle of radius at least k~"? in €,, tangent to
92, at @ and with center on the s axis. Furthermore, the image of the s axis is
asymptotic to the & axis. One then bounds |dw,/dE| by a Schwarz lemma
argument. The lower bound is simpler in that at each @ € 9Q, there is a circle of
radius 7t — k=" in the exterior of ©Q,, tangent to 38, at @.

It is now evident from (2.3) and Lemmas 1 and 2 that for z € 93, N D, we
have

ldwl < K, k'PeKH < oK, (2.6)

At every other point of %', there are tangent circles interior and exterior to 0,
with radius &, and the image of the x axis under w,(z) is asymptotic to the u axis
in S,. Thus there exists K, >0 for which

on the rest of 9%,. It now follows from (2.1), (2.2) and (2.6) that
1/|f'(e'®)| € L*(3D).

Next we must estimate the length of the image of 8%, N D, under w(w) =
(e” —1)/(e” + 1), recalling that D, is centered at w, = g(k) + ir/2.

Let zr=ziwe — D) =xp+in/2, zi=zi(w+ D) =x+in/2, §;,=E(z;) and

= {(zy) so that {; and {; are the endpoints of the interval I, = 3D which

corresponds to D, NZX,. Since z;(w) has an unrestricted derivative / at +oc,
xy—>g(k)—1+1and x{— g(k) + 1+ [ as k— . Thus for |I,| the length of I,, we
have

|L| = Arg §(zi) — Arg §(zk
e’k —1 e+ 1)
e*k+1 e*k—1

=Arg(

% (ie“;‘ —1 ie*k+ 1)
= r ’ . ”
g ie*x+1 ie*x—1

eX it 4 1 — j(e*k — e¥)
= Arg <e-*i+xi’ Flti(eno e"*")>
i e.\',’" — pXi B ex;('-x,’( _ 1
=2tan ! —————=2tan"!

e itri4 1 rall
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Since x; — x;— 2 and x;— g(k) + [ + 1 we see that there exists K, >0 for which

|| < K;e7#*%)  for each k, noting that k = 3. (2.7)

From (2.6), we obtain, for g(k) = e*'"* and a positive constant K|,

o

p(0:1f" () > Koe**y < 2 |1,]

n=k+1

< z K7 exp (__en log n)

n=~k+1

< Ky exp (—e* &%) (2.8)

for a positive constant K.
Now let A, = e**. Then for any A >0,

x * Ak+l
Al eVm(A, fYdi=D A e*m(A, f') dA
Ay k=3 Ax
x A+t
=Y m(A, fHA e** dA
k=3 Ak

= >, m(A, feH
k=3
. __yklogk ks(k+1)
= Kqexp(—e + Ae ),
i3

where the last inequality follows from (2.8). Since this series converges for any
A >0, it follows from (1.4) that |f'(e’®)| is exponentially integrable to any power.

The boundedness of |[f*'| and 1/[f*’| follow in the same way as that of 1/|f’|.
The argument is applied to £; which is bounded by I}, its reflection across s = &
and {ri:7/2<t<3m/2}. Rather than a narrowing, £2f has a widening, so that a
disk inside ©Q; with radius 7/2 is tangent to I; at any @ € I; (Re @ > 7/2).

3. Holder continuity and further remarks

Since |f*'| is bounded on 8D, f* is in Lip(1). An application of Holder’s
inequality shows that f € Lip () on D, for any a <1, because f’ e L? for any
p <=. The Holder continuity of the inverse functions is less obvious, as I" is not a
quasicircle. However, by a theorem of Pommerenke [9, Theorem 1], the fact that
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|f*'| is bounded above and below on 3D implies that I' is an “exterior
quasicircle,” which is defined as follows. For w,, w, € I, let

dg+(w,, ,) = inf diam C
C

where C ranges over all arcs which lie in * except for their endpoints, @, and
w,. We say that I' is an “‘exterior quasicircle” if there exists M >0 such that for
every w,, w,€r,

diam C(w,;, w,) = Mdg-(w,, w,).

With the corresponding definition of “‘interior quasicircle,” it is easy to see that if
I' is both an interior and exterior quasicircle then it is a quasicircle.

In [4, Corollary to Theorem 1] it is shown that if f € Lip (o) on 8D and if I' is
a quasicircle then f*~' € Lip (1/(2 — «)) on I'. This proof in fact only requires that
I' be an exterior quasicircle, for then the result of Lemma 4 in [7] holds and the
fact that f*~' e Lip (1/(2 — «)) on I follows exactly as in the proof of Theorem 2
in [7]. Thus f*~! is Holder continuous for any exponent less than 1.

We now turn to the proof that f~' is Lip (&) for all a <1. Let s(w) denote
arclength on I', starting at some w, € I', proceeding in the positive direction to .
Choose w,, w, eI, and let f*({,) =w;, i =1, 2. Since f* is Lip(1) on 8D, we
have for some K >0

ls(w1) = s(wo)| <K [§1 = &o| = K |f*Hw) = f*7 ()] (3.1)
The Holder continuity of f*~' yields, for some K, >0,
F* @) = [ w)] <Ky |y — o] (3.2)

for any @ <1. But from the rectifiability of I' it follows that f~' is absolutely
continuous on I" and

s(wa)

f @) = fH(w2)| = f"(s) ds

s(wy)
=K, [s(w,) = s(w,)]

where |f~!'| = K,. This together with (3.1) and (3.2) yields the Holder continuity
of f~! for any exponent a < 1.
This example is also of interest in connection with the Muckenhoupt A.
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condition for |f’|, which is equivalent to the existence of § >0 and M >0 such
that for any interval / < 8D,

|1' flf (Z)ll“’ |dz|)m+b_|1| flf (Z)I |d2'

=m(g7 [Ir e azl)

This of course implies that |f'| € L'*® and [1/f’| € L®; it also implies that log f' is
of bounded mean oscillation.

We shall say that I' has bounded arclength — interior distance ratio if there
exists a constant M >0 such that,

(3.3)

1/6

(C(w,, w,))
do(w,, w,)

<M (3.4)

where [( ) denotes arclength. A corresponding definition holds for bounded
arclength — exterior distance ratio. If (3.4) holds then I'is an interior quasicircle.
Pommerenke [9] has shown that (3.4) is equivalent to the condition that €2 is a
Smirnov domain (log |f’| € H') and |f’| satisfies the A.. condition.

By a result of Jerison [3], the rectifiability of our I" and the fact that 1/f’ is
bounded imply that £ is a Smirnov domain, so that Pommerenke’s theorem
implies that |f’| does not satisfy the A. condition (since (3.4) fails for our I').
Thus, our example yields a function |f’| which is exponentially integrable, with
1/|f'| bounded, but for which (3.3) fails. Furthermore log |f’| is of bounded mean
oscillation, since arg f’ is bounded on 3D.
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