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A non-quasicircle with almost smooth mapping functions

F David Lesley

1. Introduction

A Jordan curve Fin the œ-plane îs a quasicircle (or quasiconformal curve) if,
for ail a&gt;i, co2 e F and any a&gt; on C(cd{, û)2), the arc of smaller diameter between

cx)\ and o)2,

\(x)x-0)2\

for a constant M &gt; 0 depending on F
Let/be a conformai mapping of the disk D {Ç |£| &lt; 1} onto Q, the intenor

of F, and let /* be a conformai mapping of D* {Ç |£|&gt;1} onto £2X, the

extenor of F Since F îs a Jordan curve, thèse functions extend continuously to
homeomorphisms of dD with F We shall say that a function g îs Lip(ar), or
Holder continuous with exponent a m îts domain if there exist K&gt; 0 and a &gt; 0

for which

K\x-y\a (12)

for ail x and y in the domain of g
It îs well known that if Fis a quasicircle, then/, f~\ f* and/*&quot;1 are Holder

continuous on the closure of their domains, and in fact the Holder exponents can
be expressed m terms of the M in (1 1) ([5,8]) The question then arose as to
whether Holder continuity of the four functions implies that F îs a quasicircle
This îs true if/and/&quot;1 (or/* and/*&quot;1) are Lip(l) The question was settled by
Becker and Pommerenke [1] who constructed a curve F which îs not a quasicircle,
but for which the functions are ail Holder continuous The exponents, however
are less than 4, and the question remained as to how large the exponents can be

with F not a quasicircle Since /&quot;&apos; and /*&quot;&apos; are Lip (a) for a &gt; \ whenever F îs a
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280 F DAVID LESLEY

quasicirele [5], one might conjecture that F is a quasicircle if the exponents are

sufficiently large (but still less than 1). We prove the following

THEOREM. There exists a non-quasicircle F for which the mapping f of D
onto Ù is Lip (a) for ail oc&lt;\ and the mapping f* of D* onto Q* is Lip (1). The

inverse mappings f~l and f*~l are Lip (a) for ail a&lt;\ on Ù and Q* respectively.
In fact, \f&apos;(el6)\ is exponentially integrable while ll\f&apos;{eie% \f*&apos;(e&apos;e)\ and

\l/f*f(eie)\ are uniformly bounded on dD.

Let ju be Lebesgue measure on [0, 2m) and define

m(À, /&apos;) pi{{e e [0, 2n) : \f&apos;(el6)\ &gt; A}), (1.3)

to be the distribution function of |/&apos;|. Using the fact that for constant A,

f eA 1/(^)1 de lK + A f eA*m(X}f)dk, (1.4)

the exponential integrability of |/&apos;| follows if there exists M such that for À &gt; M
and B&gt;A,

m{XJ&apos;)&lt;e-Bk. (1.5)

We shall construct F such that an inequality like (1.5) holds for any B &gt; 0, so that
the intégral in (1.4) will be finite for any A &gt;0. Twill be constructed so that \f&apos;\ is

non-zero and finite on dD and m(À,/&apos;) will be estimated using the techniques in
[4] and [6], where curves were constructed with ail mappings Lip(l), but F
respectively not smooth or &quot;asymptotically conformai.&quot; In the last section we
shall mention some other phenomena exhibited by the example, in connection
with the Muckenhoupt A^ condition for |/&apos;|.

2. Construction of the curve and estimation of derivatives

Let Sl {z=x + iy:\y\&lt;n/2} and 52 {z =x + iy \n!2&lt;y &lt;3jt/2}. We
shall construct a strip domain Zx, in the w u 4- iv plane, which is bounded by

C2= {w:v —m 12} and a Jordan arc Q with — &lt;» and +o° as endpoints. This Q
will be very close to the line v jt/2. The strip 22 will be the &quot;complementary&quot;

strip bounded by Cx and C2 {w:v 3jt/2}.
We then define w{{z)~ux{z) + ivx{z) and w2(z) u2(z) +iv2(z) to be the

conformai mappings of S, and S2 respectively onto X, and 2&quot;2, with w;(—°c) -oc,
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Wj(+°°) +00, Wj(jti/2) mil e dlj for j 1, 2. We dénote by z}(w) the inverse

of h&gt;(z), for/= 1,2.
Next, define

1&apos;

and

ez-l

Then Sx and 52 correspond to the interior and exterior of the unit disk in the
£ § + irç plane, while 2^ and 22 correspond to the interior Q and exterior Q* of
a closed Jordan curve F in the co =s + it plane. Cx will be constructed so that the

image F of Q U C2 is not a quasicircle. The function /(£) a&gt;(w,(z(£))) is a

conformai mapping of D onto Q and/*(£) a)(w2(z(Ç))) is a conformai mapping
of D* onto fi*. Both functions may be assumed to be extended continuously to
the closures of their domains.

Now, by the chain rule we hâve, for £ =£ ±1,

df... dco\ IdwJ \dz
dw\ \dz 1 \dÇ

2ew \dWi

(ew + l)2\ \dz

dwt
dz

dwx

dz

çX-ux(z)

(e2 + l)2
2ez

1 + e~2

l + e~w

2

eX-U\(z)(\ j_ ni1\\À. 1 h a (2.1)

Our goal hère is to estimate the distribution function (1.3) and to show that
l/\f&apos;(e&apos;d)\ is bounded uniformly from above, so that we must estimate \dwx/dz\

and x - ux{z) for points on dZx. Similar considérations connect |/*&apos;| to \dw1ldz\

and x - u2(z) on 32*2-

We now construct Cx. We start with &quot;building blocks&quot; as in [6]. For each

k &gt;3 consider the following circles in the œ =s + it plane.

Tx : (t - 7i)2 + (s - k)2 (jï- k-y2f
2 j-2

4
&gt;

4
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where u2 k - ((jv/2 - k~mf + 2n{n/2 - k&apos;m))m and u3 k + ((jï/2 -
k-V2)2 + 2jt(jï/2-k-y2))l/2, so that T2 and T3 are tangent to Tx. Let L
{s + if :5 &gt; 0, r jt/2}. We trace a curve 2^ as follows. Starting at m 12 move to
the right, first along L to T2, then on T2 to Tu on 7i to T3, on 73 to L and then on
L to +oo. Let r^ be the reflection of Fk across the s-axis and let Qk be the &quot;half

strip&quot; bounded by JJ U H U {ri : |f | &lt; ^r/2}. (See the figure, upper left.)

For û) e Qkf let wk(â&gt;) — /e l0 + h^ for h^ g(k) + jti/2. The function
g{k)~eklnk will guarantee (1.5). Other choices of g(k) will yield corresponding
integrability of |/&apos;|, as will be évident. We shall work with g(k) ~eklnk for our
purposes. Let Dk be the image of Qk under this wk(cb). Let 2&apos; {b&gt; « +
iv:\v\&lt;jz/2}. Delete from I the half disks {w:\w - wk\ &lt; 1, u&lt;^/2} and

replace them with the Dk. The resulting domain is then Iu and we let
2\ {h&apos; w + h; : — ^/2&lt;v &lt;3jt/2} — 2^ The upper boundary of 2\ is then the

curve C\, with a séquence of shrinking and narrowing double bumps going to +».
Under the mapping a&gt; (eH — l)/(eH -H 1), 2\ corresponds to a domain Q which
is nearly a unit disk, with a séquence of double bumps converging to co 1. It is

clear that (1.1) fails for 3i3, because the bottlenecks on the Qk hâve width 2/V&amp;.

A rigorous argument can be easily obtained from that on page 229 of [6].
As previewed above we consider the conformai mappings Wj(z) (j 1, 2) from

Sj onto Ij with h&gt;;(-oc) -œ, w;(+oc) +oc and H&gt;y(;r//2) ni/2, and define / and

/* on D and D* accordingly. We shall work with |/&apos;| and 1/|/&apos;|; the proofs for the
exterior mappings are simpler, as will be noted later. In order to use (2.1) we first
observe that there exists Ku constant, such that for ail z e Sl}

(2.2)
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The upper bound follows as in Lemma 5 of [6] from the Ahlfors upper inequality
(see [2]) while the lower bound follows similarly from the Ahlfors lower
inequality (the Ahlfors distortion theorem). We now turn to the estimation of
\dwx/dz\, which dépends on the Qk. For each k (^3) let zk zx(wk) and define
£*(z) Log (l/(z - z*)) - m/2 for zeSx, so that |Im £*(z)| &lt; n/2. For wk(œ)
-ie~w + wk, the function £*(ô&gt;) Çk(zx(wk(w))) maps Qk conformally onto a half
strip S* which is bounded by the horizontal rays from Çk(m/2) and £,k{—jzil2) to
+°c and by an arc yk in {|Im Ç| &lt; jt/2}. As with (2.1) we see that for z e zx(Dk),
with zx(w) the inverse of wx(z) and ook(Ç) the inverse of Çk((b), we hâve

awx *~WR _£_SL(o ^2 &lt;j\

Hère Ç £*(z) and ©*(£) s*(§ + îîj) + itk{% + iq).
In order to estimate £ — sk{t,) on the horizontal boundary of S*, we shall again

use the Ahlfors inequalities. For a given Qk we let o{s) dénote the vertical
crosscut {Re â) s} H Qk. Let 6k(s) be the length of o(s). We then define

gk(s) min ^(ô&gt;) o&gt;ea(s), |^(5) ^()
where %k((b) Re Cat(^)- We first prove

LEMMA 1. For Ç % + irj e Sk, we hâve, for constant K2,

-K2&lt;Ç-sk(Ô&lt;K2k for each k. (2.4)

Proof We begin by showing that there exists K3 for which

-K3 &lt; %k(it) &lt; K3 for ail k. (2.5)

Because Sx is so nearly a parallel strip zx(w) has an unrestricted derivative at

tt:zx(w)-w-*l as w--&gt;oc for a real / ([10], [11]). Choose M such that for
Re w &gt;M and ive^we hâve

and choose N such that for k &gt; N, ail D^ lie in the half plane {Re w &gt; M}. Then
for |f|&lt;;r/2,

M-ie-&quot; + W,) - (-le&quot;&quot; + Hfc) - /| &lt; *
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and from \zk - wk -1\ &lt; iV&gt;, we obtain

- 2.
* H)

Thus

and

log l &lt; Çk(it) -log |z,(-îe &quot; + wk) - zk\ &lt; log

from which (2.5) follows.
From the Ahlfors distortion theorem we hâve

so that

&lt;o ek(t)

ek{t)

and the left side of (2.4) follows from (2.5) and the fact that n - 6k(t) &gt;0. Next
we apply the Ahlfors upper inequality as expressed in Theorem 3 of [2], to see

that

so that

Then the right inequality of (2.4) follows from the above, (2.5) and the
construction of Qk.

LËMMA 2 There exist positive K4 and M, independent of k, such that for
l € 3Sk with Re £ &gt; M,

dcok

dl
&lt;K4klf2.
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The proof of Lemma 2 îs essentially that of Lemma 3 of [4] (See also Lemma
7 of [6] Bnefly, the nght înequahty holds because for each w e dQk with
Rew&gt;jz/2, one may inscnbe a circle of radius at least k~V2 in Qk, tangent to
9Qk at â) and with center on the s axis Furthermore, the image of the s axis îs

asymptotic to the § axis One then bounds \da)k/dÇ\ by a Schwarz lemma

argument The iower bound îs simpler m that at each ô&gt; e 3Qk there îs a circle of
radius n - k&apos;l/2 in the extenor of Qk, tangent to 9Qk at &lt;b

It îs now évident from (2 3) and Lemmas 1 and 2 that for z e 92 x D Dk, we
hâve

J e~K &lt;
dwx

~dz (2 6)

At every other point of 92lt there are tangent circles mtenor and extenor to 821,

with radius ;r, and the image of the jc axis under wx(z) îs asymptotic to the u axis
m Sx Thus there exists K6 &gt; 0 for which

J
dz

on the rest of 321! It now follows from (2 1), (2 2) and (2 6) that

Next we must estimate the length of the image of 92xnDk under w(w)
(eH - 1)1 {eH + 1), recalhng that Dk îs centered at wk =g(k) + m/2

Let zk zl(wk-l) xk + ur/2y zk zx(wk + 1) 4 + ur/2, Çi Ç(zi) and
S? Ç(zJt) so that Ç* and ^ are the endpoints of the interval lk a 3D which
corresponds to dDkC\2l Since Zi(vv) has an unrestncted denvative / at +oc,
x&apos;k-*g(k) - 1 + / and xk&apos;-*g(k) + 1 + / as k-*oc Thus for |4| the length of Ik, we
hâve

Zk-\

Arg -\ ieXk -f 1\ ieXk -f 1\

l ieXk-l)

(e + li(ee
Tg\ex^x&gt;&gt; + l + i(exL-eXk

2 tan
-&apos;

&apos;

.&lt;2tan-
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Since x&apos;{ — x&apos;k-*2 and x&apos;k-*g(k) + / + 1 we see that there exists K7&gt;0 for which

|/A| &lt; K7e-*(A) for each ky noting that A: &gt; 3. (2.7)

From (2.6), we obtain, for g(k) ek lnk and a positive constant /C()

/i=A +

(2.8)

for a positive constant K8.
Now let AA é»A%A. Then for any A &gt; 0,

-£•
&quot;

A =3

A =3

where the last inequality follows from (2.8). Since this séries converges for any
A &gt;0, it follows from (1.4) that \f&apos;(eld)\ is exponentially integrable to any power.

The boundedness of |/*&apos;| and 1/|/*&apos;| follow in the same way as that of 1/|/&apos;|.

The argument is applied to fi* which is bounded by Fk, its reflection across s n
and {ti\itl2&lt;i&lt;3nl2). Rather than a narrowing, Qt has a widening, so that a

disk inside £?* with radius jîI2 is tangent to Fk at any 6) e Fk (Re et) &gt; jt/2).

3. Holder continuity and further remarks

Since |/*&apos;| is bounded on 3D, /* is in Lip(l). An application of Hôlder&apos;s

inequality shows that / € Lip (a) on D, for any or&lt;l, because f&apos;eLp for any

p &lt; x, The Holder continuity of the inverse functions is less obvious, as F is not a

quasicircle. However, by a theorem of Pommerenke [9, Theorem 1], the fact that
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|/*&apos;| is bounded above and below on dD implies that F is an &quot;exterior

quasicircle,&quot; which is defined as follows. For cdu œ2eFy let

dQ*(a)x, co2) inf diam C
c

where C ranges over ail arcs which lie in Q* except for their endpoints, o)x and

w2. We say that Tis an &quot;exterior quasicircle&quot; if there exists M&gt;0 such that for
every wu a)2e F,

diam C(co1, a)2)&lt;MdQ*(G)ly w2).

With the corresponding définition of &quot;interior quasicircle,&quot; it is easy to see that if
ris both an interior and exterior quasicircle then it is a quasicircle.

In [4, Corollary to Theorem 1] it is shown that if / e Lip (a) on dD and if F is

a quasicircle then f*~l e Lip (1/(2 - a)) on F. This proof in fact only requires that
F be an exterior quasicircle, for then the resuit of Lemma 4 in [7] holds and the
fact that Z*&quot;1 e Lip (1/(2 - a)) on F follows exactly as in the proof of Theorem 2

in [7]. Thus/*&quot;1 is Hôlder continuous for any exponent less than 1.

We now turn to the proof that f~l is Lip (a) for ail a &lt; 1. Let s(co) dénote

arclength on F, starting at some a&gt;0 e Fy proceeding in the positive direction to co.

Choose wl} (o2 e Fy and let /*(£,) (on i 1, 2. Since /* is Lip (1) on dD, we
hâve for some K &gt; 0

\s(œx) - s(œ2)\ &lt;K\Çl-t;2\ K l/*&quot;1^) -f*-l(co2)\ (3.1)

The Hôlder continuity of /*~! yields, for some Kx &gt;0,

1/*-Vi) -r~V2)l &lt; Ki |o&gt;i - (O2\a (3.2)

for any a&lt;\. But from the rectifiability of F it follows that f~l is absolutely
continuous on F and

lrv.)-r

where \f~u\ &lt; K2. This together with (3.1) and (3.2) yields the Hôlder continuity
of f~l for any exponent oc &lt; 1.

This example is also of interest in connection with the Muckenhoupt Ax
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condition for |/&apos;|, which is équivalent to the existence of ô &gt;0 and M&gt;0 such

that for any interval / c dD,

(3.3)
-l/ô

This of course imphes that |/&apos;| 6 Ll+à and |1//&apos;| e Lô; it also imphes that log/&apos; is

of bounded mean oscillation.
We shall say that F has bounded arclength - interior distance ratio if there

exists a constant M &gt; 0 such that,

u (o2)

where /( dénotes arclength. A corresponding définition holds for bounded

arclength - exterior distance ratio. If (3.4) holds then Fis an interior quasicircle.
Pommerenke [9] has shown that (3.4) is équivalent to the condition that Q is a

Smirnov domain (log |/&apos;| e H1) and |/&apos;| satisfies the A* condition.
By a resuit of Jerison [3], the rectifiability of our F and the fact that 1//&apos; is

bounded imply that Q is a Smirnov domain, so that Pommerenke&apos;s theorem
implies that |/&apos;| does not satisfy the A» condition (since (3.4) fails for our F).
Thus, our example yields a function |/&apos;| which is exponentially integrable, with
1/|/&apos;| bounded, but for which (3.3) fails. Furthermore log |/&apos;| is of bounded mean
oscillation, since arg/&apos; is bounded on dD.
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