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Sphere-packing and volume in hyperbolic 3-space

RoBERT MEYERHOFF!

I. INTRODUCTION

A hyperbolic 3-manifold is a Riemannian manifold of constant sectional
curvature —1. We will restrict our attention to complete orientable hyperbolic
3-manifolds M; as such, we can think of M as H>/I" where I' is a discrete
torsion-free subgroup of Isom, (H?), the orientation-preserving isometries of
hyperbolic 3-space. We will generally work in the upper-half-space model H> of
hyperbolic 3-space, in which case PGL(2, C) acts as orientation-preserving
isometries on H> by extending the action of PGL(2, C) on the Riemann sphere
(boundary of H?) to H>. An orbifold is a space locally modelled on R” modulo a
finite group action. Complete orientable hyperbolic 3-orbifolds Q correspond to
discrete subgroups I of PGL(2, C). If the discrete group I' corresponding to M or
Q has parabolic elements then M or Q is said to be cusped.

Unless otherwise stated, we will assume all manifolds and orbifolds are
orientable. Mostow’s theorem implies that a complete, hyperbolic structure on a
3-orbifold of finite volume is unique. Consequently, hyperbolic volume is a
topological invariant for orbifolds admitting such structures. Jorgensen and
Thurston proved (see [T] section 6.6) that the set of volumes of complete
hyperbolic 3-manifolds is well-ordered and of order type w®. In particular, there
is a complete hyperbolic 3-manifold of minimum volume V, among all complete
hyperbolic 3-manifolds, and a cusped hyperbolic 3-manifold of minimum volume
V.. Further, all volumes of closed manifolds are isolated, while volumes of
cusped manifolds are limits from below (thus the notation V).

Modifying the proofs in the Jgrgensen—Thurston theory yields similar results
for complete hyperbolic 3-orbifolds (this result is folklore, and we will not prove
it here). In particular, there is a hyperbolic 3-orbifold of minimum volume V},
and a cusped hyperbolic 3-orbifold of minimum volume V_.
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272 ROBERT MEYERHOFF

In [M1] and [M2] it is proved that

0.00064 < Vl =vol (M(5,1)) =~ (.98

V3/4 =V, = vol (§3 - figure-eight knot) = 2V =~ 2.02988
0.0000013 < V' =2 - vol (e==o—o==0) =~ 0.072

V3/24 < V! =vol (H*/PGL,(03)) = V /12 = 0.0846

where Ms ;) is the manifold obtained by performing (5, 1) Dehn surgery on the
figure-eight knot in the 3-sphere, V is the volume of the ideal regular tetrahedron
in H?, o=o—o==o denotes the (non-orientable) tetrahedral orbifold with that
Coxeter diagram (see [T] theorem (13.5.3)), and 0, is the ring of integers in
Q(V=3).

The left-hand inequalities of all of these estimates can be improved by using
sphere-packing arguments. In this paper we prove,

0.00082<V,=<0.98...@
ViRV, <2Vv®
0.0000017<V1=0.07177. ..
VIR=V.<V/12

From the last set of inequalities we see V. =V/12, i.e.

THEOREM. The orbifold Q,= H?/PGL,(0;) has minimum volume among
all orientable cusped hyperbolic 3-orbifolds.

NOTE. Q, is the orientable double-cover of the (non-orientable tetrahedral
orbifold with Coxeter diagram = (see [H] section 1). This tetrahedral
orbifold has fundamental domain 1/24 of the ideal regular hyperbolic tetrahedron
(use the symmetries). In particular, O, has a cusp and its volume is 1/12 the
volume of the ideal regular tetrahedron, i.e. vol (Q;) = V/12 = (.0846.

Remark. The four right-hand inequalities above are simply a list of the lowest
volume orbifolds and manifolds of the various types known to date. These
volumes are computed by decomposing the orbifold or manifold into hyperbolic

% Jeff Weeks has found a hyperbolic 3-manifold with less volume than M, (Princeton Univ.
Ph.D. thesis, 1985).
3 Colin Adams has improved the left-hand inequality for V,, by a factor of 2 (preprint, 1985).
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tetrahedra and then using Lobachevsky’s formula to compute the volumes of
these tetrahedra (see [T] chapter 7 for the case of ideal hyperbolic tetrahedra,
and [La] for the case of non-ideal tetrahedra - actually, these tetrahedra must be
further decomposed into ‘“doubly-rectangular’ tetrahedra). The decomposition
into tetrahedra for tetrahedral orbifolds is trivial. The tetrahedral decomposition
of the figure-eight knot complement in the 3-sphere is carried out in [T] pages 3.6
and 3.7. Finally, solving the holonomy equations in section 4.6 of [T] for

(p, 9) = (5, 1) produces a decomposition of M ,, into ideal hyperbolic tetrahedra
(off of the surgered geodesic).

II. Sphere-packing

We will be concerned with how densely equal radius balls can be packed

without overlapping. In general, the density of S with respect to (finite volume) T
is

vol(§NT)

ds, T)y=———
5, T) vol (T)

We can extend this notion to Euclidean n-space E”, i.e. T=E" and § = (the

union of non-overlapping, equal-radius balls), by defining upper and lower
densities

dy=limsupd(S, B(p,r)) and d, =liminfd(S, B(p,r))

where B(p, r) is the radius r ball in E” centered at p. If d;, = d, then we have a
notion of global density for E". The fact that d, and d; are independent of the
base point p chosen is proven in [FT] pages 161, 162 (see also pg. 261). The
argument hinges on the fact that

+
lim vol (B(p, r + €)) _

. psx VOl (B(p, r)) L

Attempting to use this notion of global density in hyperbolic n-space H" is
problematic because

e(n—1)

._vol(B(p,r+e¢))
P_Tc vol (B(p, r)) a

e
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(in H?, vol (B(p, r)) = m(sinh (2r) — 2r)). We will avoid this problem by dealing
with a “local” notion of density. Given a collection B of equal radius,
non-overlapping balls in H"” we define the local density of a ball B in & to be

vol (B N D)

td(B, #)=—1] (D)

=d(B, D)

where D = {p € H": p is closer to B than to any other ball B' in B} := D(B, B) is
the Dirichlet region for B with respect to 9. This notion is ideally suited to
studying volumes of hyperbolic 3-manifolds M = H?/I" because, given an em-
bedded ball in M, the collection of all lifts of this ball to H* gives a packing B of
H* upon which I acts transitively, and D(B, %) for any B in & is a fundamental
domain for M = H’/T (see [G] Section 2.5). A similar notion holds for orbifolds
Q = H*/T, but we may have to “chop” B and D due to torsion elements in I
That is, if I, is the stabilizer of the center b of B, then D/I, is a fundamental
domain for Q = H?/T (see [Be] Section 9.6). This is not a problem, because
d(B, D)=d(B/I, D/I).

We can generalize local density to deal with a horoball packing (‘‘horoball” is
defined in Section III). The notion of a Dirichlet region D = D(B, %) still makes
sense if we define the distance of a point p from a horoball B to be the length of
the unique perpendicular geodesic from p to the horosphere boundary of B. The
fact that BN D and D have infinite volume creates some problems. Thus, we
define local density €d(B, B) in a 2-step procedure: Assume we are in
upper-half-space H? and that B is centered at the point at infinity. Then, we
define

. vol(BNDNAC(,c))
d,=
m ol (D NAG, o))

where A(t, ¢)={(x,y, 2):—c<x<c¢, —c<y<c, and z=¢}. This definition is
independent of the choice of origin (here the origin is (0,0,¢)); the
independence-of-origin proof is a re-working of the proof for E” mentioned
above, using the fact that horoballs have Euclidean structures on their horosphere
boundaries and that vol (A(¢, ¢)) = c?/2 - 2. Since d, is an increasing function of ¢,
we can define €d(B, B) = lim,_,o d,.

This is the appropriate notion of local density to use in studying hyperbolic
3-manifolds M = H>/T with cusps. If we know that a cusped manifold contains an
embedded cusp neighborhood, then lifting these cusp neighborhoods to H gives
a collection & of disjoint horoballs B upon which I acts transitively; but D(B, %)
is no longer a fundamental domain for I'. To get a fundamental domain F for I
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we simply take F to be a fundamental domain for the action of I, on D(B, %)
where I is the stabilizer of the center ¢ of B (I is made up entirely of parabolic

transformations). Using the above definition of local density for horoball
packings, we have

vol (BN F)

(B, B) == 1 F)

The above holds verbatim for cusped orbifolds Q = H>/I" except that I. may have
elliptic as well as parabolic transformations.
We now state Bordczky’s theorem (which applies to constant curvature spaces

of arbitrary dimension) in the case of hyperbolic 3-space (See [B] theorems 1 and
4):

THEOREM (Bordczky). Consider 4 spheres of radius r in H* each touching
all the others. Their centers determine a regular tetrahedron T of edge length 2r and
dihedral angles 2« where sec (2a’) =2 + sech (2r). Let S be the union of the 4 balls
of radius r bounded by the 4 spheres. Then, for any radius r sphere-packing R in
H? the local density satisfies

vol (SN T) _ (6a — m)(sinh (2r) —2r)

td(B, #) = vol (T) vol (T) '

=d(r).

This result holds for horosphere packings as well, in which case the centers of the

horoballs (points of tangency with dH?) determine an ideal regular tetrahedron T,
and

vol (SN T) _4(V3/8) _V3

WBB=—""rr ~ v a2

~(0.853, where V =vol(T).

Remark. It was shown in [BF] that d(r) is an increasing function of r. The
number d(0) = 0.7797 is the density (with respect to the regular tetrahedron they
determine) of 4 mutually touching equal radius balls in E°. The 4 horoball
packing can be extended uniformly to all of H>. In some sense, this is the densest
packing of equal radius spheres in H>. The densest packing of equal radius
spheres in E? is not known even though the analog of the above theorem holds
for E". The difficulty is that the above tetrahedral packing does not extend
uniformly to a global packing of E? (See [SL] and [R]).
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III. Remarks on hyperbolic space

As mentioned in Section 1, we are working in the upper-half-space model for
hyperbolic 3-space, H> = {(x, y, z):z >0} with metric ds*= (dx*+ dy* + dz?)/z*
and volume form dV =dxdydz/z’; dH?>=CU {»}. The orientation-preserving
isometries of hyperbolic 3-space can be identified either with PGL,(C) = GL,(C)/
C* or PSL,(C) = SL,(C)/xI (See [S] pg. 448—449). But note that if 0, is the ring
of integers in Q(V—d) then PGL,(0,)/PSL,(0,)=12Z/2Z where PGL,(0,)=
GL,(0,)/{Al:A € O3} and PSL,(0,;) = SL,(0),/*I (See [H] pg. 346). Thus, the
use of PGL,(0,), and not PSL,(0,), in the statement of Theorem 1.

In H? a horoball B is either:

1) a Euclidean ball in {(x, y, z):z =0} which is tangent to the xy plane, the
point of tangency being the center of B; or it is

2) a half space of the form {(x, y, z):z = a >0}, in which case the center of B
is the point at .

Note that the hyperbolic metric on H> induces the Euclidean metric
ds® = (dx*+ dy*)/a®* on 3BNH?={(x, y, z):z =a}, that is the bounding horo-
sphere of the horoball B is flat. There is no real distinction between horoballs of
type 1 and type 2, because there are isometries of H> taking either to the other.
In particular, all horospheres are flat.

A discrete group I is said to have a cusp if I contains a parabolic element 7.
Let the fixed point of y be p € H>; then I, the stabilizer of p, is of importance.
I, contains no hyperbolic elements (See [Be] theorem 5.1.2). In the manifold case
I, contains only parabolic transformations. In the orbifold case I, may have
elliptic elements.

IV. Sphere-packing and volume

It can be proved that short geodesics (length less than approximately 0.107) in
complete hyperbolic 3-manifolds have embedded tubular neighborhoods (‘‘solid
tubes’’), and that the shorter the geodesic the bigger the volume of the solid tube
(See [M1]). This solid tube construction can be used to produce a lower bound
for the volume of complete hyperbolic 3-manifolds (without cusps). The
argument is as follows. A non-cusped hyperbolic 3-manifold M = H>/I" must have
either an embedded ball of radius r or a geodesic of length less than 2r. If we take
r =0.053475 then the embedded ball B(0.053475) contributes at least 0.00064 to
the volume of M, while a geodesic of length at most 2r =0.10695 has an
embedded tubular neighborhood of volume at least 0.00068 (See [M1]). Thus, the
volume of a closed hyperbolic 3-manifold must be greater than 0.00064. By
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choosing a smaller » we get more volume in the solid-tube case, but less in the
embedded-ball case; thus the overall volume estimate is lower. The value
r = 0.05347S was chosen to maximize the overall volume estimate; call this value
or r the “trade-off value”. (Since cusped hyperbolic 3-manifolds have volume
greater than V3/4 we have that all complete hyperbolic 3-manifolds have volume
at least 0.00064, i.e. V; > 0.00064 (See [M1]).)

Boroczky’s theorem can be used to improve the lower bound of 0.00064.
Specifically, Boroczky’s theorem yields an improved volume contribution in the
embedded-ball case. The argument is as follows. As mentioned in Section 2, the
lifts of an embedded ball B(r) to H’ yield a packing B of H?; and a Dirichlet
domain D(B, B) for any ball B in the packing is a fundamental domain
for I'. Using Boroczky’s theorem, we have vol (B(0.053475))/vol (H*/T") = vol
(B(0.053475))/vol (D(B, B)) < d(0.053475). Thus vol (H?/I") = vol (B(0.053475))/
d(0.053475) > 0.00082, and we have improved our estimate if an embedded ball
of radius 0.053475 sits in M. This technique does not effect the solid-tube
contribution; thus, if r is taken as 0.053475 then our lower bound is still 0.00064.
However, we can take a smaller value of r and improve our solid-tube volume
contribution while only marginally effecting our embedded-ball volume. In
particular taking r =0.053463 yields a solid-tube volume greater than 0.00082
while the embedded-ball volume is still greater than 0.00082. Thus, we have that
0.00082 is a lower bound for the volume of complete hyperbolic 3-manifolds; that
is V; >0.00082.

For orbifolds Q = H?/I" without cusps the analysis is essentially the same
except that the relevant “‘trade-off”’ radius is 0.0535 and the volume of the
“chopped” solid ball is roughly 0.00000134 (see [M2]). Thus by the density
argument vol (Q) >0.0000017, i.e. V{>0.0000017.

In dealing with cusped manifolds M = H?/T we do not have to resort to this
trading-off argument. In [M1] it is shown that there is a cusp neighborhood C in
M of volume at least V/3/4. This neighborhood yields a horoball packing % of H>.
Further, given B in & centered at p we have that a fundamental domain F for the
action of I, on D(B, &) is a fundamental domain for I'. Applying Boroczky’s
theorem, we have

vol (C) vol(BNF)
vol (M)  vol (F)

=d(B, B) =\V3/2V.

Thus, vol (M) =vol (C)/(V3/2V)=(V3/4)2V/V3)=V/2 and V,=V/2=
0.5072.

This argument works for cusped orbifolds Q = H*/T" as well, except that the
cusp neighborhood C in Q in the worst case only contributes V3/24 to the volume
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of O (See [M2]). Thus vol (Q) = (\/5/24)(2V/\/§) =V/12, V.=V /12=0.0846.
Since Q, = H?>/ PGL,(0;) has volume V' /12 we have (See Section 1):

THEOREM. Q, = H?/PGL,(0;) has minimum volume among all orientable
cusped hyperbolic 3-orbifolds.

Remark. There are cusped orbifolds on which Dehn surgery cannot be
performed. Consequently, unlike the manifold case, there are cusped hyperbolic
3-orbifolds whose volumes are isolated—Q, is such an orbifold. The question of
finding “the least limiting orbifold”” remains open.
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