
Sphere-packing and volume in hyperbolic 3-
space.

Autor(en): Meyerhoff, Robert

Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 61 (1986)

Persistenter Link: https://doi.org/10.5169/seals-46931

PDF erstellt am: 01.05.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-46931


Comment. Math. Helvetici 61 (1986) 271-278 0010-2571 /86/020271-08$01.50 -I- 0.20/0
© 1986 Birkhâuser Verlag, Basel

Sphere-packing and volume in hyperbolic 3-space

Robert Meyerhoff(1)

I. INTRODUCTION

A hyperbolic 3-manifold is a Riemannian manifold of constant sectional

curvature —1. We will restrict our attention to complète orientable hyperbolic
3-manifolds M; as such, we can think of M as H3IF where f is a discrète
torsion-free subgroup of Isom+ (H3), the orientation-preserving isometries of
hyperbolic 3-space. We will generally work in the upper-half-space model H3 of
hyperbolic 3-space, in which case PGL(2, C) acts as orientation-preserving
isometries on H3 by extending the action of PGL(2, C) on the Riemann sphère
(boundary of H3) to H3. An orbifold is a space locally modelled on Rn modulo a

finite group action. Complète orientable hyperbolic 3-orbifolds Q correspond to
discrète subgroups JTof PGL(2, C). If the discrète group Fcorresponding to M or
Q has parabolic éléments then M or Q is said to be cusped.

Unless otherwise stated, we will assume ail manifolds and orbifolds are
orientable. Mostow&apos;s theorem implies that a complète, hyperbolic structure on a

3-orbifold of finite volume is unique. Consequently, hyperbolic volume is a

topological invariant for orbifolds admitting such structures. J0rgensen and

Thurston proved (see [T] section 6.6) that the set of volumes of complète
hyperbolic 3-manifolds is well-ordered and of order type co™. In particular, there
is a complète hyperbolic 3-manifold of minimum volume Vx among ail complète
hyperbolic 3-manifolds, and a cusped hyperbolic 3-manifold of minimum volume
Vw. Further, ail volumes of closed manifolds are isolated, while volumes of
cusped manifolds are limits from below (thus the notation V^).

Modifying the proofs in the J0rgensen-Thurston theory yields similar results

for complète hyperbolic 3-orbifolds (this resuit is folklore, and we will not prove
it hère). In particular, there is a hyperbolic 3-orbifold of minimum volume V[,
and a cusped hyperbolic 3-orbifold of minimum volume V&apos;c.
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272 ROBERT MEYERHOFF

In [Ml] and [M2] it is proved that

0.00064 &lt; Vx &lt; vol (M(5J)) « 0.98

V3/4 &lt; Vlo &lt; vol (S3 - figure-eight knot) 2V « 2.02988
0.0000013 &lt; V[ &lt; 2 • vol (o=o—oeeeo) ^ 0.072

V3/24 &lt; V&apos;c ^ vol (H3/PGL2(63)) K/12 « 0.0846

where Af(5il) is the manifold obtained by performing (5,1) Dehn surgery on the

figure-eight knot in the 3-sphere, V is the volume of the idéal regular tetrahedron
in //3, o=o—o==o dénotes the (non-orientable) tetrahedral orbifold with that
Coxeter diagram (see [T] theorem (13.5.3)), and 63 is the ring of integers in
Q(V=3).

The left-hand inequalities of ail of thèse estimâtes can be improved by using
sphere-packing arguments. In this paper we prove,

0.00082 &lt;Vî&lt;0. 98...(2)

V72&lt;K,&lt;2V(3)

0.0000017 &lt; V[ ^ 0.07177.

From the last set of inequalities we see V&apos;c F/12, i.e.

THEOREM. The orbifold Qx H3/PGL2(03) has minimum volume among
ait orientable cusped hyperbolic 3-orbifolds.

NOTE, d is the orientable double-cover of the (non-orientable tetrahedral
orbifold with Coxeter diagram °—°—&lt;*==? (see [H] section 1). This tetrahedral
orbifold has fundamental domain 1/24 of the idéal regular hyperbolic tetrahedron

(use the symmetries). In particular, Qx has a cusp and its volume is 1/12 the
volume of the idéal regular tetrahedron, i.e. vol V712 « 0.0846.

Remark. The four right-hand inequalities above are simply a list of the lowest
volume orbifolds and manifolds of .the various types known to date. Thèse

volunjes are computed by decomposing the orbifold or manifold into hyperbolic

2Jeff Weeks has found a hyperbolic 3-manifold with less volume than M(S u (Princeton Univ.
Ph.D. thesis, 1985).

^ Colin Adams has improved the left-hand inequality for VM by a factor of 2 (preprint, 1985).
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tetrahedra and then using Lobachevsky&apos;s formula to compute the volumes of
thèse tetrahedra (see [T] chapter 7 for the case of idéal hyperbolic tetrahedra,
and [La] for the case of non-ideal tetrahedra - actually, thèse tetrahedra must be

further decomposed into &quot;doubly-rectangular&quot; tetrahedra). The décomposition
into tetrahedra for tetrahedral orbifolds is trivial. The tetrahedral décomposition
of the figure-eight knot complément in the 3-sphere is carried out in [T] pages 3.6
and 3.7. Finally, solving the holonomy équations in section 4.6 of [T] for
(p, q) (5, 1) produces a décomposition of M(S 1} into idéal hyperbolic tetrahedra
(off of the surgered géodésie).

IL Sphere-packing

We will be concerned with how densely equal radius balls can be packed
without overlapping. In gênerai, the density of S with respect to (finite volume) T
is

voi(r)
&apos;

We can extend this notion to Euclidean n-space En, i.e. T En and 5 (the
union of non-overlapping, equal-radius balls), by defining upper and lower
densities

dv lim sup d(S, B(p, r)) and dL lim inf d(S, B(p, r))

where B(p, r) is the radius r bail in En centered at p. If dL da then we hâve a

notion of global density for Ert. The fact that dL and dv are independent of the
base point p chosen is proven in [FT] pages 161, 162 (see also pg. 261). The

argument hinges on the fact that

iim i
r—c vol (B(p, r))

Attempting to use this notion of global density in hyperbolic n-space Hn is

problematic because

vol (B(p,r +£)) _«,„_„
r^~ vol {B{p, r))
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(in H3, vol (B(p, r)) ;r(sinh (2r) - 2r)). We will avoid this problem by dealing
with a &quot;local&quot; notion of density. Given a collection 38 of equal radius,
non-overlapping balls in Hn we define the local density of a bail B in 38 to be

where D {peHn: pis closer to B than to any other bail B&apos; in ^} := D(B, 38) is

the Dirichlet région for B with respect to 38. This notion is ideally suited to
studying volumes of hyperbolic 3-manifolds M H3/F because, given an em-
bedded bail in M, the collection of ail lifts of this bail to H3 gives a packing 38 of
H3 upon which Tacts transitively, and D(B, 38) for any B in 38 is a fundamental
domain for M H3IF (see [G] Section 2.5). A similar notion holds for orbifolds
Q H3/F, but we may hâve to &quot;chop&quot; B and D due to torsion éléments in F.

That is, if Fh is the stabilizer of the center b of B&gt; then DIFb is a fundamental
domain for Q H3/F (see [Be] Section 9.6). This is not a problem, because

d(B,D) d(B/F, DlFb).
We can generalize local density to deal with a horoball packing (&quot;horoball&quot; is

defined in Section III). The notion of a Dirichlet région D D(B, 91) still makes

sensé if we define the distance of a point p from a horoball B to be the length of
the unique perpendicular géodésie from p to the horosphere boundary of B. The
fact that B HD and D hâve infinité volume créâtes some problems. Thus, we
define local density îd{B, SB) in a 2-step procédure: Assume we are in
upper-half-space H3 and that B is centered at the point at infinity. Then, we
define

&apos;

vol (D H A(t,c))

where A(t, c) {(*, y, z): ~c&lt;x&lt;cy -c&lt;y&lt;c, and z^-t). This définition is

independent of the choice of origin (hère the origin is (0,0,0); the

independence-of-origin proof is a re-working of the proof for En mentioned
above, using the fact that horoballs hâve Euclidean structures on their horosphere
boundaries and that vol (A(t, c)) c2/2 • t2. Since dt is an increasing function of r,

we can define £d(B, 38) limr_&gt;0 dt.
This is the appropriate notion of local density to use in studying hyperbolic

3-manifolds M H3IF with cusps. If we know that a cusped manifold contains an
embedded cusp neighborhood, then lifting thèse cusp neighborhoods to H3 gives
a collection ^ of disjoint horoballs B upon which Tacts transitively; but D(B, 38)

is no longer a fundamental domain for F. To get a fundamental domain F for F
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we simply take F to be a fondamental domain for the action of Fc on D(B, $&amp;)

where Fc is the stabilizer of the center c of B (Fc is made up entirely of parabolic
transformations). Using the above définition of local density for horoball
packings, we hâve

vol (F)

The above holds Verbatim for cusped orbifolds Q H3IF except that Fc may hâve

elliptic as well as parabolic transformations.
We now state Bôrôczky&apos;s theorem (which applies to constant curvature spaces

of arbitrary dimension) in the case of hyperbolic 3-space (See [B] theorems 1 and
4):

THEOREM (Bôrôczky). Consider 4 sphères of radius r in H3 each touching
ail the others. Their centers détermine a regular tetrahedron T of edge length 2r and
dihedral angles 2&lt;x where sec (2ar) 2 + sech (2r). Let S be the union of the 4 balls

of radius r bounded by the 4 sphères. Theny for any radius r sphere-packing S&amp; in
H3 the local density satisfies

This resuit holds for horosphere packings as well, in which case the centers of the

horoballs {points of tangency with dH3) détermine an idéal regular tetrahedron T,

and

Remark. It was shown in [BF] that d{r) is an increasing function of r. The
number d(0)« 0.7797 is the density (with respect to the regular tetrahedron they
détermine) of 4 mutually touching equal radius balls in E3. The 4 horoball

packing can be extended uniformly to ail of H3. In some sensé, this is the densest

packing of equal radius sphères in H3. The densest packing of equal radius

sphères in E3 is not known even though the analog of the above theorem holds

for E&quot;. The difficulty is that the above tetrahedral packing does not extend

uniformly to a global packing of E3 (See [SL] and [R]).
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III. Remarks on hyperbolic space

As mentioned in Section 1, we are working in the upper-half-space model for
hyperbolic 3-space, H3 {(x, y, z) : z &gt; 0} with metric ds2 (dx2 + dy2 + dz2)lz2
and volume form dV dxdy dz/z3; dH3 CU {&lt;*&gt;}. The orientation-preserving
isometries of hyperbolic 3-space can be identified either with PGL2(C) GL2(C)/
C* or PSL2(C) SL2(C)/±I (See [S] pg. 448-449). But note that if Ûd is the ring
of integers in Q(\A/) then PGL2(Ûd)/PSL2(€d) Z/2Z where PGL2(Ûd)
GL2(€d)/{kI:XeCÏ} and PSL2(Ûd) SL2(O)d/±I (See [H] pg. 346). Thus, the
use of PGL2(Cd)f and not PSL2(Ûd), in the statement of Theorem 1.

In H3 a horoball B is either:
1) a Euclidean bail in {(x, y, z):z ^0} which is tangent to the xy plane, the

point of tangency being the center of B ; or it is

2) a half space of the form {(jc, y, z) : z ^ a &gt; 0}, in which case the center of B
is the point at ».

Note that the hyperbolic metric on H3 induces the Euclidean metric
ds2 (dx2 + dy2)/a2 on dB DH3 {(jc, yy z):z a}, that is the bounding horo-
sphere of the horoball B is flat. There is no real distinction between horoballs of
type 1 and type 2, because there are isometries of H3 taking either to the other.
In particular, ail horospheres are flat.

A discrète group F is said to hâve a cusp if F contains a parabolic élément y.
Let the fixed point of y be p e dH3; then Fpy the stabilizer of p, is of importance.
Fp contains no hyperbolic éléments (See [Be] theorem 5.1.2). In the manifold case

Fp contains only parabolic transformations. In the orbifold case Fp may hâve

elliptic éléments.

IV. Sphere-packing and volume

It can be proved that short geodesics (length less than approximately 0.107) in
complète hyperbolic 3-manifolds hâve embedded tubular neighborhoods (&quot;solid

tubes&quot;), and that the shorter the géodésie the bigger the volume of the solid tube
(See [Ml]). This solid tube construction can be used to produce a lower bound
for the volume of complète hyperbolic 3-manifolds (without cusps). The

argument is as follows. A non-cusped hyperbolic 3-manifold M H3IFm\is\ hâve
either an embedded bail of radius r or a géodésie of length less than 2r. If we take

r 0.053475 then the embedded bail S(0.053475) contributes at least 0.00064 to
the volume of M, while a géodésie of length at most 2r 0.10695 has an
embedded tubular neighborhood of volume at least 0.00068 (See [Ml]). Thus, the
volume of a closed hyperbolic 3-manifold must be greater than 0.00064. By
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choosing a smaller r we get more volume in the solid-tube case, but less in the
embedded-ball case; thus the overall volume estimate is lower. The value

r 0.053475 was chosen to maximize the overall volume estimate; call this value

or r the &quot;trade-off value&quot;. (Since cusped hyperbolic 3-manifolds hâve volume

greater than V3/4 we hâve that ail complète hyperbolic 3-manifolds hâve volume
at least 0.00064, i.e. V, &gt; 0.00064 (See [Ml]).)

Bôrôczky&apos;s theorem can be used to improve the lower bound of 0.00064.

Specifically, Bôrôczky&apos;s theorem yields an improved volume contribution in the
embedded-ball case. The argument is as foliows. As mentioned in Section 2, the

lifts of an embedded bail B(r) to H3 yield a packing S8 of //\ and a Dirichlet
domain D(B, Sft) for any bail B in the packing is a fundamental domain
for T. Using Bôrôczky&apos;s theorem, we hâve vol(#(0.053475))/vol(//3/r) vol
(B(0.053475))/vol (D(B, 38)) &lt; d(0.053475). Thus vol {H3 IF) &gt; vol (B(0.053475))/
d(0.053475) &gt; 0.00082, and we hâve improved our estimate if an embedded bail
of radius 0.053475 sits in M. This technique does not effect the solid-tube
contribution; thus, if r is taken as 0.053475 then our lower bound is still 0.00064.

However, we can take a smaller value of r and improve our solid-tube volume
contribution while only marginally effecting our embedded-ball volume. In

particular taking r 0.053463 yields a solid-tube volume greater than 0.00082

while the embedded-ball volume is still greater than 0.00082. Thus, we hâve that
0.00082 is a lower bound for the volume of complète hyperbolic 3-manifolds; that
is Vx&gt;0.00082.

For orbifolds Q H3 IF without cusps the analysis is essentially the same

except that the relevant &quot;trade-off&quot; radius is 0.0535 and the volume of the
&quot;chopped&quot; solid bail is roughly 0.00000134 (see [M2]). Thus by the density

argument vol (Q) &gt; 0.0000017, i.e. V[ &gt; 0.0000017.

In dealing with cusped manifolds M H3IF we do not hâve to resort to this

trading-off argument. In [Ml] it is shown that there is a cusp neighborhood C in
M of volume at least V5/4. This neighborhood yields a horoball packing 38 of H3.

Further, given B in £$ centered at p we hâve that a fundamental domain F for the
action of Fp on D(B, 8ft) is a fundamental domain for F. Applying Bôrôczky&apos;s

theorem, we hâve

vol (M) vol (F)

Thus, vol (M) &gt; vol (C)/(V3/2V) &gt; (V3/4)(2V7\/3) V/2 and VM &gt; V72 «
0.5072.

This argument works for cusped orbifolds Q H3IF as well, except that the

cusp neighborhood C in Q in the worst case only contributes V3/24 to the volume
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of Q (See [M2]). Thus vol (g) &gt; (V3/24)(2V/\/3) F/12, V&apos;c&gt; VI12-0.0846.
Since Qx-H3/PGL2(€3) has volume V712 we hâve (See Section 1):

THEOREM. Qi H3/PGL2(O3) has minimum volume among ail orientable
cusped hyperbolic 3-orbifolds.

Remark. There are cusped orbifolds on which Dehn surgery cannot be

performed. Consequently, unlike the manifold case, there are cusped hyperbolic
3-orbifolds whose volumes are isolated—Qx is such an orbifold. The question of
finding &quot;the least limiting orbifold&quot; remains open.
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