Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 61 (1986)

Artikel: Sur la mulitplicité de la première valeur propre non nulle du Laplacien.

Autor: Colin de Verdière, Yves de

DOI: https://doi.org/10.5169/seals-46930

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Sur la multiplicité de la première valeur propre non nulle du Laplacien

YVES COLIN DE VERDIÈRE

L'objet de cet article est de prouver le:

THEOREME. Si X est une variété compacte de dimension ≥ 3 et N un entier arbitraire, il existe sur X des métriques riemanniennes dont la première valeur propre non nulle du laplacien est de multiplicté N.

Remarque. Il résulte de la construction qu'on peut choisir la métrique sans isométries non triviales.

Pour situer ce résultat, rappelons que, dans le cas des surfaces, la multiplicité de la première valeur propre non nulle du laplacien (et en fait de tout opérateur différentiel elliptique autoadjoint du second ordre réel opérant sur les fonctions) est majorée en fonction du genre de la surface ([CG] et [BN]). D'autre part, dans le cas de S^3 , la multiplicité pour la métrique usuelle est 4, mais on connait des exemples ([UA], [B-B]) où elle vaut 7. L'idée de départ vient d'Arnold ([AD]): dans une famille de formes quadratiques dépendant d'un certain nombre de paramètres, l'apparition de valeurs propres multiples pour certaines valeurs du paramètre est un phénomène stable.

Le résumé de la démonstration est le suivant: on munit le graphe complet à N sommets, Γ_N , d'une métrique riemannienne (singulière aux sommets) en définissant la longueur de chaque arête. On désigne par γ_0 la métrique pour laquelle toutes ces arêtes ont une longueur égale à 1. On peut associer à chacune de ces métriques sur Γ_N un laplacien naturel et on montre que la première valeur propre non nulle du laplacien de γ_0 est de multiplicité N-1.

Par perturbation de γ_0 l'espace propre associé va écalater et pour compenser cette dispersion, on a besoin d'un résultat de stabilité qui dit que tous les éclatements possibles sont réalisables par des métriques voisines de γ_0 et cela de façon unique (voir un énoncé précis dans II.2).

On construit pour chacune de ces métriques voisines de γ_0 un plongement isométrique de Γ_N dans X muni d'une métrique riemannienne g (la condition dim $(X) \ge 3$ est ici essentielle). On modifie alors g à l'extérieur d'un tube de

rayon ε autour de l'image de Γ_N en multipliant g par un petit coefficient ε' . Lorsque ε et $\varepsilon' \to 0$ convenablement, on montre que le spectre de la métrique considérée converge vers celui de Γ_N (il y a aussi un problème de lissage de la métrique); la condition $d \ge 3$ intervient aussi ici à cause de l'invariance conforme de $\int |df|^2$ en dimension 2 (voir §III et IV).

Il ne reste plu qu'à recourir à un argument de topologie: si on a une famille φ_{α} d'applications continues d'une boule fermée B_0 de \mathbb{R}^n dans \mathbb{R}^n telle que, lorsque $\alpha \to 0$, φ_{α} converge uniformément vers un difféomorphisme de B_0 sur un compact de \mathbb{R}^n dont l'intérieur contient l'origine, alors, pour α assez petit, l'origine est dans l'image $\varphi_{\alpha}(B_0)$.

I. Approximation d'espaces propres et fermions

Commençons par prouver le

LEMME I.1. Soient M > 0 et N un entier, il existe une constante C ne dépendant que de M et N telle que, si Q_1 et Q_2 sont deux formes quadratiques sur un espace euclidien E de dimension N vérifiant:

$$\forall x \in E, \qquad 0 \le Q_1(x) \le Q_2(x) \le M |x|_E^2,$$

alors on a:

$$\sup_{|x|_{E}=1} |Q_{1}(x) - Q_{2}(x)| \leq C \cdot \max_{1 \leq i \leq N} |\lambda_{i}(Q_{1}) - \lambda_{i}(Q_{2})|^{1/N}$$

où $\{\lambda_i(Q_i)\}_{1\leq i\leq N}$ est la suite des valeurs propres de Q_i rangées par ordre croissant.

Preuve. Posons $f(x) = Q_2(x) - Q_1(x)$ et soit S la sphère unité de E équipée de la mesure canonique. On pose: $I = \int_S f(x)$ et donc $I = C_N \sum_{i=1}^N (\lambda_i(Q_2) - \lambda_i(Q_1))$. D'autre part, $|\operatorname{grad} f| \leq 4M |x|$ et donc:

$$\forall x, x_0 \in S, \quad f(x) \ge f(x_0) - 4M |x - x_0|,$$

d'où l'on tire: $I \ge \int_A f(x_0)/2$ où $A = \{x \in S \mid |x_0 - x| \le f(x_0)/8M\}$, et donc $I \ge C(f(x_0))^N$; d'où suit le lemme.

Remarque 1. Il nous arrivera d'appliquer le lemme pour comparer 2 formes quadratiques Q_1 et Q_2 telles que $Q_2 \ge Q_1 - \varepsilon |x|^2$, ce que l'on fera en appliquant I.1 à $Q_2 + \varepsilon |x|^2$ et Q_1 .

Remarque 2. Ce lemme formalise le fait que deux ellipsoïdes de tailles voisines et emboités sont nécessairement proches l'un de l'autre.

Introduisons maintenant quelques notations: soient E_0 et E_1 deux sous-espaces vectoriels de dimension N d'un espace de Hilbert, munis de structures euclidiennes $\langle x \mid y \rangle_0 = \langle A_0 x \mid y \rangle$ et $\langle x \mid y \rangle_1 = \langle A_1 x \mid y \rangle$ avec A_i symétrique > 0 sur E_i . On définit *une isométrie* U_{E_0,E_1} de $(E_0,\langle \rangle_0)$ sur $(E_1,\langle \rangle_1)$ de la façon suivante:

$$U_{E_0,E_1}=A_1^{-1/2}\mathcal{U}_{E_0,E_1}A_0^{1/2},$$

où \mathcal{U}_{E_0,E_1} est une isométrie de $(E_0, \langle \rangle)$ sur $(E_1, \langle \rangle)$ construite de la façon suivante: on suppose que E_0 et E_1 sont assez proches au sens que E_1 est le graphe d'une application linéaire $B \in \mathcal{L}(E_0, E_0^{\perp})$ et on cherche \mathcal{U}_{E_0,E_1} sous la forme:

$$\mathcal{U}_{E_0,E_1}(x) = (I+B)(Cx)$$
 avec $C \in \mathcal{L}(E_0)$;

il est facile de vérifier qu'on peut prendre (et on le fait), $C = [(I+B)^* \circ (I+B)]^{-1/2}$, ce qui a un sens si ||B|| < 1 par exemple.

On a ainsi défini de façon canonique une isométrie de $(E_0, \langle \rangle_0)$ sur $(E_1, \langle \rangle_1)$ pourvu que E_1 soit assez proche de E_0 : cela nous sera utile lorsque les espaces E_0 et E_1 dépendront de paramètres: U_{E_0,E_1} dépendra continûment de ces paramètres.

DEFINITION I.2. Soient maintenant données sur $(E_i, \langle \rangle_i)$ des formes quadratiques positives q_i , on dira que $(E_0, \langle \rangle_0, q_0)$ et $(E_1, \langle \rangle_1, q_1)$ ont un écart $\leq \varepsilon$ si $||q_1 \circ U_{E_0, E_1} - q_0|| \leq \varepsilon$, où $||\cdot||$ est la norme de la forme quadratique, i.e. le maximum de celle-ci sur la sphère unité de l'espace euclidien.

Remarque. Cet "écart" n'est pas une distance: il n'est même pas symétrique entre E_0 et E_1 .

Enonçons maintenant le:

CRITERE I.3. Dans la situation précédente, il existe, M tel que $||q_1|| \le M$ et N étant donnés, pour tout $\varepsilon > 0$, des nombres α_i $(1 \le i \le 6)$ tels que, si: $||A_0 - 1|| \le \alpha_1$, $||A_1 - 1|| \le \alpha_2$, $||B|| \le \alpha_3$, $||A_1| \ge \alpha_4$ et $||A_1| \le \alpha_4$ et ||A

Ce critère résulte du lemme et du fait qu'on peut choisir α_1 , α_2 , α_3 pour que $||q_1 \circ U_{E_0,E_1} - q_1 \circ (I+B)|| \le \varepsilon'$ (ε' donné à l'avance).

Dans la pratique ultérieure, E_0 et E_1 seront les sous-espaces engendrés par les

N premières fonctions propres de deux formes quadratiques (on les désignera par N-espaces propres des formes quadratiques): q_0 et q_1 seront les restrictions de ces formes aux espaces E_0 et E_1 , chaque espace étant muni de la structure euclidienne induite lors du problème spectral considéré. On dira alors que les deux formes quadratiques Q_0 et Q_1 ont un N-écart spectral $\leq \varepsilon$ si la siutation I.2 est vérifiée pour E_0 et E_1 .

Fermions

Dans plusieurs problèmes que nous allons considérer, il est malaisé de contrôler les espaces engendrés par les N premières fonctions propres à cause de la petitesse des écarts des valeurs propres: pour traiter ce problème, nous utiliserons un concept emprunté à la mécanique quantique qui nous donne en fait une version plus précise du principe du minimax.

On introduit la notion de *fermions*: on considère N particules quantiques gouvernées par le même hamiltonien et obéissant à la de Fermi: la fonction d'onde est antisymétrique par rapport aux variables de position x_i $(1 \le i \le N)$. Plus formellement, N étant donné, on peut associer à $(\mathcal{H}, D(Q), Q)$ (Q forme quadratique ≥ 0 fermée de domaine D(Q)) les espaces de Hilbert $\Lambda^N \mathcal{H} \subset \bigotimes^N \mathcal{H}$, la forme quadratique Q^{\bigotimes^N} et sa restriction Q^{Λ^N} . Par exemple, Q^{\bigotimes^N} est défini sur les éléments décomposés par:

$$Q^{\otimes^N}(\varphi_1 \otimes \cdots \otimes \varphi_N) = Q(\varphi_1) |\varphi_2|^2 \cdots |\varphi_N|^2$$

+ $Q(\varphi_2) |\varphi_1|^2 |\varphi_3|^2 \cdots |\varphi_N|^2 + \cdots$

Les fonctions propres et valeurs propres de Q^{Λ^N} sont les $\varphi_i \wedge \cdots \wedge \varphi_{i_N}$ $(i_1 < i_2 < \cdots < i_N)$ où $(\varphi_i)_{i \in \mathbb{N}}$ est une b.o. de fonctions propres et $\lambda = \lambda_{i_1} + \cdots + \lambda_{i_N}$ la valeur propre associée.

On dit que Q vérifie l'hypothèse (*) si $(M, N \text{ et } \delta > 0 \text{ étant donnés une fois pour toutes}) on a les inégalités sur les valeurs propres de <math>Q$:

$$\lambda_1 \leq \cdots \leq \lambda_N < \lambda_N + \delta \leq \lambda_{N+1} \leq M. \tag{*}$$

On a alors les trois propositions élémentaires suivantes:

PROPOSITION I.4. Si (*) vraie, alors la première valeur propre de Q^{Λ^N} , $\lambda_1^{\Lambda^N} = \lambda_1 + \lambda_2 + \cdots + \lambda_N$ vérifie $\lambda_1^{\Lambda^N} < \lambda_1^{\Lambda^N} + \delta \leq \lambda_2^{\Lambda^N} \leq NM$.

PROPOSITION I.5. Il existe une constante universelle $C_N > 0$ telle que, si $D(Q) = \mathcal{K}_0 \oplus \mathcal{K}_{\infty}$ où la décomposition est Q-orthogonale et que, $\forall x \in \mathcal{K}_{\infty}$, $Q(x) \ge 0$

 $C^2 ||x||^2$, alors, $si \ x \in \bigoplus (\mathcal{H}_{i_1} \otimes \cdots \otimes \mathcal{H}_{i_N})$ où $i_l \in \{0, \infty\}$ et il existe l tel que $i_l = \infty$, on a:

$$Q^{\Lambda^N}(x) \geq C_N C^2 \|x\|_{\Lambda^N}^2.$$

(la constante C_N provient de la non orthogonalité de \mathcal{H}_0 et \mathcal{H}_{∞} dans \mathcal{H} et de la nécessité d'une majoration:

$$\left\| \sum_{\alpha \in A} x_{\alpha} \right\|^{2} \leq \tilde{C}_{\#A} \left(\sum_{\alpha \in A} \|x_{\alpha}\|^{2} \right).$$

PROPOSITION I.6. Soient E_0 et E_1 deux sous-espaces de dimensions N de \mathcal{H} , la proximité de E_0 et E_1 (au sens E_1 = graphe de B, $B \in \mathcal{L}(E_0, E_0^{\perp})$ et |||B||| petit) équivaut à la proximité dans $\Lambda^N \mathcal{H}$ des droites $e_1^0 \wedge \cdots \wedge e_N^0$ et $e_1^1 \wedge \cdots \wedge e_N^1$ où (e_i^1) sont des bases de E_i .

L'implication non triviale de I.6 résulte de l'inégalité:

$$||(e_1^0 + Be_1^0) \wedge \cdots \wedge (e_N^0 + Be_N^0) - e_1^0 \wedge \cdots \wedge C_N^0||_{\Delta^N}^2 \ge ||Be_1^0||^2 + \cdots + ||Be_N^0||^2.$$

Muni des résultats précédents, nous sommes prèts à énoncer deux résultats d'approximation:

THEOREME I.7. Soit Q une forme quadratique ≥ 0 sur \mathcal{H} de domaine $D(Q) = \mathcal{H}_0 \oplus \mathcal{H}_\infty$ (Q-orthogonaux) et supposons que (*) est vraie pour $Q_0 = Q \upharpoonright_{\mathcal{H}_0}$ et que, $\forall x \in \mathcal{H}_\infty$, $Qx) \geq C^2 ||x||^2$, alors pour C assez grand (ne dépendant que de δ , M, N), Q_0 et Q ont un N écart spectral $\leq \varepsilon$.

THEOREME I.8. On donne outre $Q \ge 0$ une suite Q_n de formes quadratiques de même domaine que Q sur \mathcal{H} équipé d'une métrique $|\cdot|_n$. On suppose que:

- (i) il existe C_1 , $C_2 > 0$ telle que, $\forall x \in \mathcal{H}$, $\forall x$, on ait: $C_1 |x| \le |x|_n \le C_2 |x|$;
- (ii) $\forall x \in D(Q)$, $\lim_{n \to \infty} |x|_n = |x|$ et $\lim_{n \to \infty} Q_n(x) = Q(x)$;
- (iii) $\forall x \in D(Q), \ Q(x) \leq Q_n(x).$

Alors, si (*) est vraie pour Q, il existe n_0 tel que si $n \ge n_0$, Q et Q_n ont un N-écart spectral $\le \varepsilon$.

Le schéma de la preuve de I.7 and I.8 est le même, en 3 étapes:

- 1) le case N=1,
- 2) l'extension gràce aux fermions au cas N quelconque pour obtenir la proximité des espaces propres,
 - 3) l'utilisation de I.1 pour conclure.

Preuve de I.7. 1) Notons $\mu_1 < \mu_1 + \delta \le \mu_2 \le M$ les 2 premières valeurs propres de Q_0 , ψ_1 la première fonction propre normalisée et les analogues λ_1 , λ_2 et φ_1 pour Q. Le minimax donne bien sûr $\mu_1 \ge \lambda_1$ et $\mu_2 \ge \lambda_2$. Estimons la différence $\mu_1 - \lambda_1$: on a $\varphi_1 = \varphi_1^0 + \varphi_1^\infty \in \mathcal{H}_0 \oplus \mathcal{H}_\infty$ et donc:

$$\lambda_1 = Q(\varphi_1) = Q(\varphi_1^0) + Q(\varphi_1^\infty) \ge C^2 |\varphi_1^\infty|^2.$$

Donc $|\varphi_1^{\infty}| \leq \sqrt{M/C}$, puis:

$$Q(\varphi_1^0) \le \lambda_1$$
 et $|\varphi_1^0| \ge 1 - \frac{\sqrt{M}}{C}$, d'où: $\lambda_1 \le \mu_1 \le \lambda_1 \left(1 - \frac{\sqrt{M}}{C}\right)^{-2}$.

Il reste à prouver la proximité des espaces propres engendrés par φ_1 et ψ_1 : on a $\varphi_1^0 = \alpha \psi_1 + \psi_1'$ avec $\langle \psi_1 | \psi_1' \rangle = 0$ et donc $Q(\psi_1') \ge (\mu_1 + \delta) |\psi_1'|^2$, d'où: $\mu_1 \ge Q(\varphi_1^0) \ge \alpha^2 \mu_1 + (\mu_1 + \delta) |\psi_1'|^2$ et $|\psi_1'|^2 \le 2\mu_1 \sqrt{M/C\delta}$; utilisant la majoration obtenue pour φ_1^{∞} , on a:

$$|\varphi_1 - \alpha \psi_1| \leq \sqrt{M/C} + (2\mu_1 \sqrt{M/C} \delta)^{1/2}.$$

- 2) Le cas N quelconque: par les fermions et les propositions I.4 et I.5, on obtient $|(\lambda_1 + \cdots + \lambda_N) (\mu_1 + \cdots + \mu_N)| = O(1/\sqrt{C})$, (O ne dépendant que de N, M, δ) et comme $\mu_i \ge \lambda_i$ pour tout i, on a la même majoration pour $|\lambda_i \mu_i|$. La convergence des espaces propres vient de 1) grâce à I.6.
- 3) Le contrôle de l'écart est facile: si on note E_0 et E les sommes d'espaces propres en question, on a:

$$Q(U_{E_0,E}(x)) = Q((I+B)(Cx)) \ge Q(Cx)$$

et comme C est proche de Id et $Q \le M$ sur E_0 , on peut conclure à partir de I.1.

Preuve de I.8. 1) Soit φ_1 une fonction propre de Q associée à λ_1 , on a

$$\lim_{n \to \infty} \frac{Q_n(\varphi_1)}{|\varphi_1|_n^2} = \frac{Q(\varphi_1)}{|\varphi_1|^2} = \lambda_1, \quad \text{donc} \quad \overline{\lim}_{n \to \infty} \lambda_1^n \le \lambda_1.$$

Réciproquement, soit $\varphi_1^n \in D(Q)$ telle que $|\varphi_1^n| = 1$ et $Q_n(\varphi_1^n) = \lambda_1^n$ une première fonction propre de Q_n . Supposons que $Q_n(\varphi_1^n) \le (\lambda_1 - \alpha)$ ($\alpha > 0$ fixé) pour une infinité de n. (φ_1^n) est une suite bornée de D(Q), on peut donc extraire une suite

faiblement convergente et convergenete dans \mathcal{H} notée encore (φ_1^n) :

$$Q(\varphi) \le \overline{\lim}_{n \ge \infty} Q(\varphi_1^n) \le \overline{\lim}_{n \ge \infty} Q_n(\varphi_1^n) \le \lambda_1 - \alpha$$

et

$$||\varphi| - |\varphi_1^n|_n| \le ||\varphi_1^n|_n - |\varphi|_n| + ||\varphi|_n - |\varphi||,$$

en utilisant la majoration $|\cdot|_n \le C_2$ | |, on a $|\varphi| = 1$; d'où contradiction. La convergence de l'espace propre engendré par φ_1^n vers celui engendré par φ_1 : supposons que φ_1^n admette une sous-suite convergeant faiblement pour Q et dans \mathcal{H} vers ψ , on a:

$$Q(\psi) \leq \overline{\lim}_{n \propto} Q(\varphi_1^n) \leq \overline{\lim}_{n \propto} Q_n(\varphi_1^n) = \lambda_1.$$

L'hypothèse (*) assure donc $\psi = \pm \varphi_1$.

- 2) Par le minimax $\overline{\lim} \lambda_1^n \le \lambda_1$ et donc l'utilisation des fermions permet de conclure la convergence des valuers propres et de la somme des espaces propres.
- 3 Le lemme I.1, l'hypothèse $Q_n \ge Q$ et la convergence de $|\cdot|_n$ vers $|\cdot|$ sur E_0 permettent de conclure.

II. Le spectre du graphe complet à N sommets

Soit Γ_N le graphe complet à N sommets $(N \ge 4)$: chaque couple de sommets distincts est joint par une arête unique. On considère Γ_N comme une variété riemannienne singulière de dimension 1; si $\mathscr A$ est l'ensemble des N(N-1)/2 arêtes, une métrique reimannienne sur Γ_N est entièrement déterminée (à isométrie près) par la longueur l(a) de toute arête a de $\mathscr A$. L'espace des métriques riemanniennes sur Γ_N est canoniquement isomorphe à $(\mathbb R^+)^{\mathscr A}$.

On peut associer, de façon naturelle, à toute métrique γ sur Γ_N un laplacien Δ obtenu par l'extension de Friedrichs d'une forme quadratique q sur $L^2(\Gamma_N, v_\gamma)$ définie ainsi: le domaine $D(q) = H^1(\Gamma_N)$ est l'ensemble des fonctions f dont la restriction à chaque arête a est dans H^1 et qui sont continues sur Γ_N ; la forme q est alors donnée par $q(f) = \sum_{a \in \mathcal{A}} \int_0^{l(a)} |f'_a(t)|^2 dt$ où f_a est la restriction de f à a et t paramètre a par la longueur. Il n'est alors pas difficile de déterminner le domaine du laplacien: c'est l'ensemble des f dont la restriction à chaque arête est dans H^2 , qui sont continues sur Γ_N et dont la somme des dérivées en chaque sommet le

long des différentes arêtes qui en sont issues est nulle. On a le:

THEOREME II.1. Si γ_0 est la métrique riemannienne sur Γ_N telle que les arêtes ont toutes une longueur égale à 1, la première valeur propre non nulle de (Γ_N, γ_0) est $\lambda(N) = k^2$ avec $k = \operatorname{Arc} \cos(-1/(N-1))$ $(k \in]\pi/2, \pi[)$; cette valeur propre est de multiplicité N-1. De plus, l'espace propre E_0 associé est engendré par les N fonctions φ_s (s sommet de Γ_N) définies par: $\varphi_s(t) = \cos kt$ pour toute arête issue de Γ_N paramétrée par Γ_N definies par: Γ_N est Γ_N est le groupe des paramétrée par Γ_N sommets, l'application Γ_N est le groupe des permutations des Γ_N sommets, l'application Γ_N est un Γ_N est un Γ_N isomorphisme de Γ_N sur le sous-espace vectoriel Γ_N = Γ_N est un Γ_N est un Γ_N est un el l'action naturelle de Γ_N .

Preuve. (i) On montre que $\lambda(N)$ est une valeur propre de Δ ayant les propriétés voulues. Pour une fonction φ_s du type indiqué, l'appartenance au domaine de Δ s'écrit

$$\{\cos k = C\cos k/2; k(\sin k + C(N-2)\sin k/2) = 0\},\$$

équations vérifiées si $k = \text{Arc} \cos(-1/(N-1))$.

(ii) Il faut montrer que $\lambda(N)$ est la plus petite valeur propre non nulle de Δ . Pour cela on va prouver par le minimax que si $\lambda_1 = 0 < \lambda_2 \le \cdots \le \lambda_N \le \lambda_{N+1} \le \cdots$ est le spectre de (X_N, g_0) , on a: $\lambda_{N+1} \ge \pi^2$ et donc $\lambda_2 = \cdots = \lambda_N = \lambda(N)$. Pour cela, on découpe X_N en N morceaux $\mathscr{E}_s(s \in \mathscr{S})$, étoiles de sommet s: on coupe chaque arête en son milieu. Si $\mu(N)$ est la premiére valeur propre non nulle du laplacien de Neumann sur \mathscr{E}_s , on a $\lambda_{N+1} \ge \mu(N)$: cela résulte de l'injection $D(q) \hookrightarrow \bigoplus_{s \in \mathscr{S}} H^1(\mathscr{E}_s)$ et du minimax. On va prouver $\mu(N) = \pi^2$. Paramétrons chaque arête a de \mathscr{E}_s par $t \in [0, \frac{1}{2}]$, s correspondant à $t = \frac{1}{2}$. Une fonction propre φ du problème de Neumann sur \mathscr{E}_s sera de la forme $\varphi|_a(t) = C_a \cos kt$ avec les conditions:

$$\begin{cases} \forall a, a', (C_a - C_{a'}) \cos k/2 = 0 & \text{et} \\ k\left(\sum C_a\right) \sin k/2 = 0, \end{cases}$$

on vérifie immédiatement que la plus petite solution non nulle est $k = \pi$ et donc $\mu(N) = \pi^2$.

On doit aussi éconcer un résultat pour les métriques voisines de γ_0 . Soit $\alpha_N > 0$ tel que $0 < \lambda(N) - \alpha_N < \lambda(N) + \alpha_N < \pi^2$, alors pour γ voisin de γ_0 , le laplacien de (Γ_N, g) admet dans l'intervalle $[\lambda(N) - \alpha_N, \lambda(N) + \alpha_N]$ des valeurs

propres dont la somme des multiplictés vaut N-1 et pas d'autres valeurs propres dans l'intervalle $]0, \pi^2]$. On désigne par E_{γ} le sous-espace de $L^2(\Gamma_N, v_{\gamma_0})$ engendrée par les espaces propres associés à ces valeurs propres proches de $\lambda(N)$. On introduit aussi la transformation unitaire naturelle $U_{\gamma} = U_{E_0, E_{\gamma}}$ (E_{γ} muni de la structure euclidienne induite par $L^2(\Gamma_N, v_{\gamma})$) définie au §1 et la forme quadratique $Q_{\gamma} = q_{\gamma} \circ U_{\gamma}$ où q_{γ} est la restriction à E_{γ} de la forme quadratique sur $H^1(\Gamma_N)$ associée à la métrique γ . On a alors le:

THEOREME II.2. L'application $\gamma \mapsto Q_{\gamma}$ est un difféomorphisme d'une boule fermée B_0 de $(\mathbb{R}^+)^{\mathscr{A}}$ centrée en γ_0 sur un voisinage de $Q_{\gamma_0} = \lambda(N)\langle \cdot | \cdot \rangle_{\gamma_0}$ dans $Q(E_0) = \{formes quadratiques sur <math>E_0\}$.

Preuve. Il résulte de la théorie générale des perturbations ([KO]) que $\gamma \mapsto Q_{\gamma}$ est différentiable et même analytique près de γ_0 : le théorème II.2 résulte donc du théorème des fonctions implicites par linéarisation, comme suit:

LEMME II.3. Soit $\gamma_t = \gamma_0 + th$, alors posant $Q_t = Q_{\gamma_t}$ et $q_t = q_{\gamma_t}$

$$\dot{Q} = \frac{d}{dt}\Big|_{t=0} Q_t, \qquad \dot{q} = \frac{d}{dt}\Big|_{t=0} q_t.$$

(Ici on suppose que les formes quadratiques q sont toutes sur le même espace de Hilbert $L^2(\Gamma_N, v_{\gamma_0})$, ce qu'on obtient par un argument du type demi-densité (voir plus bas la linéarisation explicite)).

Preuve de II.3. $Q_t(\varphi \mid \psi) = q_t(U_{\gamma_t}\varphi \mid U_{\gamma_t}\psi)$ et en dérivant en t = 0:

$$\dot{Q}(\varphi \mid \psi) = \dot{q}(\varphi \mid \psi) + q_0(\varphi \mid \dot{U}\psi) + q_0(\dot{U}\varphi \mid \psi),$$

les deux derniers termes sont nuls, car par construction $\dot{U}\varphi$ est dans E_0^{\perp} .

Calcul de la linearisation

On suppose que γ_t est définie sur $a \in \mathcal{A}$ par l'élément de longueur $ds_a = (1 + t\varphi_a(x)) dx$, $x \in [0, 1]$ et $\varphi_a \in C_0^{\infty}(]0, 1]$) (i.e. h est à support disjoint des sommets, ce qui est toujours possible).

On a alors $q_t(f) = \sum_{a \in \mathcal{A}} \int_0^1 |f_a(x)|^2 (1 + t\varphi_a(x)) dx$.

Pour se ramener à l'espace de Hilbert fixe $L^2(\Gamma_N, v_{\gamma_0})$, on pose

$$\tilde{f}_a(x) = (1 + t\varphi_a(x))^{1/2} f_a(x)$$

et donc

$$q_{i}(\tilde{f}) = \sum_{a \in \mathcal{A}} \int_{0}^{1} \left[(\tilde{f}_{a}(x)(1 + t\varphi_{a}(x))^{-1/2})^{2} (1 + t\varphi_{a}(x))^{-1} dx, \right]$$

il vient ainsi, par un développement limité en t=0 et le fait qu'en t=0, $\tilde{f}_a=f_a$:

$$\dot{q}(f) = -\sum_{a \in \mathcal{A}} \int_0^1 (f'_a(x)^2 + k^2 f_a(x)^2) \varphi_a(x) \, dx,$$

donc, si $f_a(x) = A_a \cos kx + B_a \sin kx$ et si on pose

$$\begin{aligned}
\dot{l}_{a} &= \frac{d}{dt} \Big|_{t=0} l(a) = \int_{0}^{1} \varphi_{a}(x) \, dx, \\
\dot{q}(f) &= -k^{2} \sum_{a \in \mathcal{A}} \dot{l}_{a} (A_{a}^{2} + B_{a}^{2}).
\end{aligned} \tag{1}$$

Il suffit alors de montrer que les N(N-1)/2 matrices $\dot{q}_a(\varphi_s, \varphi_{s'})$ ($s \in \mathcal{S}, s' \in \mathcal{S}$) associées aux déformations ε_a telles que $\dot{l}_b = \delta_{a,b}$ sont linéairement indépendantes. A cause de la symétrie $\dot{q}_a(\varphi_s, \varphi_{s'})$ est pour $s \neq s'$ une fonction de l'arête b = [s, s'] que nous noterons w_a^b . Il suffit de prouver que les vecteurs W_a ($a \in \mathcal{A}$) de $\mathbb{R}^{\mathcal{A}}$ sont indépendants, et donc il suffit de voir qu'ils engendrent $\mathbb{R}^{\mathcal{A}}$. Visiblement w_a^b n'a que trois valeurs possibles suivant les positions relatives des arêtes a et b.

- (i) Si a = b, $w_a^a = k^2/(N-1)$,
- (ii) si a et b ont un seul sommet commun, $w_a^b = k^2/(N-1)$,
- (iii) si a et b n'ont pas de sommet commun,

$$w_a^b = -2k^2/(N-1)(N-2).$$

Les résultats précédents se montrent sans difficultés à partir de (1) (où plutôt de la version bilinéaire de (1)) et de l'expressions des φ_s donnés en II.1.

Soit $W_0 = \sum_{a \in \mathcal{A}} W_a$; on vérifie que W_0 est un vecteur non nul proportionnel au vecteur $V_0 = (1, 1, \ldots, 1)$. L'espace vectoriel engendré par les $(W_a)_{a \in \mathcal{A}}$ est donc le même que celui engendré par le vecteur V_0 et les vecteurs V_a , $a \in G$ définis par:

$$v_a^b = \begin{cases} 1 \text{ si } a \text{ et } b \text{ ont au moins un sommet commun,} \\ 0 \text{ sinon.} \end{cases}$$

Cherchons à écrire les vecteurs e_a , $a \in \mathcal{A}$, de la base standard de $\mathbb{R}^{\mathcal{A}}$ comme combinaison linéaire des V_0 et V_a , $a \in \mathcal{A}$. Pour des raisons de symétrie, on

cherche la solution sous la forme:

$$e_a = xV_a + y\Sigma'V_b + z\Sigma''V_c + tV_0,$$

où Σ' porte sur les arêtes qui ont un sommet commun avec a et Σ'' sur celles qui n'en ont aucun. On a ainsi, par un dénombrement et en évaluant e_a^c successivement lorsque c = a, c et a ont un, puis deux sommets communs:

$$\begin{cases} 1 = x + 2(N-2)y + t \\ 0 = x + (N-1)y + (N-3)z + t \\ 0 = 4y + (2N-7)z + t, \end{cases}$$

il suffit de vérifier que le déterminant obtenu en éliminant la colonne des z vaut 3 - N est donc $\neq 0$ pour $N \geq 4$.

Remarque. Le cas du graphe à 3 sommets est bien entendu spécial, car on trouve le spectre d'un cercle de longueur variable, pour lequel toutes les valeurs propres non nulles restent de multiplicité 2.

III. Convergence du spectre d'une variete vers celui d'un domaine

Nous avons en vue le:

THEOREME III.1. Soit (X, g) une variete riemannienne compacte de dimension ≥ 3 et Ω_+ un domaine à bord C^1 par morceaux de X. On fait l'hypothèse (*) sur les valeurs propres du problème de Neumann sur Ω_+ , alors pour tout $\alpha > 0$, il existe une métrique C^{∞} , h sur X, induisant g sur Ω_+ telle que le N écart spectral du problème de Neumann sur Ω_+ et du laplacien sur (X, h) soit $\leq \alpha$ (les espaces propres étant tous plongés dans $L^2(X, v_g)$).

Le théorème reste peut être vrai pour la dimension 2, mais la preuve qui suit ne marche pas. On fabrique la métrique h en deux temps: on construit d'abord la métrique singulière g_{ε} en remplaçant sur $\Omega_{-} = X \setminus \Omega_{+}$, g par εg ; puis on régularise g_{ε} par les $g_{\varepsilon,n} = F_{n}^{\varepsilon} \cdot g$, où F_{n}^{ε} est une suite de fonctions C^{∞} convergeant vers $\chi_{\Omega_{+}} + \varepsilon \chi_{\Omega_{-}}$. Alors h est une des métriques $g_{\varepsilon,n}$ avec ε assez petit et n assez grand. Toutes les constructions peuvent se faire avec une métrique g dépendant d'un paramètre.

A. Métrique singulières

Soit g_{ε} la métrique singulière décrite précédemment: plus précisément, on considère sur $\mathcal{H} = L^2(X, g_{\varepsilon})$ la forme quadratique de domaine $H^1(X)$ définie par

$$q_{\varepsilon}(\varphi) = \int_{\Omega_{+}} |d\varphi|^{2} + \varepsilon^{(d/2)-1} \int_{\Omega_{-}} |d\varphi|^{2},$$

les intégrales étant prises au sens de l'élément de volume associé à g. Pour se ramener à un espace de Hilbert fixe, on utilise l'isomorphisme $L^2(X, g_{\varepsilon}) \rightarrow L^2(X, g)$, donné par $\varphi \rightarrow (\varphi \upharpoonright \Omega_+, e^{d/4}\varphi \upharpoonright \Omega_-)$. La forme quadratique q_{ε} transportée sur $L^2(X, g)$ admet alors pour domaine $D(q_{\varepsilon})$, ensemble des couples $(\varphi_+, \varphi_-) \in H^1(\Omega_+) \oplus H^1(\Omega_-)$ tels que:

$$\varphi_- \upharpoonright b\Omega_+ = \varepsilon^{d/4}\varphi_+ \upharpoonright b\Omega_+$$

et on a:

$$q_{\varepsilon}(\varphi_{+} \oplus \varphi_{-}) = \int_{\Omega_{+}} |d\varphi_{+}|^{2} + \frac{1}{\varepsilon} \int_{\Omega_{-}} |d\varphi_{-}|^{2}.$$

Dans un premier temps, on utilise une décomposition du domaine de $D(q_{\varepsilon})$ en $\mathcal{H}_0 \oplus \mathcal{H}_{\infty}$ à laquelle on applique le théorème I.7:

$$\mathcal{H}_0 = \{ (\varphi_+, \varphi_-) \in D(q_{\varepsilon}) \mid \varphi_- \text{ harmonique sur } \Omega_- \}$$

$$\mathcal{H}_{\infty} = \{ (0, \varphi_-) \mid \varphi_- \in H_0^1(\Omega_-) \}$$

On peut alors appliquer I.8 avec $C^2 = 1/\varepsilon \lambda_1^D(\Omega_-)$ où λ_1^D est la première valeur propre du problème de Dirichlet sur Ω_- .

On est ainsi ramené à étudier des convergences sur \mathcal{H}_0 . On a un isomorphisme de $H^1(\Omega_+)$ sur \mathcal{H}_0 donné par $\varphi \to (\varphi, \varepsilon^{d/4} P_- \varphi \mid Y)$ $(Y = b\Omega_+)$ et P_- est l'opérateur de Poisson qui, à $\varphi \in H^{1/2}(Y)$, associe le prolongement harmonique $P_- \varphi \in H^1(\Omega_-)$: on α alors

$$|\varphi|_{\varepsilon}^2 = \int_{\Omega_-} |\varphi|^2 + \varepsilon^{d/2} \int_{\Omega_-} |P^-\varphi|^2$$

et

$$q_{\varepsilon}(\varphi) = \int_{\Omega_{-}} |d\varphi|^{2} + \varepsilon^{(d/2)-1} \int_{\Omega_{-}} |d(P^{-}\varphi)|^{2}.$$

On peut ainsi visiblement adapter une variante du théorème I.8 (l'espace de Hilbert $\bar{\mathcal{K}}_0$ et le domaine $D(q_{\varepsilon}^0)$ n'étant pas ici fixes). Cette variante est laissée au lecteur.

B. Regularisation

Soit $\varepsilon > 0$, donné, F_n une suite de fonctions C^{∞} telles que $F_n \upharpoonright \Omega_+ = 1$, $1 \ge F_n \upharpoonright \Omega_- \ge \varepsilon$ et $\forall x \in \Omega_-$, $\lim_{n \to \infty} F_n(x) = \varepsilon$.

On se trouve alors immédiatement dans les conditions d'applications du théorème I.8.

C. Fin de la preuve

Nous devons maintenant décrire la transformation unitaire U du N-espace propre du problème de Neumann de Ω_+ sur celui de $F_n^{\epsilon} \cdot g = h$. On a utilisé deux formes quadratiques intermédiaires: la restriction de q_{ϵ} à \mathcal{K}_0 ; on note ici Q_1 sa restriction au N-espace propre; puis q_{ϵ} elle-même dont on note Q_2 la restriction au N-espace propre; on note Q_3 la forme associée de même à h. On note $U_{0,1}, U_{1,2}, \ldots$ les transormations unitaires naturelles introduites au §1. On choisi d'abord ϵ pour que $\|Q_1 \circ U_{0,1} - Q_0\| \le \alpha/3$, puis quitte à diminuer encore ϵ , on assure $\|Q_2 \circ U_{1,2} - Q_1\| \le \alpha/3$, on choisit alors n pour que $\|Q_3 \circ U_{2,3} - Q_2\| \le \alpha/3$, on α alors $\|Q_3 \circ U_{2,3} \circ U_{1,2} \circ U_{0,1} - Q_0\| \le \alpha$. A priori $U_{2,3} \circ \cdots \circ U_{0,1}$ n'est pas la transformation unitaire décrite en α , mais cela n'a pas d'inconvénient pour ce qui suivra. Il est essentiel que α dépende continûment des paramètres dont α 0 peut dépendre.

IV. Voisinages tubulaires des Graphes

Dans ce \S , la condition dimension $(X) \ge 3$ ne joue aucun rôle.

A. Métrique adaptée

Soit (Γ, γ) un graphe fini muni d'une métrique riemannienne γ , donnée par la longueur de chaque arête. On suppose que Γ admet un plongement (injectif) dans une variété compacte X de dimension ≥ 2 . Ceci est vrai quel que soit le graphe Γ si dimension $(X) \geq 3$. On note encore Γ l'image de Γ par ce plongement.

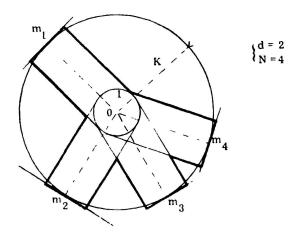
On désigne par métrique adaptée à (Γ, γ) une métrique riemannienne g sur X, euclidienne au voisinage de Γ , telle que les arêtes de Γ soient des géodésiques de g et induisant γ sur Γ . Cette dernière condition est la plus importante. Les autres apportent seulement des simplifications techniques.

Un moment de réflexion permet de se convaincre de l'existence de métriques adaptées et même dépendant de façon continue de γ (Γ fixé).

Désignons par Ω_{ε} le voisinage tubulaire de rayon ε de Γ dans X muni de la métrique adaptée g. Alors Ω_{ε} s'obient pour $0 < \varepsilon \le \varepsilon_0$ en recollant des morceaux cylindriques $C_{a,\varepsilon}$ $(a \in \mathcal{A})$ et des morceaux $W_{s,\varepsilon}$ $(s \in \mathcal{S})$ $(\mathcal{A}$ (resp. \mathcal{S}) désigne comme au §2 les arêtes (resp. sommets de Γ)).

Les $C_{a,\varepsilon}$ sont des cylindres pleins $[0, l_a - 2K\varepsilon] \times B^{d-1}(\varepsilon)$ (K choisi plus bas dépendant de Γ , mais pas de γ), ils seront recolés aux $W_{s,\varepsilon}$ (s sommets de a) le long des bouts $\{0\} \times B^{d-1}(\varepsilon)$ et $\{l_a - 2K\varepsilon\} \times B^{d-1}(\varepsilon)$ ($B^{d-1}(\varepsilon)$ désigne la boule euclidienne de dimension d-1 et de rayon ε). On paramètre les $C_{a,\varepsilon}$ par (x_1, x') avec $x_1 \in [0, l_a - 2K\varepsilon]$ et $x' \in B^{d-1}(\varepsilon)$.

Les morceaux $W_{s,\varepsilon}$ sont des dilatés de rapport ε de morceaux isométriques à W_{N_s} où N_s est le nombre d'arêtes issues de s. On choisit K tel qu'on puisse placer sur la sphère de rayon K au moins N_{\max} points m_i ($N_{\max} = \max_{s \in \mathcal{F}} N_s$ et $k \ge 1$) éloignés d'une distance euclidienne >2. W_N est le voisinage tubulaire euclidien de rayon 1 de l'étoile d'origine 0 et de branches $[0, m_i]$ ($1 \le i \le N_s$) dans \mathbb{R}^d , tronqué par des hyperplans orthogonaux en chaque m_i à $[0, m_i]$



On remarque que $W_N \subset \mathbb{R}^d$ n'est pas unique, mais ici on n'utilisera pas les angles entre les branches de W_N .

B. Proximite spectrale

Ce § verra la justification de la définition donnée au §II du laplacien sur (Γ, γ) : on va montrer que les valeurs propres de ce laplacien sont les limites de celles du problème de Neumann dans Ω_{ϵ} (X étant muni toujours d'une métrique adaptée). On suppose que le spectre de (Γ, γ) vérifie (*) et on désigne par E le N-espace propre ($E \subset L^2(\Gamma)$), on a le:

THEOREME IV.1. Soit F le N-espace propre de $(\Omega_{\varepsilon}, g)$ avec les conditions de Neumann (équipé de la structure euclidienne et de la forme quadratique associée au problème de Neumann sur Ω_{ε}); on désigne par q_{ε} et q_{ε} les formes quadratiques naturelles sur E et F. Il existe une injection (dépendant continûment des éventuels

paramètres du problème) J_{ε} de E dans $H^1(\Omega_{\varepsilon})$ telle que la limite de l'écart entre $J_{\varepsilon}(E, q_E)$ et (F, q_F) soit nulle lorsque $\varepsilon \to 0$.

En particulier, $\forall i$, $\lim_{\epsilon \to 0} \lambda_i(\Omega_{\epsilon}) = \lambda_i(\Gamma)$, mais le théorème donne aussi un résultat sur les espaces propres au moyen de J_{ϵ} .

Preuve. Elle va suivre essentiellement de la construction de J_{ε} et du théorème I.7.

CONSTRUCTION DE J_{ε} . On va en fait définir $J_{\varepsilon}(f)$ pour $f \in H^{1}(\Gamma)$: • Sur les cylindres $C_{a,\varepsilon}$, soit $\tilde{l}_{a} = l_{a} - 2k\varepsilon$, alors

$$J_{\varepsilon}f(x_1, x') = (1/\gamma_d \cdot \varepsilon^{(d-1)/2}) \cdot f_a\left(\frac{l_a}{\tilde{l}_a} \cdot x_1\right)$$

où f_a est la restriction de f à a paramétrée par $[0, l_a]$ et $\gamma_d^2 = \text{vol}(B^{d-1}(0, 1))$. · Sur les $W_{s,\varepsilon}$, on pose $J_{\varepsilon}f(x) = f(s)/(\gamma_d \cdot \varepsilon^{(d-1)/2})$. On voit que:

$$\begin{cases} ||J_{\varepsilon}f||_{L^{2}(\Omega_{\varepsilon})}^{2} = ||f||^{2} (1 + O(\varepsilon)) + O(\varepsilon) \left(\sum_{s \in \mathcal{S}} |f(s)|^{2} \right) \\ \int_{\Omega_{\varepsilon}} |dJ_{\varepsilon}f|^{2} = (1 + O(\varepsilon)) \int_{\Gamma} |df|^{2} \text{ (ici les } O \text{ sont indépendants de } f). \end{cases}$$
(*)

Désignons par \mathcal{H}_0 l'image $J_{\varepsilon}(H^1(\Gamma))$, et par \mathcal{H}_{∞} l'ensemble des f de $H^1(\Omega_{\varepsilon})$ telles que:

· Sur $C_{a,\varepsilon}$, on ait pour tout $x_1 \in [0, \tilde{l}_a]$,

$$\int_{B^{d-1}(\varepsilon)} f(x_1, x') \, dx' = 0.$$

· Sur
$$W_{s,\varepsilon}$$
, $\int_{W_{s,\varepsilon}} f = 0$.

On vérifie que les hypothèses du théorème I.7 sont satisfaites:

Soit en effet, pour chaque $s \in \mathcal{S}$, $B_{i,\varepsilon}$ $(1 \le i \le N-1)$ les morceaux du bord de $W_{s,\varepsilon}$ qui sont isométriques à $B^{d-1}(\varepsilon)$ et \mathscr{E} sous-espace de $H^1(W_{s,\varepsilon})$ formé des fonctions telles que, $\forall i, 1 \le i \le N-1$, $\int_{B_{i,\varepsilon}} f = 0$, alors si $\lambda_1(\varepsilon)$ est la plus petite valeur propre de la forme quadratique $\int_{W_{s,\varepsilon}} |df|^2$ avec \mathscr{E} comme domaine, il est clair que l'on a $\lambda_1(\varepsilon) = \lambda_1(1)/\varepsilon^2$ et que $\lambda_1(1) > 0$. Soit μ_1 la plus petite valeur propre >0 du laplacien sur $B^{d-1}(1)$ avec les conditions de Neumann; on a alors,

pour $f \in \mathcal{H}_{\infty}$:

$$\int_{\Omega_{\epsilon}} |df|^2 \ge (1/\epsilon^2) (\inf (\lambda_1(1), \mu_1)) \int_{\Omega_{\epsilon}} |f|^2.$$

On est ainsi dans les hypothèses de I.7, ce qui permet d'achever la preuve.

V. Fin de la preuve

On se donne $\alpha>0$. On plonge Γ_N dans X et on construit pour les $\gamma\in B_0$ des métriques adaptées g dépendant réguliérement de γ sur X. On choisit d'abord $\varepsilon>0$ pour que l'écart entre $J_{\varepsilon}(E_{\gamma},\,q_{\gamma})$ et le N-espace propre de Ω_{ε} soit $\leq \alpha/2$. On note U_1 l'isométrie naturelle entre ces deux espaces euclidiens. On choisit ensuite ε' et n pour que le N-écart spectral entre le problème de Neumann sur Ω_{ε} et le laplacien de $h=F_n^{\varepsilon'}\cdot g$ soit $\leq \alpha/2$. On note U_2 l'isométrie naturelle entre ces sous-espaces de $L^2(X,\,v_g)$. Soit q_h la forme quadratique associée à h sur le N-espace propre du laplacien Δ_h et $F_{\alpha}(\gamma)=q_h\circ U_2\circ U_1\circ U_{\gamma}\in Q(E_0)$. Par construction F_{α} est continu de B_0 dans $Q(E_0)$ et on a, $\forall \gamma\in B_0$, $||F_{\alpha}(\gamma)-Q_{\gamma}||\leq \alpha$. Comme le spectre de $F_{\alpha}(\gamma)$ est constitué des N premières valeurs propres du laplacien Δ_h , la conclusion résulte du lemme de topologie énoncé dans l'introduction.

Remarque finale. Que se passe-t-il dans le cas de la dimension 2? La méthode utilisée ne marche pas dans le §III à cause de l'exposant $\varepsilon^{(d/2)-1}$. On peut cependant être tenté de faire la

CONJECTURE. Si X est une surface compacte de genre g et $m_1(g)$ la multiplicité maximale de la première valeur propre non nulle du laplacien d'une métrique riemannienne sur X. Alors $m_1(g) = C(g) - 1$ où $C(g) = \max_N \{\Gamma_N \text{ est plongeable dans } X\}$. En fait ([RL]),

$$C(g) = E\left[\frac{7}{2} + \frac{1}{2}\sqrt{48g + 1}\right].$$

Cette conjecture est vérifiée pour g = 0: $m_1(0) = 3$, d'après [CG] et pour g = 1: $m_1(1) = 6$, d'après [BN]. Une minoration $m_1(g) \ge C(g) - 1$ pourrait résulter d'une méthode voisine de celle utilisée ici. Je ne vois pas bien comment obtenir la majoration (pour la minoration dans le cas à courbure constante voir aussi [B-C]).

BIBLIOGRAPHIE

- [AD] ARNOLD, V. I., Modes and quasi-modes, J. of Functional Analysis 6, 94-101 (1972).
- [BN] BESSON, G., Sur la multiplicité de la première valeur propre des surfaces riemanniennes, Ann. Inst. Fourier 30, 109-128 (1980).
- [B-C] BURGER, M. et COLBOIS, B., A propos de la multifilicité de la première valeur propre d'une surface de Riemann. Comptes Rendus de l'Ac. des Sc. de Paris 300, 247-250 (1985).
- [B-B] BERARD-BERGERY, L. et BOURGUIGNON, J. P., Laplacians and Riemannian submersions with totally geodesics fibres, Illinois J. of Math. 26, 181-200 (1982).
- [CG] CHENG, S. Y., Eigenfunctions and nodal sets, Comm. Math. Helv. 51, 43-55 (1979).
- [KO] KATO, T., Perturbation theory for linear operators (Springer 1976).
- [RL] RINGEL, G., Map color theorem (Springer 1974).
- [UA] URAKAWA, H., On the least eigenvalue of the laplacian for compact group manifold, J. Math. Soc. of Japan 31, 209-226 (1979).

Université de Grenoble Institut Fourier B.P. 74 F38402 Sait-Martin-d'Hères France

Reçu le 14 Octobre 1985