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© 1986 Birkhàuser Verlag, Basel

Sur la multiplicité de la première valeur propre non nulle du
Laplacien

Yves Colin de Verdière

L&apos;objet de cet article est de prouver le:

THEOREME. 5/ X est une variété compacte de dimension ^3 et N un entier
arbitraire, il existe sur X des métriques riemanniennes dont la première valeur

propre non nulle du laplacien est de multiplicté N.

Remarque. Il résulte de la construction qu&apos;on peut choisir la métrique sans
isométries non triviales.

Pour situer ce résultat, rappelons que, dans le cas des surfaces, la multiplicité
de la première valeur propre non nulle du laplacien (et en fait de tout opérateur
différentiel elliptique autoadjoint du second ordre réel opérant sur les fonctions)
est majorée en fonction du genre de la surface ([CG] et [BN]). D&apos;autre part, dans

le cas de S3, la multiplicité pour la métrique usuelle est 4, mais on connait des

exemples ([UA], [B-B]) où elle vaut 7. L&apos;idée de départ vient d&apos;Arnold ([AD]):
dans une famille de formes quadratiques dépendant d&apos;un certain nombre de

paramétres, l&apos;apparition de valeurs propres multiples pour certaines valeurs du

paramètre est un phénomène stable.
Le résumé de la démonstration est le suivant: on munit le graphe complet à N

sommets, FN9 d&apos;une métrique riemannienne (singulière aux sommets) en
définissant la longueur de chaque arête. On désigne par y0 la métrique pour
laquelle toutes ces arêtes ont une longueur égale à 1. On peut associer à chacune
de ces métriques sur FN un laplacien naturel et on montre que la première valeur

propre non nulle du laplacien de y0 est de multiplicité N - 1.

Par perturbation de y0 l&apos;espace propre associé va écalater et pour compenser
cette dispersion, on a besoin d&apos;un résultat de stabilité qui dit que tous les

éclatements possibles sont réalisables par des métriques voisines de y0 et cela de

façon unique (voir un énoncé précis dans II.2).
On construit pour chacune de ces métriques voisines de y0 un plongement

isométrique de FN dans X muni d&apos;une métrique riemannienne g (la condition
3 est ici essentielle). On modifie alors g à l&apos;extérieur d&apos;un tube de
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rayon e autour de l&apos;image de FN en multipliant g par un petit coefficient e&apos;.

Lorsque e et e&apos;-*0 convenablement, on montre que le spectre de la métrique
considérée converge vers celui de FN (il y a aussi un problème de lissage de la

métrique); la condition d&gt;3 intervient aussi ici à cause de l&apos;invariance conforme
de J \df\2 en dimension 2 (voir §111 et IV).

Il ne reste plu qu&apos;à recourir à un argument de topologie: si on a une famille
q)a d&apos;applications continues d&apos;une boule fermée Bo de M&quot; dans Un telle que,
lorsque ar—»0, q&gt;a converge uniformément vers un difféomorphisme de Bo sur un

compact de Rn dont l&apos;intérieur contient l&apos;origine, alors, pour oc assez petit,
l&apos;origine est dans l&apos;image (pa(B0).

I. Approximation d&apos;espaces propres et fermions

Commençons par prouver le

LEMME 1.1. Soient M&gt;0 et N un entier, il existe une constante C ne

dépendant que de M et N telle que, si Qx et Q2 sont deux formes quadratiques sur
un espace euclidien E de dimension N vérifiant:

Vjc e £, 0 &lt; Qx{x) &lt; Q2(x) &lt; M \x\2E,

alors on a:

sup |G,(*)-G2(*)I=£C- max

où {K(Qj)}i^i^N est la suite des valeurs propres de Q} rangées par ordre croissant.

Preuve. Posons/(jc) Q2(x) - Qi(x) et soit S la sphère unité de E équipée de

la mesure canonique. On pose: / $sf(x) et donc l CN Efii {K{Qi) - K{Q\))-
D&apos;autre part, |grad/| &lt;4M |jc| et donc:

Vx, x0 e 5, f{x) ^/(x0) - 4M |x - xo|,

d&apos;où l&apos;on tire: /&gt; J^/(jco)/2 où A {* eS\ \xo-x\ &lt;/(xo)/8M}, et donc /&gt;

C(f(x{}))N; d&apos;où suit le lemme.

Remarque 1. Il nous arrivera d&apos;appliquer le lemme pour comparer 2 formes

quadratiques Qx et Q2 telles que g2- Q\ - £ k|2&gt; ce que l&apos;on fera en appliquant
1.1 àj22 + e Ixpetô,.
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Remarque 2. Ce lemme formalise le fait que deux ellipsoïdes de tailles
voisines et emboités sont nécessairement proches l&apos;un de l&apos;autre.

Introduisons maintenant quelques notations: soient £i&gt; et Ex deux sous-espaces
vectoriels de dimension N d&apos;un espace de Hilbert, munis de structures euclidiennes

(x\y)0= (A{)x\y) et (x \y)i (Axx \y) avec A, symétrique&gt;0 sur Er
On définit une isométrie UE{hE] de (£(), )0) sur (Eu ()i) de la façon suivante:

où %£^Ej est une isométrie de (£{), sur (£,, construite de la façon
suivante: on suppose que E{) et Ex sont assez proches au sens que £, est le graphe
d&apos;une application linéaire B e ££(E{), Eq) et on cherche GHEihE{ sous la forme:

avec

il est facile de vérifier qu&apos;on peut prendre (et on le fait), C [(/ + £)*&lt;&gt;(/ +
B)Ym, ce qui a un sens si |||B||| &lt; 1 par exemple.

On a ainsi défini de façon canonique une isométrie de (£(), sur
(Ex, )i) pourvu que Ei soit assez proche de Eo: cela nous sera utile lorsque les

espaces Eq et Ex dépendront de paramètres: UEf)&lt;E] dépendra continûment de ces

paramètres.

DEFINITION 1.2. Soient maintenant données sur (En { des formes
quadratiques positives qn on dira que (Eq, )0, q0) et (Eu )\,q\) ont un écart &lt; e si
lki°^£b&gt;£i ~9oll — £&gt; où ||-1| est la norme de la forme quadratique. Le. le

maximum de celle-ci sur la sphère unité de Vespace euclidien.

Remarque. Cet &quot;écart&quot; n&apos;est pas une distance: il n&apos;est même pas symétrique
entre EqZX Ex.

Enonçons maintenant le:

CRITERE 1.3. Dans la situation précédente, il existe, Mtelque\\qx\\&lt;MetN
étant donnés, pour tout b&gt;0, des nombres at (1 &lt; / &lt; 6) tels que, si: \\A0 — 1|| &lt;

ocx, \AX - 1|| &lt; a2, \\B\\ ^ a3, Max; \k,(qi) - A;(?o)| ^ &lt;*4 et qx(x + Bx) &gt; qo(x) -
a5 \x\2, alors (Eq, { )0, q0) et (Eu )if qx) ont un écart &lt;e.

Ce critère résulte du lemme et du fait qu&apos;on peut choisir ocx, &lt;x2, &lt;x3 pour que

lkio^£,-9io(J + 5)IN£&apos; (e&apos; donné à l&apos;avance).

Dans la pratique ultérieure, Eo et Ex seront les sous-espaces engendrés par les
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N premières fonctions propres de deux formes quadratiques (on les désignera par
N-espaces propres des formes quadratiques): q{) et qx seront les restrictions de ces
formes aux espaces Eo et Ex, chaque espace étant muni de la structure
euclidienne induite lors du problème spectral considéré. On dira alors que les

deux formes quadratiques Q{) et Qx ont un N-écart spectral &lt;e si la siutation 1.2

est vérifiée pour £q et Ex.

Fermions
Dans plusieurs problèmes que nous allons considérer, il est malaisé de

contrôler les espaces engendrés par les N premières fonctions propres à cause de

la petitesse des écarts des valeurs propres: pour traiter ce problème, nous
utiliserons un concept emprunté à la mécanique quantique qui nous donne en fait
une version plus précise du principe du minimax.

On introduit la notion de fermions: on considère N particules quantiques
gouvernées par le même hamiltonien et obéissant à la de Fermi: la fonction
d&apos;onde est antisymétrique par rapport aux variables de position xt (1 &lt; / &lt; N).
Plus formellement, N étant donné, on peut associer à (26, D{Q)y Q) (Q forme
quadratique &gt;0 fermée de domaine D(Q)) les espaces de Hilbert AN&lt;Xa ®N M,
la forme quadratique Q®N et sa restriction QA&quot;. Par exemple, Q®N est défini sur
les éléments décomposés par:

Q*\q&gt;x ® • • • ® &lt;pN) Q(&lt;px) \cp2\2 - • • \&lt;pN\2

Les fonctions propres et valeurs propres de QA&quot; sont les cpt a • • • a q&gt;lN {ix &lt; i2 &lt;

• • •&lt;i^) où ((Pi)i€f%i est une b.o. de fonctions propres et A AM + • • • + AlN la

valeur propre associée.

On dit que Q vérifie Yhypothèse (*) si (M, N et ô &gt; 0 étant donnés une fois

pour toutes) on a les inégalités sur les valeurs propres de Q :

kx &lt; • • • &lt; kN &lt; lN + ô &lt; AN+1 &lt; M. (*)

On a alors les trois propositions élémentaires suivantes:

PROPOSITION 1.4. Si (*) vraie, alors la première valeur propre de QA&quot;,

Af A, + A2+ • • • 4- kN vérifie kf &lt;kf + ô^kf &lt;NM.

PROPOSITION 1.5. // existe une constante universelle CN&gt;0 telle que, si
D(Q) $T() © 3ifoc où la décomposition est Q-orthogonale et que, Vx e 3£x, Q(x) &gt;
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C2 ||jc|(2, alors, si x e © (3Ch ® • • • ® 3(tN) où it e {0, ce} et il existe l tel que it »,
on a:

0^*7*-^ :&gt; r r2 II vil2

(la constante CN provient de la non orthogonalité de 3if0 et 3if» dans 3T et de la
nécessité d&apos;une majoration:

PROPOSITION 1.6. Soient Eq et £, deux sous-espaces de dimensions N de W,
la proximité de Eq et Ex {au sens Ex graphe de B, B e ^(E^, £(f) et |||B||| petit)
équivaut à la proximité dans AN9€ des droites e\ a • • • a e% et e\ a • • • a exN où {e1)

sont des bases de Er

L&apos;implication non triviale de 1.6 résulte de l&apos;inégalité:

e%)~e\ a • • • a C%\\2a»

Muni des résultats précédents, nous sommes prêts à énoncer deux résultats

d&apos;approximation:

THEOREME 1.7. Soit Q une forme quadratique &gt;0 sur ffl de domaine

D(Q) 3T0 © 3if* (Q-orthogonaux) et supposons que (*) est vraie pour Qo Q \^
et quef Vjc e JCX, Qx) ^ C2 \\x ||2, alors pour C assez grand {ne dépendant que de ô,

M y N), Qo et Q ont un N écart spectral ^e.

THEOREME 1.8. On donne outre Q^O une suite Qn de formes quadratiques
de même domaine que Q sur 3€ équipé d&apos;une métrique \-\n. On suppose que:

(i) il existe Cu QX) telle que, Vjc € X, Vjc, on ait: Q \x\ &lt; \x\n ^ C2 |jc|;

(ii) Vx € D{Q), limM0C \x\n \x\ et limn3C Qn{x) Q{x);
(iii) VxeD(Q),Q(x)*QH(x).

Alors, si (*) est vraie pour Q, il existe n0 tel que si n&gt;n0, Q et Qn ont un N-écart

spectral ^e.

Le schéma de la preuve de 1.7 and 1.8 est le même, en 3 étapes:

1) le case Af l,
2) l&apos;extension grâce aux fermions au cas N quelconque pour obtenir la

proximité des espaces propres,
3) l&apos;utilisation de 1.1 pour conclure.
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Preuve de 1.7. 1) Notons ixx &lt; jUi + ô ^ ju2&lt;M les 2 premières valeurs

propres de Q(), \\)\ la première fonction propre normalisée et les analogues Ai, A2

et cp{ pour Q. Le minimax donne bien sûr ju,&gt;A, et jU2^A2. Estimons la
différence /u, - A,: on a &lt;p, cpï + çc?7 € ^4 © 3£* et donc:

Donc |&lt;pr| — VAf/C, puis:

^, d&apos;où: A, &lt;„, &lt; A,(l-^et

Il reste à prouver la proximité des espaces propres engendrés par cpx et \px\ on a
(p\)=a&apos;i/&gt;i + t/&gt;; avec (t/;, | vi) =0 et donc 0(t^i)&gt; (jux -+- ô) |i/^ip, d&apos;où: iix&gt;

Q((pi})&gt;a2fil + (jMi + ô)|i/;;|2 et |vl|2^2^1VAf/Cô; utilisant la majoration
obtenue pour &lt;p^, on a:

\&lt;px - &lt;x%l&gt;{\ &lt; VM/C + (2/i! VM/C ô)1/2.

2) Le cas N quelconque: par les fermions et les propositions 1.4 et 1.5, on
obtient |(A, + • • • + A^) - (ii{ + • • • + pN)\ O(1/VC), (O ne dépendant que de

N, M, ô) et comme fi, ^ A, pour tout /, on a la même majoration pour |A; — jj,|.
La convergence des espaces propres vient de 1) grâce à 1.6.

3) Le contrôle de l&apos;écart est facile: si on note £q et E les sommes d&apos;espaces

propres en question, on a:

G((/ + B)(Cx)) &gt;

et comme C est proche de Id et Q ^ M sur £0&gt; on peut conclure à partir de 1.1.

Preuve de 1.8. 1) Soit (px une fonction propre de Q associée à klf on a

Ai, donc ïïsa^a,

Réciproquement, soit cpï e D(Q) telle que |&lt;pï| 1 et Qn((pï) A? une première
fonction propre de Qn. Supposons que Qn(&lt;PÏ) — (kx- a) (a&gt;0 fixé) pour une

infinité de n. (&lt;p?) est une suite bornée de D(Q), on peut donc extraire une suite
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faiblement convergente et convergenete dans X notée encore (&lt;pï):

Q(&lt;p) &lt;s ÏÎS Q(q&gt;ï) &lt; ÏÏS Qn(&lt;pï) &lt; A! - or

et

en utilisant la majoration |«|n&lt;Ç2| |, on a |&lt;p| l; d&apos;où contradiction. La

convergence de l&apos;espace propre engendré par ç?ï vers celui engendré par (px\

supposons que (pï admette une sous-suite convergeant faiblement pour Q et dans
2if vers ip, on a:

L&apos;hypothèse (*) assure donc \p

2) Par le minimax limAï^A! et donc l&apos;utilisation des fermions permet de
conclure la convergence des valuers propres et de la somme des espaces propres.

3 Le lemme 1.1, l&apos;hypothèse Qn ^ Q et la convergence de ||rt vers | | sur Eo

permettent de conclure.

IL Le spectre du graphe complet à N sommets

Soit FN le graphe complet à N sommets (N&gt;4): chaque couple de sommets
distincts est joint par une arête unique. On considère FN comme une variété
riemannienne singulière de dimension 1; si sd est l&apos;ensemble des N(N-\)I2
arêtes, une métrique reimannienne sur FN est entièrement déterminée (à
isométrie près) par la longueur l(a) de toute arête a de si. L&apos;espace des

métriques riemanniennes sur FN est canoniquement isomorphe à (R+)^.
On peut associer, de façon naturelle, à toute métrique y sur FN un laplacien A

obtenu par l&apos;extension de Friedrichs d&apos;une forme quadratique q sur L2{FNy vy)
définie ainsi: le domaine D(q) Hx(rN) est l&apos;ensemble des fonctions / dont la

restriction à chaque arête a est dans H1 et qui sont continues sur FN; la forme q
est alors donnée par q(f) Efl6^ Joa) \ffa(t)\2 dt où fa est la restriction de / à a et t
paramètre a par la longueur. Il n&apos;est alors pas difficile de déterminner le domaine
du laplacien: c&apos;est l&apos;ensemble des / dont la restriction à chaque arête est dans H2,

qui sont continues sur FN et dont la somme des dérivées en chaque sommet le
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long des différentes arêtes qui en sont issues est nulle. On a le:

THEOREME II.l. 5/ y0 est la métrique riemannienne sur FN telle que les

arêtes ont toutes une longueur égale à 1, la première valeur propre non nulle de

(FN, y0) est A(N) k2 avec k Arc cos (-1/(7V - 1)) (k e \n/2y Jt[); cette valeur

propre est de multiplicité N-l. De plusy l&apos;espace propre Eo associé est engendré

par les N fonctions cps (s sommet de FN) définies par: cps(t) cos kt pour toute arête
issue de s paramétrée par t e [0, 1], s correspondant à t 0 et q&gt;s(t) C cos kt pour
toute arête non issue de s paramétrée par t e [-£, \] avec C cos k/2 -1/(N - 1).

Si 3/v est le groupe des permutations des N sommets, l&apos;application (p*-*((p(s))se&lt;r

(s désigne l&apos;ensemble des sommets de FN), est un ZN-isomorphisme de Eq sur le

sous-espace vectoriel Fo {E5€^x5 0} de M y muni de l&apos;action naturelle de ZN.

Preuve, (i) On montre que Â(N) est une valeur propre de A ayant les

propriétés voulues. Pour une fonction &lt;p5 du type indiqué, l&apos;appartenance au
domaine de A s&apos;écrit

{cos k C cos k/2; k(sin k + C(N - 2) sin k/2) 0},

équations vérifiées si k Arc cos (—1/(N — 1)).

(ii) II faut montrer que X(N) est la plus petite valeur propre non nulle de A.
Pour cela on va prouver par le minimax que si kx 0 &lt; À2 ^ • • • ^ AN &lt; kN+1 &lt; • • •

est le spectre de {XN) g0), on a: ÀN+1 &gt; n2 et donc A2 * • • hN k(N). Pour
cela, on découpe XN en N morceaux %s(s e &amp;), étoiles de sommet s: on coupe
chaque arête en son milieu. Si ju(N) est la première valeur propre non nulle du

laplacien de Neumann sur %, on a Xn+1^ià(N): cela résulte de l&apos;injection

D(q) *&quot;* ®serfHl(%) et du minimax. On va prouver ju(JV) ;r2. Paramétrons

chaque arête a de %s par t e [0, \]y s correspondant à t \. Une fonction propre ç&gt;

du problème de Neumann sur %s sera de la forme (p\a(t) Ca cos kt avec les

conditions:

Va, a&apos;, (Ca-Ca)œsk/2 0 et

sin k/2 0,

on vérifie immédiatement que la plus petite solution non nulle est k n et donc

On doit aussi éconcer un résultat pour les métriques voisines de y0. Soit

aN &gt; 0 tel que 0 &lt; A(/V) - ocN&lt; A(N) + aN&lt; k2, alors pour y voisin de y0, le

laplacien de (FN, g) admet dans l&apos;intervalle [k(N) - aN&gt; k(N) + aN] des valeurs
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propres dont la somme des multiplictés vaut N - 1 et pas d&apos;autres valeurs propres
dans l&apos;intervalle ]0, n2]. On désigne par EY le sous-espace de L2{FNi vY()

engendrée par les espaces propres associés à ces valeurs propres proches de k(N).
On introduit aussi la transformation unitaire naturelle UY (/^,t£y (EY muni de la

structure euclidienne induite par L2(FN, vY)) définie au §1 et la forme quadratique
Qy-qy°llY où qY est la restriction à EY de la forme quadratique sur HX(FN)
associée à la métrique y. On a alors le:

THEOREME II.2. L&apos;application y*-»£?y est un difféomorphisme d&apos;une boule

fermée Bo de (IR+)^ centrée en y0 sur un voisinage de QY) k(N)(- \ )yo dans

Q(Eq) {formes quadratiques sur Eq}.

Preuve. Il résulte de la théorie générale des perturbations ([KO]) que Y*-*QY
est différentiable et même analytique près de y0: le théorème II.2 résulte donc du
théorème des fonctions implicites par linéarisation, comme suit:

LEMME H.3. Soit y, y0 + th, alors posant Qt QYi et qt qYt

O &lt;? -
o

&lt;-

(Ici on suppose que les formes quadratiques q sont toutes sur le même espace de

Hilbert L\FN, vYo), ce qu&apos;on obtient par un argument du type demi-densité (voir
plus bas la linéarisation explicite)).

Preuve de IL3. Qt{(p \ xp) qt{UYl(p | UYtxp) et en dérivant en t 0:

Q(q&gt; | \j&gt;) q(q) | ty) -h qo(q&gt; \ Ûxp) + qo{Ù(p \ ty),

les deux derniers termes sont nuls, car par construction Ùy est dans Eq

Calcul de la linéarisation
On suppose que y, est définie sur a e si par l&apos;élément de longueur dsa

(l + f&lt;pa(jt))d*, xe[0, 1] et &lt;pfl e CÔ(]0, 1]) (i.e. h est à support disjoint des

sommets, ce qui est toujours possible).
On a alors qt{f) * £*6^ J£ \fa(x)\2 (1 4- t(pa{x)) dx.
Pour se ramener à l&apos;espace de Hilbert fixe L\FNf i/yo), on pose
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et donc

?r(f)= S f[(fa(x)(l^t(pa{x)rV2]\\-¥t(pa(x)rldxf

il vient ainsi, par un développement limité en t 0 et le fait qu&apos;en t O,fa=fa

donc, si fa(x) Aa cos kx + Ba sin kx et si on pose

la==Jt l{a)=\ &lt;pa{x)dx,

II suffit alors de montrer que les N(N - l)/2 matrices qa(&lt;ps&gt; &lt;Ps) (s e &amp;&gt; s&apos; €

SO associées aux déformations ea telles que lb- àab sont linéairement
indépendantes A cause de la symétrie qa{&lt;ps, (ps) est pour s =£s&apos; une fonction de
l&apos;arête b [5, 5&apos;] que nous noterons wba II suffit de prouver que les vecteurs Wa

(a e si) de IR ^ sont indépendants, et donc il suffit de voir qu&apos;ils engendrent R^
Visiblement wba n&apos;a que trois valeurs possibles suivant les positions relatives des

arêtes a et b

(1) Si a 6, w; *2/(N-l),
(11) si a et ft ont un seul sommet commun, w£ k2/(N - 1),

(111) si a et fe n&apos;ont pas de sommet commun,

Les résultats précédents se montrent sans difficultés à partir de (1) (où plutôt
de la version bihnéaire de (1)) et de l&apos;expressions des &lt;p5 donnés en II 1

Soit Wo Ea6^ Wa, on vérifie que Wo est un vecteur non nul proportionnel au

vecteur Vo (1, 1, 1) L&apos;espace vectoriel engendré par les (Wa)aesi est donc
le même que celui engendré par le vecteur Vo et les vecteurs Va, a eG définis par

1 si a et b ont au moins un sommet commun,
0 sinon

Cherchons à écrire les vecteurs eaf aesé, de la base standard de U^ comme
combinaison linéaire des Vo et Va, aed Pour des raisons de symétrie, on
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cherche la solution sous la forme:

eQ xVa + yZ&apos;Vb + zZ&quot;Vc + tV0,

où 2&quot; porte sur les arêtes qui ont un sommet commun avec a et 2&quot; sur celles qui
n&apos;en ont aucun. On a ainsi, par un dénombrement et en évaluant eca

successivement lorsque c a, c et a ont un, puis deux sommets communs:

il suffit de vérifier que le déterminant obtenu en éliminant la colonne des z vaut
3 - N est donc =^0 pour N &gt; 4.

Remarque. Le cas du graphe à 3 sommets est bien entendu spécial, car on

trouve le spectre d&apos;un cercle de longueur variable, pour lequel toutes les valeurs

propres non nulles restent de multiplicité 2.

III. Convergence du spectre d&apos;une variété vers celui d&apos;un domaine

Nous avons en vue le:

THEOREME III. 1. Soit (X&gt; g) une variété riemannienne compacte de dimension

^3 et Qu. un domaine à bord C1 par morceaux de X. On fait l&apos;hypothèse (*)
sur les valeurs propres du problème de Neumann sur Q+, alors pour tout oc &gt; 0, //
existe une métrique C30, h sur X, induisant g sur Q+ telle que le N écart spectral du

problème de Neumann sur Q+ et du laplacien sur (X, h) soit ^a (les espaces

propres étant tous plongés dans L2(Xy vg)).

Le théorème reste peut être vrai pour la dimension 2, mais la preuve qui suit
ne marche pas. On fabrique la métrique h en deux temps: on construit d&apos;abord la

métrique singulière ge en remplaçant sur fl_=Jf\i2+, g par eg\ puis on
régularise ge par lés gen Fen - g, où Fen est une suite de fonctions Cx convergeant
vers %q+ + sXq-- Alors h est une des métriques g£&gt;n avec e assez petit et n assez

grand. Toutes les constructions peuvent se faire avec une métrique g dépendant
d&apos;un paramètre.
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A. Métrique singulières
Soit gf la métrique singulière décrite précédemment: plus précisément, on

considère sur M L2(X, ge) la forme quadratique de domaine Hl(X) définie par

E(&lt;p)=f \d&lt;p\\

les intégrales étant prises au sens de l&apos;élément de volume associé à g. Pour se

ramener à un espace de Hilbert fixe, on utilise l&apos;isomorphisme L2{X&gt; ge)—&gt;

L2(X, g), donné par cp-*{(p \ Q+, edlAcp \ QJ). La forme quadratique qe

transportée sur L2(X, g) admet alors pour domaine D(qE), ensemble des couples
(cp+, cpJ) e H\Q+) © H\Q_) tels que:

cp. \ bQ+ em(p+ \ bQ+

et on a:

&lt;?_)= f \dcp+\2 + - f \dcp.\2.

Dans un premier temps, on utilise une décomposition du domaine de D(qe)
en 3if()©3L à laquelle on applique le théorème 1.7:

3iT()= {(qp+, qp_) e D(qe) \ cp_ harmonique sur QJ\

On peut alors appliquer 1.8 avec C2 l/eAf(fî_) où Af est la première valeur

propre du problème de Dirichlet sur £2_.

On est ainsi ramené à étudier des convergences sur JC{). On a un isomorphisme
de Hl(Q+) sur % donné par cp-*(cp, £d/4P-(p \ Y) (Y bQ+) et P_ est

l&apos;opérateur de Poisson qui, à (peHV2(Y)y associe le prolongement harmonique
P_&lt;p € H\Q-): on a alors

et

&lt;?f(&lt;P)

JÇ2 +
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On peut ainsi visiblement adapter une variante du théorème 1.8 (l&apos;espace de

Hilbert JC{) et le domaine D(q{l) n&apos;étant pas ici fixes). Cette variante est laissée au
lecteur.

B. Régularisation
Soit £&gt;0, donné, Fn une suite de fonctions C* telles que Fn \ fi+ l,

1 &gt; Fn \ fî_ &gt; e et Vx e Û_, linv^ Fn(x) e.

On se trouve alors immédiatement dans les conditions d&apos;applications du
théorème 1.8.

C. Fin de la preuve
Nous devons maintenant décrire la transformation unitaire U du N-espace

propre du problème de Neumann de Q+ sur celui de Fen • g h. On a utilisé deux
formes quadratiques intermédiaires: la restriction de qB à $f0; on note ici Qs sa

restriction au Af-espace propre; puis qe elle-même dont on note Q2 la restriction
au iV-espace propre; on note Q3 la forme associée de même à h. On note
Uo,i&gt; U\,2&gt;. les transormations unitaires naturelles introduites au §1. On choisi
d&apos;abord s pour que \\Q\° UOiï — Qo\\ ^ or/3, puis quitte à diminuer encore e, on
assure \\Q2° Ult2 ~ &lt;2ill — ar/3, on choisit alors n pour que ||(?3o £/2,3 - Q2II - ^/3,
on a alors ||Ô3o^2,3o^i,2°^ai ~ Goll — &amp;- A priori U2,3° • - - ° UO&gt;1 n&apos;est pas la

transformation unitaire décrite en /, mais cela n&apos;a pas d&apos;inconvénient pour ce qui
suivra. Il est essentiel que U dépende continûment des paramètres dont g peut
dépendre.

IV. Voisinages tabulaires des Graphes

Dans ce §, la condition dimension (X) &gt; 3 ne joue aucun rôle.

A. Métrique adaptée
Soit (r, y) un graphe fini muni d&apos;une métrique riemannienne y, donnée par la

longueur de chaque arête. On suppose que F admet un plongement (injectif) dans

une variété compacte X de dimension ^2. Ceci est vrai quel que soit le graphe F
si dimension (X) ^ 3. On note encore F l&apos;image de F par ce plongement.

On désigne par métrique adaptée à (F, y) une métrique riemannienne g sur X,
euclidienne au voisinage de F, telle que les arêtes de F soient des géodésiques de g
et induisant y sur F. Cette dernière condition est la plus importante. Les autres

apportent seulement des simplifications techniques.
Un moment de réflexion permet de se convaincre de l&apos;existence de métriques

adaptées et même dépendant de façon continue de y (Ffixé).
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Désignons par Qe le voisinage tubulaire de rayon e de F dans X muni de la

métrique adaptée g. Alors QF s&apos;obient pour 0 &lt; e &lt; e{) en recollant des morceaux
cylindriques COtt (a e sd) et des morceaux Ws&gt;f (s e ïf) (se (resp. &amp;) désigne
comme au §2 les arêtes (resp. sommets de F)).

Les Catt sont des cylindres pleins [0, la -2Ke] x Bd~l(e) (K choisi plus bas

dépendant de F, mais pas de y), ils seront recolés aux Wse (s sommets de a) le

long des bouts {0} x Bd~l(e) et {la -2Ke} x Bd~l(e) (Bd&apos;\e) désigne la boule
euclidienne de dimension d - 1 et de rayon e). On paramètre les Cae par (xu x&apos;)

avec jc, e [0, la - 2Ke] et x&apos; e Bd~\e).
Les morceaux WSte sont des dilatés de rapport e de morceaux isométriques à

WNs où Ns est le nombre d&apos;arêtes issues de s. On choisit K tel qu&apos;on puisse placer
sur la sphère de rayon K au moins Nmax points m, (Nmax maxsecfNs et k^l)
éloignés d&apos;une distance euclidienne &gt;2. WN est le voisinage tubulaire euclidien de

rayon 1 de l&apos;étoile d&apos;origine 0 et de branches [0, m,] (1 &lt; î &lt; Ns) dans Ud, tronqué
par des hyperplans orthogonaux en chaque m, à [0, m,]

&lt;N =4

On remarque que WN czUd n&apos;est pas unique, mais ici on n&apos;utilisera pas les

angles entre les branches de WN.

B. Proximité spectrale
Ce § verra la justification de la définition donnée au §11 du laplacien sur

(F, y): on va montrer que les valeurs propres de ce laplacien sont les limites de

celles du problème de Neumann dans Q€ (X étant muni toujours d&apos;une métrique
adaptée). On suppose que le spectre de (F, y) vérifie (*) et on désigne par E le

iV-espace propre (E c L2(F))y on a le:

THEOREME IV. 1. Soit F le N-espace propre de (Qet g) avec les conditions
de Neumann (équipé de la structure euclidienne et de la forme quadratique associée

au problème de Neumann sur Qe); on désigne par qE et qF les formes quadratiques
naturelles sur E et F. Il existe une injection (dépendant continûment des éventuels
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paramètres du problème) Je de E dans Hl{Qe) telle que la limite de l&apos;écart entre
Je(E, qç) et (Fy Qf) s°it nulle lorsque e—»0.

En particulier, Vi, lim^oMA-) Al(r), mais le théorème donne aussi un
résultat sur les espaces propres au moyen de Je.

Preuve. Elle va suivre essentiellement de la construction de JE et du théorème
1.7.

CONSTRUCTION DE Je. On va en fait définir Je(f) pour / e H\r):
• Sur les cylindres Ca&gt;e, soit la la — 2ke, alors

où /„ est la restriction de / à a paramétrée par [0, /„] et yd vol (Bd &apos;(0,1)).

• Sur les WSit, on pose Jef(x) =f(s)/(yd ¦ e(d-1)/2). On voit que:

|^||2(i + o(£)) + o(£)(x^)l2)
(*)

f I^e/P (1 + O(e)) f \df\2 (ici les O sont indépendants de /).

Désignons par % l&apos;image Je{Hl{F))} et par 9ifx l&apos;ensemble des / de H\Qe)
telles que:

• Sur Qe, on ait pour tout xx e [0, Ia],

On vérifie que les hypothèses du théorème L7 sont satisfaites:
Soit en effet, pour chaque s e£f, Bie (l^i^N-l) les morceaux du bord de

WSt£ qui sont isométriques à Bd~l{e) et % sous-espace de Hl(Wse) formé des

fonctions telles que, Vi, 1&lt;/&lt;N- 1, Jfilf/ 0, alors si À^e) est la plus petite
valeur propre de la forme quadratique JWiJd/|2 avec % comme domaine, il est

clair que l&apos;on a Âi(e) Â1(l)/e2 et que A^IJX). Soit \ix la plus petite valeur

propre &gt;0 du laplacien sur Bd~l{\) avec les conditions de Neumann; on a alors,
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pour / € 3Q\

\ l/l2.

On est ainsi dans les hypothèses de 1.7, ce qui permet d&apos;achever la preuve.

V. Fin de la preuve

On se donne a &gt; 0. On plonge FN dans X et on construit pour les y e Bo des

métriques adaptées g dépendant régulièrement de y sur X. On choisit d&apos;abord

e &gt; 0 pour que l&apos;écart entre Je(EY, qY) et le N-espace propre de Qe soit ^a/2. On
note U^ l&apos;isométrie naturelle entre ces deux espaces euclidiens. On choisit ensuite
e&apos; et n pour que le N-écart spectral entre le problème de Neumann sur Qe et le

laplacien de h Fen -g soit &lt;or/2. On note U2 l&apos;isométrie naturelle entre ces

sous-espaces de L2(X, vg). Soit qh la forme quadratique associée à h sur le

TV-espace propre du laplacien Ah et Fa(y) qh ° U2° U\ ° UY e Q(Eq). Par construction

Fa est continu de fî0 dans Q(E0) et on a, Vy e BOf \\Fa(y) - Qy\\ ^ oc. Comme
le spectre de Fa(y) est constitué des N premières valeurs propres du laplacien Ah,
la conclusion résulte du lemme de topologie énoncé dans l&apos;introduction.

Remarque finale. Que se passe-t-il dans le cas de la dimension 2? La méthode
utilisée ne marche pas dans le §111 à cause de l&apos;exposant e{dl2)~l. On peut
cependant être tenté de faire la

CONJECTURE. 5/ X est une surface compacte de genre g et mx{g) la

multiplicité maximale de la première valeur propre non nulle du laplacien d&apos;une

métrique riemannienne sur X. Alors m}(g) C(g) - 1 où C(g) maxN{FN est

plongeable dans X). En fait ([RL]),

Cette conjecture est vérifiée pour g 0: mi(0) 3, d&apos;après [CG] et pour
g l: mî(l) 6, d&apos;après [BN]. Une minoration m1(g)&gt;C(g)-l pourrait
ré^ultei d&apos;une méthode voisine de celle utilisée ici. Je ne vois pas bien comment
obtenir la majoration (pour la minoration dans le cas à courbure constante voir
aussi [B-C]).
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