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© 1986 Birkhiuser Verlag, Basel

Sur la multiplicité de la premiére valeur propre non nulle du
Laplacien

Yves CoLIN DE VERDIERE

L’objet de cet article est de prouver le:

THEOREME. S§i X est une variété compacte de dimension =3 et N un entier
arbitraire, il existe sur X des métriques riemanniennes dont la premiére valeur
propre non nulle du laplacien est de multiplicté N.

Remarque. 11 résulte de la construction qu’on peut choisir la métrique sans
isométries non triviales.

Pour situer ce résultat, rappelons que, dans le cas des surfaces, la multiplicité
de la premicre valeur propre non nulle du laplacien (et en fait de tout opérateur
différentiel elliptique autoadjoint du second ordre réel opérant sur les fonctions)
est majorée en fonction du genre de la surface ([CG] et [BN]). D’autre part, dans
le cas de S”, la multiplicité pour la métrique usuelle est 4, mais on connait des
exemples ([UA], [B-B]) ot elle vaut 7. L’idée de départ vient d’Arnold ([AD]):
dans une famille de formes quadratiques dépendant d’un certain nombre de
paramétres, 'apparition de valeurs propres multiples pour certaines valeurs du
paramétre est un phénomene stable.

Le résumé de la démonstration est le suivant: on munit le graphe complet a N
sommets, Iy, d’une métrique riemannienne (singulietre aux sommets) en
définissant la longueur de chaque aréte. On désigne par y, la métrique pour
laquelle toutes ces arétes ont une longueur égale a 1. On peut associer a chacune
de ces métriques sur Iy un laplacien naturel et on montre que la premiére valeur
propre non nulle du laplacien de y, est de multiplicité N — 1.

Par perturbation de y, I’espace propre associé va écalater et pour compenser
cette dispersion, on a besoin d’un résultat de stabilit¢ qui dit que tous les
éclatements possibles sont réalisables par des métriques voisines de y, et cela de
fagon unique (voir un énoncé précis dans I1.2).

On construit pour chacune de ces métriques voisines de y, un plongement
isométrique de Iy dans X muni d’'une métrique riemannienne g (la condition
dim (X) =3 est ici essentielle). On modifie alors g & I'extérieur d’un tube de
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rayon ¢ autour de I'image de Iy en multipliant g par un petit coefficient €’'.
Lorsque € et €'— 0 convenablement, on montre que le spectre de la métrique
considérée converge vers celui de Iy (il y a aussi un probléme de lissage de la
métrique); la condition d =3 intervient aussi ici a cause de I'invariance conforme
de [ |df|* en dimension 2 (voir §III et IV).

Il ne reste plu qu’a recourir a un argument de topologie: si on a une famille
@, d’applications continues d’une boule fermée B, de R” dans R" telle que,
lorsque o — 0, @, converge uniformément vers un difféomorphisme de B, sur un
compact de R” dont lintérieur contient l'origine, alors, pour « assez petit,
I'origine est dans 'image @, (B,).

I. Approximation d’espaces propres et fermions
Commengons par prouver le

LEMME 1.1. Soient M >0 et N un entier, il existe une constante C ne

dépendant que de M et N telle que, si Q, et Q, sont deux formes quadratiques sur
un espace euclidien E de dimension N vérifiant:

VXEE, OS‘QI(X)SQZ(x)SMlxle,

alors on a:

sup |01(x) = Qa(x)| = C - max |4,(Q1) = ()"

Ix|g= 1=i=
ot {A,(Q})}1=i=n est la suite des valeurs propres de Q; rangées par ordre croissant.
Preuve. Posons f(x) = @,(x) — Q;(x) et soit S la sphére unité de E équipée de

la mesure canonique. On pose: I = [5f(x) et donc I =Cy XX, (A(Q2) — 4,(Q))).
D’autre part, |grad f| = 4M |x| et donc:

Vx, x,€ S, fOx)=f(xo) — 4M |x — x|,

d’ott P'on tire: 1= [,f(x0)/2 ot A={xe€S||xo—x|=f(x;)/8M}, et donc I=
C(f(x,))"; d’ou suit le lemme.

Remarque 1. 11 nous arrivera d’appliquer le lemme pour comparer 2 formes

quadratiques Q, et Q, telles que Q,= Q, — ¢ |x|?, ce que I'on fera en appliquant
I.1a Q2+ € |x‘2 et Q].



256 YVES COLIN DE VERDIERE

Remarque 2. Ce lemme formalise le fait que deux ellipsoides de tailles
voisines et emboités sont nécessairement proches I'un de ’autre.

Introduisons maintenant quelques notations: soient E, et E; deux sous-espaces
vectoriels de dimension N d’un espace de Hilbert, munis de structures euclidi-
ennes (x|y)o=(Aox|y) et (x|y),=(Ax|y) avec A; symétrique >0 sur E;.
On définit une isométrie Ug, g, de (Ey, ( )o) sur (E;,  ),) de la fagon suivante:

— A2 172
Ug,. £, = A} UE, £,A0°,

ol Ug, g, est une isométrie de (E,, { )) sur (E;, { )) construite de la fagon
suivante: on suppose que E, et E; sont assez proches au sens que E; est le graphe
d’une application linéaire B € L(E,, Eg) et on cherche U, g, sous la forme:

Ug, e (x)=(I+ B)(Cx) avec CeL(k);

il est facile de vérifier qu’on peut prendre (et on le fait), C=[({ + B)*° (I +
B)]™'?2, ce qui a un sens si |||B]|| <1 par exemple.

On a ainsi défini de fagon canonique une isométrie de (E,, {( ),) sur
(E;, ( ),) pourvu que E; soit assez proche de Ey: cela nous sera utile lorsque les
espaces E, et E, dépendront de parameétres: Ug, g, dépendra continlment de ces
parametres.

DEFINITION 1.2. Soient maintenant données sur (E;, { );) des formes quad-
ratiques positives q;, on dira que (Ey, { )o, qo) et (E, { )1, q,) ont un écart < ¢ si
lgi°Ug, e, — qoll =&, oi ||| est la norme de la forme quadratique, i.e. le
maximum de celle-ci sur la sphere unité de I’espace euclidien.

Remarque. Cet “écart” n’est pas une distance: il n’est méme pas symétrique
entre E, et E;.
Enongons maintenant le:

CRITERE 1.3. Dans la situation précédente, il existe, M tel que ||q,|| =M et N
étant donnés, pour tout € >0, des nombres «; (1<i=<6) tels que, si: ||[Ag— 1| =
ay, ||A;—1|| =@, ||B]| = a3, Max; [4;(q1) — 4/(qo)| = @4 et q4(x + Bx) =qo(x) -
as |x|?, alors (Ey, { o, qo) et (Ey, { )1, q1) ont un écart <e.

Ce critere résulte du lemme et du fait qu’on peut choisir a;, @,, a3 pour que
llg1° Ug, £, — q1°(I + B)|| < €' (¢' donné a 'avance).
Dans la pratique ultérieure, E; et E; seront les sous-espaces engendrés par les
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N premieres fonctions propres de deux formes quadratiques (on les désignera par
N-espaces propres des formes quadratiques): g, et q, seront les restrictions de ces
formes aux espaces E, et E;, chaque espace étant muni de la structure
euclidienne induite lors du probléme spectral considéré. On dira alors que les
deux formes quadratiques Q, et Q, ont un N-écart spectral <g si la siutation 1.2
est vérifiée pour E, et E,.

Fermions

Dans plusieurs problémes que nous allons considérer, il est malaisé de
contrdler les espaces engendrés par les N premieres fonctions propres a cause de
la petitesse des écarts des valeurs propres: pour traiter ce probléme, nous
utiliserons un concept emprunté a la mécanique quantique qui nous donne en fait
une version plus précise du principe du minimax.

On introduit la notion de fermions: on considére N particules quantiques
gouvernées par le méme hamiltonien et obéissant a la de Fermi: la fonction
d’onde est antisymétrique par rapport aux variables de position x; (1=<i=<N).
Plus formellement, N étant donné, on peut associer a (#, D(Q), Q) (Q forme
quadratique =0 fermée de domaine D(Q)) les espaces de Hilbert AY# = ®" ¥,
la forme quadratique O®" et sa restriction Q*". Par exemple, Q®N est défini sur
les éléments décomposés par:

0% (1 ® - B pn) = Q@) |@l* - - - |onl
+O(@2) @i l@sl* - - o>+ - -

Les fonctions propres et valeurs propres de 0" sont les @; A - -+ A @, (i1<i,<
+++<iy) ol (@;)ien est une b.o. de fonctions propres et A=4; +---+4, la
valeur propre associée.

On dit que Q vérifie ’hypothése (*) si (M, N et 6 >0 étant donnés une fois
pour toutes) on a les inégalités sur les valeurs propres de Q:

M= SAN<Ay+6=Ay, =M. (*)

On a alors les trois propositions élémentaires suivantes:

PROPOSITION 1.4. Si (x) vraie, alors la premiére valeur propre de Q*",
A=A+ A+ -+ Ay vérifie AT <A+ =A< NM.

PROPOSITION 1.5. 1l existe une constante universelle Cy >0 telle que, si
D(Q) = #,® K. ou la décomposition est Q-orthogonale et que, Vx € X, Q(x) =
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C?||x||?, alors, sixe (%, ® - Q%K) ou i;e {0, =} et il existe | tel que i;= o,
on a:

Q" (x) = CnC? ||x||3n.

(la constante Cy provient de la non orthogonalité de ¥, et X, dans ¥ et de la
nécessité d’'une majoration:

S x| = Coa( T Il?).

aeA aeA

PROPOSITION 1.6. Soient E, et E, deux sous-espaces de dimensions N de ¥,
la proximité de E, et E, (au sens E, = graphe de B, B € #(E,, Ey) et |||B]|| petit)
équivaut a la proximité dans AN des droites e A -+ - neletel A+ Ae) oi ()
sont des bases de E,;.

L’implication non triviale de 1.6 résulte de I'inégalité:
l(e2+ Be) A---A(eX+Bed)—eln---ACYav=||Bel||* + - - - + || BeR||*

Muni des résultats précédents, nous sommes préts a énoncer deux résultats
d’approximation:

THEOREME 1.7. Soit Q une forme quadratique =0 sur # de domaine
D(Q) = #, D H.. (Q-orthogonaux) et supposons que (*) est vraie pour Qo= Q [,
et que, Vx € X, Qx) = C?||x||?, alors pour C assez grand (ne dépendant que de 9,
M, N), Q¢ et Q ont un N écart spectral <¢.

THEOREME 1.8. On donne outre Q =0 une suite Q,, de formes quadratiques
de méme domaine que Q sur ¥ équipé d’une métrique |-|,. On suppose que:
(i) il existe C,, C,>0 telle que, Vx € ¥, Vx, on ait: C, |x| =|x|, = G, |x|;
(ii) Vx € D(Q), lim,. |x|, = [x| et lim,.. Q. (x) = Q(x);
(iii) Vx € D(Q), Q(x) = Q. (x).
Alors, si () est vraie pour Q, il existe n, tel que si n =n,, Q et Q, ont un N-écart
spectral <e.

Le schéma de la preuve de 1.7 and 1.8 est le méme, en 3 étapes:

1) le case N=1,

2) I’extension grace aux fermions au cas N quelconque pour obtenir la
proximité des espaces propres,

3) l'utilisation de 1.1 pour conclure.
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Preuve de 1.7. 1) Notons p,<p,+8=u,=M les 2 premiéres valeurs
propres de Q,, ¥, la premiere fonction propre normalisée et les analogues A,, A,
et @, pour Q. Le minimax donne bien sr u,=A, et u,=A,. Estimons la
différence u, — A,: on a @, = @\ + @7 € #, D ¥, et donc:

= 0(@) = () + Q(97) = C? |@if-

Donc |@7| = VM/C, puis:

\/M

T )

d’ou: AISHISA (1—"‘6-'

O(eD) =4, et |gil=1-
Il reste a prouver la proximité des espaces propres engendrés par ¢, et ¥;: on a

=ay,+ ¥, avec (Y, | y¢})=0 et donc Q(yi)=(u,+6)|yi>, dou: u,=
Q@)= a’uy + (u, + 8) |y et |yi|*<2u,VM/CS; utilisant la majoration ob-
tenue pour @7, on a:

| — ay\| = VMIC + 2u, VMIC §)™.

2) Le cas N quelconque: par les fermions et les propositions 1.4 et 1.5, on
obtient |(A, 4+ - - + Ax) — (u; + - - - + upy)| = 0(1/VC), (O ne dépendant que de
N, M, §) et comme y; = A, pour tout i, on a la méme majoration pour |; — u;].
La convergence des espaces propres vient de 1) grace a 1.6.

3) Le contrdle de I’écart est facile: si on note E, et E les sommes d’espaces
propres en question, on a:

Q(Uk, £(x)) = Q(( + B)(Cx)) = Q(Cx)
et comme C est proche de Id et Q =M sur E;, on peut conclure a partir de I.1.

Preuve de 1.8. 1) Soit ¢, une fonction propre de Q associée a A;, on a

i Ql'ﬁ;) E)=h, done Tmigst,
1in 1 "

Réciproquement, soit @7 € D(Q) telle que |@7| =1 et Q,(¢7) = Al une premiére
fonction propre de Q,. Supposons que Q,(¢7) =< (4, — a) (o >0 fixé) pour une
infinité de n. (@7) est une suite bornée de D(Q), on peut donc extraire une suite
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faiblement convergente et convergenete dans # notée encore (@7):

0(p)=lim Q(¢}) =lim Q. (p7) =4 — «
et

el = @il = lleil. — ol + el = ol

en utilisant la majoration |-|,=C,| |, on a |p|=1; d’ou contradiction. La
convergence de l’espace propre engendré par @7 vers celui engendré par @;:
supposons que @7 admette une sous-suite convergeant faiblement pour Q et dans
J vers ¢, on a:

O(y) <lim O(¢}) <lim Q,(¢7) = A1.

L’hypothése (*) assure donc y = ;.
2) Par le minimax lim A7 <A, et donc l'utilisation des fermions permet de
conclure la convergence des valuers propres et de la somme des espaces propres.
3 Le lemme 1.1, ’hypothese Q, = Q et la convergence de |-|, vers | | sur E,
permettent de conclure.

II. Le spectre du graphe complet a N sommets

Soit Iy le graphe complet 2 N sommets (N =4): chaque couple de sommets
distincts est joint par une aréte unique. On considére I, comme une variété
riemannienne singuliere de dimension 1; si & est I’ensemble des N(N —1)/2
arétes, une métrique reimannienne sur I, est entierement déterminée (a
isométrie prés) par la longueur /(@) de toute aréte a de . L’espace des
métriques riemanniennes sur I est canoniquement isomorphe a (R*)%.

On peut associer, de fagon naturelle, a toute métrique y sur I'y un laplacien A
obtenu par I’extension de Friedrichs d’'une forme quadratique g sur L*(I, v,)
définie ainsi: le domaine D(q) = H'(Iy) est ’ensemble des fonctions f dont la
restriction 2 chaque aréte a est dans H' et qui sont continues sur I; la forme g
est alors donnée par q(f) = L.ca J&O |fi(t)|* dt ou f, est la restriction de fa a et ¢
parametre a par la longueur. Il n’est alors pas difficile de déterminner le domaine
du laplacien: c’est 'ensemble des f dont la restriction a chaque aréte est dans H?,
qui sont continues sur Iy et dont la somme des dérivées en chaque sommet le
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long des différentes arétes qui en sont issues est nulle. On a le:

THEOREME 11.1. Si y, est la métrique riemannienne sur Iy telle que les
arétes ont toutes une longueur égale a 1, la premiére valeur propre non nulle de
(In, o) est A(N)=k* avec k = Arccos (—1/(N — 1)) (k € |n/2, n[); cette valeur
propre est de multiplicité N — 1. De plus, I’espace propre E, associé est engendré
par les N fonctions @, (s sommet de Iy) définies par: @,(t) = cos kt pour toute aréte
issue de s paramétrée par t € [0, 1], s correspondant at =0 et @ (t) = C cos kt pour
toute aréte non issue de s paramétrée par t € [—3, 3] avec C cos k/2=—1/(N —1).
Si Sy est le groupe des permutations des N sommets, I’application @ — (@(5))ses
(s désigne I’ensemble des sommets de I), est un Zy-isomorphisme de Ey sur le
sous-espace vectoriel Fy={L;.4x; =0} de R muni de l'action naturelle de .

Preuve. (i) On montre que A(N) est une valeur propre de A ayant les

propriétés voulues. Pour une fonction @, du type indiqué, I’appartenance au
domaine de A s’écrit

{cos k = C cos k/2; k(sin k + C(N —2) sin k/2) =0},

équations vérifiées si k = Arccos (—1/(N — 1)).

(ii) II faut montrer que A(N) est la plus petite valeur propre non nulle de A.
Pour cela on va prouver par le minimax que siA, =0< A, = - =Ay=Ay=---
est le spectre de (Xy, go), on a: Ay, =’ et donc A,=---=Ay=A(N). Pour
cela, on découpe Xy en N morceaux &(s € &), étoiles de sommet s: on coupe
chaque aréte en son milieu. Si u(N) est la premiére valeur propre non nulle du
laplacien de Neumann sur &, on a Ay.;=u(N): cela résulte de linjection
D(q) < D, H' (%) et du minimax. On va prouver u(N)= x> Paramétrons
chaque aréte a de &, par ¢ € [0, 1], s correspondant a ¢ = 3. Une fonction propre ¢
du probleéme de Neumann sur &, sera de la forme @|,(f) = C,coskt avec les
conditions:

Va,a', (C,— C,)cosk/2=0 et
k(3 C,)sinki2=0,

on vérifie immédiatement que la plus petite solution non nulle est kK = 7 et donc
u(N) = 2.

On doit aussi éconcer un résultat pour les métriques voisines de y,. Soit
an >0 tel que 0<A(N) — ay <A(N)+ ay <a? alors pour y voisin de y,, le
laplacien de (I, g) admet dans I'intervalle [A(N) — ay, A(N) + ay] des valeurs
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propres dont la somme des multiplictés vaut N — 1 et pas d’autres valeurs propres
dans lintervalle ]0,7%]. On désigne par E, le sous-espace de L*(Iy,v,,
engendrée par les espaces propres associés a ces valeurs propres proches de A(N).
On introduit aussi la transformation unitaire naturelle U, = Ug, ¢, (E, muni de la
structure euclidienne induite par L*(Iy, v,)) définie au §1 et la forme quadratique
Q,=q,°U, ou g, est la restriction a E, de la forme quadratique sur H'(Iy)
associée a la métrique y. On a alors le:

THEOREME 11.2. L’application y— Q, est un difféomorphisme d’une boule
fermée B, de (R*)* centrée en vy, sur un voisinage de Q, = A(N){:|-),, dans
Q(E,) = {formes quadratiques sur E,}.

Preuve. 1l résulte de la théorie générale des perturbations ([KO]) que y— Q,
est différentiable et méme analytique prés de y,: le théoréme I1.2 résulte donc du
théoréme des fonctions implicites par linéarisation, comme suit:

LEMME I1.3. Soit v, =y, + th, alors posant Q,= Q. et q,=q,,

d

. . d
Q - zi; ;=0Q“ q=— q;.

(Ici on suppose que les formes quadratiques g sont toutes sur le méme espace de
Hilbert L*(I, v,,), ce qu’on obtient par un argument du type demi-densité (voir
plus bas la linéarisation explicite)).

Preuve de I1.3. Q¢ | ) =q,(U, @ | U, y) et en dérivant en ¢ = 0:

0@ ¥)=4(9 | ¥) +qu® | Uy) +q(Up | ),
les deux derniers termes sont nuls, car par construction U est dans Eg.

Calcul de la linearisation

On suppose que ¥y, est définie sur a € & par I’élément de longueur ds, =
(1+te,(x)) dx, xe[0,1] et @, € C5(]0, 1]) (i.e. h est a support disjoint des
sommets, ce qui est toujours possible).

On a alors ¢,(f) = Lacs [0 [fu(0)I* (1 + t@a(x)) dx.
Pour se ramener 2 I'espace de Hilbert fixe L*(I, v,,), on pose

Falx) = (1 + t@a(x)) *fo (x)
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et donc

a.() =2 | [F)+1t@,(x)) (1 + te,(x)) ™" dx,

aesd 70
il vient ainsi, par un développement limité en ¢ =0 et le fait qu’en t =0, f, =f,:

af)=-2 ) (Falx)? + K, () @ (x) dx,

aed

donc, si f,(x) = A, cos kx + B, sin kx et si on pose

. d 1
[, = o l(a) = , @.(x) dx,

r=0

(1)
q(f) = —k? 2 la(Arzt + Bczz)

aed

I1 suffit alors de montrer que les N(N — 1)/2 matrices ¢,(@;, ¢;') (s€ &, s’ €
¥) associées aux déformations ¢, telles que I, = 0, sont linéairement
indépendantes. A cause de la symétrie §,(@;, @,-) est pour s #+ s’ une fonction de
l'aréte b ={s, s'] que nous noterons wi. Il suffit de prouver que les vecteurs W,
(a € &) de R sont indépendants, et donc il suffit de voir qu’ils engendrent R

Visiblement w’ n’a que trois valeurs possibles suivant les positions relatives des
arétes a et b.

(i) Sia=b, wi=k*(N-1),
(ii) si a et b ont un seul sommet commun, w2 =k?/(N — 1),
(iii) si a et b n’ont pas de sommet commun,

wb = —2k*/(N = 1)(N = 2).

Les résultats précédents se montrent sans difficultés a partir de (1) (ou plutot
de la version bilinéaire de (1)) et de I’expressions des ¢, donnés en II.1.

Soit Wy = Y.« W,; on vérifie que W, est un vecteur non nul proportionnel au
vecteur Vo=(1,1,...,1). L'espace vectoriel engendré par les (W,),. est donc
le méme que celui engendré par le vecteur V, et les vecteurs V,, a € G définis par:

5 {1 si @ et b ont au moins un sommet commun,
“ 10 sinon.

Cherchons 2 écrire les vecteurs e,, a € &, de la base standard de R comme
combinaison linéaire des V, et V,, a e . Pour des raisons de symétrie, on
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cherche la solution sous la forme:
e, =xV,+y2'V, + 22"V, +tV,,

ou 2’ porte sur les arétes qui ont un sommet commun avec a et 2" sur celles qui
n‘en ont aucun. On a ainsi, par un dénombrement et en évaluant e
successivement lorsque ¢ = a, ¢ et a ont un, puis deux sommets communs:

1=x+2(N-2)y +t
O=x+(N-1)y+(N-=3)z+1¢
0=4y + (2N - T7)z +1,

il suffit de vérifier que le déterminant obtenu en éliminant la colonne des z vaut
3 — N est donc #0 pour N =4.

Remarque. Le cas du graphe a 3 sommets est bien entendu spécial, car on
trouve le spectre d’un cercle de longueur variable, pour lequel toutes les valeurs
propres non nulles restent de multiplicité 2.

III. Convergence du spectre d’une variete vers celui d’un domaine
Nous avons en vue le:

THEOREME I11.1. Soit (X, g) une variete riemannienne compacte de dimen-
sion =3 et 2, un domaine a bord C' par morceaux de X. On fait ’hypothése (*)
sur les valeurs propres du probléme de Neumann sur Q. , alors pour tout a >0, il
existe une métrique C*, h sur X, induisant g sur Q. telle que le N écart spectral du
probléme de Neumann sur Q. et du laplacien sur (X, h) soit <a (les espaces
propres étant tous plongés dans L*(X, v,)).

Le théoréme reste peut &tre vrai pour la dimension 2, mais la preuve qui suit
ne marche pas. On fabrique la métrique 4 en deux temps: on construit d’abord la
métrique singuliére g. en remplagant sur Q_=X\Q,, g par &g; puis on
régularise g, par les g, , = F;, - g, ot F}, est une suite de fonctions C* convergeant
Vers X o, + €xgq_. Alors h est une des métriques g, , avec € assez petit et n assez
grand. Toutes les constructions peuvent se faire avec une métrique g dépendant
d’un paramétre.
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A. Métrique singuliéres
Soit g. la métrique singuliere décrite précédemment: plus précisément, on
considere sur ¥ = L*(X, g.) la forme quadratique de domaine H'(X) définie par

a.(9) = lagl+ e[ dgP,
2, Q_

les intégrales étant prises au sens de I’élément de volume associé a g. Pour se
ramener a un espace de Hilbert fixe, on utilise I'isomorphisme L*(X, g,)—
L*(X,g), donné par @p—(p | Q.,e"p | 2_). La forme quadratique g,
transportée sur L*(X, g) admet alors pour domaine D(q,), ensemble des couples
(@4, p_) e H'(Q,) ® H'(L2_) tels que:

Q- b2, = 8d/4<P+ I b2,

etona:

1
qe(¢+€9¢-)=f |d¢+lz+-f lde_|*.
Q. Elg_

Dans un premier temps, on utilise une décomposition du domaine de D(q,)
en X, D ¥. a laquelle on applique le théoreme 1.7:

Ho={(¢+, ®-) € D(q.) | @_ harmonique sur 2_)
H.={(0, ¢_) | p_ € Hy(R_)}

On peut alors appliquer 1.8 avec C*>=1/eA?(2_) ou AP est la premiére valeur
propre du probléme de Dirichlet sur €_.

On est ainsi ramené a étudier des convergences sur J;,. On a un isomorphisme
de H'(Q,) sur %, donné par @— (@, e™P_¢|Y) (Y=bQR,) et P_ est
'opérateur de Poisson qui, a @ € H"*(Y), associe le prolongement harmonique
P_@ e H'(L_): on a alors

lok=| lof+e| 1Pof

+

et

a.@)= [ ldgP+ et [ P g)p.
Q, Q.
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On peut ainsi visiblement adapter une variante du théoréme 1.8 (I’espace de
Hilbert %, et le domaine D(q}) n’étant pas ici fixes). Cette variante est laissée au
lecteur.

B. Regularisation

Soit £ >0, donné, F, une suite de fonctions C™ telles que F, | 2, =1,
1=zF, | Q_=¢cetVxeQ_, lim,_,. F,(x)=¢.

On se trouve alors immédiatement dans les conditions d’applications du
théoreme 1.8.

C. Fin de la preuve

Nous devons maintenant décrire la transformation unitaire U du N-espace
propre du probleme de Neumann de €2, sur celui de F;,- g = h. On a utilisé deux
formes quadratiques intermédiaires: la restriction de g, a X,; on note ici Q, sa
restriction au N-espace propre; puis ¢, elle-méme dont on note Q, la restriction
au N-espace propre; on note (; la forme associée de méme a h. On note
Us,1, Ui, . . . les transormations unitaires naturelles introduites au §1. On choisi
d’abord ¢ pour que ||Q;° Uy ; — Qol| = /3, puis quitte a diminuer encore &, on
assure ||Q,° U, , — Q.|| = a/3, on choaisit alors n pour que ||Q3° U, 3 — Q,|| = a/3,
on a alors ||Q3eU, 30U 52Uy, — Qol| =a. A priori U,30---oU,, n’est pas la
transformation unitaire décrite en /, mais cela n’a pas d’inconvénient pour ce qui
suivra. Il est essentiel que U dépende continiment des paramétres dont g peut
dépendre.

IV. Voisinages tubulaires des Graphes
Dans ce §, la condition dimension (X) =3 ne joue aucun rdle.

A. Métrique adaptée

Soit (I, v) un graphe fini muni d’'une métrique riemannienne y, donnée par la
longueur de chaque aréte. On suppose que I admet un plongement (injectif) dans
une variété compacte X de dimension =2. Ceci est vrai quel que soit le graphe I
si dimension (X) = 3. On note encore I I'image de I" par ce plongement.

On désigne par métrique adaptée a (I', y) une métrique riemannienne g sur X,
euclidienne au voisinage de T, telle que les arétes de I soient des géodésiques de g
et induisant y sur I. Cette derniére condition est la plus importante. Les autres
apportent seulement des simplifications techniques.

Un moment de réflexion permet de se convaincre de I'existence de métriques
adaptées et méme dépendant de facon continue de y (I fixé).
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Désignons par €2, le voisinage tubulaire de rayon ¢ de I' dans X muni de la
métrique adaptée g. Alors €2, s’obient pour 0 < € < g, en recollant des morceaux
cylindriques C,, (a € ) et des morceaux W,, (se ¥) ( (resp. ¥) désigne
comme au §2 les arétes (resp. sommets de I)).

Les C,. sont des cylindres pleins [0, ], — 2Ke] X B*"!(¢) (K choisi plus bas
dépendant de I', mais pas de y), ils seront recolés aux W, . (s sommets de a) le
long des bouts {0} x B‘"!(¢) et {l, —2Ke} x B*"!(¢) (B (&) désigne la boule
euclidienne de dimension d — 1 et de rayon ¢). On paramétre les C, . par (x,, x')
avec x, € [0, I, — 2Ke] et x' € BY7'(¢).

Les morceaux W, . sont des dilatés de rapport € de morceaux isométriques a
Wy, ou N est le nombre d’arétes issues de s. On choisit K tel qu’on puisse placer
sur la sphére de rayon K au moins Ng,, points m; (Ny.x = maX,.4 N, et k =1)
éloignés d’une distance euclidienne >2. W) est le voisinage tubulaire euclidien de
rayon 1 de I'étoile d’origine 0 et de branches [0, m;] (1 =<i=N,) dans R, tronqué
par des hyperplans orthogonaux en chaque m; a [0, m,]

On remarque que Wy < R? n’est pas unique, mais ici on n’utilisera pas les
que q
angles entre les branches de Wy.

B. Proximite spectrale

Ce § verra la justification de la définition donnée au §II du laplacien sur
(I, y): on va montrer que les valeurs propres de ce laplacien sont les limites de
celles du probléme de Neumann dans €, (X étant muni toujours d’'une métrique
adaptée). On suppose que le spectre de (I, y) vérifie (*) et on désigne par E le
N-espace propre (E < L*(I')), on a le:

THEOREME 1V.1. Soit F le N-espace propre de (£2., g) avec les conditions
de Neumann (équipé de la structure euclidienne et de la forme quadratique associée
au probléme de Neumann sur £.); on désigne par qr et qr les formes quadratiques
naturelles sur E et F. Il existe une injection (dépendant continliment des éventuels
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paramétres du probléeme) J, de E dans H'(L,) telle que la limite de I’écart entre
J.(E, qg) et (F, qr) soit nulle lorsque € — 0.

En particulier, Vi, lim,_44,(€2,) = A,(I'), mais le théoréme donne aussi un
résultat sur les espaces propres au moyen de J,.

Preuve. Elle va suivre essentiellement de la construction de J, et du théoréme
1.7.

CONSTRUCTION DE J,. On va en fait définir J,(f) pour f € H'(I):
- Sur les cylindres C, ., soit [, =, — 2ke, alors

Jef(xy, x")=/y,- E(d—l)/z) fa(%"‘ x1>

ol f, est la restriction de f A a paramétrée par [0, [,] et y5=vol (B“7(0, 1)).
- Sur les W, ., on pose J.f(x) =f(s)/(v4 - €*~""?). On voit que:

VeflFican = WFIE 1+ O(e)) + 0()( S, (s)P)

(*)
|dJfIP=(1+ O(a))J |df|? (ici les O sont indépendants de f).

Désignons par ¥, I'image J.(H'(I')), et par ¥, I'’ensemble des f de H'(£2,)
telles que:
-Sur C, ., on ait pour tout x, € [0, ],

[ f(xy, x')dx"=0.
B"“’(e)

Sur W,,, [w, f=0.

On vérifie que les hypotheses du théoréme 1.7 sont satisfaites:
Soit en effet, pour chaque se€ ¥, B, (1=i<N —1) les morceaux du bord de
W,. qui sont isométriques 3 B?"!(¢) et % sous-espace de H'(W,.) formé des
fonctions telles que, Vi, 1=i=N -1, [, =0, alors si 4,(¢) est la plus petite
valeur propre de la forme quadratique [y, |df|* avec € comme domaine, il est
clair que I'on a A,(g) =A(1)/&* et que A,(1)>0. Soit u, la plus petite valeur
propre >0 du laplacien sur B“"(1) avec les conditions de Neumann; on a alors,
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pour f € ¥..:
[ tart=uredint . wp | 1

On est ainsi dans les hypothéses de 1.7, ce qui permet d’achever la preuve.

V. Fin de la preuve

On se donne « >0. On plonge Iy dans X et on construit pour les y € B, des
métriques adaptées g dépendant réguliérement de y sur X. On choisit d’abord
€ > 0 pour que I’écart entre J.(E,, q,) et le N-espace propre de £, soit =a/2. On
note U, I'isométrie naturelle entre ces deux espaces euclidiens. On choisit ensuite
¢’ et n pour que le N-écart spectral entre le probléme de Neumann sur €, et le
laplacien de h =F; - g soit =a/2. On note U, I'isométrie naturelle entre ces
sous-espaces de L*(X, v,). Soit g, la forme quadratique associée a h sur le
N-espace propre du laplacien A, et F,(y) =g,°U,° U,° U, € Q(E,). Par construc-
tion F, est continu de B, dans Q(E) et on a, Vy € By, ||F.(y) — Q,|| = «. Comme
le spectre de F,(y) est constitué des N premieres valeurs propres du laplacien A,,
la conclusion résulte du lemme de topologie énoncé dans I'introduction.

Remarque finale. Que se passe-t-il dans le cas de la dimension 2? La méthode
utilisée ne marche pas dans le §III a cause de I’exposant £“?~!. On peut
cependant étre tenté de faire la

CONJECTURE. Si X est une surface compacte de genre g et m(g) la
multiplicité maximale de la premiére valeur propre non nulle du laplacien d’une
métrique riemannienne sur X. Alors m,(g) = C(g) —1 oi C(g)=maxy {Iy est
plongeable dans X}. En fait ((RL]),

C(g)=E[3+1V48g +1].

Cette conjecture est vérifiée pour g =0: m,(0) =3, d’aprés [CG] et pour
g=1. m(1)=6, d’aprées [BN]. Une minoration m,(g)=C(g)—1 pourrait
résulter d’une méthode voisine de celle utilisée ici. Je ne vois pas bien comment
obtenir la majoration (pour la minoration dans le cas & courbure constante voir
aussi [B-C]).
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