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Problèmes de modules pour les formes différentielles singulières
dans le plan complexe

Dominique Cerveau1 et Paulo Sad

Résumé. On considère des équations de Pfaff holomorphes à l&apos;origine de C2, œ a(x, y) dx +
b(x, y) dy. Sous des hypothèses génériques, portant sur le premier jet non nul cov de w, on
décrit explicitement l&apos;espace des modules de co pour v petit. On s&apos;intéresse aussi aux formes

rigides et aux problèmes sous-jacents à ce type de question, notemment l&apos;invariance topologique
de l&apos;holonomie projective.

Abstract. We consider holomorphic Pfaffian équations a&gt; a(x, y) dx + b(x, y) dy. Under generic
assumptions on the first significant jet of eu, we describe the space of moduli for Pfaffian

équations of small order. Problems of rigidity and topological invariance of projective holonomy
are also studied.

0. Introduction

Les récents travaux d&apos;Ecalle [E] et de Martinet-Ramis [M, R] ont mis au goût
du jour les problèmes de modules pour les équations différentielles non linéaires.

Il s&apos;agit plus ou moins d&apos;une généralisation aux feuilletages singuliers (germes),
tout du moins chez [M, R], de problèmes classiques pour les courbes algébriques
ainsi que pour les germes de courbes analytiques en un point du plan complexe.
Alors que les précédents auteurs se sont intéressés à des difféomorphismes ou des

équations différentielles où les espaces de modules sont énormes nous allons ici

dégager une classe d&apos;équations différentielles où l&apos;espace des modules est

relativement petit. On s&apos;attachera notamment à prouver que ce phénomène
intervient essentiellement lorsque le feuilletage (induit par l&apos;équation

différentielle) présente des symétries (le degré de complication limité par la

symétrie rigidifie la situation) ou bien lorsque le feuilletage est à l&apos;inverse très

chaotique (dans cette seconde éventualité c&apos;est le désordre qui rigidifie). Cette
étude nécessitera notamment le calcul explicite de l&apos;espace des modules de

certains groupes de difféomorphismes de la droite complexe.

1 Une partie de ce travail a été réalisé lors d&apos;un séjour du premier auteur à l&apos;IMPA de Rio et à
l&apos;Université Fédérale du Minas Gérais. Ceci grâce au concours du CNPQ (Brésil) et du Ministère des

Relations Extérieures (France).
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Le présent mémoire comporte six chapitres et deux appendices.
I - Résultats anciens et nouveaux concernant les germes de difféomorphismes

de C, 0 et les germes de 1-formes holomorphes en 0 € C2.

II - f-rigidité en présence de symétries: feuilletages (singuliers) donnés par les

courbes de niveau des fonctions uniformes et multiformes.
III - Presque rigidité des groupes non abéliens généraux de difféomorphismes.
IV - Le problème de l&apos;invariance topologique de l&apos;holonomie projective dans

le cas générique.
V - f-rigidité des équations différentielles singulières d&apos;ordre 2 et 3.

VI - Problèmes ouverts (r-modules des équations différentielles singulières.
Synthèse générale des groupes d&apos;holonomie. Rigidité d&apos;équations différentielles
et rigidité des séparatrices. Equations dicritiques).

Appendices.
Bibliographie.
Ce travail a fait l&apos;objet de six exposés du premier auteur dans le groupe de

travail sur la dimension deux à Dijon. Nous remercions les auditeurs pour leur
patience et remarques.

I. Résultats anciens et nouveaux concernant les difféomorphismes de C, 0 et
les germes de 1-formes holomorphes en 0 e C2

§0. Notations et définitions
On considère des germes de courbes (f 0), de fonctions /, de 1-formes

holomorphes adx + b dy à l&apos;origine de C2 ainsi que de sous-groupes g du groupe
Diff (C, 0) des germes de difféomorphismes holomorphes h :C, 00.

Pour tous ces objets on a notamment deux sortes d&apos;équivalences:

* l&apos;équivalence topologique
** l&apos;équivalence holomorphe.

Rappelons de quoi il s&apos;agit pour les quatre objets ci-dessus;

(i) Deux germes de courbes (f 0) et (f&apos; — 0) (respectivement de fonctions /
et /&apos;) sont topologiquement conjugués s&apos;il existe une germe d&apos;homéomorphisme

//:C2, 00 tel que:

W 0),o (f =0)(() (resp./=/&apos;o//)

(ii) Deux germes de 1-formes holomorphes w et a&gt;f sont topologiquement
conjugués s&apos;il existe un germe d&apos;homéomorphisme H:C2, 00 qui envoie feuilles

sur feuilles les feuilletages (singuliers) 3F(a et ^ induits par co et co&apos;.

(iii) Enfin deux sous-groupes ç\ et $&apos; de Diff(C, 0) sont topologiquement
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conjugués s&apos;il existe un germe d&apos;homéomorphisme h de la droite C, 0 et un

isomorphisme de groupe &lt;p :$—»$&apos; tel que goh-h°q&gt;{g) pour tout g e ç\ (ceci
signifie que (|°ft=/i° $&apos;).

On parle de conjugaison holomorphe lorsque les homéomorphimes de

conjugaison sont des difféomorphismes holomorphes (dans le cas des formes ceci

se traduit par l&apos;égalité (H*co) a eu&apos; =0).

On note ~ et ~ les équivalences de conjugaisons topologiques et
holomorphes. L&apos;espace des modules de l&apos;objet oc est le quotient

On dit que a est rigide si l&apos;espace M{a) des modules de a se réduit à un point;
a est presque rigide (ou localement rigide) si l&apos;espace Ji(a) est discret. Plus

précisément, munissant les espaces (de fonctions, de formes, de

difféomorphismes) de la topologie des jets, si V(a) est un voisinage de a on

désigne par Mv{a) l&apos;espace M(a) localisé au dessus de V(a) i.e.:

{j3 e V{a), p ~P cr}

Ainsi oc est presque rigide s&apos;il existe V(a) tel que MV{a)(oc) se réduise à un
point.

Alors que pour les fonctions et les difféomorphismes, les espaces définis
ci-dessus sont de bons espaces (au sens où l&apos;on peut espérer obtenir des

théorèmes. dans le cas des 1-formes il faut un peu affiner et définir l&apos;espace

des t-modules (f-symbolisant la notion de paramètre); on procède de la façon
suivante: soit t-~* at une famille de 1-formes holomorphes à l&apos;origine 0 de C2; oct

est topologiquement triviale s&apos;il existe une famille continue d&apos;homéomorphismes

t-*ht de C2, 0 (fixant 0) telle que:

(ho ht=o id
\ht est une équivalence topologique oct et a0.

La 1-forme /3 est une déformation stable de la 1-forme oc s&apos;il existe une famille
t-+at continue en te[0,1] et topologiquement triviale telle que ar(O) ar,
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L&apos;espace des r-modules de a est le quotient:

t - M(a) {/? déformation stable de a}/ ~.

Enfin nous disons que a est f-rigide si t — M(a) se réduit à un point.
§1. Exemples d&apos;espaces de modules: le cas des difféomorphismes de C, 0.

Théorèmes de Poincaré-Siegel. Quelques résultats d&apos;Ecalle, Martinet, Ramis

§la. Les théorèmes de Poincaré, Siegel et du domaine invariant

THÉORÈME 1.1 (Poincaré). Soit h(z) un germe de difféormorphisme à

rorigine de C fixant 0. Si |/î&apos;(0)l ^ 1&gt; h(z) est holomorphiquement conjugué à

Vhomothétie z-+h&apos;(0)z.

Si h vérifie l&apos;hypothèse du théorème 1, on dit usuellement que h appartient au
4&apos;domaine de Poincaré.&quot;

Remarquant que deux homothéties z-&gt;kz et z^X&apos;z du domaine de Poincaré
sont topologiquement conjuguées si et seulement is À et À&apos; sont simultanément à

Tintérieur ou à l&apos;extérieur du disque unité on conclut que:
-l&apos;espace des modules M{h) d&apos;un difféomorphisme h dans le domaine de

Poincaré s&apos;identifie à D*, où D* est le disque unité ouvert épointé de C. De
même l&apos;espace des modules du groupe {h&quot;, n e Z} engendré par h s&apos;identifie à

£)*. Le cas des rotations périodiques est une conséquence du théorème de

représentation conforme de Riemann:

THÉORÈME 2.1 (du domaine invariant). Soit h un germe de

difféomorphisme à l&apos;origine de C possédant un domaine invariant (ceci signifie
qu&apos;il existe un voisinage Û de 0 difféomorphe à un disque sur lequel on peut définir

un représentant h de h et tel que h(Û) Û). Alors h ~~ z-+h&apos;(0)z.

Notamment: a) tout difféomorphisme périodique est conjugué à une rotation
périodique.

b) plus généralement [M, M], tout germe de difféomorphisme à orbites finies

([M, M]) est conjugué à une rotation périodique.
Le fait que l&apos;existence d&apos;un domaine invariant soit de nature purement

topologique, ajouté au caractère topologique du &quot;nombre de rotation&quot;, conduit à

l&apos;affirmation: l&apos;espace des modules d&apos;une rotation z-^Xz (rationnelle ou non) est
réduit à deux points {z-^Âz, z-^Àz}. Notamment une rotation est presque
rigide et le groupe engendré par une rotation est lui, rigide.
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Outre les conditions a) et b) assurant l&apos;existence d&apos;un domaine invariant on
dispose du célèbre théorème de linéarisation de Siegel.

THÉORÈME 3.1 (Siegel). // existe un sous-ensemble A de mesure de

Lebesque 1 contenu dans le cercle unité S1, tel que tout germe de difféomorphisme
h(z) Kz + • • • de C, 0 avec XeA est holomorphiquement conjugué à la rotation
z-+kz. (A contient les rotations irrationnelles mal approchées par les

rationnelles).
§lb. Résultats d&apos;Ecalle-Martinet-Ramis. Pour ne pas compliquer l&apos;exposé, on
ne mentionnera que les résultats concernant les difféomorphismes tangents à

l&apos;identité. Pour plus de compléments nous invitons les lecteurs à compulser les

travaux originaux [E] [M, R].
Soit h(z) z + akzk + ak+1zk+1 + ak=t0, k ^2 le développement de

Taylor d&apos;un difféomorphisme tangent à l&apos;identité; on a le:

THÉORÈME 4.1. 1) h est topologiquement conjugué au difféomorphisme

okt0:z-»z + zk

2 il existe un nombre complexe À unique tel que h soit formellement
conjugué à

-»z + zk + ÀZ2*&quot;1

2) est classique, 1) est dû à Camacho [Ca]; A est un module formel.
Du théorème 4 1 résulte visiblement qu&apos;une condition suffisante pour que deux

difféomorphismes holomorphes, tangents à l&apos;identité, soient topologiquement
conjugués est qu&apos;ils le soient formellement. Une partie des travaux d&apos;Ecalle,

reprise par Malgrange, puis Martinet et Ramis, consiste à expliciter l&apos;espace des

modules

Â(h) {H formellement conjugué à h}/ ~

Nous en donnons la version de Martinet-Ramis:

THÉORÈME -5.1. Soit h z + Lt^i^z1 un germe de difféomorphisme holo-
morphe tangent à Videntité. Soit k le plus petit entier i tel que at # 0. Uespace des

modules M{h) s&apos;identifie à [Diffld]2/c où Diffld est l&apos;espace des difféomorphismes
holomorphes tangents à Videntité.
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Pour obtenir l&apos;espace total des modules M(h) on devra ajouter l&apos;espace C des

paramètres À.

Parmi les difféomorphismes de la droite, seuls résistent les difféomorphismes
tangents à une rotation Âz où A est une &quot;mauvaise&quot; rotation irrationnelle. Dans
ce cas, on sait que À est un invariant topologique (orienté) [N],

§2. Exemples d&apos;espaces de modules des l-formes holomorphes réduites à Vorigine
deC2

II s&apos;agit essentiellement d&apos;une application plus ou moins directe des résultats
de §1. Nous devons mettre en place un certain nombre de notions familières aux
spécialistes.
§2a. Notations et définitions. Soit co a(xf y) dx + b(x, y) dy un germe de forme
holomorphe à l&apos;origine de C2. On dit que œ est réduit (ou que le feuilletage 3Fm

induit par co est réduit) si le 1-jet de co en 0 est, à transformation linéaire près, de
l&apos;un des deux types:

(*) y dx + \ix dy où fx $ -N* U 1/N*
(**) y dx et co est à singularité isolée.

Rappelons que tout germe de 1-forme se désingularise par éclatements de points
en un feuilletage n&apos;ayant que des singularités réduites. Un résultat classique,
connu sous le nom de théorème de Poincaré-Dulac, dit qu&apos;une forme réduite du

type (*) possède deux séparatrices lisses transverses et qu&apos;une forme réduite du

type (**) possède deux séparatrices formelles lisses transverses dont l&apos;une au
moins converge. Par exemple dans le cas (*) ceci signifie que, pour un bon choix
des coordonnées (jc, y)y co s&apos;écrit (à un facteur multiplicatif près):

co y dx + jU*(l + A(x, y)) dy (1)

où A appartient à l&apos;idéal M des fonctions holomorphes s&apos;annulant en 0. On peut
alors définir suivant [M, M] l&apos;holonomie des variétés invariantes (jc 0) et (y 0)
de la façon suivante. On remarque que l&apos;équation (1) est transverse en dehors de

(x 0) (resp. (y 0)) à la fibration verticale x Cste (resp. horizontale y - Cste).
On construit alors les difféomorphismes d&apos;holonomie des séparatrices (jc 0) et

(y 0) de façon usuelle par relèvement d&apos;un lacet S1 de ((jc 0) — {0}) (resp.
(y 0) — {0}) 4ans les feuilles suivant la fibration (y Cste) (resp. jc Cste) (fig.
!)•

Un calcul élémentaire montre que le difféomorphisme d&apos;holonomie de (x 0)

(resp. (y 0)) a pour partie linéaire l&apos;homothétie z—*e2mfi-z (resp. z—*
e2&quot;&quot;» ¦ z).
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0

Fig 1

Remarque. Pour des raisons d&apos;orientation, il serait plus correct de parler du

groupe d&apos;holonomie de (x 0).
§26. Comment calculer sur des exemples. On commence par la version feuilletée
des théorèmes de Poincaré-Siegel.

THÉORÈME 1.2. Soit œ ydx + puc(l + A(x, y) dy une forme réduite du

type (*):
1) si (à est non réel a) est holomorphiquement linéarisabley ie holomorphique-

ment conjuguée à sa partie linéaire jlœ =y dx + \ixdy
2) De même si \i est un irrationnel positif mal approché par les rationnels ou

bien si fx e (R _.

Compte tenu de ce qui précède on note d&apos;emblée l&apos;analogie: Si œ vérifie les

hypothèses de Poincaré-Siegel, alors les holonomies des variétés invariantes

(* 0) et 0=0) vérifient les hypothèses de Poincaré-Sigel §1. De fait, cette
analogie provient d&apos;un résultat plus profond (Moussu):

THÉORÈME 2.2 [M]. Soient co, =y dx + ju(l + A,(x, y))dy i l,2 deux

équations réduites de type (*) mises sous forme de Poincaré-Dulac; h,

Vholonomie de la variété invariante y 0 de œt. Alors o)x et a)2 sont holomorphiquement

conjuguées si et seulement si les holonomies ht le sont.

En fait on a toujours clairement l&apos;implication: conjugaison - topologique ou
holomorphe-des formes implique conjugaison - topologique ou holomorphe-des
holonomies.
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On trouvera dans [C, S] la version topologique initiale de ce résultat (cas
résonnant ju e Q+)

THÉORÈME 3 2 Deux 1-formes holomorphes résonnantes sont topologique-
ment équivalentes si et seulement si les holonomies des variétés invariantes sont
topologiquement conjuguées

De tels résultats se trouvent dans [M, R]i pour les formes réduites du type **
Enonçons maintenant le théorème de &quot;synthèse&quot; de Martinet-Ramis [M, R]2

(cas résonnant)

THÉORÈME 4 2 Soit h{z) e2mlJ)&apos;q) z + • • • un germe de difféomorphisme
holomorphe à l&apos;origine de C, tangent à une rotation rationnelle II existe alors un

germe de 1 forme holomorphe

co=ydx + -x(l + A(xf y)) dy

tel que le groupe d&apos;holonomie de la séparatrice (x 0) soit engendré par h

Finalement, dans la pratique, pour calculer les espaces de modules des formes
réduites on invoquera les faits suivants

1) la propriété être réduite de type * ou ** est de caractère topologique
([C,S,L])

2) le caractère topologique du domaine de Pomcaré si co y dx + jàx(1 +
A) dy avec jâ e C - (R et si w est topologiquement conjuguée à co alors

â) ~ y dx + jûjc(l + A)dy avec fleC-U Le théorème de linéarisation de

Pomcaré dit alors que œ ~ y dx + fix dy et (b ~ y dx + jûjc dy Ce qui précise
l&apos;espace des modules de co

Par contre t — M(co) est le demi-plan de Pomcaré

3) d&apos;après 2) ne pas être dans le domaine de Pomcaré (î e être dans le

domaine de Siegel suivant la terminologie consacrée) est aussi de caractère

topologique
4) dans le cas résonnant (jâ e Q+) on invoquera le résultat suivant

conséquence de 2 2, 3 2, 4 2

THÉORÈME 5 2 Soit œ =y dx 4- px(l + A(x, y))dy une forme réduite
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résonnante 0* =/?/&lt;?) de type *. L&apos;espace des modules M((o) de co s&apos;identifie à

l&apos;espace des modules du groupe d&apos;holonomie d&apos;une de ses variétés invariantes.

Remarques. Le théorème du domaine invariant pour les diffèomorphismes
trouve son analogue dans les feuilletages au travers d&apos;une hypothèse sur la

fermeture des feuilles [M, M], [C, M]. Nous y reviendrons plus précisément dans

le chapitre IL Ceci permettra de préciser l&apos;espace des modules d&apos;une forme
résonnante:

- il est ou bien réduit à un point (en présence d&apos;intégrales premières voir II).
- ou bien du type C x Diff^.

IL r-rigidite en présence de symétries: feuilletages donnes par les courbes de
niveau des fonctions holomorphes uniformes et multiformes

§1. Courbes et fonctions: quelques remarques naïves

Rappelons la définition suivante:

DÉFINITION. Une hypersurface X d&apos;équation réduite (/ 0) à l&apos;origine de
C&quot; est quasi-homogène sifeM- J(f) où J(f) est l&apos;idéal Jacobien de / et M l&apos;idéal

maximal de l&apos;anneau Ûn des fonctions holomorphes en 0 e C&quot;. Cette définition est

indépendante de l&apos;équation / choisie et nous dirons indifféremment que X ou la
fonction / sont quasi-homogènes.

Outre le fait qu&apos;en général une fonction quasi-homogène est holomorphique-
ment conjuguée à un polynôme quasi-homogène (cf [S] dans le cas singularité
isolée, [C, M] dans d&apos;autres cas) rappelons les propriétés bien connues suivantes:

a) les surfaces de niveau de /, autres que la surface singulière / 0, sont
holomorphiquement les mêmes; on peut en effet exprimer la quasi-homogénéité

par le fait suivant: il existe un champ de vecteur Z, Z(0) 0, à l&apos;origine de Cn tel

que Z(f)=/. Le flot cpt de Z transporte alors les surfaces de niveau l&apos;une sur
l&apos;autre. (Dit autrement &quot;il n&apos;y a pas de modules dans les surfaces de niveau&quot;). On
dit que le champ Z est une symétrie de /.

b) / est quasi-homogène si et seulement si pour toute unité U ev, V e6n, f
et ev ;/sont holomorphiquement conjuguées.

Nous utiliserons le résultat suivant:

THÉORÈME 1.1 (Zariski, King, Durfee)[Ki]. Soient f et g deux fonctions
holomorphes réduites à l&apos;origine de C2; on a l&apos;équivalence entre (i) et (H):

(i) les courbes (f 0) et (g 0) sont topologiquement conjuguées.



Problèmes de modules pour les formes différentielles singulières 231

(ii) les fonctions f et g sont topologiquement conjuguées.
Nous en tirons la proposition suivante:

PROPOSITION 2.1. 1) si f réduite est rigide alors f est quasi-homogène.
2) si f est rigide alors (f 0) est rigide.

Remarque. Les réciproques sont fausses.

Démonstration de la proposition. Soit / rigide et U une unité. Comme / et
U -/ont les mêmes zéros, /et U -/sont topologiquement conjugués. Parce que/
est rigide, les fonctions / et Vf sont holomorphiquement conjuguées, ceci pour
toute unité, donc / est quasi-homogène. Supposant toujours / rigide, soit g

réduite telle que (f 0) ~ (g 0). Alors les fonctions / et g sont topologiquement

conjuguées donc holomorphiquement conjuguées; il va de soi qu&apos;il en est de

même pour les courbes. Q.E.D.

Remarque. Pour mémoire, signalons que Ton peut établir une version

analogue de la proposition 2 dans le cas général, c&apos;est à dire non réduit, par
exemple en invoquant des résultats de [K] et [C, M]. Nous y reviendrons dans un
cadre plus général au cours de l&apos;étude des feuilletages rigides donnés par des

fonctions multiformes. On peut, moyennant la Proposition 2.1 et l&apos;invariance

topologique de l&apos;ordre et du nombre de Milnor d&apos;une fonction holomorphe à

deux variables, construire une liste de fonctions rigides; par exemple x, xy,
&gt;&gt;2 + jc3, jc3 + y3, y(y-xk), xy(y -xk), x{y2 + x3) etc. sont rigides. Mais aussi

xpyq, p,qeN...
§2. Construction de feuilletages singuliers rigides à partir d&apos;une fonction rigide

On établit tout d&apos;abord le

THÉORÈME 1.2. Soit f=fV&apos;&quot;fïP, f irréductibles étrangers, n,e^
premiers dans leur ensemble, une fonction rigide à Vorigine de C2. La l-forme
w =/i * * &apos; fP S n^dfjf) est rigide dans les 1-formes.

Remarque. 3FO) est le feuilletage de C2 par les lignes de niveau de /; ces lignes
de niveau sont connexes [M, M].

Preuve du théorème. C&apos;est une conséquence du

THÉORÈME 2.2 [M, M]. Soit co un germe de forme holomorphe à l&apos;origine

de C2 possédant une intégrale première holomorphe /, Le. co Ad/ 0. Soit œ&apos;

topologiquement conjuguée à a), alors œf possède une intégrale première
holomorphe f.
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Remarque. La philosophie de la démonstration de ce théorème est en fait la

rigidité des rotations périodiques.
Soit donc œ1 topologiquement conjuguée à a&gt;;

co&apos; possède, d&apos;après le

Théorème 2.2 une intégrale première/&apos;; on choisit/&apos; de sorte que/&apos; ne soit pas
une puissance (non triviale) d&apos;une autre fonction holomorphe. Il n&apos;est pas difficile
de voir que les branches de /&apos; portent les mêmes multiplicités que celles de /,
i.e. /&apos; s&apos;écrit:

/&apos; =/I&quot;1 * • • f&apos;Pnp, f\ irréductibles étrangers.

D&apos;après la proposition 2.1 (dans le cas où les nl sont égaux à 1 et d&apos;après la

remarque sinon) la courbe (f 0) est rigide; comme visiblement (f 0) et (f 0)
sont topologiquement conjugués, on peut supposer par la rigidité que (f 0)
(/&apos; 0). Ainsi /&apos; £/•/ où U est une unité. Maintenant, puisque / est

quasi-homogène, /et U • f sont holomorphiquement conjuguées ([S], [C, M]).
Clairement ceci implique que co et cof sont holomorphiquement
conjugués. Q.E.D.

Nous nous proposons de généraliser ce fait de la façon suivante: soient À,,

i 1 • • • p des nombres réels N indépendants et fi, ,fp des germes de

fonctions irréductibles étrangers. On a le

THÉORÈME 3.2. Il y a équivalence entre

#) /i &quot; * * fP est rigide {en tant que fonction)
p) la forme co =/x • • -fp £ A,(d///) est t-rigide.

Remarques. 1) le feuilletage singulier de C2, 0 associé à co a pour feuilles les

composantes connexes des surfaces de niveau de la fonction multiforme

2) sans doute est-il possible de remplacer dans /}) f-rigidité par rigidité; c&apos;est

possible pour une certaine classe de À,.

Le principe de la démonstration est identique à celui du théorème 1.2. Mais

on doit remplacer le théorème 2.2 de [M, M] par le suivant:

THÉORÈME 4.2 [L]. Soient co et œ1 deux germes de l-formes holomorphes à

l&apos;origine de C2 topologiquement conjuguées. On suppose que œ possède une

intégrale première Multiforme du type f^ - • *fkpp où les f sont des germes réduits et
les k, des nombres complexes N-indépendants. Alors w&apos; possède une intégrale
première du même type g%1 • • • g^p. De plus si les À, sont tous réels {pu bien

M-alignés) il en est de même pour les /*,.
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Remarque. Ce résultat avait déjà été établit dans un cas particulier dans

[C, M], celui où les A, sont des nombres réels postifs.
En fait l&apos;énoncé 4.2 s&apos;avère insuffisant dans la mesure où l&apos;on n&apos;est pas sûr de

l&apos;affirmation &quot;si les A, sont réels&quot; alors (A,, kp) (filf yp) à un
réarrangement des indices près. Dans l&apos;appendice 1 nous établirons notamment
la:

PROPOSITION 5.2. Soit t^œt une famille de l-formes topologiquement
triviale telle que œ() possède une intégrale première du type f\x • • -fpp, où les A,

sont des nombres réels N indépendants; alors pour chaque t, cot possède une
intégrale première du type f\]r • • -fppt (avec les mêmes exposants).

Revenons à la preuve proprement dite du théorème 3.2; montrons que si

f=f\&apos;&apos;&apos;fp est rigide alors œ est f-rigide. Soit (ot, a)o=co, une famille
topologiquement triviale. A chaque instant t on peut écrire à unité multiplicative
près:

u&gt;t=g\t- &apos; • gPt Z A/
§i r

où les g, t dépendent de t. (exercice, utiliser le fait que les A, sont f^J-indépendants,
cf [CM]).

DÉFINITION. On dit que la forme a=f{ • • -fp E oc^dfjf,), ^eC, est

quasi-homogène s&apos;il existe un champ de vecteur holomorphe Z tel que:

On dit aussi que la fonction multiforme/?1 • • • fpp est quasi-homogène. On établit
dans [C, M] les 2 résultats suivants:

THÉORÈME 6.2. Soit F =/?» •••/£&apos; un germe de fonction multiforme à 2

variables. Alors il y a équivalence lorsque les a, sont indépendants sur N entre 1)

et 2):
1) Vhypersurface fx - - -fp=0 est quasi-homogène.
2) fV&apos;&apos;&apos; fpp est quasi-homogène.

(Remarque. Ce résultat est énoncé dans [C, M] en dimension quelconque sous

une forme plus restrictive à savoir avec l&apos;hypothèse a, Z-indépendants; mais
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utilisant le fait qu&apos;en dimension 2 les zéros (/i • • • fp 0) d&apos;une fonction
quasi-homogène sont constitués d&apos;une union de trajectoires d&apos;un champ de

vecteur linéarisable à valeurs propres rationnelles ([C, M] lemma 2.2 p. 169) on

peut établir sans difficulté l&apos;implication 2)^ 1) en utilisant le théorème 2.1 p. 168

de [C,M]).

THÉORÈME 7.2. F =/f! • • -fpp est quasi-homogène (at indépendants sur N)
si et seulement si pour toute unité U, F et U F sont holomorphiquement
conjugués.

Enfin Monsieur Kabila prouve dans sa thèse [K] un analogue faible du
théorème de Zariski dans le cas des fonctions multiformes.

THÉORÈME 8.2 [K]. Soit F =/f! • • •/£&apos; un germe de fonction multiforme à

Vorigine de C2, les a, sont indépendants sur N; alors pour toute unité Uy F et UF
sont topologiquement conjugués.

Nous pouvons maintenant recopier la démonstration du théorème 1.2.

Puisque /est rigide/est quasi-homogène. Il en est donc de même pour/f1 • • • fpp;
si qp est un homéomorphisme de conjugaison entre deux formes du type
(o-fi&apos;&quot;fpH Kidflf) et o)&apos; =gi • • • gp E K{dgtlgt) alors q&gt; envoie l&apos;union des

séparatrices de a) dans l&apos;union des séparatrices de eo&apos;; or parce que les À, sont N

indépendants les séparatrices de w et w&apos; sont respectivement les courbes
d&apos;équations (fi-••£ et (gu gp 0); on a &lt;p{fx • • -fp 0) (g, • • - gp

0).
Revenons maintenant à la famille o)ty a)0 (o, topologiquement triviale. La

famille des courbes (glt • • • gpt 0) est donc topologiquement triviale et comme
(f\&apos; * &apos;fp — fy est rigide elle est holomorphiquement triviale. On peut, quitte à

faire agir un difféomorphisme holomorphe à paramètre t, supposer la famille de

courbe (gu • • *gp,, 0) constante. On se ramène donc au cas où œt possède
l&apos;intégrale première multiforme

Puisque /b=/i1 * * &apos;fpp est quasi-homogène la version paramétrée de 7.2 dit qu&apos;il

existe une famille de difféomorphismes conjuguant F, à Fo i.e. o)t à œ0 ; donc co

est f-rigide.
Inversement supposons eo f-rigide et considérons gssgi&quot;&apos;gP

topologiquement conjuguée à / fx • • • fp. Puisque l&apos;on est en dimension 2 il
existe une famille à &quot;jU-constant&quot; /, =/u • • -fPtt telle que /lf(f«0) =/ et //t(,=i) g,-
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On considère la famille de fonctions multiformes Ft -f\)t • • &apos;fppy, cette famille est
(parceque les A, sont indépendants sur N) à /i-constant donc topologiquement
triviale [K]. Pour t 0, Fo est intégrale première de œ =/i • • •£ £ kt{dfjft) et

pour t 1, Fx est intégrale première de œx gx • • • gp £ A,(dg,/g,). Puisque co est
f-rigide co et cox sont holomorphiquement conjuguées. De ceci nous retenons que
les courbes (/i • • - fp 0) et (gx • • • gp 0) sont holomorphiquement conjuguées.
Pour s&apos;assurer que / est rigide, il suffit de s&apos;assurer que (f\&apos;&apos;&apos;fp=O) est

quasi-homogène. Mais ceci est le cas d&apos;après les théorèmes 6.2, 7.2, et 8.2; en
effet d&apos;après 6.2 (fi&apos;&apos;&apos;fp O) est quasi-homogène si et seulement si Fo

f\x &apos; &apos; &apos;fpp l&apos;est, i.e. si et seulement si (7.2) F{) et (7 • /\} sont holomorphiquement
conjugués pour toute unité U. D&apos;après 8.2 (ou plutôt sa démonstration) la famille
t—*etVF{)y ev - U, est topologiquement triviale. Par la f-rigidité de co, Fo et U - Fo

sont holomorphiquement conjugués. Q.E.D.

Dans tous ces exemples rigides on remarque la présence de symétries fortes:
celles données par la quasi-homogénéité [C, M].

III. Presque rigidité des groupes non abeliens de diffeomorphismes

On se propose dans ce chapitre d&apos;établir que, moyennant des hypothèses assez

générales, la conjugaison topologique des groupes de germes de

diffeomorphismes à une variable complexe implique la conjugaison holomorphe
ou bien antiholomorphe.

On examinera le même problème en analytique réel en appendice.
On se donne 2 nombres complexes À et jU ayant la propriété:

(*) &quot;Le groupe multiplicatif engendré par À et \i est dense dans C&quot;. Soient:

y(z) Xz + • • • et g{z) \xz + • • • deux germes de diffeomorphismes holo-
morphes à l&apos;origine de C ayant pour 1-jet en 0 les homothéties Âz et \iz
respectivement. On se propose d&apos;établir le:

LEMME. Soient F et G deux germes de diffeomorphismes holomorphes à

Vorigine de C. On suppose que les couples (F, G) et (f, g) sont topologiquement
conjugués: i.e. il existe un germe d&apos;homéomorphisme h de C, 0 tel que:

h°f F°h

h°g G °h

II y a deux possibilités:
1. Si f et g commutent alors h est à difféomorphisme holomorphe près du type

z~»A\z\a+lh(zl\z\) (avecAeC, aeR+, beU) ou bien z-+A \z\a+lb(z/\z\).
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2. Si f et g ne commutent pasf alors h est ou bien un difféomorphisme
holomorphe ou bien un difféomorphisme antiholomorphe.

DÉFINITION. Soit Gx un groupe de transformations linéaires de C. Nous
dirons que Gx vérifie la condition (*) s&apos;il existe deux éléments/ Â,z, i 1, 2 de

Gx tels que A, et A2 vérifient (*).

Du lemme on déduit le

THÉORÈME 2. Soit G un groupe de germes de difféomorphismes de C, 0, tel

que la partie linéaire Gx ;1G vérifie (*). 5/ G n&apos;est pas abélien, un groupe de

germes de difféomorphismes H tel que jxG ¥^jlH {Â, À /î&apos;(0), h eH} est

analytiquement conjugué à G si et seulement si il Vest topologiquement.

Il en résulte que l&apos;espace des modules de G a deux éléments: G lui-même et le

groupe G défini par G {z-+h(z)y h e G}.

Démonstration du lemme. Tout d&apos;abord la condition (*) fait que ni À, ni ju ne

sont de module 1. Quitte à changer/(ou g) en/&quot;1 (ou g&quot;1), on supposera que
l&apos;on a les inégalités:

Ecrivons F(z) A&apos;z + • • • et G(z) fi&apos;z + • • •. Du fait de l&apos;hypothèse de

conjugaison, on a les inégalités |A&apos;|&lt;1, |ju&apos;|&lt;1. En vertu du théorème de

linéarisation de Poincaré, on peut donc supposer que les couples (/, g), (F, G)
sont du type suivant:

f/(z) Â-2 fF(z) A&apos;z

\g(z) (iz(l + za{z)) lG(z) n&apos;z(\ + z/3(z))

Le lecteur se convaincra aisément que f et g commutent si et seulement si a est

identiquement nul.
On désigne par cp et xp les fonctions de Koenig de g et G, i.e.

&lt;p lim —n où g&quot; est l&apos;itéré nlème de g

G&quot;
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Parce que jâ et fi&apos; sont en module plus petit que un, y et \\&gt; sont bien définies.
Quitte à faire agir une homothétie par conjugaison, on supposera que h, g, G, &lt;p

et \p sont définis injectifs sur un disque DR D(0, R), R&gt;1 que g(DR) a DR,

G(DR) a DR et que &lt;p(DR) contient le disque D D(0, 1). Soient z^Oun point
du disque D, m, une suite d&apos;entiers négatifs, nx une suite d&apos;entiers positifs tels

que:

et À&apos;&quot;&apos;ju&quot;&apos; e D pour tout (m,, n,).

(Ici on utilise la condition (*) cf [C])
Soit z(, le point de DR tel que cp(z0) 1. Parce que g(DR) c DR et G(DR) c D^

on peut parler de l&apos;orbite positive de z0 suivant g comme suivant G. On a d&apos;après

l&apos;hypothèse de conjugaison pour tout (m,, nt)

que l&apos;on écrit sous la forme:

^ (1)

Comme g&apos;H^o)^&quot;&apos; converge vers cp(zo) l, (Gfl&apos;/^n&apos;)(h{z0)) vers ^(/i(z0)) et
Am&apos;ju&quot; vers z, on obtient par continuité que â&apos;w&lt;ju&apos;&quot;&lt; converge vers un nombre

complexe que l&apos;on note a(z); ce nombre est parfaitement défini i.e. ne dépend

pas de la suite (m,, «,)) puisqu&apos;il vérifie l&apos;égalité:

h{z) a(z) • t/K/Kz0)) A • cj(z) (,4 xp{h(zQ)))

En observant la construction de o on vérifie sans peine que pour z et z&apos; dans

D - {0} on a l&apos;identité:

De sorte que via cette formule, o s&apos;étend en un homomorphisme global du

groupe multiplicatif C — {0}, homomorphisme qui est manifestement continu

puisque h l&apos;est. De plus, parce que h est injectif sur DR 3 D, il en est de même

pour o sur C- {0}.
Ainsi o(z) est du type \z\a+lb (z/|z|) ou |z|fl+&apos;6(z/|z|) et est Cx sur C*

R2-{0}.
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En fait, comme nous l&apos;a fait remarquer le référée, l&apos;argument de type (1)
montre que pour pour tout a e C*, on a:

h(a-&lt;p(z)) o(a)jp(h(z)). (2)

On remarque alors que f et g commutent si et seulement si &lt;p est linéaire; se

plaçant dans le cas contraire, soit zxeD(O, R) et &lt;x zx/&lt;p(zx). Le
difféomorphisme x(z)= (zi/&lt;Kzi)) • &lt;P(z) laisse fixe zx et génériquement (sur zx)
X&apos;(zx) est non réel parce que q&gt; est non linéaire.

Différentiant (2), on obtient:

Dh(zx) • Xf(zi) o{aW(h(zx) • Dh{zx). (3)

Un petit calcul d&apos;algèbre linéaire montre alors que si %&apos;{zx) est non réel,
l&apos;existence d&apos;une identité de type (3) implique que ou bien x(zi) °{(X)&apos;ll)&apos;{h{zx))

ou bien x&apos;{zx) o{a) &apos; ty&apos;{h{z\))- Dans le premier cas, Dh(zx) sera obligatoirement

une similitude et pour des raisons de continuité le sera partout. Ainsi, h

sera holomorphe. On se ramène à ce premier cas en faisant agir sur F, G la

conjugaison z-~*z, ce qui fait que dans le second h sera

antiholomorphe. Q.E.D.
Le théorème 2 a diverses conséquences notamment pour les feuilletages

holomorphes transverses à une fibration et les singularités de feuilletages
holomorphes de codimension un comme nous le verrons plus loin.

IV. Le problème de l&apos;invariance topologique de l&apos;holonomie projective dans le

cas générique

§1. Définitions et énoncé du résultat
Soit cov av(x, y) dx 4- bv(x, y) dy une forme de Pfaff homogène de degré v,

i.e. av et bv sont des polynômes homogènes de degré v. Le cône tangent de œv est

le polynône Pv+X(x, y) xav(x, y) + ybv(x, y); wv est dite non dicritique lorsque
Pv+i est non identiquement nul; si c&apos;est le cas la forme rationnelle a)yIPv+x est

fermée et on appelle résidus de eov les nombres

où les y, sont les générateurs de H^C2 - (Pv+1 0)); on peut prendre pour y} un

petit cercle tournant 1 fois autour de la &quot;jème branche&quot; de Pv+i =0.
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DÉFINITION. On dit que cov est générale (ou dans le domaine de Poincaré)
si:

1) œy est non dicritique
2) Pv+1 est réduit et les k} sont non réels.

Dans un système de coordonnées linéaires (x, y) générique, Pv+1 s&apos;écrira:

v+l
Pv+i(x, y) c fl (y - ti*)&gt; ti * h

/=i

c e C et:

Remarque. Les résidus À; satisfont à la relation Eyv^i1A; l; c&apos;est l&apos;identité

d&apos;Euler.

On se propose dans ce chapitre d&apos;établir le

THÉORÈME 1.1. Soit a&gt;=Adx + Bdy un germe de l-forme holomorphe à

Vorigine de C2 ayant o)v générale comme v-jet, v^2, Soit r\ une déformation
stable de co. Alors les holonomies projectives S€co et ^, sont topologiquement
conjuguées.

Rappelons ici la notion^ d&apos;holonomie projective introduite dansJM, M] puis
[C,M]. On considère £:C2-&gt;C2 l&apos;éclatement de l&apos;origine de C2; C2 s&apos;identifie à

C2-{0}UPC(l), l&apos;application E étant un isomorphisme de C?-E~l(O) dans
C2 - {0} et fi-^O) PC(1); on désigne par t y/x la &quot;première&quot; carte de PC(1)
et^s =xly la &quot;seconde&quot; carte, s • t 1. Alors (jc, t) et (y, s) constituent un atlas de

C2; par exemple dans la première carte l&apos;application E formalise la phrase: posons
t y/x, c&apos;est à dire:

E(x, t) (x, tx)

L&apos;espace C2 se trouve naturellement être un fibre de base PC(1) de fibre C

(fibration de Hopf). Dans la carte (jc, t)y l&apos;équation du projectif PC(1) E~\0)
est jc O, les fibres sont données par t constante. Dans la pratique, dans la

mesure où l&apos;on travaillera avec des germes, on se restreindra à un voisinage Ue de

PC(1) dans C2 obtenu par exemple par contre-image d&apos;une petite boule e • B dans

C2(|jc|2 (1 + \t|2) &lt; e dans la première carte); Ue sera fibre en disque. Soit

o) o&gt;v + • • • un germe de l-forme de Pfaff, représenté sur une boule e • B
centrée à l&apos;origine, à singularité isolée à l&apos;origine. E*co est alors défini sur Ue et



240 DOMINIQUE CERVEAU ET PAULO SAD

dans la carte (jc, t) on a pour

a) a dx + b dy (av + • • •) dx + (bv + • • •) dy:

E*ù) [a(x, tx) + tb(x, tx)] dx + xb(x, tx) dt

Remarquant que a(x, tx) et b(x&gt; tx) sont divisibles par xv on a:

E*co xvâ)

avec ô&gt; holomorphe dans la carte (jc, t) du type:

(b [Fv+1(l, t)+xA(x, t)] dx+xB{xy t) dt

Pv+i(x&gt; y) désigne encore le cône tangent de o&gt;v; Pv+1 xav +ybv. Notamment, si

ù)v est non dicritique, les singularités de (b dans Ue C\ Domaine (jc, t) sont

précisément les points (jc 0, t t}) où les t} sont les racines de Pv + 1(l, r)- En effet

comme E est un isomorphisme en dehors de £-1(0), E*œ (et donc (b) n&apos;a pas
de singularités dans Ue — E~l(0) et sur E~l(0) (jc 0) on a: ô&gt; Pv + l • dx. On

remarque d&apos;ailleurs que, lorsque cov est non dicritique, (jc 0) est solution de cb;

on désigne alors par 9m le feuilletage d&apos;équation œ dans la première carte et
d&apos;équation f^tw/^dans la seconde. &amp;w s&apos;appelle le feuilletage éclaté associé à co;
§&gt;w n&apos;a que des points singuliers isolés ((0, t})) que l&apos;on notera plus simplement

tj € PC(1); un a) étant donné, on peut toujours, par un bon choix de coordonnées,

supposer que les t} sont dans la première carte ce que nous ferons. L&apos;espace

projectif (privé des f;), PC(1) - U{tj}, est une feuille de &amp;ta\Ue- U{t;} au sens

ordinaire.
Soient U, des voisinages fibres de tt saturés par E dans U:

Fig. 2.
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Fig. 3.

Comme l&apos;espace projectif est une feuille de 3^, si £ est assez petit, les feuilles
de &amp;w | (4~U{£^} sont transverses aux fibres de la fibration en disque de

U - U {Uj}\ ceci permet de définir l&apos;holonomie de la feuille PC(1) - U {#,} de
&amp;&lt;*&gt; I U ~ U {Uj} par relèvement des chemins de PC(1) - U U, dans les feuilles, à

partir d&apos;une transversale t t0 où t0 e PC(1) - U7 Ur
En fait pour des raisons claires (les feuilles &quot;sortent&quot; de Ue) seul le germe au

point t0 du groupe d&apos;holonomie est bien défini. Notant C, t0 la transversale au

point t0, on note %„ la représentation d&apos;holonomie de la feuille PC(1) - U {tj}:

Xw:nt(PC(l) - U {t,}, fo)-&gt;Diff (C, t0)

s&apos;appelle Vholonomie projective de œ; son image le groupe d&apos;holonomie

projective.
Si % est un lacet dans PC(1) partant de t0 et faisant un tour autour de tn on

vérifie sans peine ([M, M]) que $?w(yy) est du type:

où z est une coordonnée de C, t0&gt; Â; étant le résidu de coy autour de t t} (ou
e-iut\lz + suivant l&apos;orientation de y}).

§2. Démonstration du théorème 1.1

§2a. Remarques. Parce que les Â; sont supposés non réels les singularités t} de &amp;„

sont du type Poincaré; i.e. les germes œtj sont linéarisâmes:

hol
(t-fy)

Notamment â)ttf possède une séparatrice lisse (f, 0) transverse à la séparatrice

PC(1), tp en fait tangente à t t,; cette séparatrice se redescend à C2 en une
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Fig 4

courbe lisse d&apos;équation fi 0, fi holomorphe:

fi(x, y) y — tjX + • • •

Si e est assez petit, (fj 0) est entièrement contenue dans (77 et l&apos;on peut supposer
en fait que SFœ | Uj est linéarisable dans Ur On peut alors au moyen d&apos;un

difféomorphisme Cx 0:U€-+Ue valant l&apos;identité sur (Ue - U; U,) H PC(l),
modifier le feuilletage ^, | f/; de sorte que l&apos;on ait:

2) toutes les feuilles de 0(^, | £/;) hormis la séparatrice (f} 0) sont
transverses à la fibration de Hopf. Ceci est possible parceque les œtf sont linéarisâmes.

On remarquera que la modification faite sur &amp;w ne change pas l&apos;holonomie

projective !%œ. Dans la suite on supposera, par abus de langage, que (f} 0) est

précisément la droite (t On notera que l&apos;on ne peut pas trouver en général
de difféomorphisme holomorphe permettant de &quot;redresser&quot; simultanément plus
de 4 courbes lisses deux à deux transverses; par exemple (jc5 + y5 + x3y3 0) n&apos;est

pas holomorphiquement conjugué à cinq droites.

§2b. Propriétés. Comme on l&apos;a vu co (oy + • • • se &quot;désingularise&quot; au bout de 1

éclatement; soit co&apos; topologiquement équivalente à co. Il résulte d&apos;un travail
récent de Camacho-Lins-Sad [C, L, S] les propriétés suivantes:

1) l&apos;ordre de w&apos; est aussi v.

2) cof se désingularise au bout de un éclatement et &amp;w&gt; a précisément (v + 1)

singularités distinctes (réduites).
En fait il résulte de 2) que le 1er jet non nul a)rv de a)f est du type:

y ijX

De plus comme (o a v +1 séparatrices deux à deux transverses il en est de
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même pour (o&apos;\ on note (fy&apos; 0) les séparatrices de a)&apos; et dans la suite il est

supposé implicitement que rénumération des (f] 0) est héritée de celle des

(fj 0) via Phoméomorphisme de conjugaison.
La conjugaison topologique (dans C2,0) fait que les holonomies des feuilles

(fj 0) — {0} et (fl 0) — {0} sont topologiquement conjuguées; nous en
retiendrons la conséquence suivante: les X] sont eux aussi non réels. Ainsi œ&apos;v est
aussi générale; ce qui permet de modifier 5ÇU., de la même façon que §&gt;m dans

§2.a.

§2.c. Modification des conjugaisons topologiques. Soient s-+cos, coQ w une
famille topologiquement triviale, co{ r]y et hs&gt; ho id, une famille
d&apos;homéomorphismes conjuguant co&lt;.J± a){). On note Hs le relevé de hs à l&apos;éclaté C2.

En fait Hs est seulement défini sur C2 — PC(1) par la formule:

La difficulté de la preuve vient du fait que Hs ne s&apos;étend pas à priori à PC(1),
auquel cas la démonstration serait conséquence de la théorie ordinaire des

feuilletages. Soit s une valeur fixée du paramétre; pour alléger les notations on

pose ça&apos;= cosf h=hs et H Hs et on adopte le langage déjà introduit
précédemment. Quitte à faire agir un difféomorphisme Cx &quot;horizontal&quot; on peut
supposer que t, t]y et par suite après modification Q} 0) if] 0); de sorte que
h laisse globalement fixe (/j 0) après modification. Les UJf U et t0 sont supposés
convenablement choisis par rapport à @*l0 et &amp;l0

&gt;.

On désigne par I D(t0, r) un disque fermé dans la transversale C,f0; dl son
bord.

LEMME. Si r et s sont assez petits et r&apos; un nombre réel donné 0 &lt; r&apos; &lt; r, on

peut modifier la conjugaison h pour que H(Cry) c C,,o où Crr est la couronne

Démonstration. On se donne un polydisque Dx x D2 centré en t0 e PC(1)
D{ c PC(1), D2czCj{), suffisamment petit pour que le feuilletage &amp;a y soit défini
et trivial; plus précisément si t est la coordonnée de Dl induite par la coordonnée

projective, il existe une submersion x:Dlx D2—&gt;C, x(to) 0, telle que le

feuilletage 9m restreint à Dx x D2 soit donné par les niveaux de x et (i, t) est un

système de coordonnées de Dxx D2. Soit e un nombre réel assez petit; on désigne

par Xe le sous-ensemble de Dx x D2 défini par:
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Fig. 5.

Pour e assez petit, 3Xe s&apos;identifie à Dx x S1 et dans Xe le feuilletage est vraiement
trivial.

Pour les valeurs assez petites du paramètre s, \s\^s0 le feuilletage &amp;„ ^ a

des propriétés analogues: il existe une submersion x&apos;:D1xD2-*C telle que
(x&apos;,t) soit un système de coordonnées dans Dt x D2 et dans X&apos;E= {\x&apos;\ &lt; £}&amp;„.

est trivial. On suppose maintenant r suffisamment petit pour que IczXe; ceci

persistera pour s assez petit i.e.: Ici&apos;, Parce que /io identité, pour 5 assez

petit H{Cr&gt;r) Hs(Crr) est encore contenu dans X&apos;. On se donne dans t0 x D2 un
voisinage tubulaire Vo de Cr&gt;r assez petit, que l&apos;on sature par &amp;a \ X£ dans Xe

pour obtenir un ouvert Vo saturé. On constate, puisque H conjugue les

feuilletages et que H(Cry) czX&apos;e&gt; qu&apos;au voisinage de Crr H s&apos;exprime dans les

coordonnées {x, t) et (JE&apos;, t) sous la forme:

H(x, t) (X&apos;(x), T&apos;(x, t)), T

Visiblement X&apos; est un homéomorphisme de Vo et X\Cry) est une &quot;couronne&quot;

dans r0 x D2. Il est maintenant facile de modifier H par isotopie le long des

feuilles dans Vo de sorte que H(Crr)cC,o.

Remarque. La modification a été faite à 5 fixé, mais elle se laisse faire, sans

précaution supplémentaire, à paramètre.

§2d. Conjugaison des holonomies dans la couronne. On suppose faites les

modifications de 2a, 2b, 2c. On note h} %„{%) et h] %„.(%) les générateurs
des holonomies projectives associées à w et co&apos;; parce que les A7 sont non réels, si

I a été choisi assez petit, on peut supposer que chaque h, est linéarisable dans I.
On supposera aussi quitte à changer l&apos;orientation de % que h} contracte;
notamment si z € I et n e N hn(a) a un sens et se construit par relèvement de ff.
De plus chaque h} possède une &quot;couronne&quot; fondamentale C; dont l&apos;un des bord
est 32, l&apos;autre hj{d2). On choisit au départ le réel r&apos; tel que Crr&gt; contienne
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strictement toutes les couronnes C} ainsi que leur premier itéré h}{C})\ on fait
ensuite la modification du lemme. On note alors 2&apos; la couronne de C,f(),
2&apos; //(2); par continuité, si C\ sont des domaines fondamentaux pour h), l&apos;un

des bords de C] étant 32&quot;, on garde les propriétés

O, h]{C])c:H{Cry)

Nous avons la

PROPOSITION. Soient x et y deux points de Crr tels qu&apos;il existe des entiers

positifs net m vérifiant y h;m°h?(x); alors H{y) h&apos;~moh[n{H(x)).

Démonstration. Par construction, le point y est l&apos;extrémité y(l) du chemin

y(s) relevé dans &amp;œ suivant la fibration de Hopf du chemin y(s) y~m&gt; y&quot;(s) et
tel que y(0) jc; soit y&apos;(s) H(y(s)); le chemin y&apos; a ses extrémités y&apos;(0) H(x)
et y&apos;(l) H(y) dans C,o. De plus y&apos; est dans la feuille de S^,. passant par H(x).
Comme {f} 0) (t ry), la projection y&apos; de y&apos; sur PC(1) suivant la fibration de

Hopf est contenue dans PC(ljI- Upi1 {t,} et vérifie y&apos;(0) y&apos;(l) ^o- y&apos; est

donc un élément de nA(PC(l) - U^i1 {tj}). Parce que H est homotope à

l&apos;identité (par une homotopie laissant fixées les droites t fy), le lacet y&apos; est

visiblement homotope à y. Si on relève y dans ^ en partant de H(x) on
aboutira clairement au point final y&apos;(l) H(y) de y&apos; (relevé de f). Ce qu&apos;il

fallait prouver.

§2e. Fin de la démonstration du théorème

Remarque. Soit xeC}\ par construction de r&apos;, ft;(x) € Crr-; il suit de la

proposition que H(h}{x)) hj(H(x)). Ainsi // | C; induit une conjugaison sur la

couronne fondamentale Cr On construit alors un homéomorphisme de

conjugaison Hj entre h} et h] défini sur D(t0, r) par propagation de la formule

précédente; on décide que H} \ C} H \ Cr Si z € D(f0, r) il existe un entier nl tel

que h~n&apos;(z) e Cy; on pose:

Nous allons nous assurer que les H} coïncident; pour cela on considère H,Hj l(z);
on remarque que si

z Hj(z&apos;) h]n&apos;Hh;n&gt;{z&apos;) avec h;n&gt;{z&apos;)eCf

on a

z&apos; Hj\z) h1&apos;H~lhj~niz) avec hjn&gt;{z) e H{C})
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Mais H(Cj) G] car H est une conjugaison et les domaines fondamentaux C, et
Cy&apos; ont dZ et H(dl) comme bord.

On a donc construit H,H~l(z) de la façon suivante:

(z) h\m^Hh:m^H~xh)-n\z)

avec

De sorte que l&apos;on est dans les conditions d&apos;application de la proposition:

Htfj\z) h[m&gt;h\-m&lt;h)n&gt;HH-xh&apos;-n&gt;(z) z

Ce que l&apos;on voulait prouver. Ainsi //, H} conjugue S€w et 26(O On a donc établi
le fait suivant: si 5 est assez petit les holonomies projectives de co et co, sont

topologiquement conjuguées; si maintenant t-*cot est une famille topologiquement

triviale joignant co à t) on peut faire le même raisonnement pour chaque cot(i;

il existe un voisinage V(t0) tel que t e V(t0) implique 3€(ût ~ Xœiit; on conclut par
compacité.

Nous ne terminerons pas ce chapitre sans avoir énoncé les conjectures
suivantes:

CONJECTURE A. Si co et co&apos; sont topologiquement conjugués les holonomies

projectives %£«, et W^ sont topologiquement conjuguées.

Plus généralement:

CONJECTURE B. Si co et co&apos; sont topologiquement conjugués et si co est

une courbe généralisée ([C, L, S]) les holonomies de chaque projectifs (en
dualités) dans la désingularisation sont conjuguées.

V. Migidite des équations co2 + • • • et espace de Mnodules de co3 + • • •

Dans ce chapitre nous allons combiner les résultats des chapitres III et IV
pour obtenir l&apos;espace des Mnodules de certaines équations différentielles. Soit cos

une famille de 1-formes holomorphes topologiquement triviale. On suppose que
le premier jet non nul de coo est général; soit gs le groupe d&apos;holonomie projective
de cos. alors si g0 vérifie la condition (*) (Chap. III) et n&apos;est pas abélien, une
conséquence des chapitres III et IV est que la famille gs est analytiquement
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triviale. On peut éconcer en termes de 1-formes la condition &quot;g0 n&apos;est pas
abélien&quot;. Rappelons à cet effet un résultat obtenu par l&apos;un des auteurs et J. F.
Mattei [C, M]:

PROPOSITION 1. Soit œ cov + • • • un germe de l-forme holomorphe à

premier jet non nul wv général. Si Vholonomie projective de a) est abélienne alors
(O possède une intégrale première multiforme f\l&apos;&apos;mfpp i.e. œ est du type
logarithmique: io=fx- • -jj, £ X,(dflf).

Remarque. Le fait de posséder une telle intégrale est exceptionnel lorsque v
est supérieur ou égal à deux. Plus précisément, (ov étant fixé, v^2, il existe un
ouvert de Zariski %v+1 dans les formes homogènes de degré v -h 1 tel que l&apos;on ait
la propriété suivante:

- un germe de l-forme holomorphe œ tel que jvco cov et ;v*1 cov + cov+1

avec ft&gt;v+,€%v+1 ne peut-être logarithmique. Notamment si cov+i est générale
l&apos;holonomie projective de œ sera non abélienne.

DÉFINITION. Un germe de l-forme co cov 4- • • • tel que
1) (ov soit générale
2) l&apos;holonomie projective de a&gt; soit non abélienne et vérifie (*) sera qualifié

de &quot;non-abélien général&quot; (N.A.G.)

Remarque. La condition (*) ne porte que sur les résidus Â; de &lt;ov.

Nous calculerons des espaces de modules en utilisant le:

THÉORÈME 2. Soit cos une famille de l-formes topologiquement triviale. On

suppose que a)0 est N.A.G. et que la famille Xs des séparatrices de ws (ce sont
v 4- 1 courbes lisses 2 àl transverses) est holomorphiquement triviale au dessus de

v + 1 doites complexes. Alors u)s est holomorphiquement triviale.

Démonstration. Un changement de coordonnées convenable permet de

supposer que la famille Xs est constante: X5 Z0 (v + l) droites complexes 2 à

2 transverses et que l&apos;holonomie projective gs est constante égale à g0. On fait un
éclatement de l&apos;origine et l&apos;on conjugue les feuilletages &amp;iOs \ Û et 3Ft0o \ Û
restrictions des feuilletages éclatés &amp;lOs et S^o à un ouvert Û fibre par la fibration
canonique de C2; Û étant le complément de tubes fibres autour des séparatrices.
Les conjugaisons (qui sont fibrées) s&apos;étendent à l&apos;intérieur des tubes essentiellement

parce que les séparatrices (éclatées) sont des fibres de la fibration

canonique; ceci se prouve en recopiant la démonstration du théorème 2.2 de I.
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On redescend sur C2 — {0} les conjugaisons obtenues dans l&apos;éclatement; elles
s&apos;étendent en 0 par Hartogs. Q.E.D.

COROLLAIRE 3 (Espace des t-modules de co2 + • • •)• Soit co co2 + • • • un

germe de l-forme holomorphe d&apos;ordre deux N.A.G. Alors co est t-rigide.

Démonstration. C&apos;est une conséquence du fait suivant: on se donne une
famille de courbe Xs telle que

1) Xo 3 courbes lisses deux à deux transverses

2) Xs est topologiquement triviale; alors la famille Xs est holomorphiquement
équivalente à la famille constante x • y(x — y) 0. On applique ensuite le

théorème 2. Q.E.D.

COROLLAIRE 4 (Espace des f-modules de co3 + • • •). Soit co co3 + • • • un

germe de l-forme holomorphe d&apos;ordre trois N.A.G. L&apos;espace des t-modules de co

s&apos;identifie à C-{0}.

Preuve. Elle est conséquence de 2 faits:
1) Une famille Xs de 4 courbes lisses deux à deux transverses est holomorphiquement

triviale (et holomorphiquement conjuguée à la famille constante TX0
des tangentes à Xo) si et seulement si le birapport des tangentes est constant.

2) Un résultat de synthèse des groupes d&apos;holonomie de [L] (reposant sur un
théorème puissant de Grauert sur les voisinages tubulaires de certaines surfaces

de Riemann) dont voici l&apos;énoncé qui nous est utile:

PROPOSITION 5. Soit g un groupe de difféomorphismes de C, 0 engendré

par v éléments

z-+ft{z), i l, ...,v
chaque difféomorphisme f, étant dans le domaine de Poincaré (|/,&apos;(0)| ¥= 1) et soient
t\&gt; - • • y K+\v + 1 points distincts de l&apos;espace projectif PC(1). // existe un germe de

l-forme holomorphe co en OeC2 ayant pour séparatrices les v -h 1 droites y ttx et
le groupe g comme holonomie projective.

D&apos;autre part on peut faire dépendre les tt holomorphiquement d&apos;un paramètre
complexe s et obtenir ainsi une famille cos ayant y tt(s) • x comme séparatrices et
g comme groupe d&apos;holonomie (constamment). Comme le groupe d&apos;holonomie est

constant cette famille est topologiquement triviale (exercise). Q.E.D.
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Remarque. 1) Tenant compte des résultats obtenus dans III dans le cas des

groupes abéliens et de l&apos;énoncé de synthèse, on peut évidemment préciser
l&apos;espace des Mnodules des formes co2 + • • • et œ3 + • • • possédant une intégrale
première /t1-/^ (les À, étant ici, à l&apos;inverse du chapitre II, non alignés

(condition *). Nous laissons au lecteur le soin de préciser cet espace.
2) Dans [I] Ju. S. Il&apos;iaSenko annonce un certain nombre de résultats

concernant l&apos;espace des modules des formes algébriques (cas global).

VI Problèmes ouverts

PROBLÈME 1. Calculer l&apos;espace des Mnodules de œ cov + • • • N.A.G.
(v ï£ 4). On sera amené certainement à établir le lemme suivant:

LEMME. Sout (os une famille topologiquement triviale, avec a&gt;0 N.A.G. On

suppose que la famille Xs des séparatrices de cos est holomorphiquement triviale.
Alors œ, est holomorphiquement triviale.

La difficulté pour prouver le lemme est que l&apos;on ne peut pas mettre la famille
Xs dans une fibration de Hopf.

PROBLÈME 2. On se donne une courbe X à l&apos;origine de C2 et l&apos;on désigne

par jzx:Mx-+C2 la désingularisation minimale de X. Soient Xt les composantes
irréductibles (ce sont des droites projectives) du diviseur nxl{fy\ Pour chaque Xt

on se donne un groupe g, de difféomorphismes de C, 0 engendré par p,
générateurs, où pt est défini par:

\(xt Qx)j U (X^nJiX- {0}))}

On demande quelles conditions, outre des conditions évidentes sur les 1-jets,
doivent satisfaire les &amp; pour qu&apos;il existe une 1-forme eo ayant X comme seules

séparatrices et telle que le groupe d&apos;holonomie du diviseur Xt soit précisément çt.f.

PROBLÈME 3. Enlever les paramètres, i.e. calculer les espaces de modules

et non de ^-modules pour les formes condidérées dans ce travail.

PROBLÈME 4. Soit co une 1-forme f-rigide et X les séparatrices de œ\ soit

(f 0) une équation réduite de X.
1) /est-elle quasi-homogène?
2) / est-elle rigide?
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PROBLÈME 5 (Equations dicritiques).2 Dans [C, M] on montre que les deux
1-formes suivantes sont topologiquement conjuguées

eo0 (y3 + y2 - Xy) dx - (2xy2 + xy- x2) dy

et

œx (2y2 + jc3) dx - 2xy dy.

Alors que c^ possède l&apos;intégrale première méromorphe y2 - x3/x2, i.e. les feuilles
de œx sont les courbes y2-x3 cx2, cePC(l), la forme œ{) ne possède pas
d&apos;intégrale première méromorphe.

A fortiori coo et a&gt;x ne sont pas holomorphiquement conjuguées. On demande
l&apos;espace des modules et l&apos;espace des /-modules de œx.

PROBLÈME 6. L&apos;espace des modules d&apos;un difféomorphisme z -» Âz + • • •

non linéarisable (À mauvaise rotation irrationnelle).

Appendice 1

Dans cette appendice nous établissons la proposition II.5.2.
Soit o) un germe de 1-forme holomorphe possédant l&apos;intégrale première

fi1&apos;&apos;&apos; fpp °ù les À, sont des nombres réels indépendants sur N et les f, des germes
irréductibles. Il n&apos;est pas difficile d&apos;établir à ce moment que la désingularisation
de la forme cd est précisément la désingularisation de la courbe fx • • -fp 0.

On en déduit sans peine que l&apos;holonomie de la solution (f} 0) - {0} est du

type, à conjugaison holomorphe près, z-»ju; • z

où les nf sont des entiers positifs ne dépendants que de la courbe fx • • • fp 0, et
en fait seulement de la topologie de fx • • • fp 0. Soit maintenant cds une famille
topologiquement triviale avec co0 cd. Comme il a été dit cos possède une
intégrale première /i(s)Al(5) • • &apos;fp(s)kpis\ Si l&apos;on impose, quitte à prendre une
puissance de /jl(j) • • • fp^s) que À1 À1(5) 1 alors les A,(s) dépenderont con-
tinuement de s. La trivialité topologique implique la trivialité topologique des

2 Problème 5 vient d&apos;être traité par M. Klukertz dans un préprint de l&apos;université de Toulouse.



Problèmes de modules pour les formes différentielles singulières 251

holonomies des variétés (f,(s) 0— {0}); il en résulte que les rotations z—»

jUy(s) • z sont topologiquement conjuquées, \i}(s) exp (2ijtkj(s)/Ti n*kk{s)).
Comme les Ây(s) sont réels on en déduit que jUy(s) jUy ou bien juy(s) jû/, mais

usant de la continuité on a ^(s) \ir C&apos;est alors un simple exercice d&apos;algèbre

linéaire (utilisant Âj k{(s) 1) d&apos;établir que les Â,(s) sont indépendants de s.

Nous conjecturons qu&apos;en fait si deux formes w{) et a&gt;x possédant des intégrales
premières/=/tl • • •/£&apos;&apos; et g =g|l • • - gkpp à exposants réels sont topologiquement
conjugués, alors les exposants sont projectivement égaux. Dans le cas où p 2 et

/,, f2 constituent un système de coordonnée, c&apos;est une conséquence d&apos;un résultat
annoncé dans [N].

Appendice 2

Nous allons établir une version analytique réelle du théorème 2.III (un peu
moins générale); ici un groupe c^ d&apos;homothéties réelles vérifie (*) M s&apos;il possède

une base /i,...,)J,, fi{*) h{*)&gt; tels que les nombres ocl Log|Â,| soient

Z-indépendants; i.e. si £; l}cx} 0, l} e Z, alors /; 0, V/.
Un groupe g de germes de difféomorphismes analytiques en 0 e U vérifie (*)R

s&apos;il en est ainsi pour le groupe linéaire y1 $.

THÉORÈME (réel). Soit g un groupe de germes de difféomorphismes
analytiques à l&apos;origine de U vérifiant la condition (*)R. 5/ Q n&apos;est pas abélien un

groupe 3€ de germes de difféomorphismes analytiques tel que y1fl=y1^&gt; est

conjugué analytiquement à g si et seulement si il l&apos;est topologiquement.

Preuve. On désigne par àljc, kpx une base de y1^. On procède alors

comme dans le cas holomorphe en travaillant avec deux difféomorphismes non
commutants qui dans une bonne coordonnée x s&apos;écrivent:

g(x) k2x{\ + xa(x)) 0&lt;|A2|&lt;l

Désignant par h l&apos;homéomorphisme de conjugaison et F et G les élément de

correspondants par h à / et g on se ramène au cas où

G A^(l + K(x))

Notant /, (resp&apos;/2) l&apos;intervalle [0,1] (resp&apos; [-1, 0]) on montre comme dans le cas
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holomorphe qu&apos;il existe des constantes At et at &gt; 0, i 1, 2 telles que:

h{x) At • \x\a&gt; pour x e Ir

Ecrivant alors la conjugaison entre g et G:

/i°g G°h

on obtient sur chaque intervalle /,:

)a&gt; (1)

Parce que le second membre de (1) est analytique, on remarque sans peine que
les nombres at sont rationnels. Ensuite, écrivant la conjugaison entre / et F, il
vient:

Mais parce que y^g =y&quot;15if ÂJ s&apos;écrit:

A; A?&apos; Aï1 • • • kp où les n, e Z

écriture qui conduit à une relation entière entre les cr, ==Log|Af|; cette relation
devant être triviale on obtient l&apos;égalité:

lrt; O pour ;^2

Ensuite développant (1) en série on obtient puisque h est un homéomorphisme:

Maintenant de par la forme de hy h induit un isomorphisme entre y1^ et
/15if=/1g. Soit XjXej1^ l&apos;homothétie image par h de k}-x\ par le même

argument que précédemment on a:

Comme l&apos;isomorphisme qui s&apos;écrit sur la base Ay-*A&quot;1 est inversible, visiblement
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nx 1; il s&apos;en suit que:

Ax-x Q.E.D.

Remarque. On peut encore appliquer cette méthode dans le cas C* pour des

groupes g qui ne sont pas formellement abéhens.
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