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Problémes de modules pour les formes différentielles singuliéres
dans le plan complexe

DomiNiQUE CERVEAU! et PAuLo SAD

Resumé. On considere des équations de Pfaff holomorphes a I'origine de C?, w =a(x, y)dx +
b(x,y)dy. Sous des hypothe¢ses génériques, portant sur le premier jet non nul w, de w, on
décrit explicitement I’espace des modules de @ pour v petit. On s’intéresse aussi aux formes
rigides et aux problemes sous-jacents a ce type de question, notemment I'invariance topologique
de I'’holonomie projective.

Abstract. We consider holomorphic Pfaffian equations @ =a(x, y)dx + b(x, y)dy. Under generic
assumptions on the first significant jet of w, we describe the space of moduli for Pfaffian
equations of small order. Problems of rigidity and topological invariance of projective holonomy
are also studied.

0. Introduction

Les récents travaux d’Ecalle [E] et de Martinet—Ramis [M, R] ont mis au goit
du jour les problemes de modules pour les équations différentielles non linéaires.
Il s’agit plus ou moins d’une généralisation aux feuilletages singuliers (germes),
tout du moins chez [M, R], de problémes classiques pour les courbes algébriques
ainsi que pour les germes de courbes analytiques en un point du plan complexe.
Alors que les précédents auteurs se sont intéressés a des difféomorphismes ou des
équations différentielles ou les espaces de modules sont énormes nous allons ici
dégager une classe d’équations différentielles ou I’espace des modules est
relativement petit. On s’attachera notamment a prouver que ce phénomeéne
intervient essentiellement lorsque le feuilletage (induit par 1’équation
différentielle) présente des symétries (le degré de complication limité par la
symétrie rigidifie la situation) ou bien lorsque le feuilletage est a l'inverse tres
chaotique (dans cette seconde éventualité c’est le désordre qui rigidifie). Cette
étude nécessitera notamment le calcul explicite de ’espace des modules de
certains groupes de difféomorphismes de la droite complexe.

1 Une partie de ce travail a été réalis€ lors d’un séjour du premier auteur 2 'IMPA de Rio et 2
I’Université Fédérale du Minas Gerais. Ceci grace au concours du CNPQ (Brésil) et du Ministere des
Relations Extérieures (France).
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Le présent mémoire comporte six chapitres et deux appendices.

I - Résultats anciens et nouveaux concernant les germes de difféomorphismes
de C, 0 et les germes de 1-formes holomorphes en 0 € C2.

IT - t-rigidité en présence de symétries: feuilletages (singuliers) donnés par les
courbes de niveau des fonctions uniformes et multiformes.

III - Presque rigidité des groupes non abéliens généraux de difféomorphismes.

IV — Le probleme de I'invariance topologique de I’holonomie projective dans
le cas générique.

V - t-rigidité des équations différentielles singuliéres d’ordre 2 et 3.

VI - Problemes ouverts (t-modules des équations différentielles singuliéres.
Synthése générale des groupes d’holonomie. Rigidité d’équations différentielles
et rigidité des séparatrices. Equations dicritiques).

Appendices.

Bibliographie.

Ce travail a fait I'objet de six exposés du premier auteur dans le groupe de
travail sur la dimension deux a Dijon. Nous remercions les auditeurs pour leur
patience et remarques.

I. Resultats anciens et nouveaux concernant les diffeomorphismes de C, 0 et
les germes de 1-formes holomorphes en 0 € C*

§0. Notations et définitions

On considére des germes de courbes (f =0), de fonctions f, de 1-formes
holomorphes a dx + b dy a I'origine de C? ainsi que de sous-groupes g du groupe
Diff (C, 0) des germes de difféomorphismes holomorphes h:C, 00.

Pour tous ces objets on a notamment deux sortes d’équivalences:

* P’équivalence topologique

** |’équivalence holomorphe.
Rappelons de quoi il s’agit pour les quatre objets ci-dessus;

(i) Deux germes de courbes (f =0) et (f' = 0) (respectivement de fonctions f

et f') sont topologiquement conjugués s’il existe une germe d’homéomorphisme
H:C? 0O tel que:

H(f=0)0=(f"=0), (resp. f=f"°H)

(i) Deux germes de 1-formes holomorphes w et w’ sont topologiquement
conjugués s'il existe un germe d’homéomorphisme H:C? 0O qui envoie feuilles
sur feuilles les feuilletages (singuliers) %, et &, induits par w et w'.

(iii)) Enfin deux sous-groupes g et g’ de Diff (C, 0) sont topologiquement
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conjugués s’il existe un germe d’homéomorphisme 4 de la droite C, 0 et un
isomorphisme de groupe @:g— g’ tel que goh =ho@(g) pour tout g € g (ceci
signifie que geh =hoq’).

On parle de conjugaison holomorphe lorsque les homéomorphimes de
conjugaison sont des difféomorphismes holomorphes (dans le cas des formes ceci
se traduit par 'égalité (H*w) A o' =0).

top hol . . . s ‘
On note ~ et ~ les équivalences de conjugaisons topologiques et holo-
morphes. L’espace des modules de I'objet a est le quotient

#e)={p=al/*

On dit que « est rigide si I'espace M(«) des modules de « se réduit a un point;
« est presque rigide (ou localement rigide) si I’espace #(«) est discret. Plus
précisément, munissant les espaces (de fonctions, de formes, de
difféomorphismes) de la topologie des jets, si V(a) est un voisinage de a on
désigne par My, I'espace M(«) localisé au dessus de V(a) i.e.:

{pevi@), 82 al

My (@) = {ﬂ v 5" a}

Ainsi « est presque rigide s’il existe V(a) tel que My (,(a) se réduise a un
point.

Alors que pour les fonctions et les difféomorphismes, les espaces définis
ci-dessus sont de bons espaces (au sens ol l'on peut espérer obtenir des
théorémes . . .) dans le cas des 1-formes il faut un peu affiner et définir I’espace
des t-modules (t-symbolisant la notion de paramétre); on proceéde de la fagon
suivante: soit — a, une famille de 1-formes holomorphes a I’origine 0 de C?; a,
est topologiquement triviale s’il existe une famille continue d’homéomorphismes
t— h, de C?, 0 (fixant 0) telle que:

{ho = h,=0 =id
h, est une équivalence topologique «, et a,.

La 1-forme B est une déformation stable de la 1-forme « s’il existe une famille
t— a, continue en te€[0, 1] et topologiquement triviale telle que «(0)= a,
a{l) =p.
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L’espace des t-modules de a est le quotient:

t — M(a) = {B déformation stable de a}/ =,

Enfin nous disons que « est ¢-rigide si t — #(«) se réduit a un point.
§1. Exemples d’espaces de modules: le cas des difféomorphismes de C, 0.
Théorémes de Poincaré-Siegel. Quelques résultats d’ Ecalle, Martinet, Ramis
§1a. Les théorémes de Poincaré, Siegel et du domaine invariant

THEOREME 1.1 (Poincaré). Soit h(z) un germe de difféormorphisme a
Iorigine de C fixant 0. Si |h'(0)| # 1, h(z) est holomorphiquement conjugué a
I’homothétie z— h'(0)z.

Si h vérifie I'hypotheése du théoréme 1, on dit usuellement que /4 appartient au
‘““domaine de Poincaré.”

Remarquant que deux homothéties z— Az et z— A’z du domaine de Poincaré

sont topologiquement conjuguées si et seulement is A et A’ sont simultanément a
I'intérieur ou a I'extérieur du disque unité on conclut que:
—l'espace des modules #(h) d’'un difféomorphisme 4 dans le domaine de
Poincaré s'identifie 8 D*, ou D* est le disque unité ouvert épointé de C. De
méme l'espace des modules du groupe {h", n € Z} engendré par h s’identifie a
D*. Le cas des rotations périodiques est une conséquence du théoréme de
représentation conforme de Riemann:

THEOREME 2.1 (du domaine invariant). Soit h un germe de
difféomorphisme a !’origine de C possédant un domaine invariant (ceci signifie
qu’il existe un voisinage U de 0 difféomorphe a un disque sur lequel on peut définir

un représentant h de h et tel que h(0) = U). Alors h hﬁlz—>h'(0)z.

Notamment: a) tout diffomorphisme périodique est conjugué a une rotation
périodique.

b) plus généralement [M, M], tout germe de difféomorphisme a orbites finies
([M, M]) est conjugué & une rotation périodique.

Le fait que I'existence d’'un domaine invariant soit de nature purement
topologique, ajouté au caractére topologique du “nombre de rotation”, conduit a
I'affirmation: ’espace des modules d’une rotation z — Az (rationnelle ou non) est
réduit & deux points={z— Az, z— Az}. Notamment une rotation est presque
rigide et le groupe engendré par une rotation est lui, rigide.
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Outre les conditions a) et b) assurant I’existence d’un domaine invariant on
dispose du célebre théoréme de linéarisation de Siegel.

THEOREME 3.1 (Siegel). Il existe un sous-ensemble A de mesure de

Lebesque 1 contenu dans le cercle unité S*, tel que tout germe de difféomorphisme
h(z)=Az+---deC, 0 avec A € A est holomorphiquement conjugué a la rotation
z—Az. (A contient les rotations irrationnelles mal approchées par les
rationnelles).
§1b. Résultats d’Ecalle—Martinet—Ramis. Pour ne pas compliquer I’exposé, on
ne mentionnera que les résultats concernant les difféomorphismes tangents a
I'identité. Pour plus de compléments nous invitons les lecteurs a compulser les
travaux originaux [E] [M, R].

Soit h(z)=z +apz*+a, 12" +...,a,#0, k=2 le développement de
Taylor d’un difféomorphisme tangent a I'identité; on a le:

THEOREME 4.1. 1) h est topologiquement conjugué au difféomorphisme
Oro:2— 2z + 2%

2 il existe un nombre complexe A unique tel que h soit formellement
conjugué a

Oppiz—>z+z5+Az%!

2) est classique, 1) est dG & Camacho [Ca]; A est un module formel.
Du théoréeme 4.1 résulte visiblement qu’une condition suffisante pour que deux
difféomorphismes holomorphes, tangents a l'identité, soient topologiquement
conjugués est qu’ils le soient formellement. Une partie des travaux d’Ecalle,
reprise par Malgrange, puis Martinet et Ramis, consiste a expliciter I’espace des
modules

M(h) = {H formellement conjugué a h}/ i

Nous en donnons la version de Martinet—Ramis:

THEOREME 5.1. Soit h =z + ¥, a;2' un germe de difféomorphisme holo-
morphe tangent a ’identité. Soit k le plus petit entier i tel que a; #0. L’espace des
modules M(h) s’identifie a [Diff,;]** ot Diff,y est 'espace des difféomorphismes
holomorphes tangents a I’identité.
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Pour obtenir I’espace total des modules #(h) on devra ajouter I’espace C des
parametres A.

Parmi les difféomorphismes de la droite, seuls résistent les difféomorphismes
tangents a une rotation Az ou A est une ‘“‘mauvaise’ rotation irrationnelle. Dans
ce cas, on sait que A est un invariant topologique (orienté) [N].

§2. Exemples d’espaces de modules des 1-formes holomorphes réduites a I’origine
de C?

Il s’agit essentiellement d’'une application plus ou moins directe des résultats

de §1. Nous devons mettre en place un certain nombre de notions familiéres aux
spécialistes.
§2a. Notations et définitions. Soit w =a(x, y)dx + b(x, y) dy un germe de forme
holomorphe a I'origine de C*. On dit que w est réduit (ou que le feuilletage %,
induit par w est réduit) si le 1-jet de w en 0 est, a transformation linéaire pres, de
I'un des deux types:

(*) ydx + uxdy ou u ¢ —N* U 1/N*
(**) ydx et w est a singularité isolée.

Rappelons que tout germe de 1-forme se désingularise par éclatements de points
en un feuilletage n’ayant que des singularités réduites. Un résultat classique,
connu sous le nom de théoréme de Poincaré-Dulac, dit qu’une forme réduite du
type (*) possede deux séparatrices lisses transverses et qu’une forme réduite du
type (**) possede deux séparatrices formelles lisses transverses dont 'une au
moins converge. Par exemple dans le cas (*) ceci signifie que, pour un bon choix
des coordonnées (x, y), w s’écrit (a un facteur multiplicatif pres):

w=ydx+ux(1+A(x,y))dy 1

ou A appartient a 'idéal # des fonctions holomorphes s’annulant en 0. On peut
alors définir suivant [M, M] I’holonomie des variétés invariantes (x = 0) et (y =0)
de la facon suivante. On remarque que 1’équation (1) est transverse en dehors de
(x =0) (resp. (y = 0)) a la fibration verticale x = Cste (resp. horizontale y = Cste).
On construit alors les difféomorphismes d’holonomie des séparatrices (x = 0) et
(y =0) de fagon usuelle par relevement d’un lacet S' de ((x =0)— {0}) (resp.
(y =0) — {0}) dans les feuilles suivant la fibration (y = Cste) (resp. x = Cste) (fig.
1).

Un calcul élémentaire montre que le difféomorphisme d’holonomie de (x = 0)
(resp. (y=0)) a pour partie linéaire I'’homothétie z—e*"* .z (resp. z—
e2in/u . Z).
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XX

Fig. 1.

Remarque. Pour des raisons d’orientation, il serait plus correct de parler du
groupe d’holonomie de (x = 0).
§2b. Comment calculer sur des exemples. On commence par la version feuilletée
des théorémes de Poincaré-Siegel.

THEOREME 1.2. Soit w =ydx + ux(1+ A(x, y)dy une forme réduite du
type (*):

1) si u est non réel w est holomorphiquement linéarisable, ie holomorphique-
ment conjuguée a sa partie linéaire j'®w =y dx + ux dy

2) De méme si u est un irrationnel positif mal approché par les rationnels ou
biensipeR_.

Compte tenu de ce qui précéde on note d’emblée ’analogie: Si w vérifie les
hypothéses de Poincaré-Siegel, alors les holonomies des variétés invariantes
(x =0) et (y =0) vérifient les hypothéses de Poincaré-Sigel §1. De fait, cette
analogie provient d’un résultat plus profond (Moussu):

THEOREME 2.2 [M]. Soient w;,=ydx+ux(1+A,(x,y))dy i=1,2 deux
équations réduites de type (x) mises sous forme de Poincaré—Dulac; h;
I’holonomie de la variété invariante y =0 de w;. Alors w, et w, sont holomorphi-
quement conjuguées si et seulement si les holonomies h; le sont.

En fait on a toujours clairement I'implication: conjugaison — topologique ou
holomorphe-des formes implique conjugaison — topologique ou holomorphe-des
holonomies.
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On trouvera dans [C,S] la version topologique initiale de ce résultat (cas
résonnant u € Q,):

THEOREME 3.2. Deux 1-formes holomorphes résonnantes sont topologique-
ment équivalentes si et seulement si les holonomies des variétés invariantes sont
topologiquement conjuguées.

De tels résultats se trouvent dans [M, R], pour les formes réduites du type *x*.
Enongons maintenant le théoréme de ‘‘synthése” de Martinet—Ramis [M, R],
(cas résonnant):

THEOREME 4.2. Soit h(z) =e*"®'? .z + - .. un germe de difféomorphisme
holomorphe a ’origine de C, tangent a une rotation rationnelle. 1l existe alors un
germe de 1. forme holomorphe:

w =ydx +‘g~x(l + A(x, y)) dy

tel que le groupe d’holonomie de la séparatrice (x = 0) soit engendré par h.

Finalement, dans la pratique, pour calculer les espaces de modules des formes
réduites on invoquera les faits suivants:

1) la propriété étre réduite de type * ou ** est de caractere topologique
([C.S. L))

2) le caractere topologique du domaine de Poincaré: si w =ydx + ux(1+

N

A)dy avec ueC—-R et si @ est topologiquement conjuguée a w alors
hol

@~ ydx+ jix(1+A)dy avec peC—-R. Le htl}éoréme de linéarisation de
Poincaré dit alors que w = ydx +uxdy et @ = ydx + fixdy. Ce qui précise
I’espace des modules de w:

Mw)=C—-R

Par contre ¢ — #(w) est le demi-plan de Poincaré.

3) d’aprés 2) ne pas étre dans le domaine de Poincaré (i.e €tre dans le
domaine de Siegel suivant la terminologie consacrée) est aussi de caractére
topologique.

4) dans le cas résonnant (ue€@Q,) on invoquera le résultat suivant
conséquence de 2.2, 3.2, 4.2:

THEOREME 5.2. Soit w=ydx+ ux(1+A(x,y))dy une forme réduite
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résonnante (4 =pl/q) de type *. L’espace des modules M(w) de w s’identifie a
Iespace des modules du groupe d’holonomie d’une de ses variétés invariantes.

Remarques. Le théoréme du domaine invariant pour les difféomorphismes
trouve son analogue dans les feuilletages au travers d’une hypothése sur la
fermeture des feuilles [M, M], [C, M]. Nous y reviendrons plus précisément dans
le chapitre II. Ceci permettra de préciser ’espace des modules d’une forme
résonnante:

—il est ou bien réduit & un point (en présence d’intégrales premiéres voir II).

— ou bien du type C x DiffZ.

II. t-rigidite en presence de symetries: feuilletages donnes par les courbes de
niveau des fonctions holomorphes uniformes et multiformes

§1. Courbes et fonctions: quelques remarques naives
Rappelons la définition suivante:

DEFINITION. Une hypersurface X d’équation réduite (f =0) a I'origine de
C" est quasi-homogene si f € M - J(f) ou J(f) est I'idéal Jacobien de f et # I'idéal
maximal de I’anneau 0, des fonctions holomorphes en 0 € C". Cette définition est
indépendante de I’équation f choisie et nous dirons indifféremment que X ou la
fonction f sont quasi-homogenes.

Outre le fait qu’en général une fonction quasi-homogene est holomorphique-
ment conjuguée a un polyndme quasi-homogene (cf [S] dans le cas singularité
isolée, [C, M] dans d’autres cas) rappelons les propriétés bien connues suivantes:

a) les surfaces de niveau de f, autres que la surface singuliere f =0, sont
holomorphiquement les mémes; on peut en effet exprimer la quasi-homogénéité
par le fait suivant: il existe un champ de vecteur Z, Z(0) =0, a l’origine de C" tel
que Z(f)=f Le flot @, de Z transporte alors les surfaces de niveau I'une sur
I'autre. (Dit autrement “‘il n’y a pas de modules dans les surfaces de niveau’). On
dit que le champ Z est une symétrie de f.

b) f est quasi-homogene si et seulement si pour toute unité U=¢", V€O,, f
et e¥ - f sont holomorphiquement conjuguées.

Nous utiliserons le résultat suivant:

THEOREME 1.1 (Zariski, King, Durfee)[Ki]. Soient f et g deux fonctions
holomorphes réduites a origine de C*; on a I’équivalence entre (i) et (ii):
(i) les courbes (f =0) et (g = 0) sont topologiquement conjuguées.
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(i1) les fonctions f et g sont topologiquement conjuguées.
Nous en tirons la proposition suivante:

PROPOSITION 2.1. 1) si f réduite est rigide alors f est quasi-homogéne.
2) si f est rigide alors (f = 0) est rigide.

Remarque. Les réciproques sont fausses.

Démonstration de la proposition. Soit f rigide et U une unité. Comme f et
U - f ont les mémes zéros, f et U - f sont topologiquement conjugués. Parce que f
est rigide, les fonctions f et Uf sont holomorphiquement conjuguées, ceci pour

toute unité, donc f est quasi-homogene. Supposant toujours f rigide, soit g
top

réduite telle que (f =0) ~ (g =0). Alors les fonctions f et g sont topologique-
ment conjuguées donc holomorphiquement conjuguées; il va de soi qu’il en est de
méme pour les courbes. Q.E.D.

Remarque. Pour mémoire, signalons que l'on peut établir une version
analogue de la proposition 2 dans le cas général, c’est a dire non réduit, par
exemple en invoquant des résultats de [K] et [C, M]. Nous y reviendrons dans un
cadre plus général au cours de I’étude des feuilletages rigides donnés par des
fonctions multiformes. On peut, moyennant la Proposition 2.1 et I'invariance
topologique de I'ordre et du nombre de Milnor d’une fonction holomorphe a
deux variables, construire une liste de fonctions rigides; par exemple x, xy,
y2+x3, 2 +y% y(y —x%), xy(y —x*), x(y*+x?) etc. sont rigides. Mais aussi
x’y? . p,qeN. ..

§2. Construction de feuilletages singuliers rigides a partir d’une fonction rigide
On établit tout d’abord le

THEOREME 1.2. Soit f=f7'---f%, f irréductibles étrangers, n;eN*
premiers dans leur ensemble, une fonction rigide a I'origine de C*. La 1-forme
w =f,---f, ¥ n(df./f.) est rigide dans les 1-formes.

Remarque. %, est le feuilletage de C* par les lignes de niveau de f; ces lignes
de niveau sont connexes [M, M].

Preuve du théoréeme. C’est une conséquence du

THEOREME 2.2 [M, M]. Soit w un germe de forme holomorphe a I'origine
de C? possédant une intégrale premiére holomorphe f, i.e. w Adf =0. Soit w'
topologiquement conjuguée a w, alors o' posséde une intégrale premiére
holomorphe f'.
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Remarque. La philosophie de la démonstration de ce théoréme est en fait la
rigidité des rotations périodiques.

Soit donc w' topologiquement conjuguée a w; w' possede, d’apres le
Théoréme 2.2 une intégrale premiére f'; on choisit f' de sorte que f' ne soit pas
une puissance (non triviale) d’une autre fonction holomorphe. Il n’est pas difficile
de voir que les branches de f' portent les mémes multiplicités que celles de f,
i.e. f' s’écrit:

fr=f"---f,, fiirréductibles étrangers.

D’apres la proposition 2.1 (dans le cas ou les n; sont égaux a | et d’aprés la
remarque sinon) la courbe (f = 0) est rigide; comme visiblement (f = 0) et (f' =0)
sont topologiquement conjugués, on peut supposer par la rigidité que (f=0) =
(f'=0). Ainsi f'=U-f ou U est une unité. Maintenant, puisque f est
quasi-homogéne, f et U - f sont holomorphiquement conjuguées ([S], [C, M]).
Clairement ceci implique que et ' sont holomorphiquement
conjugués. Q.E.D.

Nous nous proposons de généraliser ce fait de la fagon suivante: soient A,,
i=1---p des nombres réels N indépendants et f,,...,f, des germes de
fonctions irréductibles étrangers. On a le

THEOREME 3.2. Il y a équivalence entre
«) fi- - f, est rigide (en tant que fonction)
B) la forme w =f, - - - f, ¥ A(df/f,) est t-rigide.

Remargues. 1) le feuilletage singulier de C?, 0 associé 2 w a pour feuilles les
composantes connexes des surfaces de niveau de la fonction multiforme
firf

2) sans doute est-il possible de remplacer dans ) ¢-rigidité par rigidité; c’est
possible pour une certaine classe de A;.

Le principe de la démonstration est identique a celui du théoréme 1.2. Mais
on doit remplacer le théoréme 2.2 de [M, M] par le suivant:

THEOREME 4.2 [L]. Soient w et ®' deux germes de 1-formes holomorphes a
Porigine de C* topologiquement conjuguées. On suppose que @ posséde une
intégrale premiére multiforme du type f}' - - - fi oi les f; sont des germes réduits et
les A; des nombres complexes N-indépendants. Alors w' posséde une intégrale
premiére du méme type gi'---ghr. De plus si les A; sont tous réels (ou bien
R-alignés) il en est de méme pour les .
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Remarque. Ce résultat avait déja été établit dans un cas particulier dans
[C. M], celui ot les A; sont des nombres réels postifs.

En fait I’énoncé 4.2 s’avere insuffisant dans la mesure oul ’on n’est pas sir de
I’affirmation *‘si les A, sont réels” alors (4,,...,4,)=(u;,..., 4,) 2 un
réarrangement des indices prés. Dans 'appendice 1 nous établirons notamment
la:

PROPOSITION 5.2. Soit t— w, une famille de 1-formes topologiquement
triviale telle que w, posséde une intégrale premiére du type fi' - - - fi, oit les A
sont des nombres réels N indépendants; alors pour chaque t, w, posséde une
intégrale premiére du type f1',- - - fir, (avec les mémes exposants).

Revenons a la preuve proprement dite du théoréme 3.2; montrons que si
f=fi---f, est rigide alors w est t-rigide. Soit w,, wo=w, une famille
topologiquement triviale. A chaque instant ¢ on peut écrire a unité multiplicative
pres:

d it
W, =8 '&nZML

14

ou les g; , dépendent de t. (exercice, utiliser le fait que les A; sont N-indépendants,
cf [C,M]).

DEFINITION. On dit que la forme a=f - f, L a/(df/f), a;eC, est
quasi-homogéne s’il existe un champ de vecteur holomorphe Z tel que:

zai%(2)=l.

On dit aussi que la fonction multiforme f7' - - - ;7 est quasi-homogene. On établit
dans [C, M] les 2 résultats suivants:

THEOREME 6.2. Soit F=f$' .- - fp? un germe de fonction multiforme a 2
variables. Alors il y a équivalence lorsque les a; sont indépendants sur N entre 1)
et2):

1) Phypersurface f, - - - f, = 0 est quasi-homogeéne.

2) f1'- - fpr est quasi-homogene.

(Remarque. Ce résultat est énoncé dans [C, M] en dimension quelconque sous

N

une forme plus restrictive a savoir avec 'hypothése «; Z-indépendants; mais



234 DOMINIQUE CERVEAU ET PAULO SAD

utilisant le fait qu’en dimension 2 les zéros (f,---f,=0) d’une fonction
quasi-homogéne sont constitués d’une union de trajectoires d’un champ de
vecteur linéarisable a valeurs propres rationnelles ([C, M] lemma 2.2 p. 169) on
peut établir sans difficulté I'implication 2) => 1) en utilisant le théoreme 2.1 p. 168
de [C, M])).

THEOREME 7.2. F=f% ... fp* est quasi-homogene («; indépendants sur N)
si et seulement si pour toute unité U, F et U-F sont holomorphiquement
CONjugués.

Enfin Monsieur Kabila prouve dans sa thése [K] un analogue faible du
théoréme de Zariski dans le cas des fonctions multiformes.

THEOREME 8.2 [K]. Soit F=f{"---f5 un germe de fonction multiforme a
Iorigine de C?, les a; sont indépendants sur N; alors pour toute unité U, F et UF
sont topologiquement conjugués.

Nous pouvons maintenant recopier la démonstration du théoréme 1.2.
Puisque f est rigide f est quasi-homogene. Il en est donc de méme pour f7' - - - fl;
si @ est un homéomorphisme de conjugaison entre deux formes du type
w=fi--f, X A(df/f) et o' =g,---g, X A:(dg;/g;) alors @ envoie I'union des
séparatrices de w dans I'union des séparatrices de w'; or parce que les A; sont N
indépendants les séparatrices de w et w' sont respectivement les courbes
d’équations (f,-- - f,=0) et (g1,...,8,=0);ona (fi---f,=0)=(g," -8 =
0).

Revenons maintenant a la famille w,, w,= w, topologiquement triviale. La
famille des courbes (g, - - - g, = 0) est donc topologiquement triviale et comme
(fi - - - f, =0) est rigide elle est holomorphiquement triviale. On peut, quitte a
faire agir un difféomorphisme holomorphe a parametre ¢, supposer la famille de
courbe (g;,' - &p.=0) constante. On se raméne donc au cas ou w, possede
'intégrale premiére multiforme

E:kai‘l...f;;p

Puisque Fy=f}'- - - f;» est quasi-homogene la version paramétrée de 7.2 dit qu'il
existe une famille de difféomorphismes conjuguant F, a Fi.e. w, a2 wy= ; donc w
est t-rigide.

Inversement  supposons @  t-rigide et considérons g=g,---g,
topologiquement conjuguée a f=f, ---f,. Puisque I'on est en dimension 2 il
existe une famille a “up-constant” f,=f,,- - - f,, telle que f; =0y =f; €t fi =1y = &:-
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On considere la famille de fonctions multiformes F, =}, - - - fﬁf’,; cette famille est
(parceque les A; sont indépendants sur N) a u-constant donc topologiquement
triviale [K]. Pour t =0, F, est intégrale premiere de w =f, - - - f, ¥ A,(dfi/f;) et
pour ¢t =1, F est intégrale premiére de w, =g, - - - g, ¥ A,(dg;/g;). Puisque w est
t-rigide w et w, sont holomorphiquement conjuguées. De ceci nous retenons que
les courbes (f; - - - f, =0) et (g, - - - g, = 0) sont holomorphiquement conjuguées.
Pour s’assurer que f est rigide, il suffit de s’assurer que (f;---f,=0) est
quasi-homogene. Mais ceci est le cas d’apres les théorémes 6.2, 7.2, et 8.2; en
effet d’aprés 6.2 (f,---f,=0) est quasi-homogéne si et seulement si Fy=
fie-. fﬁf’ Iest, i.e. si et seulement si (7.2) F, et U - F, sont holomorphiquement
conjugués pour toute unité U. D’aprés 8.2 (ou plutot sa démonstration) la famille
t—e'"F,, eV = U, est topologiquement triviale. Par la t-rigidité de w, Fyet U - F,
sont holomorphiquement conjugués. Q.E.D.

Dans tous ces exemples rigides on remarque la présence de symétries fortes:
celles données par la quasi-homogénéité [C, M].

II1. Presque rigidite des groupes non abeliens de diffeomorphismes

On se propose dans ce chapitre d’établir que, moyennant des hypothéses assez
générales, la conjugaison topologique des groupes de germes de
difféomorphismes a une variable complexe implique la conjugaison holomorphe
ou bien antiholomorphe.

On examinera le méme probléme en analytique réel en appendice.

On se donne 2 nombres complexes A et u ayant la propriété:
(*) “Le groupe multiplicatif engendré par A et u est dense dans C”. Soient:
f(z)=Az+--- et g(z)=pz+--- deux germes de difféomorphismes holo-
morphes a l'origine de C ayant pour 1-jet en 0 les homothéties Az et uz
respectivement. On se propose d’établir le:

LEMME. Soient F et G deux germes de difféomorphismes holomorphes a
Porigine de C. On suppose que les couples (F, G) et (f, g) sont topologiquement
conjugués: i.e. il existe un germe d’homéomorphisme h de C, 0 tel que:

heof=Foh
hog=Ge°h
Il y a deux possibilités:

1. Si f et g commutent alors h est a difféomorphisme holomorphe prés du type
z—> A |z|***(z/|z]) (avec A€C, aeR*, b eR) ou bien z— A |z|**®(z/|z]).
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2. Si f et g ne commutent pas, alors h est ou bien un difféomorphisme
holomorphe ou bien un difféomorphisme antiholomorphe.

DEFINITION. Soit G; un groupe de transformations linéaires de C. Nous
dirons que G, vérifie la condition (*) s’il existe deux éléments f; = A;z, i =1, 2 de
G, tels que A, et A, vérifient (x).

Du lemme on déduit le

THEOREME 2. Soit G un groupe de germes de difféomorphismes de C, 0, tel
que la partie linéaire G, =j'G vérifie (*). Si G n’est pas abélien, un groupe de
germes de difféomorphismes H tel que j'G #j'H={A A=h'(0),he H} est
analytiquement conjugué a G si et seulement si il I’est topologiquement.

Il en résulte que 'espace des modules de G a deux éléments: G lui-méme et le
groupe G défini par G = {z—h(2), h € G}.

Démonstration du lemme. Tout d’abord la condition (*) fait que ni A, ni u ne
sont de module 1. Quitte a changer f (ou g) en f~! (ou g~'), on supposera que
I'on a les inégalités:

Al<1, |ul<l.

Ecrivons F(z)=A'z+--- et G(z)=u'z+---. Du fait de I’hypothése de
conjugaison, on a les inégalités |A'| <1, |u'|<1. En vertu du théoréme de
linéarisation de Poincaré, on peut donc supposer que les couples (f, g), (F, G)
sont du type suivant:

{f(Z) =A-z {F(z) =7z
g(z) = uz(l + za(z)) G(z)=p'z(1+ zp(2))

Le lecteur se convaincra aisément que f et g commutent si et seulement si « est
identiquement nul.
On désigne par ¢ et ¢ les fonctions de Koenig de g et G, i.e.

@ = lim -g; ou g" est l'itéré n'*™ de g
n—s +x y,

n

= lim —
w ni-{-x‘um
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Parce que u et u’ sont en module plus petit que un, @ et ¥ sont bien définies.
Quitte a faire agir une homothétie par conjugaison, on supposera que h, g, G, @
et ¢ sont définis injectifs sur un disque Dg = D(0, R), R>1 que g(Dg) < D,
G(Dg) c Dg et que @(Dg) contient le disque D = D(0, 1). Soient z #0 un point
du disque D, m; une suite d’entiers négatifs, n; une suite d’entiers positifs tels
que:

A”"M""—*Z
et A""'u" e D pour tout (m;, n,).

(Ici on utilise la condition (*) cf [C])

Soit z, le point de Dy, tel que @(z,) = 1. Parce que g(Dg) = Dg et G(Dgr) = Dg
on peut parler de I'orbite positive de z, suivant g comme suivant G. On a d’apres
I’hypothése de conjugaison pour tout (m;, n;)

h(Am'g"'(Z())) — A,”"’G"‘(h (Z()))

que I'on écrit sous la forme:

", ¥4 rm,, ' Gnl
h(x"m"fg—u(,—,fﬁ)= A (@) (1)

n,

Comme g"(z,)/u" converge vers @(zp) =1, (G"/u'"")(h(zy)) vers y(h(z)) et
A™u" vers z, on obtient par continuité que A'”u'" converge vers un nombre
complexe que I'on note o(z); ce nombre est parfaitement défini i.e. ne dépend
pas de la suite (m;, n;)) puisqu’il vérifie I’égalité:

h(z) = 0(z) - Y(h(z))) = A - 0(2) (A =y(h(z)))

En observant la construction de o on vérifie sans peine que pour z et z' dans
D — {0} on a I'identité:

o(z)-0(z')=o0(z-2")

De sorte que via cette formule, o s’étend en un homomorphisme global du
groupe multiplicatif C — {0}, homomorphisme qui est manifestement continu
puisque h l'est. De plus, parce que h est injectif sur Dg o D, il en est de méme
pour o sur C — {0}.

Ainsi o(z) est du type |z|**® (z/|z]) ou |z|**® (Z/|z]) et est C* sur C*=
R? - {0}.
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En fait, comme nous I’a fait remarquer le referee, ’argument de type (1)
montre que pour pour tout o € C*, on a:

h(a - 9(2)) = o(a)y(h(2)). )

On remarque alors que f et g commutent si et seulement si @ est linéaire; se
placant dans le cas contraire, soit z,€e D(O,R) et a=z/p(z;). Le
difféomorphisme x(z) = (z,/@(z;)) - (z) laisse fixe z; et génériquement (sur z,)
x'(z;) est non réel parce que @ est non linéaire.

Différentiant (2), on obtient:

Dh(z)) - x'(21) = o(@)y'(h(2)) - Dh(zy). €)

Un petit calcul d’algébre lin€aire montre alors que si x'(z,) est non réel,
I’existence d’une identité de type (3) implique que ou bien x'(z;) = o(a)y'(h(z,))
ou bien x'(z;) = o(a) - y'(h(z,)). Dans le premier cas, Dh(z,) sera obligatoire-
ment une similitude et pour des raisons de continuité le sera partout. Ainsi, A
sera holomorphe. On se rameéne a ce premier cas en faisant agir sur F, G la
conjugaison z—Z, ce qui fait que dans le second h sera
antiholomorphe. Q.E.D.

Le théoréme 2 a diverses conséquences notamment pour les feuilletages

holomorphes transverses a une fibration et les singularités de feuilletages
holomorphes de codimension un comme nous le verrons plus loin.

IV. Le probléme de Pinvariance topologique de ’holonomie projective dans le
cas générique

§1. Définitions et énoncé du résultat

Soit w, =a,(x, y)dx + b,(x, y) dy une forme de Pfaff homogéne de degré v,
i.e. a, et b, sont des polyndmes homogenes de degré v. Le cone tangent de w, est
le polyndne P, (x, y) =xa,(x, y)+yb,(x, y); w, est dite non dicritique lorsque
P,., est non identiquement nul; si c’est le cas la forme rationnelle w, /P, est
fermée et on appelle résidus de w, les nombres

1 w
A.=__j v
! 2ir O,Pv-H

ot les y; sont les générateurs de H,(C*>— (P, ., =0)); on peut prendre pour y; un
petit cercle tournant 1 fois autour de la “jéme branche” de P, ., =0.
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DEFINITION. On dit que o, est générale (ou dans le domaine de Poincaré)
si:

1) w, est non dicritique

2) P,,, est réduit et les A; sont non réels.
Dans un systéeme de coordonnées linéaires (x, y) générique, P, ., s’écrira:

v+1

Po(x,y)=c[] (v —tx), t;#t pour i#j
i=1
ceCet:
v+1 v+1

W, =C H -tx)EAdy-tx

i=1 - tix

Remarque. Les résidus A; satisfont a la relation ZV“ A;=1; Cest 'identité
d’Euler.

On se propose dans ce chapitre d’établir le

THEOREME 1.1. Soit o =A dx + Bdy un germe de 1-forme holomorphe a
Porigine de C* ayant w, générale comme v-jet, v=2, Soit n une déformation
stable de w. Alors les holonomies projectives #,, et ¥,, sont topologiquement
conjugucées.

Rappelons ici la notion d’holonomie projective introduite dans [M, M] puis

[C M]. On considére E :C2— C? éclatement de origine de Cz C? s'identifie a

— {0} UPC(1), I'application E étant un isomorphisme de Ci-E- (0) dans

— {0} et E~'(0) = PC(1); on désigne par ¢t =y/x la “premiére” carte de PC(1)

gl s =x/y la “seconde” carte, s - t = 1. Alors (x, t) et (y, s) constituent un atlas de

C?; par exemple dans la premiére carte application E formalise la phrase: posons
t=ylx, c’est a dire:

E(x,t)=(x, tx)

L’espace C? se trouve naturellement étre un fibré de base PC(1) de fibre C
(fibration de Hopf). Dans la carte (x, t), I’équation du projectif PC(1) = E~!(0)
est x =0, les fibres sont données par ¢t = constante. Dans la pratique, dans la
mesure ou ’on travaillera avec des germes, on se restreindra a un voisinage U, de
PC(1) dans C? obtenu par exemple par contre-image d’une petite boule ¢ - B dans
Cx(|x|>(1 +|t]) <e dans la premiére carte); U, sera fibré en disque. Soit
w=w,+- -+ un germe de 1-forme de Pfaff, représenté sur une boule £-B
centrée a origine, a singularité isolée a l'origine. E*w est alors défini sur U, et
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dans la carte (x, t) on a pour

w=adx+bdy=(a,+--")dx+(b,+---)dy:
E*w = [a(x, tx) + tb(x, tx)] dx + xb(x, tx) dt

Remarquant que a(x, tx) et b(x, tx) sont divisibles par x" on a:
E*o=x"®

avec @ holomorphe dans la carte (x, t) du type:
@ =[P,1(1, t) + xA(x, t)] dx + xB(x, t) dt

P,.,(x, y) désigne encore le cOne tangent de w,; P, ., = xa, + yb,. Notamment, si
w, est non dicritique, les singularités de @ dans U, N Domaine (x, t) sont
précisément les points (x =0,  =¢;) ot les ¢ sont les racines de P, (1, ). En effet
comme E est un isomorphisme en dehors de E~'(0), E*w (et donc @) n’a pas
de singularités dans U, — E~'(0) et sur E~'(0)=(x=0) on a: ®=P,,, - dx. On
remarque d’ailleurs que, lorsque w, est non dicritique, (x = 0) est solution de @;
on désigne alors par %, le feuilletage d’équation @ dans la premitre carte et
d’équation E*w/y" dans la seconde. %, s’appelle le feuilletage éclaté associé a w;
%, n’a que des points singuliers isolés ((0, #;)) que ’on notera plus simplement
t; e PC(1); un w étant donné, on peut toujours, par un bon choix de coordonnées,
supposer que les ¢ sont dans la premicre carte ce que nous ferons. L’espace
projectif (privé des ), PC(1) — U{t;}, est une feuille de &, | U, — U{t;} au sens
ordinaire.
Soient U; des voisinages fibrés de ¢; saturés par E dans U:

N

Fig. 2.
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PC(1)

Fig. 3.

Comme I’espace projectif est une feuille de %,,, si € est assez petit, les feuilles
de %,|U.—U{U;} sont transverses aux fibres de la fibration en disque de
U —\UJ{U;}; ceci permet de définir I'holonomie de la feuille PC(1) — | {U;} de
%, | U—\J{U;} par relevement des chemins de PC(1) — | U dans les feuilles, a
partir d’une transversale ¢ = ¢, ol ¢, € PC(1) — U, U;.

En fait pour des raisons claires (les feuilles “sortent” de U, ) seul le germe au
point ¢, du groupe d’holonomie est bien défini. Notant C, ¢, la transversale au
point t,, on note ¥, la représentation d’holonomie de la feuille PC(1) — U {;}:

#o I (PC(1) — U {5}, to) — Diff (C, t,)

s’appelle [’holonomie projective de w; son image le groupe d’holonomie
projective.

Si §; est un lacet dans PC(1) partant de f, et faisant un tour autour de ¢;, on
vérifie sans peine ([M, M]) que #,,(#;) est du type:

Ho (7)) = -2+ - -

ou z est une coordonnée de C, ty, A; étant le résidu de w, autour de t=¢ (ou
e ?"4z + . . - suivant 'orientation de ;).

82. Démonstration du théoreme 1.1

§2a. Remarques. Parce que les A; sont supposés non réels les singularités ¢; de .
sont du type Poincaré; i.e. les germes @ , sont linéarisables:

hol

Notamment @ , possede une séparatrice lisse (f=0) transverse 2 la séparatrice
PC(1), ¢;, en fait tangente a t=1; cette séparatrice se redescend a2 C* en une
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PC(1)

Fig. 4.
courbe lisse d’équation f; =0, f; holomorphe:

i, y)=y—tix+--

Si € est assez petlt (f, 0) est entierement contenue dans U; et I'on peut supposer
en fait que %, | U; est linéarisable dans U, On peut alors au moyen d’un
difféomorphisme C* #:U,— U, valant lidentit¢ sur (U, —U; U) NPC(1),
modifier le feuilletage %, | U; de sorte que I'on ait:

) 8F=0=(@=¢) j=1,...,v+1

2) toutes les feuilles de @(%, | U;) hormis la séparatrice (f;=0) sont trans-
verses 2 la fibration de Hopf. Ceci est possible parceque les @ , sont linéarisables.

On remarquera que la modification faite sur %, ne change pas I’holonomie
projective 9,,. Dans la suite on supposera, par abus de langage, que (f;=0) est
précisément la droite (¢ =¢;). On notera que ’on ne peut pas trouver en général
de difféomorphisme holomorphe permettant de “redresser” simultanément plus
de 4 courbes lisses deux a deux transverses; par exemple (x° + y° + x’y> = 0) n’est
pas holomorphiquement conjugué a cinq droites.

§2b. Propriétés. Comme on I’'a vu w = w, + - - - se “désingularise” au bout de 1
éclatement; soit ' topologiquement équivalente & w. Il résulte d’un travail
récent de Camacho-Lins-Sad [C, L, S] les propriétés suivantes:

1) 'ordre de w’ est aussi v.

2) w' se désingularise au bout de un éclatement et &%, a précisément (v + 1)
singularités distinctes (réduites).

En fait il résulte de 2) que le ler jet non nul w, de w' est du type:

—t;x)
tx

w,=c H(y-—tx)Z/l'

De plus comme w a v + 1 séparatrices deux a deux transverses il en est de
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méme pour w’; on note (f; =0) les séparatrices de w’ et dans la suite il est
supposé implicitement que I’énumération des (f; =0) est héritée de celle des
(f; = 0) via ’'homéomorphisme de conjugaison.

La conjugaison topologique (dans C?, 0) fait que les holonomies des feuilles
(,=0)— {0} et (f;=0)— {0} sont topologiquement conjuguées; nous en re-
tiendrons la conséquence suivante: les A; sont eux aussi non réels. Ainsi w, est

aussi générale; ce qui permet de modifier %,., de la méme fagon que %, dans
§2.a.

§2.c. Modification des conjugaisons topologiques. Soient s— w,;, wo= w une
famille topologiquement triviale, w,=m, et hy,, ho=id, une famille
d’homéomorphismes conjuguant w. & w,. On note H, le relevé de h, a ’éclaté C.
En fait H, est seulement défini sur C> — PC(1) par la formule:

E°H,=h,°E

La difficulté de la preuve vient du fait que H; ne s’étend pas a priori a PC(1),
auquel cas la démonstration serait conséquence de la théorie ordinaire des
feuilletages. Soit s une valeur fixée du paramétre; pour alléger les notations on
pose w' =w,, h=h, e¢ H=H, et on adopte le langage déja introduit
précédemment. Quitte a faire agir un difféomorphisme C* “‘horizontal” on peut
supposer que #; =1/, et par suite aprés modification (f; = 0) = (f; = 0); de sorte que
h laisse globalement fixe (f; = 0) aprés modification. Les U;, U et t, sont supposés
convenablement choisis par rapport 4 %, et &, ..

On désigne par X = D(t,, r) un disque fermé dans la transversale C,; 82 son
bord.

LEMME. Si r et s sont assez petits et r' un nombre réel donné 0<r'<r, on
peut modifier la conjugaison h pour que H(C,,)<C, ou C,, est la couronne
C.,=D(ty, r)—D(ty, r')c 2.

Démonstration. On se donne un polydisque D, X D, centré en t,e PC(1)
D, = PC(1), D,=C,, suffisamment petit pour que le feuilletage %, y soit défini
et trivial; plus précisément si ¢ est la coordonnée de D, induite par la coordonnée
projective, il existe une submersion X:D, X D,—C, x(t)=0, telle que le
feuilletage %, restreint a D, X D, soit donné par les niveaux de ¥ et (%, t) est un
systéme de coordonnées de D, X D,. Soit £ un nombre réel assez petit; on désigne
par X, le sous-ensemble de D, X D, défini par:

X, ={|x|<¢}
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Fig. 5.

Pour ¢ assez petit, 8X, s’identifie 2 D, X S et dans X, le feuilletage est vraiement
trivial.

Pour les valeurs assez petites du paramétre s, |s| <s, le feuilletage ¥, = %, a
des propriétés analogues: il existe une submersion x':D; X D,— C telle que
(%', t) soit un systtme de coordonnées dans D; X D, et dans X.= {|¥'| <&} %,
est trivial. On suppose maintenant r suffisamment petit pour que 2 < X,; ceci
persistera pour s assez petit i.e.: £ < X'. Parce que h,=identité, pour s assez
petit H(C, ) = H,(C, ,) est encore contenu dans X'. On se donne dans ¢, X D, un
voisinage tubulaire V, de C,, assez petit, que I'on sature par %, | X, dans X,
pour obtenir un ouvert V, saturé. On constate, puisque H conjugue les
feuilletages et que H(C,,) < X;, qu’au voisinage de C,, H s’exprime dans les
coordonnées (%, t) et (X', t) sous la forme:

o~

HE ) =(X'(x), T'(%,t), X' =x%'eH, T =toH,

Visiblement X' est un homéomorphisme de V;, et X'(C,,.) est une “couronne”
dans t, X D,. 11 est maintenant facile de modifier H par isotopie le long des
feuilles dans V, de sorte que H(C, ,)cC,.

Remarque. La modification a été faite a s fixé, mais elle se laisse faire, sans
précaution supplémentaire, a paramétre.

§2d. Conjugaison des holonomies dans la couronne. On suppose faites les
modifications de 2a, 2b, 2c. On note h; = ¥,,(¥;) et h; = #,,.(¥;) les générateurs
des holonomies projectives associées 2 w et w'; parce que les A; sont non réels, si
3 a été choisi assez petit, on peut supposer que chaque h; est linéarisable dans X'
On supposera aussi quitte a changer lorientation de ¥ que h; contracte;
notamment si z € 2 et n € N £"(a) a un sens et se construit par relévement de ¥;.
De plus chaque h; posséde une “‘couronne” fondamentale C; dont I'un des bord

est 3%, l'autre h;(8X). On choisit au départ le réel r’ tel que C,,. contienne
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strictement toutes les couronnes C; ainsi que leur premier itéré h;,(C)); on fait
ensuite la modification du lemme. On note alors X' la couronne de C,,
' = H(Z); par continuité, si C; sont des domaines fondamentaux pour 4;, I'un
des bords de C; étant 32, on garde les propriétés

CicH(C,,), hj(C)cH(C,,)
Nous avons la

PROPOSITION. Soient x et y deux points de C,, tels qu’il existe des entiers
positifs n et m vérifiant y = h; "o h}(x); alors H(y) = h;""°h;"(H(x)).

Démonstration. Par construction, le point y est I'extrémité #(1) du chemin
#(s) relevé dans %, suivant la fibration de Hopf du chemin 9(s) = 9;, $7(s) et
tel que 7(0) = x; soit 7'(s) = H(¥(s)); le chemin 7' a ses extrémités 7'(0) = H(x)
et '(1) = H(y) dans C,. De plus 7' est dans la feuille de %, passant par H(x).
Comme (f; =0) = (¢t =¢), la projection 9’ de 7' sur PC(1) suivant la fibration de
Hopf est contenue dans PC(1) -2/ {1} et vérifie $'(0)=9'(1)=1t,. 7' est
donc un élément de IT,(PC(1)— ;2 {t;}). Parce que H est homotope a
I'identité (par une homotopie laissant fixées les droites t=¢;), le lacet §' est
visiblement homotope a . Si on releve ¥ dans %, en partant de H(x) on
aboutira clairement au point final 7'(1) = H(y) de 7' (relevé de $'). Ce qu’il
fallait prouver.

§2e. Fin de la démonstration du théoreme

Remarque. Soit x € C;; par construction de r', h(x)€C,,; il suit de la
proposition que H(h;(x)) =h/(H(x)). Ainsi H | C; induit une conjugaison sur la
couronne fondamentale C;. On construit alors un homéomorphisme de con-
jugaison H; entre h; et h] défini sur D(t,, r) par propagation de la formule
précédente; on décide que H; | C;= H | C;. Si z € D(t,, r) il existe un entier n; tel
que h;"(z) € C;; on pose:

Hi(z) = h)"(H(h]™(z)))

Nous allons nous assurer que les H; coincident; pour cela on considere H;H; '(z);
on remarque que si
- [AN— ] -n ' =
z=H(z')=h;"Hh;"(z') avec h;"(z')eC,
on a

z'=H;'(z)=hPH 'hj~™™(z) avec h;"(z)e H(C)
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Mais H(C)) = C; car H est une conjugaison et les domaines fondamentaux C; et
C; ont 33 et H(3X) comme bord.
On a donc construit H;H; '(z) de la fagon suivante:

HH; (z) = hi™Hh™h"H™"h{~"(2)
avec
B €C) et hmH ) € G

De sorte que I’on est dans les conditions d’application de la proposition:
HH;'(z)=h{™h{"™h/"HH 'h;""(z) =z

Ce que I’on voulait prouver. Ainsi H; = H; conjugue %, et #,,.. On a donc établi
le fait suivant: si s est assez petit les holonomies projectives de w et w, sont
topologiquement conjuguées; si maintenant t— w, est une famille topologique-
ment triviale joignant w a 7 on peut faire le méme raisonnement pour chaque w,,;
il existe un voisinage V(1) tel que ¢ € V (¢,) implique #,, - #,,,; on conclut par
compacité.

Nous ne terminerons pas ce chapitre sans avoir énoncé les conjectures
suivantes:

CONJECTURE A. Si w et o' sont topologiquement conjugués les holon-
omies projectives , et ¥, sont topologiquement conjuguées.

Plus généralement:

CONIJECTURE B. Si w et o' sont topologiquement conjugués et si w est
une courbe généralisée ([C,L,S]) les holonomies de chaque projectifs (en
dualités) dans la désingularisation sont conjuguées.

V. t-rigidite des equations w, + - - - et espace de s-modules de w; + - - -

Dans ce chapitre nous allons combiner les résultats des chapitres III et IV
pour obtenir ’espace des t-modules de certaines équations différentielles. Soit w,
une famille de 1-formes holomorphes topologiquement triviale. On suppose que
le premier jet non nul de w, est général; soit g, le groupe d’holonomie projective
de w,. alors si g, vérifie la condition (*) (Chap. III) et n’est pas abélien, une
conséquence des chapitres III et IV est que la famille g, est analytiquement
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triviale. On peut éconcer en termes de 1-formes la condition ‘g, n’est pas

abélien”. Rappelons a cet effet un résultat obtenu par I'un des auteurs et J. F.
Mattei [C, M]:

PROPOSITION 1. Soit w=w, +--- un germe de 1-forme holomorphe a
premier jet non nul w, général. Si I’holonomie projective de w est abélienne alors
@ posséde une intégrale premiére multiforme f}'---fl ie. w est du type
logarithmique: w =f, - - - f, ¥ A,(dfi/f,).

Remarque. Le fait de posséder une telle intégrale est exceptionnel lorsque v
est supérieur ou €gal a deux. Plus précisément, w, étant fixé, v =2, il existe un
ouvert de Zariski %, ,, dans les formes homogeénes de degré v + 1 tel que ’on ait
la propriété suivante:

—un germe de 1-forme holomorphe w tel que j'w = w, et j**'= w0, + 0,4,
avec w, ., € U, ,, ne peut-étre logarithmique. Notamment si w, ., est générale
I’holonomie projective de @ sera non abélienne.

DEFINITION. Un germe de 1-forme o = w, + - - - tel que

1) w, soit générale

2) I'holonomie projective de w soit non abélienne et vérifie (*) sera qualifié
de “‘non-abélien général” (N.A.G.)

Remarque. La condition (*) ne porte que sur les résidus A; de w,.

Nous calculerons des espaces de modules en utilisant le:

THEOREME 2. Soit w, une famille de 1-formes topologiquement triviale. On
suppose que w, est N.A.G. et que la famille X; des séparatrices de w, (ce sont
v + 1 courbes lisses 2 a 2 transverses) est holomorphiquement triviale au dessus de
v + 1 doites complexes. Alors w, est holomorphiquement triviale.

Démonstration. Un changement de coordonnées convenable permet de
supposer que la famille X, est constante: X; = X, = (v + 1) droites complexes 2 a
2 transverses et que I’holonomie projective g, est constante égale a go. On fait un
éclatement de l'origine et l'on conjugue les feuilletages %, |U et %, |U
restrictions des feuilletages éclatés %, et %, a un ouvert U fibré par la fibration
canonique de C?; U étant le complément de tubes fibrés autour des séparatrices.
Les conjugaisons (qui sont fibrées) s’étendent a I'intérieur des tubes essentielle-
ment parce que les séparatrices (éclatées) sont des fibres de la fibration
canonique; ceci se prouve en recopiant la démonstration du théoréme 2.2 de I.
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On redescend sur C*>— {0} les conjugaisons obtenues dans I’éclatement; elles
s’étendent en 0 par Hartogs. Q.E.D.

COROLLAIRE 3 (Espace des t-modules de w,+ -+ ). Soit w=w,++-- un
germe de 1-forme holomorphe d’ordre deux N.A.G. Alors w est t-rigide.

Démonstration. C’est une conséquence du fait suivant: on se donne une
famille de courbe X; telle que

1) X, =3 courbes lisses deux a deux transverses

2) X, est topologiquement triviale; alors la famille X; est holomorphiquement
équivalente a la famille constante x-y(x —y)=0. On applique ensuite le
théoreme 2. Q.E.D.

COROLLAIRE 4 (Espace des t-modules de w5+ - - ). Soit w =wz+--- un
germe de 1-forme holomorphe d’ordre trois N.A.G. L’espace des t-modules de w
s’identifie a C — {0}.

Preuve. Elle est conséquence de 2 faits:

1) Une famille X, de 4 courbes lisses deux a deux transverses est holomorphi-
quement triviale (et holomorphiquement conjuguée a la famille constante TX,
des tangentes a X)) si et seulement si le birapport des tangentes est constant.

2) Un résultat de synthése des groupes d’holonomie de [L] (reposant sur un
théoréme puissant de Grauert sur les voisinages tubulaires de certaines surfaces
de Riemann) dont voici ’énoncé qui nous est utile:

PROPOSITION 5. Soit g un groupe de difféomorphismes de C, 0 engendré
par v éléments

z—=f(z), i=1,...,v

chaque difféomorphisme f; étant dans le domaine de Poincaré (|f;(0)| # 1) et soient
ti, ..., t, v + 1 points distincts de I’espace projectif PC(1). 1l existe un germe de
1-forme holomorphe w en 0 € C* ayant pour séparatrices les v + 1 droites y = t;x et
le groupe g comme holonomie projective.

D’autre part on peut faire dépendre les ¢, holomorphiquement d’'un parameétre
complexe s et obtenir ainsi une famille w; ayant y = ¢,(s) - x comme séparatrices et
g comme groupe d’holonomie (constamment). Comme le groupe d’holonomie est
constant cette famille est topologiquement triviale (exercise). Q.E.D.
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Remarque. 1) Tenant compte des résultats obtenus dans III dans le cas des
groupes abéliens et de I'énoncé de synthése, on peut évidemment préciser
I’espace des t-modules des formes w,+ - - - et w;+ - - - possédant une intégrale
premiere f}'---fi (les A; étant ici, 2 linverse du chapitre II, non alignés
(condition *). Nous laissons au lecteur le soin de préciser cet espace.

2) Dans [I] Ju. S. IliaSenko annonce un certain nombre de résultats
concernant I’espace des modules des formes algébriques (cas global).

V1 Problemes ouverts

PROBLEME 1. Calculer I’espace des t-modules de w =w, +- -+ N.A.G.
(v=4). On sera amené certainement a établir le lemme suivant:

LEMME. Sout w, une famille topologiquement triviale, avec wy N.A.G. On

suppose que la famille X; des séparatrices de w, est holomorphiquement triviale.
Alors w; est holomorphiquement triviale.

La difficulté pour prouver le lemme est que ’on ne peut pas mettre la famille
X, dans une fibration de Hopf.

PROBLEME 2. On se donne une courbe X a l'origine de C? et ’on désigne
par 7ty:My— C? la désingularisation minimale de X. Soient X; les composantes
irréductibles (ce sont des droites projectives) du diviseur 75'(0); pour chaque X;
on se donne un groupe g; de difféomorphismes de C, 0 engendré par p;
générateurs, ou p; est défini par:

1+p={(x %) U AT = (oD

On demande quelles conditions, outre des conditions évidentes sur les 1-jets,
doivent satisfaire les g, pour qu’il existe une 1-forme w ayant X comme seules
séparatrices et telle que le groupe d’holonomie du diviseur X; soit précis€ment g,.

PROBLEME 3. Enlever les paramétres, i.e. calculer les espaces de modules
et non de ¢-modules pour les formes condidérées dans ce travail.

PROBLEME 4. Soit @ une 1-forme t-rigide et X les séparatrices de w; soit
(f = 0) une équation réduite de X.

1) fest-elle quasi-homogene?

2) f est-elle rigide?
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PROBLEME 5 (Equations dicritiques).> Dans [C, M] on montre que les deux
1-formes suivantes sont topologiquement conjuguées

wo = (y*+y* —xy) dx — (2xy> +xy — x°) dy
et
w, = (2y*+ x?) dx — 2xy dy.

Alors que w, posséde l'intégrale premiére méromorphe y* — x*/x?, i.e. les feuilles
de w, sont les courbes y*—x*>=cx? cePC(1), la forme w, ne posséde pas
d’intégrale premiére méromorphe.

A fortiori w, et w; ne sont pas holomorphiquement conjuguées. On demande
I’espace des modules et I’espace des t-modules de ;.

PROBLEME 6. L’espace des modules d’un difféomorphisme z—Az + - - -
non linéarisable (A mauvaise rotation irrationnelle).

Appendice 1

Dans cette appendice nous établissons la proposition I1.5.2.

Soit w un germe de 1-forme holomorphe possédant I'intégrale premicre
fit+ - fir ot les A, sont des nombres réels indépendants sur N et les f; des germes
irréductibles. Il n’est pas difficile d’établir & ce moment que la désingularisation
de la forme w est précisément la désingularisation de la courbe f; - - - f, = 0.

On en déduit sans peine que I’holonomie de la solution (f; =0) — {0} est du
type, a conjugaison holomorphe prés, z—pu; - z

_ . A )
U; = exp (Zm 7 n,'-‘/‘-k

ot les nf sont des entiers positifs ne dépendants que de la courbe f; - - - f, =0, et
en fait seulement de la topologie de f; - - - f, =0. Soit maintenant w, une famille
topologiquement triviale avec wo=w. Comme il a été dit w, posséde une
intégrale premiere fi(s)*® - - f,(s)*»*. Si l'on impose, quitte 3 prendre une
puissance de f}') . f3) que A, =A,(s)=1 alors les A,(s) dépenderont con-
tinuement de s. La trivialité topologique implique la trivialité topologique des

? Probléme 5 vient d’étre traité par M. Klukertz dans un préprint de l'université de Toulouse.
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holonomies des variétés (fi(s)=0— {0}); il en résulte que les rotations z—
p(s) -z sont topologiquement conjuquées, u,(s) = exp (2iwA;(s)/L nfA.(s)).
Comme les A;(s) sont réels on en déduit que p;(s) =p,; ou bien p;(s) = u;; mais
usant de la continuité on a u;(s) = u;. C'est alors un simple exercice d’algebre
linéaire (utilisant A, = A,(s) = 1) d’établir que les A,(s) sont indépendants de s.
Nous conjecturons qu’en fait si deux formes w, et w, possédant des intégrales
premieres f=f}'-- - fir et g =g1' - - - g a exposants réels sont topologiquement
conjugués, alors les exposants sont projectivement égaux. Dans le cas ou p =2 et

fi, f» constituent un systéme de coordonnée, c’est une conséquence d’un résultat
annoncé dans [N].

Appendice 2

Nous allons établir une version analytique réelle du théoreme 2.III (un peu
moins générale); ici un groupe g, d’homothéties réelles vérifie (*) R s’il possede
une base fi,...,f,, fi(x)=A(x), tels que les nombres a;=Log|A,| soient
Z-indépendants; i.e. si ¥; l,a; =0, ;€ Z, alors [; =0, Vj.

Un groupe g de germes de difféomorphismes analytiques en 0 € R vérifie (*)g
s’il en est ainsi pour le groupe linéaire j'g.

THEOREME (réel). Soit q un groupe de germes de difféomorphismes
analytiques a I'origine de R vérifiant la condition (*)R. Si g n’est pas abélien un
groupe X de germes de difféomorphismes analytiques tel que j'g=j'% est
conjugué analytiquement a g si et seulement si il I’est topologiquement.

Preuve. On désigne par Ax, ..., A,x une base de j'g. On proceéde alors
comme dans le cas holomorphe en travaillant avec deux difféomorphismes non
commutants qui dans une bonne coordonnée x s’écrivent:

f(x)=Ax 0< Ay <1
g(x)=Ax(1+xa(x)) 0<|A,|<1

Désignant par h I’'homéomorphisme de conjugaison et F et G les élément de ¥
correspondants par 4 a f et g on se raméne au cas ol

F=2Ax
G =ix(1+K(x))

Notant I, (resp’ L) l'intervalle [0, 1] (resp’ [—1, 0]) on montre comme dans le cas
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holomorphe qu’il existe des constantes A; et ¢, >0, i =1, 2 telles que:

h(x)=A; " |x|* pour xel.
Ecrivant alors la conjugaison entre g et G:

hog=Ge°h
on obtient sur chaque intervalle /;:

1+ K(A; |x]|*) =1 + xa(x))* (1)
Parce que le second membre de (1) est analytique, on remarque sans peine que
les nombres a; sont rationnels. Ensuite, €crivant la conjugaison entre f et F, il
vient:

A=A i=1,2
Mais parce que j'g =j'% A; s’écrit:

AM=A=A0---Ay olulesn;eZ

écriture qui conduit 4 une relation entiére entre les a; = Log |4,]; cette relation
devant étre triviale on obtient I’égalité:

{a1=a2=n1 (et n, eN)
nj=0 pour j=2

Ensuite développant (1) en série on obtient puisque 4 est un homéomorphisme:
A =—A,

Maintenant de par la forme de h, h induit un isomorphisme entre j'g et

j'¥ =j'g. Soit Ajx €j'% I'homothétie image par h de A;-x; par le méme

argument que précédemment on a:

A3,

Comme l'isomorphisme qui s’écrit sur la base A,— A" est inversible, visiblement
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n,; = 1; il s’en suit que:

h(x)=A,-x Q.E.D.

Remarque. On peut encore appliquer cette méthode dans le cas C* pour des
groupes g qui ne sont pas formellement abéliens.
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