Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 61 (1986)

Artikel: Problèmes de modules pour les formes différentielles singulières dans

le plan complexe.

Autor: Cerveau, Dominique / Sad, Paulo

DOI: https://doi.org/10.5169/seals-46929

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Problèmes de modules pour les formes différentielles singulières dans le plan complexe

Dominioue Cerveau¹ et Paulo Sad

Resumé. On considère des équations de Pfaff holomorphes à l'origine de \mathbb{C}^2 , $\omega = a(x, y) dx + b(x, y) dy$. Sous des hypothèses génériques, portant sur le premier jet non nul ω_v de ω , on décrit explicitement l'espace des modules de ω pour v petit. On s'intéresse aussi aux formes rigides et aux problèmes sous-jacents à ce type de question, notemment l'invariance topologique de l'holonomie projective.

Abstract. We consider holomorphic Pfaffian equations $\omega = a(x, y) dx + b(x, y) dy$. Under generic assumptions on the first significant jet of ω , we describe the space of moduli for Pfaffian equations of small order. Problems of rigidity and topological invariance of projective holonomy are also studied.

0. Introduction

Les récents travaux d'Ecalle [E] et de Martinet-Ramis [M, R] ont mis au goût du jour les problèmes de modules pour les équations différentielles non linéaires. Il s'agit plus ou moins d'une généralisation aux feuilletages singuliers (germes), tout du moins chez [M, R], de problèmes classiques pour les courbes algébriques ainsi que pour les germes de courbes analytiques en un point du plan complexe. Alors que les précédents auteurs se sont intéressés à des difféomorphismes ou des équations différentielles où les espaces de modules sont énormes nous allons ici dégager une classe d'équations différentielles où l'espace des modules est relativement petit. On s'attachera notamment à prouver que ce phénomène intervient essentiellement lorsque le feuilletage (induit par l'équation différentielle) présente des symétries (le degré de complication limité par la symétrie rigidifie la situation) ou bien lorsque le feuilletage est à l'inverse très chaotique (dans cette seconde éventualité c'est le désordre qui rigidifie). Cette étude nécessitera notamment le calcul explicite de l'espace des modules de certains groupes de difféomorphismes de la droite complexe.

¹ Une partie de ce travail a été réalisé lors d'un séjour du premier auteur à l'IMPA de Rio et à l'Université Fédérale du Minas Gerais. Ceci grace au concours du CNPQ (Brésil) et du Ministère des Relations Extérieures (France).

Le présent mémoire comporte six chapitres et deux appendices.

- I Résultats anciens et nouveaux concernant les germes de difféomorphismes de \mathbb{C} , 0 et les germes de 1-formes holomorphes en $0 \in \mathbb{C}^2$.
- II t-rigidité en présence de symétries: feuilletages (singuliers) donnés par les courbes de niveau des fonctions uniformes et multiformes.
 - III Presque rigidité des groupes non abéliens généraux de difféomorphismes.
- IV Le problème de l'invariance topologique de l'holonomie projective dans le cas générique.
 - V t-rigidité des équations différentielles singulières d'ordre 2 et 3.
- VI Problèmes ouverts (t-modules des équations différentielles singulières. Synthèse générale des groupes d'holonomie. Rigidité d'équations différentielles et rigidité des séparatrices. Equations dicritiques).

Appendices.

Bibliographie.

Ce travail a fait l'objet de six exposés du premier auteur dans le groupe de travail sur la dimension deux à Dijon. Nous remercions les auditeurs pour leur patience et remarques.

I. Resultats anciens et nouveaux concernant les diffeomorphismes de \mathbb{C} , 0 et les germes de 1-formes holomorphes en $0 \in \mathbb{C}^2$

§0. Notations et définitions

On considère des germes de courbes (f = 0), de fonctions f, de 1-formes holomorphes a dx + b dy à l'origine de \mathbb{C}^2 ainsi que de sous-groupes \mathfrak{g} du groupe Diff $(\mathbb{C}, 0)$ des germes de difféomorphismes holomorphes $h : \mathbb{C}, 0 \mathfrak{D}$.

Pour tous ces objets on a notamment deux sortes d'équivalences:

- * l'équivalence topologique
- ** l'équivalence holomorphe.

Rappelons de quoi il s'agit pour les quatre objets ci-dessus;

(i) Deux germes de courbes (f = 0) et (f' = 0) (respectivement de fonctions f et f') sont topologiquement conjugués s'il existe une germe d'homéomorphisme $H: \mathbb{C}^2$, $0 \circlearrowleft$ tel que:

$$H(f=0)_{,0} = (f'=0)_{,0}$$
 (resp. $f = f' \circ H$)

- (ii) Deux germes de 1-formes holomorphes ω et ω' sont topologiquement conjugués s'il existe un germe d'homéomorphisme $H:\mathbb{C}^2$, $0 \circlearrowleft$ qui envoie feuilles sur feuilles les feuilletages (singuliers) \mathscr{F}_{ω} et $\mathscr{F}_{\omega'}$ induits par ω et ω' .
 - (iii) Enfin deux sous-groupes $\mathfrak g$ et $\mathfrak g'$ de Diff $(\mathbb C,0)$ sont topologiquement

conjugués s'il existe un germe d'homéomorphisme h de la droite \mathbb{C} , 0 et un isomorphisme de groupe $\varphi: \mathfrak{g} \to \mathfrak{g}'$ tel que $g \circ h = h \circ \varphi(g)$ pour tout $g \in \mathfrak{g}$ (ceci signifie que $\mathfrak{g} \circ h = h \circ \mathfrak{g}'$).

On parle de conjugaison holomorphe lorsque les homéomorphimes de conjugaison sont des difféomorphismes holomorphes (dans le cas des formes ceci se traduit par l'égalité $(H^*\omega) \wedge \omega' \equiv 0$).

On note $\stackrel{\text{top}}{\sim}$ et $\stackrel{\text{hol}}{\sim}$ les équivalences de conjugaisons topologiques et holomorphes. L'espace des modules de l'objet α est le quotient

$$\mathcal{M}(\alpha) = \left\{ \beta \stackrel{\text{top}}{\sim} \alpha \right\} / \stackrel{\text{hol}}{\sim}$$

On dit que α est *rigide* si l'espace $\mathcal{M}(\alpha)$ des modules de α se réduit à un point; α est presque rigide (ou localement rigide) si l'espace $\mathcal{M}(\alpha)$ est discret. Plus précisément, munissant les espaces (de fonctions, de formes, de difféomorphismes) de la topologie des jets, si $V(\alpha)$ est un voisinage de α on désigne par $\mathcal{M}_{V(\alpha)}$ l'espace $\mathcal{M}(\alpha)$ localisé au dessus de $V(\alpha)$ i.e.:

$$\mathcal{M}_{V(\alpha)}(\alpha) = \frac{\left\{\beta \in V(\alpha), \, \beta \stackrel{\text{top}}{\sim} \alpha\right\}}{\left\{\beta \in V(\alpha), \, \beta \stackrel{\text{hol}}{\sim} \alpha\right\}}$$

Ainsi α est presque rigide s'il existe $V(\alpha)$ tel que $\mathcal{M}_{V(\alpha)}(\alpha)$ se réduise à un point.

Alors que pour les fonctions et les difféomorphismes, les espaces définis ci-dessus sont de bons espaces (au sens où l'on peut espérer obtenir des théorèmes...) dans le cas des 1-formes il faut un peu affiner et définir l'espace des t-modules (t-symbolisant la notion de paramètre); on procède de la façon suivante: soit $t \to \alpha_t$ une famille de 1-formes holomorphes à l'origine 0 de \mathbb{C}^2 ; α_t est topologiquement triviale s'il existe une famille continue d'homéomorphismes $t \to h_t$ de \mathbb{C}^2 , 0 (fixant 0) telle que:

$$\begin{cases} h_0 = h_{t=0} = id \\ h_t \text{ est une équivalence topologique } \alpha_t \text{ et } \alpha_0. \end{cases}$$

La 1-forme β est une déformation stable de la 1-forme α s'il existe une famille $t \to \alpha_t$ continue en $t \in [0, 1]$ et topologiquement triviale telle que $\alpha(0) = \alpha$, $\alpha(1) = \beta$.

L'espace des *t*-modules de α est le quotient:

$$t - \mathcal{M}(\alpha) = \{\beta \text{ déformation stable de } \alpha\} / \stackrel{\text{hol}}{\sim}.$$

Enfin nous disons que α est t-rigide si $t - \mathcal{M}(\alpha)$ se réduit à un point.

§1. Exemples d'espaces de modules: le cas des difféomorphismes de \mathbb{C} , 0. Théorèmes de Poincaré-Siegel. Quelques résultats d'Ecalle, Martinet, Ramis §1a. Les théorèmes de Poincaré, Siegel et du domaine invariant

THÉORÈME 1.1 (Poincaré). Soit h(z) un germe de difféormorphisme à l'origine de \mathbb{C} fixant 0. Si $|h'(0)| \neq 1$, h(z) est holomorphiquement conjugué à l'homothétie $z \rightarrow h'(0)z$.

Si h vérifie l'hypothèse du théorème 1, on dit usuellement que h appartient au "domaine de Poincaré."

Remarquant que deux homothéties $z \to \lambda z$ et $z \to \lambda' z$ du domaine de Poincaré sont topologiquement conjuguées si et seulement is λ et λ' sont simultanément à l'intérieur ou à l'extérieur du disque unité on conclut que:

-l'espace des modules $\mathcal{M}(h)$ d'un difféomorphisme h dans le domaine de Poincaré s'identifie à D^* , où D^* est le disque unité ouvert épointé de \mathbb{C} . De même l'espace des modules du groupe $\{h^n, n \in \mathbb{Z}\}$ engendré par h s'identifie à D^* . Le cas des rotations périodiques est une conséquence du théorème de représentation conforme de Riemann:

THÉORÈME 2.1 (du domaine invariant). Soit h un germe de difféomorphisme à l'origine de $\mathbb C$ possédant un domaine invariant (ceci signifie qu'il existe un voisinage $\tilde U$ de 0 difféomorphe à un disque sur lequel on peut définir un représentant $\tilde h$ de h et tel que $\tilde h(\tilde U)=\tilde U$). Alors $h\stackrel{\text{hol}}{\sim} z \to h'(0)z$.

Notamment: a) tout difféomorphisme périodique est conjugué à une rotation périodique.

b) plus généralement [M, M], tout germe de difféomorphisme à orbites finies ([M, M]) est conjugué à une rotation périodique.

Le fait que l'existence d'un domaine invariant soit de nature purement topologique, ajouté au caractère topologique du "nombre de rotation", conduit à l'affirmation: l'espace des modules d'une rotation $z \to \lambda z$ (rationnelle ou non) est réduit à deux points = $\{z \to \lambda z, z \to \bar{\lambda} z\}$. Notamment une rotation est presque rigide et le groupe engendré par une rotation est lui, rigide.

Outre les conditions a) et b) assurant l'existence d'un domaine invariant on dispose du célèbre théorème de linéarisation de Siegel.

THÉORÈME 3.1 (Siegel). Il existe un sous-ensemble A de mesure de Lebesque 1 contenu dans le cercle unité S^1 , tel que tout germe de difféomorphisme $h(z) = \lambda z + \cdots$ de \mathbb{C} , 0 avec $\lambda \in A$ est holomorphiquement conjugué à la rotation $z \to \lambda z$. (A contient les rotations irrationnelles mal approchées par les rationnelles).

§1b. Résultats d'Ecalle-Martinet-Ramis. Pour ne pas compliquer l'exposé, on ne mentionnera que les résultats concernant les difféomorphismes tangents à l'identité. Pour plus de compléments nous invitons les lecteurs à compulser les travaux originaux [E] [M, R].

Soit $h(z) = z + a_k z^k + a_{k+1} z^{k+1} + \dots$, $a_k \ne 0$, $k \ge 2$ le développement de Taylor d'un difféomorphisme tangent à l'identité; on a le:

THÉORÈME 4.1. 1) h est topologiquement conjugué au difféomorphisme

$$\sigma_{k,0}: z \to z + z^k$$

2 il existe un nombre complexe λ unique tel que h soit formellement conjugué à

$$\sigma_{k,\lambda}: z \to z + z^k + \lambda z^{2k-1}$$

2) est classique, 1) est dû à Camacho [Ca]; λ est un module formel. Du théorème 4.1 résulte visiblement qu'une condition suffisante pour que deux difféomorphismes holomorphes, tangents à l'identité, soient topologiquement conjugués est qu'ils le soient formellement. Une partie des travaux d'Ecalle, reprise par Malgrange, puis Martinet et Ramis, consiste à expliciter l'espace des modules

$$\hat{\mathcal{M}}(h) = \{H \text{ formellement conjugué à } h\}/\stackrel{\text{hol}}{\sim}$$

Nous en donnons la version de Martinet-Ramis:

THÉORÈME 5.1. Soit $h = z + \sum_{i \ge 2} a_i z^i$ un germe de difféomorphisme holomorphe tangent à l'identité. Soit k le plus petit entier i tel que $a_i \ne 0$. L'espace des modules $\hat{\mathcal{M}}(h)$ s'identifie à $[\text{Diff}_{id}]^{2k}$ où $[\text{Diff}_{id}]^{2k}$ est l'espace des difféomorphismes holomorphes tangents à l'identité.

Pour obtenir l'espace total des modules $\mathcal{M}(h)$ on devra ajouter l'espace \mathbb{C} des paramètres λ .

Parmi les difféomorphismes de la droite, seuls résistent les difféomorphismes tangents à une rotation λz où λ est une "mauvaise" rotation irrationnelle. Dans ce cas, on sait que λ est un invariant topologique (orienté) [N].

§2. Exemples d'espaces de modules des 1-formes holomorphes réduites à l'origine de \mathbb{C}^2

Il s'agit essentiellement d'une application plus ou moins directe des résultats de §1. Nous devons mettre en place un certain nombre de notions familières aux spécialistes.

§2a. Notations et définitions. Soit $\omega = a(x, y) dx + b(x, y) dy$ un germe de forme holomorphe à l'origine de \mathbb{C}^2 . On dit que ω est réduit (ou que le feuilletage \mathcal{F}_{ω} induit par ω est réduit) si le 1-jet de ω en 0 est, à transformation linéaire près, de l'un des deux types:

- (*) $y dx + \mu x dy$ où $\mu \notin -\mathbb{N}^* \cup 1/\mathbb{N}^*$
- (**) y dx et ω est à singularité isolée.

Rappelons que tout germe de 1-forme se désingularise par éclatements de points en un feuilletage n'ayant que des singularités réduites. Un résultat classique, connu sous le nom de théorème de Poincaré-Dulac, dit qu'une forme réduite du type (*) possède deux séparatrices lisses transverses et qu'une forme réduite du type (**) possède deux séparatrices formelles lisses transverses dont l'une au moins converge. Par exemple dans le cas (*) ceci signifie que, pour un bon choix des coordonnées (x, y), ω s'écrit (à un facteur multiplicatif près):

$$\omega = y \, dx + \mu x (1 + A(x, y)) \, dy \tag{1}$$

où A appartient à l'idéal \mathcal{M} des fonctions holomorphes s'annulant en 0. On peut alors définir suivant [M, M] l'holonomie des variétés invariantes (x = 0) et (y = 0) de la façon suivante. On remarque que l'équation (1) est transverse en dehors de (x = 0) (resp. (y = 0)) à la fibration verticale x = Cste (resp. horizontale y = Cste). On construit alors les difféomorphismes d'holonomie des séparatrices (x = 0) et (y = 0) de façon usuelle par relèvement d'un lacet S^1 de $((x = 0) - \{0\})$ (resp. $(y = 0) - \{0\}$) dans les feuilles suivant la fibration (y = Cste) (resp. (x = 0)) (fig. 1).

Un calcul élémentaire montre que le difféomorphisme d'holonomie de (x = 0) (resp. (y = 0)) a pour partie linéaire l'homothétie $z \rightarrow e^{2in\mu} \cdot z$ (resp. $z \rightarrow e^{2in/\mu} \cdot z$).

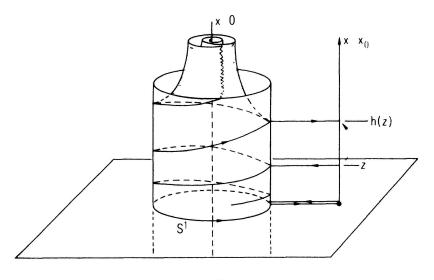


Fig. 1.

Remarque. Pour des raisons d'orientation, il serait plus correct de parler du groupe d'holonomie de (x = 0).

§2b. Comment calculer sur des exemples. On commence par la version feuilletée des théorèmes de Poincaré-Siegel.

THÉORÈME 1.2. Soit $\omega = y dx + \mu x(1 + A(x, y)) dy$ une forme réduite du type (*):

- 1) si μ est non réel ω est holomorphiquement linéarisable, ie holomorphiquement conjuguée à sa partie linéaire $j^1\omega = y dx + \mu x dy$
- 2) De même si μ est un irrationnel positif mal approché par les rationnels ou bien si $\mu \in \mathbb{R}_{-}$.

Compte tenu de ce qui précède on note d'emblée l'analogie: Si ω vérifie les hypothèses de Poincaré-Siegel, alors les holonomies des variétés invariantes (x=0) et (y=0) vérifient les hypothèses de Poincaré-Sigel §1. De fait, cette analogie provient d'un résultat plus profond (Moussu):

THÉORÈME 2.2 [M]. Soient $\omega_i = y \, dx + \mu x (1 + A_i(x, y)) \, dy$ i = 1, 2 deux équations réduites de type (*) mises sous forme de Poincaré-Dulac; h_i l'holonomie de la variété invariante y = 0 de ω_i . Alors ω_1 et ω_2 sont holomorphiquement conjuguées si et seulement si les holonomies h_i le sont.

En fait on a toujours clairement l'implication: conjugaison – topologique ou holomorphe-des formes implique conjugaison – topologique ou holomorphe-des holonomies.

On trouvera dans [C, S] la version topologique initiale de ce résultat (cas résonnant $\mu \in \mathbb{Q}_+$):

THÉORÈME 3.2. Deux 1-formes holomorphes résonnantes sont topologiquement équivalentes si et seulement si les holonomies des variétés invariantes sont topologiquement conjuguées.

De tels résultats se trouvent dans [M, R]₁ pour les formes réduites du type **. Enonçons maintenant le théorème de "synthèse" de Martinet-Ramis [M, R]₂ (cas résonnant):

THÉORÈME 4.2. Soit $h(z) = e^{2in(p/q)} \cdot z + \cdots$ un germe de difféomorphisme holomorphe à l'origine de \mathbb{C} , tangent à une rotation rationnelle. Il existe alors un germe de 1. forme holomorphe:

$$\omega = y \, dx + \frac{p}{q} x (1 + A(x, y)) \, dy$$

tel que le groupe d'holonomie de la séparatrice (x = 0) soit engendré par h.

Finalement, dans la pratique, pour calculer les espaces de modules des formes réduites on invoquera les faits suivants:

- 1) la propriété être réduite de type * ou ** est de caractère topologique ([C, S, L]).
- 2) le caractère topologique du domaine de Poincaré: si $\omega = y \, dx + \mu x (1 + A) \, dy$ avec $\mu \in \mathbb{C} \mathbb{R}$ et si $\tilde{\omega}$ est topologiquement conjuguée à ω alors $\tilde{\omega} \stackrel{\text{hol}}{\sim} y \, dx + \tilde{\mu} x (1 + A) \, dy$ avec $\tilde{\mu} \in \mathbb{C} \mathbb{R}$. Le théorème de linéarisation de Poincaré dit alors que $\omega \stackrel{\text{hol}}{\sim} y \, dx + \mu x \, dy$ et $\tilde{\omega} \stackrel{\text{hol}}{\sim} y \, dx + \tilde{\mu} x \, dy$. Ce qui précise l'espace des modules de ω :

$$\mathcal{M}(\omega) = \mathbb{C} - \mathbb{R}$$

Par contre $t - \mathcal{M}(\omega)$ est le demi-plan de Poincaré.

- 3) d'après 2) ne pas être dans le domaine de Poincaré (i.e être dans le domaine de Siegel suivant la terminologie consacrée) est aussi de caractère topologique.
- 4) dans le cas résonnant $(\mu \in \mathbb{Q}_+)$ on invoquera le résultat suivant conséquence de 2.2, 3.2, 4.2:

THÉORÈME 5.2. Soit $\omega = y dx + \mu x (1 + A(x, y)) dy$ une forme réduite

résonnante $(\mu = p/q)$ de type *. L'espace des modules $\mathcal{M}(\omega)$ de ω s'identifie à l'espace des modules du groupe d'holonomie d'une de ses variétés invariantes.

Remarques. Le théorème du domaine invariant pour les diffèomorphismes trouve son analogue dans les feuilletages au travers d'une hypothèse sur la fermeture des feuilles [M, M], [C, M]. Nous y reviendrons plus précisément dans le chapitre II. Ceci permettra de préciser l'espace des modules d'une forme résonnante:

- il est ou bien réduit à un point (en présence d'intégrales premières voir II).
- ou bien du type $\mathbb{C} \times \mathrm{Diff}_{id}^{2k}$.

II. t-rigidite en presence de symetries: feuilletages donnes par les courbes de niveau des fonctions holomorphes uniformes et multiformes

§1. Courbes et fonctions: quelques remarques naīves Rappelons la définition suivante:

DÉFINITION. Une hypersurface X d'équation réduite (f = 0) à l'origine de \mathbb{C}^n est quasi-homogène si $f \in \mathcal{M} \cdot J(f)$ où J(f) est l'idéal Jacobien de f et \mathcal{M} l'idéal maximal de l'anneau \mathcal{O}_n des fonctions holomorphes en $0 \in \mathbb{C}^n$. Cette définition est indépendante de l'équation f choisie et nous dirons indifféremment que f ou la fonction f sont quasi-homogènes.

Outre le fait qu'en général une fonction quasi-homogène est holomorphiquement conjuguée à un polynôme quasi-homogène (cf [S] dans le cas singularité isolée, [C, M] dans d'autres cas) rappelons les propriétés bien connues suivantes:

- a) les surfaces de niveau de f, autres que la surface singulière f=0, sont holomorphiquement les mêmes; on peut en effet exprimer la quasi-homogénéité par le fait suivant: il existe un champ de vecteur Z, Z(0)=0, à l'origine de \mathbb{C}^n tel que Z(f)=f. Le flot φ_t de Z transporte alors les surfaces de niveau l'une sur l'autre. (Dit autrement "il n'y a pas de modules dans les surfaces de niveau"). On dit que le champ Z est une symétrie de f.
- b) f est quasi-homogène si et seulement si pour toute unité $U = e^V$, $V \in \mathcal{O}_n$, f et $e^V \cdot f$ sont holomorphiquement conjuguées.

Nous utiliserons le résultat suivant:

THÉORÈME 1.1 (Zariski, King, Durfee)[Ki]. Soient f et g deux fonctions holomorphes réduites à l'origine de \mathbb{C}^2 ; on a l'équivalence entre (i) et (ii):

(i) les courbes (f = 0) et (g = 0) sont topologiquement conjuguées.

(ii) les fonctions f et g sont topologiquement conjuguées. Nous en tirons la proposition suivante:

PROPOSITION 2.1. 1) si f réduite est rigide alors f est quasi-homogène. 2) si f est rigide alors (f = 0) est rigide.

Remarque. Les réciproques sont fausses.

Démonstration de la proposition. Soit f rigide et U une unité. Comme f et $U \cdot f$ ont les mêmes zéros, f et $U \cdot f$ sont topologiquement conjugués. Parce que f est rigide, les fonctions f et Uf sont holomorphiquement conjuguées, ceci pour toute unité, donc f est quasi-homogène. Supposant toujours f rigide, soit g réduite telle que $(f=0) \stackrel{\text{top}}{\sim} (g=0)$. Alors les fonctions f et g sont topologiquement conjuguées donc holomorphiquement conjuguées; il va de soi qu'il en est de même pour les courbes. Q.E.D.

Remarque. Pour mémoire, signalons que l'on peut établir une version analogue de la proposition 2 dans le cas général, c'est à dire non réduit, par exemple en invoquant des résultats de [K] et [C, M]. Nous y reviendrons dans un cadre plus général au cours de l'étude des feuilletages rigides donnés par des fonctions multiformes. On peut, moyennant la Proposition 2.1 et l'invariance topologique de l'ordre et du nombre de Milnor d'une fonction holomorphe à deux variables, construire une liste de fonctions rigides; par exemple x, xy, $y^2 + x^3$, $x^3 + y^3$, $y(y - x^k)$, $xy(y - x^k)$, $x(y^2 + x^3)$ etc. sont rigides. Mais aussi $x^p y^q$, p, $q \in \mathbb{N}$...

§2. Construction de feuilletages singuliers rigides à partir d'une fonction rigide On établit tout d'abord le

THÉORÈME 1.2. Soit $f = f_1^{n_1} \cdots f_p^{n_p}$, f_i irréductibles étrangers, $n_i \in \mathbb{N}^*$ premiers dans leur ensemble, une fonction rigide à l'origine de \mathbb{C}^2 . La 1-forme $\omega = f_1 \cdots f_p \sum n_i (df_i/f_i)$ est rigide dans les 1-formes.

Remarque. \mathscr{F}_{ω} est le feuilletage de \mathbb{C}^2 par les lignes de niveau de f; ces lignes de niveau sont connexes [M, M].

Preuve du théorème. C'est une conséquence du

THÉORÈME 2.2 [M, M]. Soit ω un germe de forme holomorphe à l'origine de \mathbb{C}^2 possédant une intégrale première holomorphe f, i.e. $\omega \wedge df = 0$. Soit ω' topologiquement conjuguée à ω , alors ω' possède une intégrale première holomorphe f'.

Remarque. La philosophie de la démonstration de ce théorème est en fait la rigidité des rotations périodiques.

Soit donc ω' topologiquement conjuguée à ω ; ω' possède, d'après le Théorème 2.2 une intégrale première f'; on choisit f' de sorte que f' ne soit pas une puissance (non triviale) d'une autre fonction holomorphe. Il n'est pas difficile de voir que les branches de f' portent les mêmes multiplicités que celles de f, i.e. f' s'écrit:

$$f' = f_1^{\prime n_1} \cdot \cdot \cdot f_p^{\prime n_p}, \quad f_i'$$
 irréductibles étrangers.

D'après la proposition 2.1 (dans le cas où les n_i sont égaux à 1 et d'après la remarque sinon) la courbe (f = 0) est rigide; comme visiblement (f = 0) et (f' = 0)sont topologiquement conjugués, on peut supposer par la rigidité que (f = 0) = (f'=0). Ainsi $f'=U\cdot f$ où U est une unité. Maintenant, puisque f est quasi-homogène, f et $U \cdot f$ sont holomorphiquement conjuguées ([S], [C, M]). holomorphiquement Clairement ceci implique que ω et ω' sont conjugués. Q.E.D.

Nous nous proposons de généraliser ce fait de la façon suivante: soient λ_i , $i=1\cdots p$ des nombres réels $\mathbb N$ indépendants et f_1,\ldots,f_p des germes de fonctions irréductibles étrangers. On a le

THÉORÈME 3.2. Il y a équivalence entre

- α) $f_1 \cdots f_p$ est rigide (en tant que fonction)
- β) la forme $\omega = f_1 \cdot \cdot \cdot f_p \sum \lambda_i (df_i/f_i)$ est t-rigide.

Remarques. 1) le feuilletage singulier de \mathbb{C}^2 , 0 associé à ω a pour feuilles les composantes connexes des surfaces de niveau de la fonction multiforme $f_1^{\lambda_1} \cdots f_p^{\lambda_p}$.

2) sans doute est-il possible de remplacer dans β) t-rigidité par rigidité; c'est possible pour une certaine classe de λ_i .

Le principe de la démonstration est identique à celui du théorème 1.2. Mais on doit remplacer le théorème 2.2 de [M, M] par le suivant:

THÉORÈME 4.2 [L]. Soient ω et ω' deux germes de 1-formes holomorphes à l'origine de \mathbb{C}^2 topologiquement conjuguées. On suppose que ω possède une intégrale première multiforme du type $f_1^{\lambda_1} \cdots f_p^{\lambda_p}$ où les f_i sont des germes réduits et les λ_i des nombres complexes \mathbb{N} -indépendants. Alors ω' possède une intégrale première du même type $g_1^{\mu_1} \cdots g_p^{\mu_p}$. De plus si les λ_i sont tous réels (ou bien \mathbb{R} -alignés) il en est de même pour les μ_i .

Remarque. Ce résultat avait déjà été établit dans un cas particulier dans [C, M], celui où les λ_i sont des nombres réels postifs.

En fait l'énoncé 4.2 s'avère insuffisant dans la mesure où l'on n'est pas sûr de l'affirmation "si les λ_i sont réels" alors $(\lambda_1, \ldots, \lambda_p) = (\mu_1, \ldots, \mu_p)$ à un réarrangement des indices près. Dans l'appendice 1 nous établirons notamment la:

PROPOSITION 5.2. Soit $t \to \omega_t$ une famille de 1-formes topologiquement triviale telle que ω_0 possède une intégrale première du type $f_1^{\lambda_1} \cdots f_p^{\lambda_p}$, où les λ_i sont des nombres réels $\mathbb N$ indépendants; alors pour chaque t, ω_t possède une intégrale première du type $f_{1,t}^{\lambda_1} \cdots f_{p,t}^{\lambda_p}$ (avec les mêmes exposants).

Revenons à la preuve proprement dite du théorème 3.2; montrons que si $f = f_1 \cdots f_p$ est rigide alors ω est t-rigide. Soit ω_t , $\omega_0 = \omega$, une famille topologiquement triviale. A chaque instant t on peut écrire à unité multiplicative près:

$$\omega_t = g_{1,t} \cdot \cdot \cdot g_{p,t} \sum \lambda_i \frac{dg_{i,t}}{g_{i,t}}$$

où les $g_{i,t}$ dépendent de t. (exercice, utiliser le fait que les λ_i sont \mathbb{N} -indépendants, cf $[\mathbb{C}, \mathbb{M}]$).

DÉFINITION. On dit que la forme $\alpha = f_1 \cdots f_p \sum \alpha_i (df_i/f_i)$, $\alpha_i \in \mathbb{C}$, est quasi-homogène s'il existe un champ de vecteur holomorphe Z tel que:

$$\sum \alpha_i \frac{df_i}{f_i}(Z) = 1.$$

On dit aussi que la fonction multiforme $f_1^{\alpha_1} \cdots f_p^{\alpha_p}$ est quasi-homogène. On établit dans [C, M] les 2 résultats suivants:

THÉORÈME 6.2. Soit $F = f_1^{\alpha_1} \cdots f_p^{\alpha_p}$ un germe de fonction multiforme à 2 variables. Alors il y a équivalence lorsque les α_i sont indépendants sur \mathbb{N} entre 1) et 2):

- 1) l'hypersurface $f_1 \cdots f_p = 0$ est quasi-homogène.
- 2) $f_1^{\alpha_1} \cdots f_p^{\alpha_p}$ est quasi-homogène.

(Remarque. Ce résultat est énoncé dans [C, M] en dimension quelconque sous une forme plus restrictive à savoir avec l'hypothèse α_i \mathbb{Z} -indépendants; mais

utilisant le fait qu'en dimension 2 les zéros $(f_1 \cdots f_p = 0)$ d'une fonction quasi-homogène sont constitués d'une union de trajectoires d'un champ de vecteur linéarisable à valeurs propres rationnelles ([C, M] lemma 2.2 p. 169) on peut établir sans difficulté l'implication 2) \Rightarrow 1) en utilisant le théorème 2.1 p. 168 de [C, M]).

THÉORÈME 7.2. $F = f_1^{\alpha_1} \cdots f_p^{\alpha_p}$ est quasi-homogène $(\alpha_i \text{ indépendants sur } \mathbb{N})$ si et seulement si pour toute unité U, F et $U \cdot F$ sont holomorphiquement conjugués.

Enfin Monsieur Kabila prouve dans sa thèse [K] un analogue faible du théorème de Zariski dans le cas des fonctions multiformes.

THÉORÈME 8.2 [K]. Soit $F = f_1^{\alpha_1} \cdots f_p^{\alpha_p}$ un germe de fonction multiforme à l'origine de \mathbb{C}^2 , les α_i sont indépendants sur \mathbb{N} ; alors pour toute unité U, F et UF sont topologiquement conjugués.

Nous pouvons maintenant recopier la démonstration du théorème 1.2. Puisque f est rigide f est quasi-homogène. Il en est donc de même pour $f_1^{\lambda_1} \cdots f_p^{\lambda_p}$; si φ est un homéomorphisme de conjugaison entre deux formes du type $\omega = f_1 \cdots f_p \sum \lambda_i (df_i/f_i)$ et $\omega' = g_1 \cdots g_p \sum \lambda_i (dg_i/g_i)$ alors φ envoie l'union des séparatrices de ω dans l'union des séparatrices de ω' ; or parce que les λ_i sont $\mathbb N$ indépendants les séparatrices de ω et ω' sont respectivement les courbes d'équations $(f_1 \cdots f_p = 0)$ et $(g_1, \ldots, g_p = 0)$; on a $\varphi(f_1 \cdots f_p = 0) = (g_1 \cdots g_p = 0)$.

Revenons maintenant à la famille ω_t , $\omega_0 = \omega$, topologiquement triviale. La famille des courbes $(g_{1,t}\cdots g_{p,t}=0)$ est donc topologiquement triviale et comme $(f_1\cdots f_p=0)$ est rigide elle est holomorphiquement triviale. On peut, quitte à faire agir un difféomorphisme holomorphe à paramètre t, supposer la famille de courbe $(g_{1,t}\cdots g_{p,t}=0)$ constante. On se ramène donc au cas où ω_t possède l'intégrale première multiforme

$$F_t = U_t f_1^{\lambda_1} \cdots f_p^{\lambda_p}$$

Puisque $F_0 = f_1^{\lambda_1} \cdots f_p^{\lambda_p}$ est quasi-homogène la version paramétrée de 7.2 dit qu'il existe une famille de difféomorphismes conjuguant F_t à F_0 i.e. ω_t à $\omega_0 = 0$; donc ω est t-rigide.

Inversement supposons ω *t*-rigide et considérons $g = g_1 \cdots g_p$ topologiquement conjuguée à $f = f_1 \cdots f_p$. Puisque l'on est en dimension 2 il existe une famille à " μ -constant" $f_t = f_{1,t} \cdots f_{p,t}$ telle que $f_{i,(t=0)} = f_i$ et $f_{i,(t=1)} = g_i$.

On considère la famille de fonctions multiformes $F_t = f_{1,t}^{\lambda_1} \cdots f_{p,r}^{\lambda_p}$; cette famille est (parceque les λ_i sont indépendants sur \mathbb{N}) à μ -constant donc topologiquement triviale [K]. Pour t=0, F_0 est intégrale première de $\omega=f_1\cdots f_p\sum \lambda_i(df_i/f_i)$ et pour t=1, F_1 est intégrale première de $\omega_1=g_1\cdots g_p\sum \lambda_i(dg_i/g_i)$. Puisque ω est t-rigide ω et ω_1 sont holomorphiquement conjuguées. De ceci nous retenons que les courbes $(f_1\cdots f_p=0)$ et $(g_1\cdots g_p=0)$ sont holomorphiquement conjuguées. Pour s'assurer que f est rigide, il suffit de s'assurer que $(f_1\cdots f_p=0)$ est quasi-homogène. Mais ceci est le cas d'après les théorèmes 6.2, 7.2, et 8.2; en effet d'après 6.2 $(f_1\cdots f_p=0)$ est quasi-homogène si et seulement si $F_0=f_1^{\lambda_1}\cdots f_p^{\lambda_p}$ l'est, i.e. si et seulement si (7.2) F_0 et $U\cdot F_0$ sont holomorphiquement conjugués pour toute unité U. D'après 8.2 (ou plutôt sa démonstration) la famille $t \rightarrow e^{tV}F_0$, $e^V=U$, est topologiquement triviale. Par la t-rigidité de ω , F_0 et $U\cdot F_0$ sont holomorphiquement conjugués. Q.E.D.

Dans tous ces exemples rigides on remarque la présence de symétries fortes: celles données par la quasi-homogénéité [C, M].

III. Presque rigidite des groupes non abeliens de diffeomorphismes

On se propose dans ce chapitre d'établir que, moyennant des hypothèses assez générales, la conjugaison topologique des groupes de germes de difféomorphismes à une variable complexe implique la conjugaison holomorphe ou bien antiholomorphe.

On examinera le même problème en analytique réel en appendice.

On se donne 2 nombres complexes λ et μ ayant la propriété:

(*) "Le groupe multiplicatif engendré par λ et μ est dense dans \mathbb{C} ". Soient: $f(z) = \lambda z + \cdots$ et $g(z) = \mu z + \cdots$ deux germes de difféomorphismes holomorphes à l'origine de \mathbb{C} ayant pour 1-jet en 0 les homothéties λz et μz respectivement. On se propose d'établir le:

LEMME. Soient F et G deux germes de difféomorphismes holomorphes à l'origine de \mathbb{C} . On suppose que les couples (F, G) et (f, g) sont topologiquement conjugués: i.e. il existe un germe d'homéomorphisme h de \mathbb{C} , 0 tel que:

$$h \circ f = F \circ h$$
$$h \circ g = G \circ h$$

Il y a deux possibilités:

1. Si f et g commutent alors h est à difféomorphisme holomorphe près du type $z \to A |z|^{a+ib} (z/|z|)$ (avec $A \in \mathbb{C}$, $a \in \mathbb{R}^+$, $b \in \mathbb{R}$) ou bien $z \to A |z|^{a+ib} (\bar{z}/|z|)$.

2. Si f et g ne commutent pas, alors h est ou bien un difféomorphisme holomorphe ou bien un difféomorphisme antiholomorphe.

DÉFINITION. Soit G_1 un groupe de transformations linéaires de \mathbb{C} . Nous dirons que G_1 vérifie la condition (*) s'il existe deux éléments $f_i = \lambda_i z$, i = 1, 2 de G_1 tels que λ_1 et λ_2 vérifient (*).

Du lemme on déduit le

THÉORÈME 2. Soit G un groupe de germes de difféomorphismes de \mathbb{C} , 0, tel que la partie linéaire $G_1 = j^1 G$ vérifie (*). Si G n'est pas abélien, un groupe de germes de difféomorphismes H tel que $j^1 G \neq \overline{j^1 H} = \{\overline{\lambda}, \lambda = h'(0), h \in H\}$ est analytiquement conjugué à G si et seulement si il l'est topologiquement.

Il en résulte que l'espace des modules de G a deux éléments: G lui-même et le groupe \bar{G} défini par $G = \{z \to \overline{h(\bar{z})}, h \in G\}$.

Démonstration du lemme. Tout d'abord la condition (*) fait que ni λ , ni μ ne sont de module 1. Quitte à changer f (ou g) en f^{-1} (ou g^{-1}), on supposera que l'on a les inégalités:

$$|\lambda| < 1$$
, $|\mu| < 1$.

Ecrivons $F(z) = \lambda' z + \cdots$ et $G(z) = \mu' z + \cdots$. Du fait de l'hypothèse de conjugaison, on a les inégalités $|\lambda'| < 1$, $|\mu'| < 1$. En vertu du théorème de linéarisation de Poincaré, on peut donc supposer que les couples (f, g), (F, G) sont du type suivant:

$$\begin{cases} f(z) = \lambda \cdot z \\ g(z) = \mu z (1 + z \alpha(z)) \end{cases} \begin{cases} F(z) = \lambda' z \\ G(z) = \mu' z (1 + z \beta(z)) \end{cases}$$

Le lecteur se convaincra aisément que f et g commutent si et seulement si α est identiquement nul.

On désigne par φ et ψ les fonctions de Koenig de g et G, i.e.

$$\varphi = \lim_{n \to +\infty} \frac{g^n}{\mu^n} \quad \text{où } g^n \text{ est l'itéré } n^{\text{ième}} \text{ de } g$$

$$\psi = \lim_{n \to +\infty} \frac{G^n}{\mu'^n}$$

Parce que μ et μ' sont en module plus petit que un, φ et ψ sont bien définies. Quitte à faire agir une homothétie par conjugaison, on supposera que h, g, G, φ et ψ sont définis injectifs sur un disque $D_R = D(0, R)$, R > 1 que $g(D_R) \subset D_R$, $G(D_R) \subset D_R$ et que $\varphi(D_R)$ contient le disque D = D(0, 1). Soient $z \neq 0$ un point du disque D, m_i une suite d'entiers *négatifs*, n_i une suite d'entiers *positifs* tels que:

$$\lambda^{m_i} \mu^{n_i} \rightarrow z$$

et $\lambda^{m'} \mu^{n'} \in D$ pour tout (m_i, n_i) .

(Ici on utilise la condition (*) cf [C])

Soit z_0 le point de D_R tel que $\varphi(z_0) = 1$. Parce que $g(D_R) \subset D_R$ et $G(D_R) \subset D_R$ on peut parler de l'orbite positive de z_0 suivant g comme suivant G. On a d'après l'hypothèse de conjugaison pour tout (m_i, n_i)

$$h(\lambda^{m_i}g^{n_i}(z_0)) = \lambda^{\prime m_i}G^{n_i}(h(z_0))$$

que l'on écrit sous la forme:

$$h\left(\lambda^{m_i}\mu^{n_i}\frac{g^{n_i}(z_0)}{\mu^{n_i}}\right) = \lambda'^{m_i}\mu'^{n_i}\frac{G^{n_i}}{\mu'^{n_i}}(h(z_0)) \tag{1}$$

Comme $g^{n_i}(z_0)/\mu^{n_i}$ converge vers $\varphi(z_0) = 1$, $(G^{n_i}/\mu^{n_i})(h(z_0))$ vers $\psi(h(z_0))$ et $\lambda^{m_i}\mu^{n_i}$ vers z, on obtient par continuité que $\lambda^{m_i}\mu^{n_i}$ converge vers un nombre complexe que l'on note $\sigma(z)$; ce nombre est parfaitement défini i.e. ne dépend pas de la suite (m_i, n_i)) puisqu'il vérifie l'égalité:

$$h(z) = \sigma(z) \cdot \psi(h(z_0)) = A \cdot \sigma(z) \quad (A = \psi(h(z_0)))$$

En observant la construction de σ on vérifie sans peine que pour z et z' dans $D - \{0\}$ on a l'identité:

$$\sigma(z) \cdot \sigma(z') = \sigma(z \cdot z')$$

De sorte que via cette formule, σ s'étend en un homomorphisme global du groupe multiplicatif $\mathbb{C} - \{0\}$, homomorphisme qui est manifestement continu puisque h l'est. De plus, parce que h est injectif sur $D_R \supset D$, il en est de même pour σ sur $\mathbb{C} - \{0\}$.

Ainsi $\sigma(z)$ est du type $|z|^{a+ib} (z/|z|)$ ou $|z|^{a+ib} (\bar{z}/|z|)$ et est C^* sur $\mathbb{C}^* = \mathbb{R}^2 - \{0\}$.

En fait, comme nous l'a fait remarquer le referee, l'argument de type (1) montre que pour pour tout $\alpha \in \mathbb{C}^*$, on a:

$$h(\alpha \cdot \varphi(z)) = \sigma(\alpha)\psi(h(z)). \tag{2}$$

On remarque alors que f et g commutent si et seulement si φ est linéaire; se plaçant dans le cas contraire, soit $z_1 \in D(O, R)$ et $\alpha = z_1/\varphi(z_1)$. Le difféomorphisme $\chi(z) = (z_1/\varphi(z_1)) \cdot \varphi(z)$ laisse fixe z_1 et génériquement (sur z_1) $\chi'(z_1)$ est non réel parce que φ est non linéaire.

Différentiant (2), on obtient:

$$Dh(z_1) \cdot \chi'(z_1) = \sigma(\alpha)\psi'(h(z_1) \cdot Dh(z_1). \tag{3}$$

Un petit calcul d'algèbre linéaire montre alors que si $\chi'(z_1)$ est non réel, l'existence d'une identité de type (3) implique que ou bien $\chi'(z_1) = \sigma(\alpha)\psi'(h(z_1))$ ou bien $\chi'(z_1) = \overline{\sigma(\alpha) \cdot \psi'(h(z_1))}$. Dans le premier cas, $Dh(z_1)$ sera obligatoirement une similitude et pour des raisons de continuité le sera partout. Ainsi, h sera holomorphe. On se ramène à ce premier cas en faisant agir sur F, G la conjugaison $z \rightarrow \bar{z}$, ce qui fait que dans le second h sera antiholomorphe. Q.E.D.

Le théorème 2 a diverses conséquences notamment pour les feuilletages holomorphes transverses à une fibration et les singularités de feuilletages holomorphes de codimension un comme nous le verrons plus loin.

IV. Le problème de l'invariance topologique de l'holonomie projective dans le cas générique

§1. Définitions et énoncé du résultat

Soit $\omega_{\nu} = a_{\nu}(x, y) dx + b_{\nu}(x, y) dy$ une forme de Pfaff homogène de degré ν , i.e. a_{ν} et b_{ν} sont des polynômes homogènes de degré ν . Le cône tangent de ω_{ν} est le polynône $P_{\nu+1}(x, y) = xa_{\nu}(x, y) + yb_{\nu}(x, y)$; ω_{ν} est dite non dicritique lorsque $P_{\nu+1}$ est non identiquement nul; si c'est le cas la forme rationnelle $\omega_{\nu}/P_{\nu+1}$ est fermée et on appelle résidus de ω_{ν} les nombres

$$\lambda_j = \frac{1}{2i\pi} \int_{\sigma_j} \frac{\omega_{\nu}}{P_{\nu+1}}$$

où les γ_j sont les générateurs de $H_1(\mathbb{C}^2 - (P_{\nu+1} = 0))$; on peut prendre pour γ_j un petit cercle tournant 1 fois autour de la "jème branche" de $P_{\nu+1} = 0$.

DÉFINITION. On dit que ω_{ν} est générale (ou dans le domaine de Poincaré) si:

- 1) ω_{ν} est non dicritique
- 2) P_{v+1} est réduit et les λ_i sont non réels.

Dans un système de coordonnées linéaires (x, y) générique, P_{v+1} s'écrira:

$$P_{v+1}(x, y) = c \prod_{i=1}^{v+1} (y - t_i x), \quad t_i \neq t_j \quad \text{pour} \quad i \neq j$$

 $c \in \mathbb{C}$ et:

$$\omega_{\nu} = c \prod_{i=1}^{\nu+1} (y - t_i x) \sum_{i=1}^{\nu+1} \lambda_i \frac{dy - t_i x}{y - t_i x}$$

Remarque. Les résidus λ_j satisfont à la relation $\sum_{j=1}^{\nu+1} \lambda_j = 1$; c'est l'identité d'Euler.

On se propose dans ce chapitre d'établir le

THÉORÈME 1.1. Soit $\omega = A dx + B dy$ un germe de 1-forme holomorphe à l'origine de \mathbb{C}^2 ayant ω_v générale comme v-jet, $v \ge 2$, Soit η une déformation stable de ω . Alors les holonomies projectives \mathcal{H}_{ω} et \mathcal{H}_{η} , sont topologiquement conjuguées.

Rappelons ici la notion d'holonomie projective introduite dans [M, M] puis [C, M]. On considère $E: \mathbb{C}^2 \to \mathbb{C}^2$ l'éclatement de l'origine de \mathbb{C}^2 ; \mathbb{C}^2 s'identifie à $\mathbb{C}^2 - \{0\} \cup \mathbb{PC}(1)$, l'application E étant un isomorphisme de $\mathbb{C}^2 - E^{-1}(0)$ dans $\mathbb{C}^2 - \{0\}$ et $E^{-1}(0) = \mathbb{PC}(1)$; on désigne par t = y/x la "première" carte de $\mathbb{PC}(1)$ et s = x/y la "seconde" carte, $s \cdot t = 1$. Alors (x, t) et (y, s) constituent un atlas de \mathbb{C}^2 ; par exemple dans la première carte l'application E formalise la phrase: posons t = y/x, c'est à dire:

$$E(x,\,t)=(x,\,tx)$$

L'espace \mathbb{C}^2 se trouve naturellement être un fibré de base $\mathbb{PC}(1)$ de fibre \mathbb{C} (fibration de Hopf). Dans la carte (x, t), l'équation du projectif $\mathbb{PC}(1) = E^{-1}(0)$ est x = 0, les fibres sont données par t = constante. Dans la pratique, dans la mesure où l'on travaillera avec des germes, on se restreindra à un voisinage U_{ε} de $\mathbb{PC}(1)$ dans \mathbb{C}^2 obtenu par exemple par contre-image d'une petite boule $\varepsilon \cdot B$ dans $\mathbb{C}^2(|x|^2(1+|t|^2)<\varepsilon$ dans la première carte); U_{ε} sera fibré en disque. Soit $\omega = \omega_v + \cdots$ un germe de 1-forme de Pfaff, représenté sur une boule $\varepsilon \cdot B$ centrée à l'origine, à singularité isolée à l'origine. $E^*\omega$ est alors défini sur U_{ε} et

dans la carte (x, t) on a pour

$$\omega = a dx + b dy = (a_v + \cdots) dx + (b_v + \cdots) dy:$$

$$E^*\omega = [a(x, tx) + tb(x, tx)] dx + xb(x, tx) dt$$

Remarquant que a(x, tx) et b(x, tx) sont divisibles par x^{v} on a:

$$E^*\omega = x^{\nu}\tilde{\omega}$$

avec $\tilde{\omega}$ holomorphe dans la carte (x, t) du type:

$$\tilde{\omega} = [P_{\nu+1}(1, t) + xA(x, t)] dx + xB(x, t) dt$$

 $P_{v+1}(x, y)$ désigne encore le cône tangent de ω_v ; $P_{v+1} = xa_v + yb_v$. Notamment, si ω_v est non dicritique, les singularités de $\tilde{\omega}$ dans $U_{\varepsilon} \cap \text{Domaine } (x, t)$ sont précisément les points $(x = 0, t = t_j)$ où les t_j sont les racines de $P_{v+1}(1, t)$. En effet comme E est un isomorphisme en dehors de $E^{-1}(0)$, $E^*\omega$ (et donc $\tilde{\omega}$) n'a pas de singularités dans $U_{\varepsilon} - E^{-1}(0)$ et sur $E^{-1}(0) = (x = 0)$ on a: $\tilde{\omega} = P_{v+1} \cdot dx$. On remarque d'ailleurs que, lorsque ω_v est non dicritique, (x = 0) est solution de $\tilde{\omega}$; on désigne alors par $\tilde{\mathcal{F}}_{\omega}$ le feuilletage d'équation $\tilde{\omega}$ dans la première carte et d'équation $E^*\omega/y^v$ dans la seconde. $\tilde{\mathcal{F}}_{\omega}$ s'appelle le feuilletage éclaté associé à ω ; $\tilde{\mathcal{F}}_{\omega}$ n'a que des points singuliers isolés $((0, t_j))$ que l'on notera plus simplement $t_j \in \mathbb{PC}(1)$; un ω étant donné, on peut toujours, par un bon choix de coordonnées, supposer que les t_j sont dans la première carte ce que nous ferons. L'espace projectif (privé des t_j), $\mathbb{PC}(1) - U\{t_j\}$, est une feuille de $\tilde{\mathcal{F}}_{\omega} \mid U_{\varepsilon} - U\{t_j\}$ au sens ordinaire.

Soient U_i des voisinages fibrés de t_i saturés par E dans U:

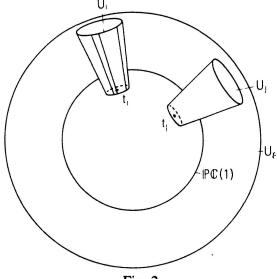


Fig. 2.



Fig. 3.

Comme l'espace projectif est une feuille de $\tilde{\mathscr{F}}_{\omega}$, si ε est assez petit, les feuilles de $\tilde{\mathscr{F}}_{\omega} \mid U_{\varepsilon} - \bigcup \{U_{j}\}$ sont transverses aux fibres de la fibration en disque de $U - \bigcup \{U_{j}\}$; ceci permet de définir l'holonomie de la feuille $\mathbb{PC}(1) - \bigcup \{U_{j}\}$ de $\tilde{\mathscr{F}}_{\omega} \mid U - \bigcup \{U_{j}\}$ par relèvement des chemins de $\mathbb{PC}(1) - \bigcup U_{j}$ dans les feuilles, à partir d'une transversale $t = t_{0}$ où $t_{0} \in \mathbb{PC}(1) - \bigcup_{j} U_{j}$.

En fait pour des raisons claires (les feuilles "sortent" de U_{ε}) seul le germe au point t_0 du groupe d'holonomie est bien défini. Notant \mathbb{C} , t_0 la transversale au point t_0 , on note \mathcal{H}_{ω} la représentation d'holonomie de la feuille $\mathbb{PC}(1) - \bigcup \{t_j\}$:

$$\mathcal{H}_{\omega}: \Pi_1(\mathbb{PC}(1) - \bigcup \{t_i\}, t_0) \to \text{Diff}(\mathbb{C}, t_0)$$

s'appelle l'holonomie projective de ω ; son image le groupe d'holonomie projective.

Si $\hat{\gamma}_j$ est un lacet dans $\mathbb{PC}(1)$ partant de t_0 et faisant un tour autour de t_j , on vérifie sans peine ([M, M]) que $\mathcal{H}_{\omega}(\hat{\gamma}_j)$ est du type:

$$\mathscr{H}_{\omega}(\hat{\gamma}_i)(z) = e^{2i\pi\lambda_j} \cdot z + \cdots$$

où z est une coordonnée de \mathbb{C} , t_0 , λ_j étant le résidu de ω_v autour de $t = t_j$ (ou $e^{-2i\pi\lambda_j}z + \cdots$ suivant l'orientation de $\hat{\gamma}_i$).

§2. Démonstration du théorème 1.1

§2a. Remarques. Parce que les λ_j sont supposés non réels les singularités t_j de $\tilde{\mathcal{F}}_{\omega}$ sont du type Poincaré; i.e. les germes $\tilde{\omega}_{,t_j}$ sont linéarisables:

$$\tilde{\omega}_{,t_j} \stackrel{\text{hol}}{\sim} (t-t_j) dx + \lambda_j x dt$$

Notamment $\tilde{\omega}_{,t_j}$ possède une séparatrice lisse $(\tilde{f}_j = 0)$ transverse à la séparatrice $\mathbb{PC}(1)$, t_j , en fait tangente à $t = t_j$; cette séparatrice se redescend à \mathbb{C}^2 en une

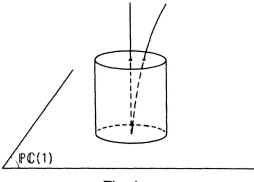


Fig. 4.

courbe lisse d'équation $f_i = 0$, f_i holomorphe:

$$f_j(x, y) = y - t_j x + \cdots$$

Si ε est assez petit, $(\tilde{f}_j = 0)$ est entièrement contenue dans U_j et l'on peut supposer en fait que $\tilde{\mathscr{F}}_{\omega} \mid U_j$ est linéarisable dans U_j . On peut alors au moyen d'un difféomorphisme C^{∞} $\emptyset: U_{\varepsilon} \to U_{\varepsilon}$ valant l'identité sur $(U_{\varepsilon} - \bigcup_{j} U_{j}) \cap \mathbb{PC}(1)$, modifier le feuilletage $\tilde{\mathscr{F}}_{\omega} \mid U_{j}$ de sorte que l'on ait:

- 1) $\emptyset(\tilde{f}_j = 0) = (t = t_j)$ $j = 1, \ldots, \nu + 1$
- 2) toutes les feuilles de $\emptyset(\tilde{\mathscr{F}}_{\omega} \mid U_j)$ hormis la séparatrice $(f_j = 0)$ sont transverses à la fibration de Hopf. Ceci est possible parceque les $\tilde{\omega}_{j,t}$ sont linéarisables.

On remarquera que la modification faite sur $\tilde{\mathcal{F}}_{\omega}$ ne change pas l'holonomie projective \mathcal{H}_{ω} . Dans la suite on supposera, par abus de langage, que $(\tilde{f}_j = 0)$ est précisément la droite $(t = t_j)$. On notera que l'on ne peut pas trouver en général de difféomorphisme holomorphe permettant de "redresser" simultanément plus de 4 courbes lisses deux à deux transverses; par exemple $(x^5 + y^5 + x^3y^3 = 0)$ n'est pas holomorphiquement conjugué à cinq droites.

§2b. Propriétés. Comme on l'a vu $\omega = \omega_v + \cdots$ se "désingularise" au bout de 1 éclatement; soit ω' topologiquement équivalente à ω . Il résulte d'un travail récent de Camacho-Lins-Sad [C, L, S] les propriétés suivantes:

- 1) l'ordre de ω' est aussi ν .
- 2) ω' se désingularise au bout de un éclatement et $\mathscr{F}_{\omega'}$ a précisément $(\nu+1)$ singularités distinctes (réduites).

En fait il résulte de 2) que le ler jet non nul ω'_{ν} de ω' est du type:

$$\omega'_{v} = c' \prod (y - t'_{i}x) \sum \lambda'_{j} \frac{d(y - t'_{j}x)}{y - t'_{j}x}$$

De plus comme ω a $\nu + 1$ séparatrices deux à deux transverses il en est de

même pour ω' ; on note $(f'_j = 0)$ les séparatrices de ω' et dans la suite il est supposé implicitement que l'énumération des $(f'_j = 0)$ est héritée de celle des $(f_i = 0)$ via l'homéomorphisme de conjugaison.

La conjugaison topologique (dans \mathbb{C}^2 , 0) fait que les holonomies des feuilles $(f_j = 0) - \{0\}$ et $(f'_j = 0) - \{0\}$ sont topologiquement conjuguées; nous en retiendrons la conséquence suivante: les λ'_j sont eux aussi non réels. Ainsi ω'_{ν} est aussi générale; ce qui permet de modifier $\tilde{\mathcal{F}}_{\omega'}$, de la même façon que $\tilde{\mathcal{F}}_{\omega}$ dans $\S 2.a.$

§2.c. Modification des conjugaisons topologiques. Soient $s \to \omega_s$, $\omega_0 = \omega$ une famille topologiquement triviale, $\omega_1 = \eta$, et h_s , $h_0 = id$, une famille d'homéomorphismes conjuguant ω_s à ω_0 . On note H_s le relevé de h_s à l'éclaté $\widetilde{\mathbb{C}}^2$. En fait H_s est seulement défini sur $\widetilde{\mathbb{C}}^2 - \mathbb{PC}(1)$ par la formule:

$$E \circ H_s = h_s \circ E$$

La difficulté de la preuve vient du fait que H_s ne s'étend pas à priori à $\mathbb{PC}(1)$, auquel cas la démonstration serait conséquence de la théorie ordinaire des feuilletages. Soit s une valeur fixée du paramétre; pour alléger les notations on pose $\omega' = \omega_s$, $h = h_s$ et $H = H_s$ et on adopte le langage déjà introduit précédemment. Quitte à faire agir un difféomorphisme C^{∞} "horizontal" on peut supposer que $t_j = t'_j$, et par suite après modification $(\tilde{f}_j = 0) = (\tilde{f}'_j = 0)$; de sorte que h laisse globalement fixe $(f_j = 0)$ après modification. Les U_j , U et t_0 sont supposés convenablement choisis par rapport à $\tilde{\mathcal{F}}_{\omega}$ et $\tilde{\mathcal{F}}_{\omega'}$.

On désigne par $\Sigma = D(t_0, r)$ un disque fermé dans la transversale \mathbb{C}_{t_0} ; $\partial \Sigma$ son bord.

LEMME. Si r et s sont assez petits et r' un nombre réel donné 0 < r' < r, on peut modifier la conjugaison h pour que $H(C_{r,r'}) \subset \mathbb{C}_{,t_0}$ où $C_{r,r'}$ est la couronne $C_{r,r'} = D(t_0, r) - D(t_0, r') \subset \Sigma$.

 $D\'{e}monstration$. On se donne un polydisque $D_1 \times D_2$ centré en $t_0 \in \mathbb{PC}(1)$ $D_1 \subset \mathbb{PC}(1)$, $D_2 \subset \mathbb{C}_{,t_0}$, suffisamment petit pour que le feuilletage \mathscr{F}_{ω} y soit défini et trivial; plus précisément si t est la coordonnée de D_1 induite par la coordonnée projective, il existe une submersion $\tilde{x}:D_1 \times D_2 \to \mathbb{C}$, $\tilde{x}(t_0)=0$, telle que le feuilletage $\tilde{\mathscr{F}}_{\omega}$ restreint à $D_1 \times D_2$ soit donné par les niveaux de \tilde{x} et (\tilde{x},t) est un système de coordonnées de $D_1 \times D_2$. Soit ε un nombre réel assez petit; on désigne par X_{ε} le sous-ensemble de $D_1 \times D_2$ défini par:

$$X_{\varepsilon} = \{ |\tilde{x}| \leq \varepsilon \}$$

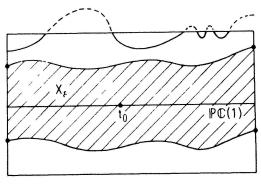


Fig. 5.

Pour ε assez petit, ∂X_{ε} s'identifie à $D_1 \times S^1$ et dans X_{ε} le feuilletage est vraiement trivial.

Pour les valeurs assez petites du paramètre s, $|s| \le s_0$ le feuilletage $\tilde{\mathcal{F}}_{\omega} = \tilde{\mathcal{F}}_{\omega_s}$ a des propriétés analogues: il existe une submersion $\tilde{x}': D_1 \times D_2 \to \mathbb{C}$ telle que (\tilde{x}', t) soit un système de coordonnées dans $D_1 \times D_2$ et dans $X'_{\varepsilon} = \{|\tilde{x}'| < \varepsilon\}\tilde{\mathcal{F}}_{\omega'}$ est trivial. On suppose maintenant r suffisamment petit pour que $\Sigma \subset X_{\varepsilon}$; ceci persistera pour s assez petit i.e.: $\Sigma \subset X'$. Parce que $h_0 = \text{identité}$, pour s assez petit $H(C_{r,r'}) = H_s(C_{r,r'})$ est encore contenu dans X'. On se donne dans $t_0 \times D_2$ un voisinage tubulaire V_0 de $C_{r,r'}$ assez petit, que l'on sature par $\tilde{\mathcal{F}}_{\omega} \mid X_{\varepsilon}$ dans X_{ε} pour obtenir un ouvert \tilde{V}_0 saturé. On constate, puisque H conjugue les feuilletages et que $H(C_{r,r'}) \subset X'_{\varepsilon}$, qu'au voisinage de $C_{r,r'}$ H s'exprime dans les coordonnées (\tilde{x}, t) et (\tilde{x}', t) sous la forme:

$$H(\tilde{x}, t) = (\tilde{X}'(\tilde{x}), T'(\tilde{x}, t)), \qquad \tilde{X}' = \tilde{x}' \circ H, \qquad T' = t \circ H;$$

Visiblement \tilde{X}' est un homéomorphisme de V_0 et $\tilde{X}'(C_{r,r'})$ est une "couronne" dans $t_0 \times D_2$. Il est maintenant facile de modifier H par isotopie le long des feuilles dans \tilde{V}_0 de sorte que $H(C_{r,r'}) \subset \mathbb{C}_{t_0}$.

Remarque. La modification a été faite à s fixé, mais elle se laisse faire, sans précaution supplémentaire, à paramètre.

§2d. Conjugaison des holonomies dans la couronne. On suppose faites les modifications de 2a, 2b, 2c. On note $h_j = \mathcal{H}_{\omega}(\hat{\gamma}_j)$ et $h'_j = \mathcal{H}_{\omega'}(\hat{\gamma}_j)$ les générateurs des holonomies projectives associées à ω et ω' ; parce que les λ_j sont non réels, si Σ a été choisi assez petit, on peut supposer que chaque h_j est linéarisable dans Σ . On supposera aussi quitte à changer l'orientation de $\hat{\gamma}_j$ que h_j contracte; notamment si $z \in \Sigma$ et $n \in \mathbb{N}$ $h^n(a)$ a un sens et se construit par relèvement de $\hat{\gamma}_j^n$. De plus chaque h_j possède une "couronne" fondamentale C_j dont l'un des bord est $\partial \Sigma$, l'autre $h_j(\partial \Sigma)$. On choisit au départ le réel r' tel que $C_{r,r'}$ contienne

strictement toutes les couronnes C_j ainsi que leur premier itéré $h_j(C_j)$; on fait ensuite la modification du lemme. On note alors Σ' la couronne de $\mathbb{C}_{,t_0}$, $\Sigma' = H(\Sigma)$; par continuité, si C_j' sont des domaines fondamentaux pour h_j' , l'un des bords de C_j' étant $\partial \Sigma'$, on garde les propriétés

$$C'_i \subset H(C_{r,r'}), \quad h'_i(C'_i) \subset H(C_{r,r'})$$

Nous avons la

PROPOSITION. Soient x et y deux points de $C_{r,r'}$ tels qu'il existe des entiers positifs n et m vérifiant $y = h_i^{-m} \circ h_i^n(x)$; alors $H(y) = h_i'^{-m} \circ h_i'^n(H(x))$.

 $D\'{e}monstration$. Par construction, le point y est l'extrémité $\tilde{\gamma}(1)$ du chemin $\tilde{\gamma}(s)$ relevé dans $\tilde{\mathscr{F}}_{\omega}$ suivant la fibration de Hopf du chemin $\hat{\gamma}(s) = \hat{\gamma}_{j}^{-m}$, $\hat{\gamma}_{i}^{n}(s)$ et tel que $\tilde{\gamma}(0) = x$; soit $\tilde{\gamma}'(s) = H(\tilde{\gamma}(s))$; le chemin $\tilde{\gamma}'$ a ses extrémités $\tilde{\gamma}'(0) = H(x)$ et $\tilde{\gamma}'(1) = H(y)$ dans \mathbb{C}_{t_0} . De plus $\tilde{\gamma}'$ est dans la feuille de $\tilde{\mathscr{F}}_{\omega}$, passant par H(x). Comme $(\tilde{f}_j = 0) = (t = t_j)$, la projection $\hat{\gamma}'$ de $\tilde{\gamma}'$ sur $\mathbb{PC}(1)$ suivant la fibration de Hopf est contenue dans $\mathbb{PC}(1) - \bigcup_{j=1}^{v+1} \{t_j\}$ et vérifie $\hat{\gamma}'(0) = \hat{\gamma}'(1) = t_0$. $\hat{\gamma}'$ est donc un élément de $\Pi_1(\mathbb{PC}(1) - \bigcup_{j=1}^{v+1} \{t_j\})$. Parce que H est homotope à l'identité (par une homotopie laissant fixées les droites $t = t_j$), le lacet $\hat{\gamma}'$ est visiblement homotope à $\hat{\gamma}$. Si on relève $\hat{\gamma}$ dans $\tilde{\mathscr{F}}_{\omega}$ en partant de H(x) on aboutira clairement au point final $\tilde{\gamma}'(1) = H(y)$ de $\tilde{\gamma}'$ (relevé de $\hat{\gamma}'$). Ce qu'il fallait prouver.

§2e. Fin de la démonstration du théorème

Remarque. Soit $x \in C_j$; par construction de r', $h_j(x) \in C_{r,r'}$; il suit de la proposition que $H(h_j(x)) = h'_j(H(x))$. Ainsi $H \mid C_j$ induit une conjugaison sur la couronne fondamentale C_j . On construit alors un homéomorphisme de conjugaison H_j entre h_j et h'_j défini sur $D(t_0, r)$ par propagation de la formule précédente; on décide que $H_j \mid C_j = H \mid C_j$. Si $z \in D(t_0, r)$ il existe un entier n_j tel que $h_j^{-n_j}(z) \in C_j$; on pose:

$$H_j(z) = h_j^{\prime n_j}(H(h_j^{-n_j}(z)))$$

Nous allons nous assurer que les H_j coı̄ncident; pour cela on considère $H_iH_j^{-1}(z)$; on remarque que si

$$z = H_j(z') = h_j'^{n_j} H h_j^{-n_j}(z')$$
 avec $h_j^{-n_j}(z') \in C_j$

on a

$$z' = H_j^{-1}(z) = h_j^{n_j} H^{-1} h_j'^{-n_j}(z)$$
 avec $h_j^{-n_j}(z) \in H(C_j)$

Mais $H(C_i) = C_i'$ car H est une conjugaison et les domaines fondamentaux C_i et C_i' ont $\partial \Sigma$ et $H(\partial \Sigma)$ comme bord.

On a donc construit $H_iH_i^{-1}(z)$ de la façon suivante:

$$H_iH_i^{-1}(z) = h_i^{\prime m_i}Hh_i^{-m_i}h_i^{n_j}H^{-1}h_i^{\prime -n_j}(z)$$

avec

$$h_i'^{-n_i}(z) \in C_i'$$
 et $h_i^{-m_i}(h_i''H^{-1}h_i'^{-n_i}(z)) \in C_i$

De sorte que l'on est dans les conditions d'application de la proposition:

$$H_iH_i^{-1}(z) = h_i^{\prime m_i}h_i^{\prime - m_i}h_j^{\prime n_j}HH^{-1}h_j^{\prime - n_j}(z) = z$$

Ce que l'on voulait prouver. Ainsi $H_i = H_j$ conjugue \mathcal{H}_{ω} et $\mathcal{H}_{\omega'}$. On a donc établi le fait suivant: si s est assez petit les holonomies projectives de ω et ω_s sont topologiquement conjuguées; si maintenant $t \to \omega_t$ est une famille topologiquement triviale joignant ω à η on peut faire le même raisonnement pour chaque ω_{t_0} ; il existe un voisinage $V(t_0)$ tel que $t \in V(t_0)$ implique $\mathcal{H}_{\omega_t} \sim \mathcal{H}_{\omega_{t_0}}$; on conclut par compacité.

Nous ne terminerons pas ce chapitre sans avoir énoncé les conjectures suivantes:

CONJECTURE A. Si ω et ω' sont topologiquement conjugués les holonomies projectives \mathcal{H}_{ω} et $\mathcal{H}_{\omega'}$ sont topologiquement conjuguées.

Plus généralement:

CONJECTURE B. Si ω et ω' sont topologiquement conjugués et si ω est une courbe généralisée ([C, L, S]) les holonomies de chaque projectifs (en dualités) dans la désingularisation sont conjuguées.

V. t-rigidite des equations $\omega_2 + \cdots$ et espace de t-modules de $\omega_3 + \cdots$

Dans ce chapitre nous allons combiner les résultats des chapitres III et IV pour obtenir l'espace des t-modules de certaines équations différentielles. Soit ω_s une famille de 1-formes holomorphes topologiquement triviale. On suppose que le premier jet non nul de ω_0 est général; soit g_s le groupe d'holonomie projective de ω_s . alors si g_0 vérifie la condition (*) (Chap. III) et n'est pas abélien, une conséquence des chapitres III et IV est que la famille g_s est analytiquement

triviale. On peut éconcer en termes de 1-formes la condition " g_0 n'est pas abélien". Rappelons à cet effet un résultat obtenu par l'un des auteurs et J. F. Mattei [C, M]:

PROPOSITION 1. Soit $\omega = \omega_v + \cdots$ un germe de 1-forme holomorphe à premier jet non nul ω_v général. Si l'holonomie projective de ω est abélienne alors ω possède une intégrale première multiforme $f_1^{\lambda_1} \cdots f_p^{\lambda_p}$ i.e. ω est du type logarithmique: $\omega = f_1 \cdots f_p \sum \lambda_i (df_i/f_i)$.

Remarque. Le fait de posséder une telle intégrale est exceptionnel lorsque v est supérieur ou égal à deux. Plus précisément, ω_v étant fixé, $v \ge 2$, il existe un ouvert de Zariski \mathcal{U}_{v+1} dans les formes homogènes de degré v+1 tel que l'on ait la propriété suivante:

- un germe de 1-forme holomorphe ω tel que $j^{\nu}\omega = \omega_{\nu}$ et $j^{\nu+1} = \omega_{\nu} + \omega_{\nu+1}$ avec $\omega_{\nu+1} \in \mathcal{U}_{\nu+1}$ ne peut-être logarithmique. Notamment si $\omega_{\nu+1}$ est générale l'holonomie projective de ω sera non abélienne.

DÉFINITION. Un germe de 1-forme $\omega = \omega_v + \cdots$ tel que

- 1) ω_{ν} soit générale
- 2) l'holonomie projective de ω soit non abélienne et vérifie (*) sera qualifié de "non-abélien général" (N.A.G.)

Remarque. La condition (*) ne porte que sur les résidus λ_i de ω_v .

Nous calculerons des espaces de modules en utilisant le:

THÉORÈME 2. Soit ω_s une famille de 1-formes topologiquement triviale. On suppose que ω_0 est N.A.G. et que la famille X_s des séparatrices de ω_s (ce sont v+1 courbes lisses 2 à 2 transverses) est holomorphiquement triviale au dessus de v+1 doites complexes. Alors ω_s est holomorphiquement triviale.

Démonstration. Un changement de coordonnées convenable permet de supposer que la famille X_s est constante: $X_s = X_0 = (v+1)$ droites complexes 2 à 2 transverses et que l'holonomie projective g_s est constante égale à g_0 . On fait un éclatement de l'origine et l'on conjugue les feuilletages $\tilde{\mathcal{F}}_{\omega_s} \mid \tilde{U}$ et $\tilde{\mathcal{F}}_{\omega_0} \mid \tilde{U}$ restrictions des feuilletages éclatés $\tilde{\mathcal{F}}_{\omega_s}$ et $\tilde{\mathcal{F}}_{\omega_0}$ à un ouvert \tilde{U} fibré par la fibration canonique de $\tilde{\mathbb{C}}^2$; \tilde{U} étant le complément de tubes fibrés autour des séparatrices. Les conjugaisons (qui sont fibrées) s'étendent à l'intérieur des tubes essentiellement parce que les séparatrices (éclatées) sont des fibres de la fibration canonique; ceci se prouve en recopiant la démonstration du théorème 2.2 de I.

On redescend sur $\mathbb{C}^2 - \{0\}$ les conjugaisons obtenues dans l'éclatement; elles s'étendent en 0 par Hartogs. Q.E.D.

COROLLAIRE 3 (Espace des t-modules de $\omega_2 + \cdots$). Soit $\omega = \omega_2 + \cdots$ un germe de 1-forme holomorphe d'ordre deux N.A.G. Alors ω est t-rigide.

Démonstration. C'est une conséquence du fait suivant: on se donne une famille de courbe X_s telle que

- 1) $X_0 = 3$ courbes lisses deux à deux transverses
- 2) X_s est topologiquement triviale; alors la famille X_s est holomorphiquement équivalente à la famille constante $x \cdot y(x y) = 0$. On applique ensuite le théorème 2. Q.E.D.

COROLLAIRE 4 (Espace des t-modules de $\omega_3 + \cdots$). Soit $\omega = \omega_3 + \cdots$ un germe de 1-forme holomorphe d'ordre trois N.A.G. L'espace des t-modules de ω s'identifie à $\mathbb{C} - \{0\}$.

Preuve. Elle est conséquence de 2 faits:

- 1) Une famille X_s de 4 courbes lisses deux à deux transverses est holomorphiquement triviale (et holomorphiquement conjuguée à la famille constante TX_0 des tangentes à X_0) si et seulement si le birapport des tangentes est constant.
- 2) Un résultat de synthèse des groupes d'holonomie de [L] (reposant sur un théorème puissant de Grauert sur les voisinages tubulaires de certaines surfaces de Riemann) dont voici l'énoncé qui nous est utile:

PROPOSITION 5. Soit g un groupe de difféomorphismes de \mathbb{C} , 0 engendré par v éléments

$$z \rightarrow f_i(z), \quad i = 1, \ldots, \nu$$

chaque difféomorphisme f_i étant dans le domaine de Poincaré $(|f_i'(0)| \neq 1)$ et soient $t_1, \ldots, t_{v+1}v+1$ points distincts de l'espace projectif $\mathbb{PC}(1)$. Il existe un germe de 1-forme holomorphe ω en $0 \in \mathbb{C}^2$ ayant pour séparatrices les v+1 droites $y=t_ix$ et le groupe \mathfrak{g} comme holonomie projective.

D'autre part on peut faire dépendre les t_i holomorphiquement d'un paramètre complexe s et obtenir ainsi une famille ω_s ayant $y = t_i(s) \cdot x$ comme séparatrices et g comme groupe d'holonomie (constamment). Comme le groupe d'holonomie est constant cette famille est topologiquement triviale (exercise). Q.E.D.

Remarque. 1) Tenant compte des résultats obtenus dans III dans le cas des groupes abéliens et de l'énoncé de synthèse, on peut évidemment préciser l'espace des t-modules des formes $\omega_2 + \cdots$ et $\omega_3 + \cdots$ possédant une intégrale première $f_1^{\lambda_1} \cdots f_p^{\lambda_p}$ (les λ_i étant ici, à l'inverse du chapitre II, non alignés (condition *). Nous laissons au lecteur le soin de préciser cet espace.

2) Dans [I] Ju. S. Il'iašenko annonce un certain nombre de résultats concernant l'espace des modules des formes algébriques (cas global).

VI Problemes ouverts

PROBLÈME 1. Calculer l'espace des t-modules de $\omega = \omega_v + \cdots N.A.G.$ $(v \ge 4)$. On sera amené certainement à établir le lemme suivant:

LEMME. Sout ω_s une famille topologiquement triviale, avec ω_0 N.A.G. On suppose que la famille X_s des séparatrices de ω_s est holomorphiquement triviale. Alors ω_s est holomorphiquement triviale.

La difficulté pour prouver le lemme est que l'on ne peut pas mettre la famille X_s dans une fibration de Hopf.

PROBLÈME 2. On se donne une courbe X à l'origine de \mathbb{C}^2 et l'on désigne par $\pi_X: M_X \to \mathbb{C}^2$ la désingularisation minimale de X. Soient X_i les composantes irréductibles (ce sont des droites projectives) du diviseur $\pi_X^{-1}(0)$; pour chaque X_i on se donne un groupe \mathfrak{g}_i de difféomorphismes de \mathbb{C} , 0 engendré par p_i générateurs, où p_i est défini par:

$$1+p_i=\left\{\left(X_i\bigcap_{i\neq j}X_j\right)\cup\left(X_i\cap\overline{n_X^{-1}(X-\{0\})}\right)\right\}$$

On demande quelles conditions, outre des conditions évidentes sur les 1-jets, doivent satisfaire les g_i pour qu'il existe une 1-forme ω ayant X comme seules séparatrices et telle que le groupe d'holonomie du diviseur X_i soit précisément g_i .

PROBLÈME 3. Enlever les paramètres, i.e. calculer les espaces de modules et non de *t*-modules pour les formes condidérées dans ce travail.

PROBLÈME 4. Soit ω une 1-forme t-rigide et X les séparatrices de ω ; soit (f = 0) une équation réduite de X.

- 1) f est-elle quasi-homogène?
- 2) f est-elle rigide?

PROBLÈME 5 (Equations dicritiques).² Dans [C, M] on montre que les deux 1-formes suivantes sont topologiquement conjuguées

$$\omega_0 = (y^3 + y^2 - xy) dx - (2xy^2 + xy - x^2) dy$$

et

$$\omega_1 = (2y^2 + x^3) \, dx - 2xy \, dy.$$

Alors que ω_1 possède l'intégrale première méromorphe $y^2 - x^3/x^2$, i.e. les feuilles de ω_1 sont les courbes $y^2 - x^3 = cx^2$, $c \in \mathbb{PC}(1)$, la forme ω_0 ne possède pas d'intégrale première méromorphe.

A fortiori ω_0 et ω_1 ne sont pas holomorphiquement conjuguées. On demande l'espace des modules et l'espace des t-modules de ω_1 .

PROBLÈME 6. L'espace des modules d'un difféomorphisme $z \rightarrow \lambda z + \cdots$ non linéarisable (λ mauvaise rotation irrationnelle).

Appendice 1

Dans cette appendice nous établissons la proposition II.5.2.

Soit ω un germe de 1-forme holomorphe possédant l'intégrale première $f_1^{\lambda_1} \cdots f_p^{\lambda_p}$ où les λ_i sont des nombres réels indépendants sur $\mathbb N$ et les f_i des germes irréductibles. Il n'est pas difficile d'établir à ce moment que la désingularisation de la forme ω est précisément la désingularisation de la courbe $f_1 \cdots f_p = 0$.

On en déduit sans peine que l'holonomie de la solution $(f_j = 0) - \{0\}$ est du type, à conjugaison holomorphe près, $z \to \mu_j \cdot z$

$$\mu_j = \exp\left(2in\,\frac{\lambda_j}{\sum n_j^k \lambda_k}\right)$$

où les n_j^k sont des entiers positifs ne dépendants que de la courbe $f_1 \cdots f_p = 0$, et en fait seulement de la topologie de $f_1 \cdots f_p = 0$. Soit maintenant ω_s une famille topologiquement triviale avec $\omega_0 = \omega$. Comme il a été dit ω_s possède une intégrale première $f_1(s)^{\lambda_1(s)} \cdots f_p(s)^{\lambda_p(s)}$. Si l'on impose, quitte à prendre une puissance de $f_1^{\lambda_1(s)} \cdots f_p^{\lambda_p(s)}$ que $\lambda_1 = \lambda_1(s) = 1$ alors les $\lambda_i(s)$ dépenderont continuement de s. La trivialité topologique implique la trivialité topologique des

² Problème 5 vient d'être traité par M. Klukertz dans un préprint de l'université de Toulouse.

holonomies des variétés $(f_j(s) = 0 - \{0\})$; il en résulte que les rotations $z \to \mu_j(s) \cdot z$ sont topologiquement conjuquées, $\mu_j(s) = \exp(2i\pi\lambda_j(s)/\sum n_j^k\lambda_k(s))$. Comme les $\lambda_j(s)$ sont réels on en déduit que $\mu_j(s) = \mu_j$ ou bien $\mu_j(s) = \overline{\mu_j}$; mais usant de la continuité on a $\mu_j(s) = \mu_j$. C'est alors un simple exercice d'algèbre linéaire (utilisant $\lambda_1 = \lambda_1(s) = 1$) d'établir que les $\lambda_i(s)$ sont indépendants de s.

Nous conjecturons qu'en fait si deux formes ω_0 et ω_1 possédant des intégrales premières $f = f_1^{\lambda_1} \cdots f_p^{\lambda_p}$ et $g = g_1^{\lambda_1} \cdots g_p^{\lambda_p}$ à exposants réels sont topologiquement conjugués, alors les exposants sont projectivement égaux. Dans le cas où p = 2 et f_1 , f_2 constituent un système de coordonnée, c'est une conséquence d'un résultat annoncé dans [N].

Appendice 2

Nous allons établir une version analytique réelle du théorème 2.III (un peu moins générale); ici un groupe \mathfrak{g}_1 d'homothéties réelles vérifie (*) \mathbb{R} s'il possède une base f_1, \ldots, f_p , $f_i(x) = \lambda_i(x)$, tels que les nombres $\alpha_i = \text{Log } |\lambda_i|$ soient \mathbb{Z} -indépendants; i.e. si $\sum_i l_i \alpha_i = 0$, $l_i \in \mathbb{Z}$, alors $l_j = 0$, $\forall j$.

Un groupe \mathfrak{g} de germes de difféomorphismes analytiques en $0 \in \mathbb{R}$ vérifie $(*)_{\mathbb{R}}$ s'il en est ainsi pour le groupe linéaire $j^1\mathfrak{g}$.

THÉORÈME (réel). Soit $\mathfrak g$ un groupe de germes de difféomorphismes analytiques à l'origine de $\mathbb R$ vérifiant la condition $(*)\mathbb R$. Si $\mathfrak g$ n'est pas abélien un groupe $\mathcal H$ de germes de difféomorphismes analytiques tel que $j^1\mathfrak g=j^1\mathcal H$ est conjugué analytiquement à $\mathfrak g$ si et seulement si il l'est topologiquement.

Preuve. On désigne par $\lambda_1 x, \ldots, \lambda_p x$ une base de $j^1 \mathfrak{g}$. On procède alors comme dans le cas holomorphe en travaillant avec deux difféomorphismes non commutants qui dans une bonne coordonnée x s'écrivent:

$$f(x) = \lambda_1 x \qquad 0 < |\lambda_1| < 1$$

$$g(x) = \lambda_2 x (1 + x \alpha(x)) \quad 0 < |\lambda_2| < 1$$

Désignant par h l'homéomorphisme de conjugaison et F et G les élément de \mathcal{H} correspondants par h à f et g on se ramène au cas où

$$F = \lambda_1' x$$

$$G = \lambda_2' x (1 + K(x))$$

Notant I_1 (resp' I_2) l'intervalle [0, 1] (resp' [-1, 0]) on montre comme dans le cas

holomorphe qu'il existe des constantes A_i et $a_i > 0$, i = 1, 2 telles que:

$$h(x) = A_i \cdot |x|^{a'}$$
 pour $x \in I_i$.

Ecrivant alors la conjugaison entre g et G:

$$h \circ g = G \circ h$$

on obtient sur chaque intervalle I_i :

$$(1 + K(A_i | x|^{a_i}) = (1 + x\alpha(x))^{a_i}$$
(1)

Parce que le second membre de (1) est analytique, on remarque sans peine que les nombres a_i sont rationnels. Ensuite, écrivant la conjugaison entre f et F, il vient:

$$\lambda_1^{a_i} = \lambda_1'$$
 $i = 1, 2$

Mais parce que $j^1g = j^1\mathcal{H} \lambda_1'$ s'écrit:

$$\lambda_1' = \lambda_1^{a_i} = \lambda_1^{n_1} \cdot \cdot \cdot \lambda_p^{n_p}$$
 où les $n_i \in \mathbb{Z}$

écriture qui conduit à une relation entière entre les $\alpha_i = \text{Log } |\lambda_i|$; cette relation devant être triviale on obtient l'égalité:

$$\begin{cases} a_1 = a_2 = n_1 & (\text{et } n_1 \in \mathbb{N}) \\ n_j = 0 & \text{pour } j \ge 2 \end{cases}$$

Ensuite développant (1) en série on obtient puisque h est un homéomorphisme:

$$A_1 = -A_2$$

Maintenant de par la forme de h, h induit un isomorphisme entre j^1g et $j^1\mathcal{H} = j^1g$. Soit $\lambda_j'x \in j^1\mathcal{H}$ l'homothétie image par h de $\lambda_j \cdot x$; par le même argument que précédemment on a:

$$\lambda_i^{n_j} = \lambda_i'$$

Comme l'isomorphisme qui s'écrit sur la base $\lambda_i \rightarrow \lambda_i^{n_1}$ est inversible, visiblement

 $n_1 = 1$; il s'en suit que:

$$h(x) = A_1 \cdot x$$
 Q.E.D.

Remarque. On peut encore appliquer cette méthode dans le cas C^{∞} pour des groupes g qui ne sont pas formellement abéliens.

BIBLIOGRAPHIE

- [C_a] CAMACHO, C. On the local structure of conformal mappings and holomorphic vector fields in \mathbb{C}^2 . Astérisque 59-60 (1978), 83-94.
- [C, L, S] CAMACHO, C., LINS, A. and SAD, P. Topological invariants and equidesingularization for holomorphic vector fields. J. of Diff. Geometry 201, (1984), 143-174.
- [C, S] CAMACHO, C. and SAD, P. Topological classification and bifurcations of holomorphic flows with resonnances in \mathbb{C}^2 , Inventiones Mathematicae 67 (1982), 447–472.
- [C] Cerveau, D. Densité des feuilles de certaines équations de Pfaff à 2 variables. Annales de l'Institut Fourier de l'Université de Grenoble. Tome XXXIII, Fasc. 1 (1983), 185-194.
- [C, M] CERVEAU, D. and MATTEI, J. F. Formes intégrables holomorphes singulières, Astérique 97.
- [E] ECALLE, J. Les fonctions résurgentes I, II, III, Pub. Math. d'Orsay.
- [I] ILIAŠENKO, Ju. S. Global and local aspects of the theory of Complex Differential Equations. Proceedings of the Intern. Cong. of Math., Helsinki, 1978.
- [K] KABILA, A. 1) Formes intégrables à singularités lisses: conditions de Whitney, Equisingularité, μ constant Thèse 3ème cycle Dijon (1983). 2) C.R. Acad. Sc. t. 298, série I, no. 11 (1984), 245–248. 3) C.R. Acad. Sc. t. 299, série I, no. 8 (1984), 311–314.
- [Ki] King, H. Topological type of isolated critical points. Ann. math. 107, (1978), 385-398.
- [L] LINS, A. 1) Logarithmic forms. Preprint I.M.P.A. 2) Construction of singularities of holomorphic vector fields in \mathbb{C}^2 which have a given projective holonomy. Preprint I.M.P.A.
- [M, R] Martinet, J. and Ramis, J. P. 1) Problèmes de modules pour des équations différentielles non linéaires du premier ordre. Pub. Math. I.H.E.S. 55 (1982), 63-164. 2) Classification analytique des équations différentielles non linéaires résonnantes du premier ordre. Ann. Sc. Ec. Norm. Sup. 16 (1983), 571-621.
- [M, M] MATTEI, J. F. and MOUSSU, R. Holonomie et intégrales premières. Ann. Sc. Ec. Norm. Sup. 13 (1980), 469-523.
- [M] MOUSSU, R. Lettre de Moussu à Martinet (disponible chez l'auteur à Dijon).
- [N] NAYSHUL', V. A. Topological invariants of analytic and area-preserving mappings and their application to analytic differential equations in \mathbb{C}^2 and \mathbb{CP}^2 , Trans-Moscow Math-Soc (1983) issue 2.
- [S] SAITO, K. Quasi homogene isoliente singularitäten von Hyperflächen, Invent. Math. 14 (1971), 123-142.

Département de Mathématiques Université de Dijon B.P. 138, 21004 Dijon, France

Département de Mathématiques Université de Belo-Horizonte Brésil

Reçu le 13 juin 1985