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Finite-order algebraic automorphisms of affine varieties

Ted Pétrie and John D. Randall

1. Introduction

Hère are a few définitions. Let F dénote either R or C. An algebraic map of
affine spaces F1 -» F&quot; is a map F&quot; -&gt; F&quot; whose coordinate functions are polyno-
mials with coefficients in F. An algebraic map of affine varieties V-+W, where

KcF, WcF, is a map V—» W which extends to an algebraic map of affine

spaces F1—» F&quot;. The définitions of algebraic isomorphism and algebraic auto-
morphism are now self-evident. The automorphism group of a variety V is

denoted by Aut (V). An algebraic action of a finite group G on a variety V is a

homomorphism &lt;f&gt;:G-+Aut(V). This définition suffices for the results of this

paper. For the results cited below for non-finite groups, one needs the action map
G xV-*V defined by &lt;/&gt; to be algebraic.

Let X be either Rn or Cn. The following two problems hâve been popularized
by H. Bass and H. Kraft.

Linearity problem

(Kambayashi [7]). Suppose G acts as a group of algebraic automorphisms of
X. Show that the action is conjugate to a linear action, i.e. if the action is

represented by #:G-» Aut(X), then (j&gt; is conjugate to a homomorphism of G
into the linear subgroup GLn of Aut (X).

A summary of some of the known results is given in Bass and Haboush [1] and
Kraft [10], and is reproduced hère:

For actions on C&quot;, the problem has been solved in the following cases:

1. G is an algebraic torus acting effectively, and either
a. Dim G n or n — 1 (Bialynicki-Birula [2], [3]) or
b. the action is &quot;unmixed&quot; in the sensé of Kambayashi and Russell [8] and

DimC7G&lt;2
2. G is connected and semi-simple, and n &lt;4 (Jung [6], Van der Kulk: see

Kambayashi [7], Draft-Popov [9], Panyushev [15]).
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204 TED PETRIE AND JOHN D. RANDALL

Fixed-point problem

If G acts as a group of algebraic automorphisms of AT, then show that there is

a fixed point, i.e. show that XG =f 0.
For actions on C&quot;, this problem has been solved in the following cases:

1. G is a finite p-group (see [4]).
2. G is a torus (Bialynicki-Birula [2]).
3. G SL2(C) and the action has no 3-dimensional orbits (Panyushev [15]).
4. G is finite and has a normal séries P&lt;H&lt;G where P and G/H are of

prime power order and HIP is cyclic.

Point 4 is a conséquence of Verdier&apos;s version of the Lefschetz Fixed-Point
Theorem (6.2), the fact that algebraic varieties hâve cohomology groups (with
compact supports) which are finitely generated over Z, and Smith Theory. This
resuit is certainly not well known. See Lemma 3.2 for a proof.

Two of the main results of this paper are that if V is a smooth nonsingular
algebraic variety on which a finite group G acts algebraically, then:

1. V has a compactification V* (see Section 4)
2. V has the G homotopy type of a finite CW complex (see Section 3)

The latter routinely implies that the Lefschetz Fixed-Point Theorem (3.1) holds
for algebraic actions of finite groups on nonsingular algebraic varieties, and gives

a direct proof of Verdier&apos;s theorem in this case. We should emphasize that
neither of thèse results is true in gênerai for smooth actions even under the

hypothesis of finite génération of the cohomology of ail fixed sets (6.1). In Section
6 we discuss those aspects of smooth transformation groups which hâve a bearing
on the comparison of thèse points in the smooth and algebraic catégories.

Expérience from the subject of smooth actions of groups on affine spaces and

sphères suggests the following approach to the Linearity and Fixed-Point
Problems:

1. Détermine the properties of algebraic actions on a variety which dépend on
the homology of the variety and/or the assumption that the action is

algebraic.
2. Then détermine the properties which dépend upon the spécifie algebraic

structure on the variety.

We hâve in mind the standard algebraic structure on F&quot; when the variety is

diffeomorphic to F&quot;. Theorems 3.1 and 3.2 are examples of 1. Regarding 2: In
Section 5 we give an example which shows that if the Linearity Problem has an

affirmative answer, then it must dépend in an essential way on the standard
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algebraic structure of Fn. There we construct many examples of an algebraic
action of a group G on a variety V which is diffeomorphic to Rn, such that VG is

not contractible. Linear actions hâve contractible fixed-points sets, so this action
is not even smoothly conjugate to a linear action.

An algebraic action on F&quot; gives in particular a smooth action on F&quot;. In order
to bring to bear the tools and results from the subject of smooth actions, we need

to answer the:

Realization problem

Which smooth actions on Rn are algebraically realized? (A smooth action on
Rn is algebraically realized if it is equivariantly diffeomorphic to an algebraic
action on a variety.)

In order to treat this problem, we introduce in Section 4 a compactification V*
of a variety V with an algebraic action of a group G. This is a compact smooth
manifold with boundary. It supports a smooth G-action and its interior is

eqivariantly diffeomorphic to V. When V is diffeomorphic to R&quot;, V* is an n-disk
(Theorem 4.2). This means that smooth actions on R&quot; which are algebraically
realized must extend to the «-disk. (Hère Rn is viewed as the interior of the
n-disk when considered as a smooth manifold.) Because of this, one should view

algebraic actions on varieties diffeomorphic to Fn as being more closely related to
smooth actions on disks than to smooth actions on F&quot;. We believe that this point
of view is helpful in treating the Linearity and Fixed-Point Problems. For
example, a cyclic group acting on a disk must hâve a fixed point, while on Rn it
need not (Theorem 1.1). Indeed, Theorem 4.1 easily implies the Lefschetz
Fixed-Point Theorem for cyclic groups acting algebraically. The Linearity
Problem for smooth actions of a finite group on Rn has an affirmative answer if
the fixed-point set of each subgroup is contractible (Rothenberg [18]). The

corresponding theorem for smooth actions on the closed disk D(R&quot;) is false. An
algebraic realization of one of the exotic actions on D(R&quot;) could lead to a

négative response to the Linearity Problem. There are a number of papers giving
non-linear smooth actions of finite groups on Rn. See Edmonds and Lee [5] and

Bredon [4, p. 55-62].
Before proceeding with détails, we make a few remarks about ideas and

methods. We establish an essential property of an algebraic action on a

non-singular variety, namely that there exists an equivariant Morse function with

only finitely many critical points. This is Corollary 2.6. The reader should bear in
mind that this resuit, like many others in this paper, is false for smooth actions.
Hère is a brief outline of some of the ideas. Recall that if M is a smooth manifold.
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then/:Af-»R is a Morse function if/has no degenerate critical points, and no
critical points on the boundary dM of M; and for each a e R, f~l(—œ, a] is

compact. Let G be a finite group acting on a non-singular variety V. We produce
an equivariant polynomial function /: V -&gt; R whose restriction to V{H) (the set of
points of V whose isotropy group is H) is a Morse function for each subgroup H
of G. This function may hâve degenerate critical points, but only finitely many
(by construction). By modifying / in an arbitrarily small neighborhood of its
critical points, we can produce an equivariant Morse function /&apos; :V-^&gt;R which
has finitely many critical points, but which is not algebraic. Equivariant Morse
Theory implies that V has a compactification (4.1) and has the homotopy type of
a finite G-CW complex (2.7). Thus for each geG the Lefschetz fixed-point
formula

holds, where

g) 2 (-1)&apos; trace(g*:Hg&lt;y)-+Ht(V))

is the Lefschetz number of g acting upon V, and x(V8) is the Euler characteristic
of Vg. (Hère singular cohomology is used.) This is Theorem 3.1. If V is

contractible, then L(V, g) l (since g* is the identity on H{)(V) — Z, the only
non-zero homology group), and so VK =f 0. This argument uses the fact that g
acts algebraically to deduce that the Morse function constructed has only finitely
many critical points: indeed, the fixed-point conjecture is false for C^-actions of
cyclic groups.

THEOREM 1.1 [4, p. 61 ]. If r is not a prime power, and L is a finite complex
then there exists an integer m such that Rn admits a self-diffeomorphism ofperiod r
whose fixed-point set has the homotopy type of L&gt; for ail n^m (including the case

in which L - 0).

The authors thank H. Kraft for critical comments on the paper.

2. Existence of equivariant Morse fonctions with finitely many critical points

Let X dénote R&quot; and let V c X be a non-singular affine variety with an

algebraic action of a finite group G. Let X{G) be the space of functions G-* X,
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made a G-space by the following rule: if g,g&apos;eG and / € X(G), then (g&apos;f)(g)

/((g&apos;)&quot;1^). There is a natural algebraic map 6:V-+X(G) which is a closed

equivariant immersion such that if v € V, g € G then 0(v)(g) =gv. As a vector
space, X(G) is the direct sum of |G| copies of X. As a G-space, X(G) is n copies
of the regular représentation of G.

Let VH dénote the subset of V fixed by H. i.e.

VH {v e V | to v for ail fc 6 //},

and let V(//) dénote the set of points in X with isotropy group //, i.e.

{u e F | Gv //}, where

geG \gv=v}.

W is an equivariant map, let /&quot; =/1 VHf fH) =/1 V{H\
The results and proofs of this section hold for ail finite groups, but for

simplicity of notation only we shall suppose G to be abelian. If H a G, we may
then assume that V(H) and VH are G-spaces, rather than iY(//)-spaces, where

N(H) is the normalizer of H in G.

Let F be a real représentation of G, given as a group of orthogonal matices,
so that the standard norm || || is G-invariant, and let P(F) dénote the set of ail

polynomials F-»R which are G-equivariant.

THEOREM 2.1 (Hilbert, see [24]). P(O is finitely genermed, i.e. there exist

P\, pm e P(F) such that f e P(F), then there exists a polynomial fimction
q.W1-»* such thatf q(pu pm).

COROLLARY 2.2. p : r-&gt; Rm factors through T/G to give an imbedding
p:r/G-*R&apos;&quot;.

Proof. It suffices to show that p is injective. Let x, y e F be such that v =j= gx
for ail g e G. In view of Lemma 2.1 it is sufficient to produce an equivariant
polynomial xl&gt;:r~-*R such that î//(jc) =f ip(y). The equivariant polynomial

has the required properties.
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We now apply this to the case in which F X(G). There is a commutative

diagram

V -2* X(G) -£-&gt; Rm

i iiVIG -5-&gt; X(G)/G -1+ Rm

where 0, 0 and p are injective, and 0 and p are algebraic. Note that
V(H)/GczX(G)(H)/G are manifolds. Via the maps 0 and p, we shall regard
V(//)/G as a submanifold of Rm.

Our aim is to produce an equivariant Morse function &lt;Z&gt; : V —» R with finitely
many critical points. For z e Rm, let

If H c G, let

5n {z e Rm | fz\ V(H)/G is a Morse function}.

Each V(H)/G is a manifold, and each SH is an open dense subset of Rm (see [12,
Theorem 6.6]). Since G has finitely many subgroups, the set 5 OhczgSh is also

dense in Rm, and is in particular not empty. Choose z0 e 5, and let (p =fZo, i.e.

Let &lt;P:V—&gt;R be the composition 0°/?&lt;&gt;0. Then for each subgroup H of G,
&lt;P | V(//) is a Morse function. A critical point of &lt;P which lies in V{H) is a critical
point of &lt;P | K(//), so

U
//cG

where C{h) dénotes the critical set of h. Since VH is a non-singular variety and &lt;P

is a polynomial, C(4&gt; | VH) is an algebraic variety by [12, 2.7], and hence has a

finite number of topological components by [12, 2.4]. Since V{H) aVH is open,
and 4&gt; | K(f/) is a Morse function, each point of C(&lt;P | V(//)) is isolated in ViH), so

each of thèse points is a topological component of C(&lt;P | V^), so C(&lt;P&gt; | \/(//)) is

finite. We record this in the following lemma:
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LEMMA 2.3. Let V be a non-singular algebraic vanety on which a finite
group G acts algebraically. Then there exists an equivariant map &lt;P\ V-+R which
has finitely many critical points \ moreover, for each subgroup H of G, &lt;P(H) is a

Morse function on ViH\

The function &lt;P is not a Morse function on V. We shall modify &lt;Z&gt; to produce
an equivariant function &lt;P&apos;:V-*R which is a Morse function (but which is not
algebraic), which has finitely many critical points, and which agrées with &lt;P

outside a small equivariant tubular neighborhood of C(4&gt;). This modification
(Lemma 2.5) uses the following equivariant version of the Morse Lemma

(Lemma 2.4). In Section 7 we supply a proof which we feel is more accessible

than the outline in [23] (see [23, 4.8] and subséquent remarks).

LEMMA 2.4. Let M be a compact smooth G-manifold, N œ M a closed

invariant set which contains dM, and let f:M-*R be a G-invariant C*-function
with no critical points on dM and no degenerate critical points on N. Then there

exists a G-invariant Morse function /&apos;:M-*R which agrées with f on an open
invariant neighborhood of N.

Proof. See Section 7.

LEMMA 2.5. Let W be a smooth G-manifold and let f:W-+R be a

G-invariant C3 -function with no critical points on dW. If the critical point set C(f)
of f is finite, then there exists a G-invariant Morse function f&apos;:W—+R whose

critical set is finite.

Proof. Let M be a closed G-invariant tubular neighborhood (see [4, p. 306])
of C(f) in W. Since C(f) is finite, M is compact. (In fact M is a finite union of
disks.) Let N dM, h=f\M:M-^R. Apply Lemma 2.4 to M, h and N to
produce a G-invariant Morse function h&apos; : Af--»R with h&apos; h =/on dM. Since M
is compact, C{h&apos;) is finite, because non-degenerate critical points are isolated.

Define/&apos;:M-*Rby

/&apos; |W - M =/| W - M, /&apos; | M h&apos;.

Then/&apos; is a Morse function such that C(/&apos;) C(hf), a finite set.

COROLLARY 2.6. Let V be a non-singular affine variety on which the finite

group G acts algebraically. Then there exists a G-invariant Morse function

f:V-+R with finitely many critical points.

Proof. Apply Lemma 2.5 to the function 4&gt;: V-*R produced in Lemma 2.3.
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Note that Corollary 2.6 produces a smooth equivariant Morse fonction with
finitely many critical points. It would be interesting to know whether there is an
algebraic function with this property.

COROLLARY 2.7. If G acts algebraically on a nonsingular affine variety V&gt;

then V has the equivariant homotopy type of afinite G-CW complex.

Proof. This follows immediately from Corollary 2.6, since V has the homotopy

type of a complex which has a cell for each critical point of the equivariant
Morse function (see [12, Theorem 3.5]).

3. The Lefschetz Fixed-Point Theorem

We now use the results of Section 2 to prove the Lefschetz Fixed-Point
Theorem:

THEOREM 3.1. Let V be a nonsingular affine algebraic variety on which the

finite group G acts algebraically. Then the Lefschetz fixed-point formula

holds for each geG.

Proof. By Corollary 2.7, V has the equivariant homotopy type of a finite
G-CW complex, and so the Lefschetz fixed-point formula holds.

As mentioned in the introduction, this leads to the foliowing Fixed-Point
Theorem. See Section 6 for a corresponding discussion of smooth actions on
disks.

LEMMA 3.2. Let G be a finite group having a normal séries P &lt;H &lt;G where

P and G/H are groups ofprime power order. If G acts algebraically on an acyclic

variety V, then V has a fixed point.

Proof. We shall treat the case in which V is nonsingular. This condition may
be removed by using Verdier&apos;s theorem (6.2) in place of 3.1. The order of F is a

power of p and the order of G/H is a power of q for some primes p and q. Since

P is a p-group, Vp is Zp-acyclic by Smith Theory. Since Vp is a finite
CW-complex, the cohomology groups of Vp are finitely generated, and so Vp is
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rationally acyclic. The Lefschetz Fixed-Point Theorem (3.1) for the action of the

cyclic group HIP on Vp with fixed set VH implies that x(VH) - 1- The #-group
G/H acts on VH with fixed set VG. Thus x(VG)^x(V&quot;) (mod/?), so x(VG) 1

(modp) and VG^0. (This congruence involving the Euler characteristic of a

q-group action is elementary for an equivariant CW-complex.)

4. Algebraic realizations of smooth actions

In this section we look at the connection between the smooth and algebraic
cases. We say that a smooth action may be algebraically realized if it is

equivariantly diffeomorphic to an algebraic action. It is not true that every
smooth action may be algebraically realized since there exist smooth fixed-point-
free actions of finite cyclic groups on Rn, but every algebraic action of a cyclic

group on R&quot; must hâve a fixed point (compare Theorems 1.1 and 3.1). This
section gives a necessary condition for a smooth action to be realized algebraically.

Throughout this section, G will dénote a finite group, so the results of
Section 2 apply.

Let F be a smooth G-manifold without boundary. A compactification V* of V
is a compact smooth G-manifold V* such that V* - dV* is equivariantly
diffeomorphic to V, where dV* dénotes the boundary of V*. Compactifications
do not always exist, but do exist if V is a non-singular affine variety on which G
acts algebraically.

THEOREM 4.1. If a finite group G acts algebraically on a non-singular affine

variety V, then V has a compactification V*.

Proof. Let f:V—&gt;R be a G-invariant Morse function with finitely many
critical points (Lemma 2.5.). Let n &gt;0 be an integer such that Vn =/~1(—°°, n]
contains ail the critical points of/in its interior/&quot;^—»&gt;, n). Then Vn is a smooth
manifold with boundary 9Vn =/~1(n). If i&gt;ny then V&apos;l+l =f~l[i, i + 1] contains

no critical points of/, and so it is equivariantly diffeomorphic to/-1(6) x [i, i + 1]

for e i or / +1. In the non-equivariant case, this is one version of the
fundamental lemma of Morse theory [12, Theorem 3.1]. The idea is to integrate a

vector field X which is defined on V and which satisfies

where x e V, geG and dg:TV-*TV is the differential of g. In addition,
X\Vlll+l is to be ||grad/||&quot;2grad/, where grad is defined with respect to a

G-invariant Riemannian metric on V. Since Vll+1 is compact and G-invariant,
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there is such a vector field which vanishes outside a compact set, and so may be

integrated. This produces a one-parameter group of diffeomorphisms (f&gt;: V—» V
satisfying

(d/dt)&lt;pt(x)\t=0 X(x).

Note that

(d/dt)f(cl&gt;)t(x)U=l

for ail xeVl&apos;l+\ Then il&gt;:f~~l(i) x [i, i + 1]-» VM+1 defined by v(*&gt;* + 0
0f(jc), where xef~l(i) and fe[0, 1], is a G-diffeomorphism The reader may
easily produce an equivariant diffeomorphism of f~l(n) x [n, *&gt;) dVn x [0, 1)

onto

Û vM+1.

Since V is the union of Vn and the VM+1 for i &gt; n,

v s vn u avn x [o, i) vn - avn.

The last equivariant isomorphism follows from the equivariant collar neighbor-
hood theorem [4, p. 229]. This shows that V* Vn is a compactification of V.

If G acts smoothly on Rn, then we say that the action extends to the unit disk
D(Rn) if the action of G on R&quot; viewed as the interior of D(Rn) extends to a

smooth action on D(Rn).

THEOREM 4.2. A smooth action of a finite group G on R&quot;, where n&gt;5y

may be algebraically realized only if the action extends to D(Rn).

Proof. Suppose G acts algebraically on a non-singular variety V&gt; realizing the

given action on Rrt. Then a compactification V* of V exists by Theorem 4.1. A
theorem of Stallings [19] asserts that for n &gt; 5, if a compact n-manifold with
boundary has interior diffeomorphic to Rn, then the manifold is diffeomorphic to
D(Rn). Thus V* is diffeomorphic to D(Rn).

The converse to Theorem 4.2 remains an interesting and essential problem for
understanding algebraic actions on Rn. For example, the family of finite groups
which act smoothly on a disk without fixed points is infinité. In particular, it
contains the alternating group As (see [4]). An algebraic realization of this action
would provide a fixed-point free algebraic action of A5 on a variety diffeomorphic
to Rw, and hence a négative answer (modulo identification of algebraic structure)
to the Fixed-Point Problem.
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5. A non-linear algebraic action

We now give an example of a non-linear algebraic action of the cyclic group of
order two on a variety diffeomorphic to Euclidean space.

Let X C&quot;+1 with coordinates (z(), zn). Define 52&quot;+1 to be the sphère

and Z -T2&quot;&quot;1 to be the intersection of the Brieskorn variety

with 52n+1.

Let G be the cyclic group of order 2 generated by r, and consider the

following représentation of G on Cn+I:

T(Zo, Z\f • • Zn) (Zq, Z\, Z2, ~Z3, — Z4, —Zn).

The variety I is invariant, and if

p (0,î/V2,l/V2,0,...,0)€Cll+1,

then p, -peIG c (52&quot;+1)G; so in particular the tangent space T_pS2n+l of S2n+l

at —p is a (2n + l)-dimensional real représentation of G denoted by R2n+I. This

tangent space is the hyperplane v - p -1, where v — (t/0, vn) e Cn+1, and •

dénotes the real inner product on C&quot;+I.

Let &lt;t&gt;:R2n+l^&gt;S2n+1 -p be the inverse of stereographic projection from p of
S2n+l -p onto T_P52&quot;+1 R2n+1. One finds that

where w(u) (u2 + 3)/4 and u2 dénotes ||f||2. Moreover, (f&gt; is an equivariant
diffeomorphism.

Let V 4&gt;~\2-p). We claim:

1. V is a non-singular real algebraic variety.
2. G acts algebraically on V.

3. jïi(Vg) is cyclic of order q, and if n and q are odd, then V is diffeomorphic
to R2&quot;&quot;1.

We verify thèse assertions. Since u(v) is a real polynomial which never
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vanishes, V is the zero-set of the real and imaginary parts of the polynomial

u(v)J(&lt;t&gt;(v))t where v e R2&quot;+l c C&quot;+1.

This shows that V is an algebraic variety. Since 0 is a diffeomorphism, and the

complex variety f(z) 0 intersects S2n+l transversely in H [11, p. 17], one readily
vérifies that V is non-singular.

Since &lt;p is G-equivariant and since / and u are G-equivariant polynomials, G

acts algebraically on V. Assertion 1 follows from thèse properties of Z which may
be found in [4. p. 275]: If n and q are odd, I X2&quot;&quot;1 is homeomorphic to S2&quot;&quot;1

while SG 2\ is a Lens space whose fondamental group is cyclic of order q. This

means that V &lt;p~l(Z — p) is diffeomorphic to R2n~l if n and q are odd, and
VG — 2* — p has fundamental group which is cyclic of order q.

If n and q are odd, then V is a real algebraic variety diffeomorphic to R2&quot;&quot;&quot;1. It
supports an algebraic action of G, and if #=f 1 is odd, then Jtl(VG)^0. Since

fixed-point sets of linear actions are contractible, the action on V is not even

smoothly conjugate to a linear action on R2&quot;&quot;1.

Finally, it seems worthwhile to explicitly illustrate the defining équations for V
for the case in which az 3, q 3. Let u; a} + ibp where ûy,i;eR for
y 0, 1,2, 3. The hyperplane v • p -1 given by

and V is the set of points in this hyperplane which satisfy

(al - 3a2QbZ) + u(v)(a\ + a22 + a2) + u{v)(u(v) - l)(a2 - bx)yjl 0,

(3a&amp;0 - bl) + 2u(v)(albl + a2b2 H- a3b3) + u(v)(u(v) - l)(a{ + 62)V2 0,

where

3

and v2 ^(aj + bj).
;=0

6. The influence of the projective class group in comparing smooth and

algebraic actions

There are some problems from transformation groups regarding fixed points,
existence of compactifications, and the homotopy type of a finite G-CW complex
which are significant for smooth actions. In this paper, we hâve settled thèse quite
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simply for algebraic actions. In order to put thèse two catégories in perspective,
and to illustrate a unifying thème involving the projective class group Ko, we now
discuss thèse matters.

First we mention Verdier&apos;s fixed point theorem, which does not seem to be
well known among topologists. Indeed, it was brought to our attention by the
référée. Verdier&apos;s hypothèses are that X is a locally compact space of finite
topological dimension on which a finite group G acts continuously, and which also
satisfies:

HYPOTHESIS 6.1. H&apos;(XH, Z) is finitely generated over Z for every i and

every subgroup H of G.

(Hère we are using cohomology with compact supports.)
Define

MG, X) 2 (-l)&apos;[iW Q)] € K0(Q(G)),

where [M] dénotes the class of a Q(G)-module M in K0(Q(G)). This gives a

virtual représentation of Q(G) whose trace defines a function on G. We dénote
the value of this function at g e G by Lc{g, X).

THEOREM 6.2 (Verdier [21]).

It is interesting to see how 6.1 and the projective class group K0(Z(G)) are
used in the proof of Verdier&apos;s theorem. For the proof of 6.2 it suffices to let G be

the cyclic group generated by g. By additivity, LC(G, X) is the sum of the

LC(G, X{H)) for H c G. Thus it must be shown that Lc(g, X{H)) is zéro unless

H G. We may further suppose that H 1 by considering G/H. Thus we may
assume that G acts freely on X and satisfies 6.1. Using 6.1 we may add a finite
number of G-cells of type G x Dl to X for i &lt; dim X to get a new G space X&apos;

such that Lc{GyX&apos;) Lc(GyX) and H&apos;(X&apos;) 0 for i±n dimX. We claim
Hn{X&apos;) M is a projective Z(G)-module. This is proved in Lemma 6.5 below.

Assuming this, we hâve

By a theorem of Swan [20], a Q(G)-module of type P&lt;8&gt;Q is free if P is
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projective. Since trace (g|F) 0 if F is a free Q(G)-module and g=f 1,

Ug,X) 0.

It should be noted that the hypothesis 6.1 cannot be replaced by finite
génération over Q. Indeed, Bredon [4, p. 60] constructs a smooth fixed-point-free
action of a cyclic group G on a manifold X diffeomorphic to R&quot; such that the fixed
set of each Sylow p-subgroup Gp has HX(X^) Z[l/mp], where p divides mp.
Verdier&apos;s theorem shows that this nonfinite génération is typical of smooth

fixed-point-free actions of cyclic groups on R&quot;.

One might ask for a description of the class of groups which act smoothly on a

manifold X diffeomorphic to R&quot;, satisfy 6.1, and which necessarily hâve a fixed

point. It is easy to see (compare 3.2) using 6.2 and Smith Theory that G is in this
class if G has a normal séries P&lt;H&lt;G where F is ap-group, HIP is cyclic, and

G/H is a g-group for primes p and q. On the other hand Oliver [13] has shown
that this is exactly the class of groups which act on a disk and necessarily hâve a

fixed point. With regard to fixed points then, smooth actions on disks and smooth
actions on R&quot; which satisfy 6.1 are the same. Since the n-disk is the compactifica-
tion of Rn, one might wonder whether 6.1 is the proper assumption on smooth
actions to show the existence of a compactification or that the manifold is a finite
G-CW complex. Specifically, does a smooth G-manifold A&quot; which satisfies 6.1.

1. hâve the homotopy type of a finite G-CW complex, or
2. hâve a compactification?

In gênerai the answer to both is &apos;no&apos;. For example, if G acts freely on X and

jtl(X) 0f then there is an obstruction o e K0(Z(G)) to point 1 above. This is

due to Wall [22]. Siebenmann, in his Princeton thesis, modified this to produce an
obstruction to the existence of X* which lives in a related projective class group
and which dépends on the action &quot;at infinity.&quot; The main results of this paper
show directly that thèse obstructions vanish.

Note again that X* is a disk when X is a G-manifold diffeomorphic to Rn, and
in the case of algebraic action, X* always exists. We are interested in the question
of which actions on disks arise in this way from algebraic actions on Rn. An
interesting class of smooth actions on disks appears in the papers of Oliver [13],
[14]. There he treats an invariant in K0(Z(G))/B0(G) in dealing with the
construction of a smooth fixed-point-free action of G on a disk. In [16], Pétrie
deals with an invariant in K0(Z(G)) which is relevant to G-maps between smooth
G-mafiifolds. AH the projective class group constructions mentioned so far are
related geometrically and algebraically, and dépend upon showing that a certain
Z(G)-module arising from the cohomology of a G-space is projective.

The thème (used in [16]) which unifies thèse projective class group constructions

dépends upon a theorem of D. S. Rim:
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THEOREM 6.3 (Rim [17]). Let M be afinitely generated Z{G)-module which
is Z torsion free. Then M is a projective module if and only if for each prime p&gt;

Hl{Gpy M ® Zp) 0 for large L

There are two typical cases in which this is applied:

6.4.
1. M Hn(X), where X is a locally compact G-space of finite topological

dimension which satisfies Hl{X)-for i^n. {Hère cohomology with compact

supports is used.

2. M Hn(X, A), where A and B are finite-dimensional G-CW complexes
which satisfy Hl(X, A) 0 for i =/= n. {Hère singular cohomology is used.)

The following is an easy application:

LEMMA 6.5. Suppose 6.4.1 holds and G acts freely on X. Then M is

projective.

Proof. The spectral séquence

Eli&gt; Hl{Gpy H&apos;{X, Zp))ï&gt;H&apos;+J{X/Gp, Zp)

collapses because E&apos;iJ 0 for / =f n. Thus

H&apos;{Gpf M ® Zp) Hl+n{X/Gp, Zp).

Since XIGP has finite topological dimension (because X does), Hl{Gp, M &lt;8&gt; Zp) is

zéro for large i. By Rim&apos;s theorem, M is projective.
The hypothesis in this lemma that G acts freely on X can be replaced by

6.6. For each prime p} H*{XH, Zp) 0 whenever H is a nontrivial p-group.

In this case the above spectral séquence collapses to H*{X, Zp) for F Gp. Hère

where E is a contractible space on which F acts freely. A localization lemma in
the équivalent cohomology theory H*r relates Hf{X, Zp), H*r{XHy Zp), and 6.6,
and shows that H&apos;{F, M ® Zp) is zéro for large / (see [16, Cor. 3.1]), so again M
is projective. The added generality of 6.6 is needed in the papers of Oliver and
Pétrie cited above.
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7. Proof of Lemma 2.4

In this section we prove Lemma 2.4. Lemma 7.1 is a local resuit which leads

to removal of a degenerate critical point which lies in MG, so long as fG is a

Morse function. The proof of 7.1, with minor altérations, is taken from [23].
Lemmas 7.2 and 7.3 provide the argument required for the inductive step.

LEMMA 7.1 [23, 4.10]. Let V be a Euclidean space on which G acts linearly.
Let f : V -» R be a C-invariant G*-function such that fG is a Morse function and
OeV is the only critical point of f in VG. Then there exists a G-invariant
C-function f&apos;:V-»R such that

1. /&apos; and f agrée outside the unit disk in V.

2. /&apos; has only non-degenerate critical points in VG.

Proof First we remark that /&apos; may hâve degenerate critical points in V — VG.

This lemma will be used as the basis of an inductive argument, and thèse critical
points will be made non-degenerate.

Let Â:R—»R be a monotone decreasing function such that A[0, 1/2] 1,

À[l, oc) o. Choose coordinates x along VG, and y in the normal direction. A
point veV may be written v (x,y) and its norm squared ||(jc, &gt;&gt;)||2 may be

written (by abuse of notation) x2 + y2. Define

f&apos;(x, y) =/(*, y) + eÂ(||(jc, y)\\2) ||(0, y)\\2

where e is a constant to be chosen later. Note that condition 1 is satisfied,/and/&apos;

agrée on VGf and their differentials also agrée on VG. This means that 0 is the

only critical point of/&apos; in VG because this is the case for/. The Hessian of/&apos; at 0

has the form:

D + 26/J

where A is the Hessian of/G at 0. Since/G is a Morse function, A is non-singular,
so detH is a non-zero polynomial in 6, with roots elt ekf say. By choosing
e =£ £,, condition 2 can be achieved.en

In the next two lemmas, we will deal with a smooth G-manifold M and
G-invariant smooth functions M~»R. AH such functions will hâve no critical
points on 3M. Let H be a subgroup of G, and let V dénote the closure of U.



Finite-order algebraic automorphisms of affine vaneties 219

LEMMA 7.2. Let /:M—»R be a G-invariant smooth fonction which is

bounded and has no critical points in a closed invariant set A which contains dM
and ail MK for K&gt; H. Suppose there exist open invariant subsets U and W of M
such that Aa U a Û œW, W — U is compact, and W contains no degenerate
critical points of f. Then there exist a G-invariant smooth function /&apos; : Af-» R such
that f and f agrée on an open invariant set which contains A, and ftH is a Morse

function (i.e. ail critical points of f&apos;H are non-degenerate).

Proof First we take the case in which G {1}, the trivial group. Let
À : M —&gt; R be a non-negative smooth function which is 1 on U and 0 on M — W.

By [12, Corollary 6.8], there exists a smooth Morse function h:M-*R which

uniformly approximates / and whose iih order derivatives, for i &lt; 3, uniformly
approximate the corresponding derivatives of / on W - U. Then /&apos; kf + (1 -
X)h is a Morse function with the required properties if h is sufficiently close to /.

We now reduce the gênerai case to this spécial case. Note that N M — Û is a

smooth G-manifold. Choose open invariant sets (/&apos;, U&quot; such that (/c(/&apos;cl7&apos;c

U&quot;cGn&lt;zW. The group G/H acts freely on NH, so the orbit space NH/G is a

smooth G-manifold. Apply the case G {1} to the map/^/G: A^/G-^R, where
the set (Ûr - 0)H/G plays the rôle of A, and (U&quot; - Û)HIG plays the rôle of U.

(Note that since W contains no degenerate critical points of /, WH contains no
degenerate critical points offH.) This produces a Morse function hlG:NH IG-+R
which lifts to a G-invariant Morse function h:NH-*R. Extend h to /i&apos;:£/&apos;U

NH-*R by setting h&apos; =/on Û\
Since Ù&apos;U NH is a closed invariant subset of M on which / and h&apos; are

equivariantly homotopic, the equivariant homotopy extension theorem implies
that h&apos; may be extended to a smooth function f :M-*R. Then ftH is a Morse
function, and/&apos; and/agrée on an open invariant neighborhood of A.

LEMMA 7.3. Now suppose that M is compact. Letf\M^&gt; R be a G-invariant
C^-function which has no degenerate critical points in a closed invariant set A
which contains dM and MK for K&gt;H. Then there exists a G-invariant
C*-functionf : M—&gt; R such that f andf agrée on an open invariant neighborhood
of A andf has no degenerate critical points in A U MH.

Proof. Apply Lemma 7.2 to produce a G-invariant function h :M-»R which

agrées with /on dM and on an open invariant neighborhood of A, and such that
hH is a Morse function. (Since M is compact, the open sets U and W with W — U

compact required in Lemma 7.2 do exist.) Thus the critical points of hH are
isolated. Let x be a critical point of h with isotropy group H, and let V be the

représentation of H on the tangent space TXM of M at x. With respect to a
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G-mvanant Riemannian metnc on M, the exponential map of TXM to M gives
nse to an //-equivanant imbeddmg of V onto an open neighborhood of x in M
such that OeV corresponds to x eM Identify V with îts image in M Then the

orbit G(V) of V îs a G-invanant neighborhood of the orbit G(x) of x Since x îs

an isolated cntical point of hH, we may suppose that VH contains no other cntical

points of hH, and hence no other cntical points of h Now apply Lemma 7 1 to
the function h\V V—»R with G of the lemma replaced by H to produce an

//-invariant CMunction h&apos; V—»R such that

1 h &apos; and h agrée outside the unit disk of V
2 h&apos; has only non-degenerate cntical points m VH

Extend h&apos; to a G-invanant C^-function/&apos; M—»R by

f&apos;(gv) gh&apos;(v) for geG,veV,
f&apos;\M-G(V)=f\M-G(V)

Since M îs compact, mdfH îs a Morse function, /has fimtely many cntical points
in MH, and this process may be repeated for each cntical point of / in MH The
resuit îs a function /&apos; which agrées with / outside a neighborhood of the cntical
points oifH in MH and which has no degenerate cntical points in a neighborhood

Proof of Lemma 2.4

Let S be a set of subgroups of G with the property that if H e S and K îs a

subgroup containing //, then K e S Let H be a maximal subgroup of G which îs

not in 5 Let ^ be the union of N (see the statement of Lemma 2 4) and the MK,
for KeS Suppose that fs M—&gt;R îs a G-invariant C^-function with no
degenerate cntical points in As and suppose that / and fs agrée on an open
neighborhood of N Apply Lemma 7 3 to produce a G-invanant function

/&apos; M—» R such that /&apos; and fs agrée on an open invariant neighborhood of As and
/&apos; has no degenerate cntical points in As UMH Let 5&apos; S U {//} and fs =/&apos;

Then/5 satisfies the same conditions with respect to 5&apos; as/s does with respect to
S Repeat this procédure until S îs the set of ail subgroups of G Then fs =/&apos; has

the properties asserted in Lemma 2 4
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