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Cyclic homology of groups and the Bass conjecture

Beno Eckmann

0. Introduction

0.1. The cyclic homology HQ(QG) of a group algebra QG décomposes into a
direct sum indexed by the conjugacy classes [x] in G, as shown by Burghelea [7]
(see Section 1.3 below). We will consider certain classes of groups of finite
homology dimension over Q, hdQG n, and show that for i&gt;n the terms in
HCt(QG) corresponding to conjugacy classes [jc] of éléments of infinité order
vanish. The groups G with hdQG n &lt; *&gt; for which this will be done are

(a) Nilpotent groups G,

(b) Torsion-free solvable groups,
(c) Linear groups G c GLr(F) where F is a field of characteristic 0,
(d) Groups of cohomology dimension cdQG ^ 2 (hère n &lt; 2).

We recall (Serre [10]) that if in (c) F is a number field and G finitely generated,
then G is always of finite virtual cohomology dimension, whence hdQG n&lt;°°.

The case (b) actually falls under (c), but we prefer to give a simple direct
argument, cf. Remark 2.3&apos; below.

As an immédiate conséquence of that vanishing resuit it follows that the
character maps from AT-theory of QG to //C*(QG), see Karoubi [8], hâve

vanishing components in the summands indexed by [jc] with x of infinité
order—for ail the groups listed above.

In particular, the character map Ch%\£0(QG)-&gt;HC0(QG) can easily be seen
to be the &quot;Hattori-Stallings rank&quot; rP of finitely generated projective QG-modules
P (representing éléments of K0(QG))&gt; see Section 3.2. For the groups above it
thus follows that rP is concentrated on the conjugacy classes [x] of éléments x of
finite order; hence on [1] if G is torsion-free. This is a contribution towards the

strong Bass conjecture [3, p. 156]. Note that the case (c) yields a weaker
statement than Bass&apos; resuit on linear groups [3, p. 156/57]; but our method is

entirely différent and stems from a resuit more gênerai in another direction. The
resuit establishing the Bass conjecture over QG in the other cases seems to be

new.
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194 BENO ECKMANN

1. Cyclic homology of groups

1.1. Let G be a group, QG its rational group algebra, and //C,(QG), i e Z,
the cyclic homology of QG in the sensé of Connes; we will call it hère in short the

cyclic homology of G. It is related to the Hochschild homology HH,(QG) of QG,
with bimodule-coefficients in QG by left and right multiplication, through the
&quot;Connes-Gysin exact séquence&quot;

(1.1)

It is a standard fact (see [9]) that Hochschild homology of QG with bimodule
coefficients can be expressed as homology of G with the same coefficient module
turned into a right G-module; in the présent case this is QG with G-action by
conjugation in G. It thus follows that for groups G of finite homology dimension
hdQG n &lt;x over Q (i.e., for ail QG-module coefficients) the cyclic homology
of G stabilized above n:

for A: 0, 1,2,

1.2. The conjugation module QG obviously décomposes into a direct sum of
right QG-module indexed by the conjugacy classes [x] of G; x is an arbitrary but
fixed représentative of [jc]:

g
fixed représentative of [jc]:

QG © Dx
1*1

where Dx is the Q-module over the éléments xr e [x] as basis, and with QG-action
by x&apos;*-*y~lx&apos;y, yeG. If Cx is the centralizer of x in G, Dx is isomorphic to
Q(G/CX), the right QG-moduie generated by the right cosets modulo Cx\ the

isomorphism is given by x&apos;*-*Cxz where z e G is such that z~~lxz=x&apos;. Thus

® Q(G/CX) © (Q&lt;8&gt;C,QG),
1*1 1*1
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and finally

HH,(QG) © //,(G;Q&lt;8&gt;C,QG) © M(C;Q) (1.2)

with trivial G-module coefficients Q.
Remark 1.1. HHi}(QG) is the Q-module having the conjugacy classes [jc] in G

as basis. This can also be seen directly from the well-known fact that HH0(QG) is

QG/{A/i-juA}, where {Aju-juA} dénotes the Q-submodule generated by ail

Àju-juÂ, A, jU eQG; i.e., the Q-submodule generated by_ati_xy -yx, x,yeG.
We write QG for this factor-Q-module of QG, r:QG-»QG for the canonical

map, with jT(Aju) T(juA), A, ;u e QG.

1.3. A direct sum décomposition of HÇ(QG), with terms indexed by the

conjugacy classes [jc] in G, has been given by Burghelea [7] using topological
(simplicial) constructions:

®n HACJ(x);Q). (1.3)
[*] 1*1

Hère (jc) dénotes the cyclic subgroup of G generated by jc, and ©&apos; is summation
over ail [jc] with finite (x), ©&quot; over ail [jc] with infinité (jc).

The methods of [7] also yield the ©-décomposition (1.2) of HHt(QG) and
shows that the Connes-Gysin séquence (1.1) décomposes into exact séquences of
the same type, one for each [jc] in G.

We will consider in Section 2 groups of finite dimension hdQG n &lt; °° and

show that, for certain classes of such groups, one has ©&quot; 0 in the stable value
[*]

HCn(QG) and HCn+i(QG); in other words, the stable value is concentrated on the

conjugacy classes [jc] of éléments x of finite order - hence for torsion-free groups
on the conjugacy class [1]. This will be done for the classes (a)-(d) listed in the

introduction. Immédiate conséquences (Section 3) concern the character maps
from X-theory of QG to cyclic homology and, in particular, the Hattori-Stallings
rank as mentioned in the introduction.

2. Groups of finite dimension

2.1. &quot;Finite dimension&quot; for groups G will refer hère, unless otherwise
specified, to the homology dimension hdQG over Q, i.e., with respect to
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QG-module coefficients. For any subgroup S c G, in particular for the centrali-
zers CX9 we hâve hdQS &lt; hdQG n &lt; ».

In our context we are thus interested in the homology of factor groups G/(x)
where hdQG n &lt; oo and x is a central élément; actually in homology with trivial
Q-coefficients only, and in its vanishing above n. In other words, we are looking
at thdQG/(x), the trivial homology dimension over Q; Le., defined exactly as

hdQ but referring to trivial Q-module coefficients only. One always has

thdQ^hdQ. For that type of dimension we recall the following very simple but
useful sum formula (Bieri [6]):

LEMMA 2.1. Let U be a central subgroup of the group Vy andW V/U. If
both thdQU and thdQW are finite then

thdQV thdQU + thdQW.

A further preliminary remark concerns the case where (x) is finite: then the

spectral séquence

H,{G/(x);H,{(x);Q))^Hl+/(G;Q)

shows that thdQG/(x) =thdQG, hence ^n. In ail what follows we therefore
restrict attention to central éléments x of infinité order. In that case the spectral

séquence does not imply that thdQG/(x) is finite; however, if it is finite then the

sum formula yields

thdQG/(x)&lt;n-l.

2.2. Nilpotent groups. We recall (Stammbach [11]) that if G is nilpotent then

hdQG is equal to the Hirsch number hG (the sum of the torsion-free ranks of the

factors of any normal séries of G with Abelian factors); this holds, more

generally, for solvable groups. We thus assume hG n&lt;*.
Let x e G be a central élément of infinité order, S a finitely generated

subgroup of G/(x), and T the preimage of 5 in G, T/(x) S. Since S is finitely
generated nilpotent it is polycyclic, and therefore hdQS hs is finite (equal to the

number of infinité cyclic factors in a normal séries with cyclic factors). The sum

formula now yields

thdQS thdQT - 1 &lt;n - 1.

Gl{x) is the direct limit of its finitely generated subgroups S; and since homology
commutes with direct limits it follows that thdQG/(x) is r£n - 1:
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THEOREM 2.2. Let G be a nilpotent group of finite dimension hdQG n.
Then one has for any central élément x e G of infinité order

H,(G/(x);Q) 0 for i&gt;

2.3. Torsion-free solvable groups. Let G be torsion-free solvable with
hdQG hG n &lt; oc (or equivalently, solvable with hdzG &lt; &lt;*&gt;). We consider the
Hirsch-Plotkin radical R of G, i.e., the maximal locally nilpotent normal
subgroup of G. For any Abelian subgroup 5 of G the torsion-free rank hS hdQS
is ^n. As G is torsion-free (actually a weaker condition would do) we can apply a
theorem of Baer-Heineken [2] which tells that

(or) R is nilpotent
(/?) GIR is finitely generated
(y) GIR contains an Abelian subgroup A of finite index.
From (b) and (c) we infer that hdQG/R hdQA is finite, say m. If x e G is

central it must lie in R, and if it is of infinité order Theorem 2.2 tells that
thdQR/(x) thdQR - 1 &lt; n - 1. From the spectral séquence for GIR Gl{x)l

we see that Hk(G/(x);Q) 0 for k&gt;m + n-l\ i.e., thdQG/(x) is finite and
hence ^n - 1.

THEOREM 2.3. Let G be a torsion-free solvable group of finite dimension
hdQG n &lt; oc. Then one has for any central élément x e G of infinité order

Ht(G/(x);Q) 0 for /&gt;n.

Remark 2.3&apos;. The groups G above admit faithful linear représentations over
Q (cf. [13], p. 25) and thus are included in 2.4 below. However, the proof of the
linear embedding starts precisely from the structure properties (a)y (/?), (y); thus
the simple direct argument seems préférable.

2.4. Linear groups. We now consider a linear group G c GLr(F), where F
is a field of characteristic 0, with hdQG n&lt;*&gt;. Let Z be the center of
G, X.G-+GIZ the canonical map. Since Z is closed in the Zariski topology,
GIZ is again a linear group over the same field F. We are going to apply the R.
Alperin-Shalen criterion [1] to finitely generated subgroups S of GIZf in order to
prove that they are virtually of finite cohomology dimension.
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For this let first U be a finitely generated unipotent subgroup of G/Z and put
n~1U V, VIZ-U. Then U being torsion-free finitely generated nilpotent
(polycyclic), hdQU thdQU hU (Hirsch number, see 2.2). By Lemma 2.1,

thdQZ + thdQU thdQV.

Now hdQZ ^« and hdQV &lt;n; let m thd®Z. Thus thdQU&lt;n - m; i.e., we get
a uniform bound for ail finitely generated unipotent subgroups of G/Z, the
Hirsch numbers hU being &lt;n — m.

If 5 is any finitely generated subgroup of G/Z, it foliows by [1] that its virtual
cohomology dimension, and hence hdQS, is finite. Putting tï~1S T c G,
TIZ S, Lemma 2.1 tells that

thdQZ + thdQS f/idQr &lt; n,

and thus fAdQS&lt;n-m. The direct limit argument then yields thdQG/Z&lt;n-m.

THEOREM 2.4. Let G be a linear group of finite dimension hdQG n, over
a field of characteristic 0, Z is center and thdQZ m. T/ien

Ht(G/Z; Q) 0 /or i&gt;n-m.

We are looking for a similar resuit concerning G/(x) where * is a central
élément of infinité order. Since G/Z G/(x)/Z/(x) we can apply the spectral

séquence (with trivial Q-module coefficients) together with Theorem 2.2 on
Zl{x). This immediately yields Ht(G/(x);Q) 0 for i &gt; (n - m) 4- (m - 1):

THEOREM 2.4&apos;. Lef G be as in Theorem 2.4. and jc a centra/ élément of G of
infinité order. Then

Ht(G/(x)\Q) 0 for i&gt;n.

2.5. Groups of cohomology dimension &lt;2. We write as usual cdQG for the

cohomology dimension of the group G over Q; i.e., with respect to ail
QG-module coefficients. The assumption cdQG ^ 2 includes ail groups which are

virtually of cohomology dimension 2 (over Z), but is more gênerai; it of course
implies hdQG ^ 2. •

The case cdQ^ 1 is easily dealt with: it means that G contains a free (normal)
subgroup F of finite index. If jc is a central élément of infinité order then

(x) HF^l; hence F having non-trivial center must be cyclic= (c). Then both
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GI{x,F) and (x, F)l(x) F/FD (x) are finite, and so is Gl(x). Thus

hdQGI{x) 0. We thus restrict attention to the case cdoG 2.

THEOREM 2.5. Let G be a group with cdQG 2, and x a central élément of
infinité order. Then

H,(G/(x);Q) 0 for i&gt;2.

This is a conséquence of various known facts concerning group (co-)
homology, finiteness properties, and structure theorems (cf. Bieri [4], Corollary
8.7, and [5]), We give a short outline of the proof for our somewhat more spécial
situation. It suffices to prove the claim for finitely generated G: If the subgroup
S czG/(x) is finitely generated so is its preimage T czG, and from the resuit for
S-TI(x) the direct limit argument yields the claim for G/(x).

As a first step one shows that G is of type FPQ\ i.e., that there exists a finitely
generated projective resolution over QG (of length 2 since cdQG 2)

To prove this we use R. Strebel&apos;s finiteness criterion [11]: G is of type FPQ if and

only if cdQG is finite and the canonical map //&apos;(G; © QG)-» © H1 (G; QG) is an
isomorphism for ail / and ail direct sums ©. In our case the spectral séquence for
G/(x) yields

and

(the action of G on Hl((x)\QG) is induced by the trivial conjugation of G on
(x)). For the infinité cyclic group (x) one has Hl((x);Q(x)) 0 for i =f 1, and

H\(x);Q(x)) Q with trivial action; and H1(&lt;jc);QG) 0 for i^l,
H\(x)\QG) Q®Q&lt;JC)QG Q(G/&lt;jc».

For A ©QG we get Hl((x);A) ®//1«jc&gt;;QG), and since G/(x) is

finitely generated, we see that G fulfills the Strebel criterion for i 1 and 2; in
dimensions i =f 1, 2 this is trivially the case since H&apos;(G; © QG) 0 ©
H&apos;(G; QG). Thus G is of type FPQ.

As a second step one draws more conclusions from the above formula for
H2(G; QG). We note that

H2(G; QG)
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As G is of type FPQ with cdG 2, H2(G; QG) is =f 0 and finitely generated as

a right QG-module, and so is Hl(G/(x);Q(G/(x))) over Q(G/&lt;jc». This
implies that G/(x) has more than one end and is accessible; in other words,

G/(x) is the fundamental group of a finite graph of groups with finite edge

groups, and with vertex groups V satisfying Hl(V;QV) 0 (1 or 0 ends). V is

finitely generated, and so is its preimage W in G, W/(x) V. As before we get

H2(W;QW) Hl(V;QV); but now this is =0, whence cdQW l. The above

formula for Hl(G;QG) applied to W and to W/(x) V yields Hl(W;QW)
H\V\ QV) $ 0. This implies that V is finite.

We thus hâve proved that G/(x) is the fundamental group of a finite graph of
finite edge and vertex groups. Such a group is well-known to contain a (normal)
free subgroup of finite index; from the corresponding spectral séquence we obtain
the required resuit

Hl(G/(x):Q) 0

for i &gt; 2.

2.6. From Theorems 2.2, 2.3, 2.4&apos;, 2.5 we immediately obtain the resuit
claimed in 1.3 for cyclic group homology:

COROLLARY 2.6. Let G be a group with hdQG n &lt; ^ and belonging to

one of the classes (a), (b), (c), or (d), n-2 in the case (d). Then for i &gt;n the

cyclic homology HQ(QG) vanishes on the conjugacy classes of éléments of
infinité order.

3. Cyclic homology characters of QG

3.1. The Connes character Chl0 of QG (cf. Karoubi [8]) is a homomorphism of
K0(QG) to //Ç^QG), / 0, 1, 2, ; we will write Chl for Chl0 since we will not
consider hère the higher characters Ch\ (see however Remark 3.2). The Chl are
compatible with the map 5 in the Connes-Gysin séquence (1.1), i.e.,

HC2/(QG)

is commutative. Corollary 2.6 immediately yields
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THEOREM 3.1. Let G be a group offinite dimension hdQG n belonging to
one of the classes (a), (b), (c) or (d). Then the characters Chl, 1 0,1,2, ail
hâve 0-components in the summands ©&quot; corresponding to éléments x of infinité

1*1

order. In particular, if G is torsion-free, the Chl are concentrated on the

[l]-summand, Le, lie in [//*(G; Q) ® H*(CPX; Q)]2/.

Remark 3.2. A similar resuit holds, of course, for the higher characters

Chll:Kl{QG)-*HC2l+t(QG).

3.2. A look at the définitions shows that Ch°: K0(QG)-+ /fQ(QG) is the same

as the Hattori-Stallings rank, as follows.

By (1.2) HCq is isomorphic to Hochschild homology HH0. For any Q-algebra
A the latter, with A as bimodule by left- and right-multiplication for coefficients,
HH0(A) is well-known to be AI{Xii - fik}, where {Âju - juâ} is the Q-sub-module

generated by ail A^u —jUÀ, À, jUeA. In Remark 1.1 we hâve written QG for
HH0(QG) and T:QG—&gt;QG for the canonical map. Similarly, for the matrix
algebra Mk(QG), we hâve HH0(Mk(QG)) M*(QG) with T:Mk(QG)-+
Mk(QG). The trace of matrices tr:M*(QG)-*QG induces an isomorphism
tr:M*(QG)-&gt; QG, and clearly T ° tr tr ° T : M^(QG) -&gt; QG.

Now Ch° is defined, on a finitely generated projective QG-module P

representing an élément of K0(QG), as follows: Let p be an idempotent
matrix e Mk(QG), for suitable k, describing P_as a direct summand of a free
QG-module M, and put Ch°p tr ° T(p) eQG, i.e., =JT°tr(p). This is

precisely the définition of the Hattori-Stallings rank rP e QG, independent of
choices and of bases in M. We recall that QG is the Q-module having the

conjugacy classes [x] as basis.

THEOREM 3.3. For the groups G offinite dimension hdQG belonging to one

of the classes (a), (b), (c), (d), the Hattori-Stallings rank rP of a finitely generated

projective QG-module P vanishes on the conjugacy classes of éléments of infinité
order.

Remark 3.4. The vanishing of the character map Ch! : K0(QG) -» //C2/(QG)
on the conjugacy classes of éléments of infinité order, in particular of the

Hattori-Stallings rank Ch°, would of course follow from properties much weaker
than those established in Section 2 for certain classes of groups. Indeed it suffices

that, for a group G under considération, some itération 5/r://C2/+2^(QG)-&gt;

HC2t(QG), 1 &lt; fc &lt; oc? of S in (1.1) is zéro on the conjugacy classes of éléments of
infinité order; k » refers to the inver^. limit. It has been conjectured, for
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example, that this is the case for k &amp;&gt; and for ail groups having a finite

Eilenberg-MacLane complex, cf. [7].

Note Added in Proof. The proof of Theorem 2.3, without assuming G to be

torsion-free (and hence also of Theorem 2.2), becomes much simpler if one uses
the fact that the Hirsch number of a factor group of G is less or equal to that of
G, combined with Stammbach&apos;s theorem [11].
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