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On the volume of a unit vector field on the three-sphere

HerMAN GLuck and WOLFGANG ZILLER

A unit vector field on a compact Riemannian manifold M can be pictured as a
cross-section, and hence submanifold, of the unit tangent bundle 7, M. We define
the volume of the vector field to be the volume of this submanifold, measured in
the natural Riemannian metric which 7T, M inherits from M. It can be expressed
by the formula

vol V =j Vdet (I + (VV)(VV)") d voly,,

in which we view the covariant derivative VV as a linear transformation of the
tangent space TM, to itself.

One hopes that the “visually best organized” unit vector fields on M are
rewarded with minimum possible volume. For example, it is clear that on the flat
torus, the unit vector fields of minimum volume are precisely those of constant
slope. But on the round three-sphere S°, the story becomes more involved.

Consider the Hopf fibration H of § 3 whose fibres are the unit circles on the
complex lines in R*= C*. Any fibration congruent to this is also called a Hopf
fibration, and a unit vector field V, tangent to the fibres will be called a Hopf
vector field. It is natural to regard these as visually the best organized unit vector
fields on S>. We will prove

THEOREM. The unit vector fields of minimum volume on S° are precisely the
Hopf vector fields, and no others.

The proof is by the method of “‘calibrated geometries” of Federer [F] and
Harvey-Lawson [H-L], and is a one-time-deal which fails on the S-sphere.

To carry out the argument, we will find a smooth closed 3-form u on the unit
tangent bundle 7;S>, such that

plurnvaw)svol(uavAaw), (*)

with equality holding for any properly oriented tangent 3-plane to a Hopf vector
field V,;, viewed as a submanifold of T7;S>.
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178 HERMAN GLUCK AND WOLFGANG ZILLER

It will follow immediately that the Hopf vector fields are absolutely volume
minimizing in their homology classes in T;S>. For if M® is a 3-manifold in the
same homology class as V,, then

vol VH:[ y=f u=<vol M>,
Vu M3

by equality in (*), Stokes’ theorem, and inequality in (*), respectively. If V is
another unit vector field on $?, then it is easy to see that it is in the same
homology class as V;; when viewed as a 3-dimensional submanifold of T;S>, since
the projection 7;S*— $* is an isomorphism on 3-dimensional homology. Hence
vol V;; = vol V, so the Hopf vector fields on $° minimize volume.

Call an oriented 3-dimensional submanifold of T;S> a u-submanifold if the
equality u(u A v A w)=vol(u Av A w) holds for each of its tangent planes. By
examining the 3-planes for which this equality holds, we will find other
p-submanifolds besides the V5. But they lie in other homology classes in 7,5> and
hence do not come from vector fields. Furthermore, they all have volumes >
vol V. Since the u-submanifolds are the only volume minimizing submanifolds in
their homology classes, it will follow that the Hopf vector fields are the only
volume minimizing unit vector fields on S°, completing the proof of the theorem.

The family {Vy} of Hopf vector fields is invariant under the group of isometries
of the unit tangent bundle T,S?. Hence if there is any form u on T;S> which
“calibrates” the Hopf vector fields, as above, then we can average it over the
group and obtain an isometry-invariant form which does the same. Hence there is
no loss in restricting our search for u to the isometry-invariant forms. The
advantage is that such forms are explicitly calculable. It turns out that there is, up
to constant multiple, just one isometry-invariant closed 3-form, and it does the
job.

The drawback to using the method of calibrated geometries for this problem is
that we must prove a little more than we want: the V5 have minimum volume
among all 3-manifolds in the same homology class in 7;5> whether or not these
3-manifolds come from unit vector fields on S>. As a result, the method will fail
on the five-sphere S°, because there is a 5-manifold in 7;S° in the same homology
class as 2V}, but with less volume. The corresponding isometry invariant closed
5-form p on T,S° provides a calibrated geometry which distinguishes these
submanifolds instead of the Hopf vector fields. And likewise on 7, §°, S, . ...

Whether the theorem itself remains true on these higher dimensional spheres,
we do not know. We can, however, use the method of calibrated geometries to
see a little in this direction.

If V is a parallel vector field on a compact Riemannian manifold M, then
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vol V =vol M. It is natural to ask: if M admits no parallel vector fields, is vol V
bounded away from vol M for any unit vector field V on M? We will observe that

vol V =2 vol sphere

for any unit vector field on a unit sphere. By contrast,

vol V;; = 2" vol $2*+1

so that starting on S° the above inequality is much weaker than the expected one.
Nevertheless, this inequality reports that all unit vector fields on an odd-
dimensional round sphere fail to be parallel by at least a certain amount.

When trying to show that nicely organized submanifolds minimize volume in
their homology classes, it is good to keep in mind the following simple example,
which shows that higher dimensions can frustrate the attempt.

The diagonal in S’ x S* has length equal to V2 times that of S', and certainly
minimizes length in its homology class. The diagional in S?X $* has linear
dimensions multiplied by V2, and hence

area diag (S* X $%) =2 area S°.
The diagonal still minimizes area in its homology class, but now the union
$% X point U point X §?,

which lies in the same homology class, has the same area. Moving up one more
dimension, we get

vol diag (S° x $*) =2V2vol §°,
and now it is
§3 x point U point X §?,

and no longer the diagonal, which minimizes volume in its homology class.
Exactly this phenomenon is at work in the following circumstance. Define the
volume of a map f: M — N between Riemannian manifolds to be the volume of
its graph, considered as a submanifold of M X N. It follows from the work of
Walter Wei [W] that the Hopf map 4 :S*>— S* does not have minimum volume in
its homotopy class. Indeed, we will derive in section 4 a general inequality for the
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volume of a fibre bundle map over a surface, and use it to display a large family
of mutually homotopic maps from S*— S§%, amongst which the Hopf map has
maximum volume.

We thank Eugenio Calabi, Dennis DeTurck and Frank Warner for insights
gained in several helpful conversations, and the National Science Foundation for
financial support; Wolfgang Ziller also thanks the Sloan Foundation.

1. Finding the 3-form u

We divide the proof of the main theorem into two parts. In this section we
find the closed invariant 3-form u on the unit tangent bundle 7;S>. In the next we
will complete the argument by finding the 3-dimensional submanifolds calibrated
by u and noting that the Hopf vector fields, and no others, have minimum volume
among them.

We begin by summarizing the geometry of the situation. The points of the unit
tangent bundle 7,S> may be regarded as pairs (x, y) of orthogonal unit vectors
from S>. The same is true for the Stiefel manifold V,R* of orthonormal
two-frames (x, y) in R*. Hence as sets, these five-dimensional manifolds are
identical. As topological spaces, they are homeomorphic to S> X §2, since the
3-sphere is parallelizable.

The natural Riemannian metric on 7,53 defined in terms of covariant
derivatives of vector fields, is the same as the one it inherits as the homogeneous
space SO(4)/SO(2). The natural Riemannian metric on V,R* is the one it inherits
as a subspace of R®. These two metrics are not identical; we will compare them in
a moment. But neither one is the product metric on §* x 2,

The geodesic flow g, on the unit tangent bundle 7;S? is defined by

g(x,y)=(xcost+ysint, —xsint+y cost).

It is an SO(2) action by isometries in either metric.

One passes from the natural Riemannian metric on T;S> to that on V,R* by
multiplying lengths in the direction of the geodesic flow by V2, with no change in
directions orthogonal to this. Our main theorem is true regardless of which of
these two metrics is used to measure the volume of vector fields.

The Stiefel manifold V,R* sits as a circle bundle over the Grassmann manifold
G,R* of oriented two-planes in four-space, with each orthonormal two-frame
(x, y) sitting over the oriented two-plane x A y which it spans. The projection
map is a Riemannian submersion, that is, its differential preserves lengths of
tangent vectors orthogonal to fibres. The Grassmann manifold G,R* is isometric
to $2 x $?, with each factor a round two-sphere of radius 1/V?2.
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In the Grassmann manifold, the base spaces My, of the various Hopf fibrations
H of §® appear as S* X point and as point X §%. There is just one of each kind
passing through any given point of the Grassmann manifold. See [G-W] for
details.

Up in the Stiefel manifold, the Hopf vector fields V,, appear as totally
geodesic round three-spheres of radius V2, sitting over the base spaces My, in the
Grassmann manifold.

We try to summarize much of this information in the following figure, which

also includes an orthonormal set of tangent vectors at one point, to be used in a
moment.

Unit tangent bundle T,S>
= Stiefel mfld V,/R*

Hopt vector
eo L Freld Vi, Grassmann mfld G,R*
€1 S¢
e
4 > o
€3 Z /

/-lopi/bage space My /7

SZ

Now we set about finding our isometry-invariant closed 3-form u on the unit
tangent bundle. Each isometry g:S°— S* has an induced action on 7,5* = V,R*,

(x, y)— (g(x), 8)),

which is an isometry in either metric. Such isometries preserve both the S fibres
of the unit tangent bundle and the S' fibres of the Stiefel bundle. It will be
sufficient for our purposes to restrict attention to those g which are orientation
preserving. So far this gives us an SO(4) action.

In addition, the circle group SO(2) acts on T;S> = V,R* by the geodesic flow,
again isometries in either metric. Such isometries preserve the S' fibres of the
Stiefel bundle, but do not preserve the S* fibres of the unit tangent bundle.

Since these two actions commute, we get an action of

G = S0(4) x SO(2)

on T;S? = V,R* by isometries in either metric. G is simply the identity component
of the full isometry group.

We next find the G-invariant differential forms on 7,5 = V,R*.

Since G acts transitively, we simply calculate those linear forms on the tangent
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space to T,S*> = V,R* at a single point which are invariant under the action of the
isotropy subgroup of G. This isotropy subgroup must be two-dimensional, since
G is seven-dimensional and 7,5°= V,R* is five-dimensional. In fact, it is
isomorphic to SO(2) X SO(2), and operates by independently spinning the
e e-plane and the e;e -plane, while keeping the e-axis fixed. See figure above.

By abuse of language, we use the symbols e; to denote both tangent vectors
and dual one-forms. We easily get the following table.

Table of invariant forms and their exterior derivatives

Dimension 1 €y —d— 2e, nes+eyney)
Dimension 2 e, Ae, —d— 0
eine, —d— 0
Dimension 3 Co A€ AeEs —d— 2e,ne,ne3N e,
epAeyAe, —d— 2e,nesnezne,
Dimension 4 e,AesAe AE, —d— 0
Dimension 5 epNe AEsNELNE, —d— 0

Note that the invariant one-form e, represents inner product with a unit vector
tangent to the Stiefel fibres, and is hence the connection form v of the Stiefel
bundle.

Note that the invariant forms on T;5° = V,R* which occur in dimensions two
and four are missing the ej-factor. They represent the pullbacks to the Stiefel
manifold of the corresponding invariant forms down on the Grassmann manifold
G,R*. Down there, ¢, A e, and e; A e, are the volume forms of S X point and
point X $2, respectively, while e, A e, A e5 A e, is the volume form of §%x §?=
G,R*.

Embed the Grassmann manifold G,R* in CP? in the usual way by sending
x Ay, where x and y are orthonormal, to the complex line through x + iy in C*.
The image is the complex hyperquadric

22+ 23+ 25+22=0,

where z=x+iy. In this way the Grassmann manifold inherits the complex
structure J and the corresponding Kiéhler 2-form w from CP’. It is easy to check
that

J(el)—'_-ez and 1(83)=e4.
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Hence
w=e,Ne,+e3Ne,

is the Kidhler 2-form on the Grassmann manifold.

Refer again to the above table and note that the even-dimensional forms,
which are pulled back from the Grassmann manifold, are already closed. This
happens because the Grassmann manifold is a symmetric space, and hence every
invariant form is closed. By contrast, the invariant forms on the Stiefel manifold
in dimensions one and three are not all closed. But clearly the cohomology
computed from the invariant forms is the same as the deRham cohomology.

Given the preceding table of G-invariant forms and their derivatives on
T,S> = V,R*, we naturally choose

U=€eygAe Ae,—egAesA e,
This form is closed and generates the 3-dimensional cohomology. We can write
U=V AR,
where v=¢, is the connection form of the Stiefel bundle and where
A=e;Ane,—e3ne, generates the 2-dimensional cohomology of the Stiefel
manifold, and is the pullback of a closed form which together with the Kéhler
form w generates the 2-dimensional cohomology of the Grassmann manifold.
Finally, note that
dv=2w

up in the Stiefel manifold.

2. Finding what . calibrates
Having selected the closed G-invariant 3-form
U=€exaNejNe;— ey Ne3Ne,

on ;5% = V,R*, we face the following tasks:

A) Show that u(u A v Aw)=vol(u Av Aw). Then we will know that u is a
calibrating form.
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B) Find out what u calibrates infinitesimally. This means finding those
oriented 3-planes in 5-space for which the above inequality is actually an
equality.

C) Find out what u calibrates globally. This means finding those oriented
3-manifolds in 7,5 = V,R* which are tangent to such 3-planes at each
point.

To begin, we write
pu=eyA(ene;—esne)=v AR,

as before.

It is straightforward linear algebra to check that u is calibrating, and that
infinitesimally it calibrates precisely the 3-planes which contain the ey-axis and
which meet the e, e,e;e,s-space in the graph of an anticonformal map from the
e e,-plane to the e;e,-plane (including the e;e,-plane itself). After all, except for
the minus sign, A = e, A e, — e3 A e, is the usual Kéhler 2-form in real 4-space, and
multiplication by the new variable ¢, has the expected effect.

Suppose the oriented 3-manifold M> in T, S = V,R* is calibrated by our form
U =eyA e, Ae,—eyAes A e, Infinitesimally, this means that each tangent space
to M> contains the e,-axis, which is itself tangent to the Stiefel fibres. Globally,
this means that M> is a union of Stiefel fibres, and hence the inverse image of a
submanifold M? down in the Grassmannian G,R*. And this submanifold M* must
in turn be calibrated by the invariant 2-form A =e; A e, — 5 A e, on G,R*.

The usual complex structure J on the Grassmann manifold G,R* is defined by
J(e,) = e, and J(e;) = e4. Define another complex structure J* there by J*(e,) = e,
and J*(e;) = —e,. Then the 2-form A is the Kahler form of the complex structure
J*, and hence calibrates the J*-complex submanifolds of G,R* Each such
J*-complex submanifold M? minimizes area in its homology class. Its inverse
image M? in the Stiefel manifold is calibrated by our 3-form p and minimizes
volume in its homology class. In fact, the volume of M? is simply the length of a
Stiefel fibre times the area of M2,

So we come to the conclusion: our 3-form u calibrates those oriented
3-manifolds in T,S> = V,R* which are inverse images under the Stiefel projection of
the J*-complex submanifolds of G,R".

It is clear that the submanifold M? of G,R* has minimum area (over all
nontrivial homology classes) precisely when it equals S* X point or point X §2, in
which case its inverse image M> is a Hopf vector field V. Since all unit vector
fields V on S° represent the same non-trivial 3-dimensional homology class when
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viewed as submanifolds of 7;S> = V,R*, this gives the desired result:

The unit vector fields of minimum volume on S* are the Hopf vector fields, and
no others.

3. Why the method of calibrated geometries fails in higher dimensions

In this section we will see that there is a S-dimensional submanifold of
T,S°> = V,R® in the same homology class as 2V}, but with less volume. If there
were any closed 5-form on the unit tangent bundle 7S’ (isometry-invariant or
not) which calibrated the Hopf vector fields V,, then automatically kV,; would be
the “‘manifold”’ of minimum volume in the homology class k[V};]. Since this is not
the case for k = 2, the method of calibrated geometries can not be used to show
that the Hopf vector fields on S°> have minimum volume. The same holds on 57,
AR S

To produce this 5-manifold inside 7;S°, start with a single fibre F* of the unit
tangent bundle 7;5°— S°. It is a totally geodesic round 4-sphere of radius 1. Flow
it by the geodesic flow g, to produce the 5-dimensional submanifold L’ of T,5°.

We can see L® another way. Take the fibre F* in 7;S° and view it in V,R®,
where it now appears horizontal. Use the Stiefel projection to project it to a
totally geodesic round 4-sphere L* of radius 1 in the Grassmann manifold G,R®.
L* represents the set of all oriented 2-planes in 6-space which can be obtained
from a given one by rotating it about a given line therein. Then L’ is simply the
inverse image of L* under the Stiefel projection, because the orbits of the
geodesic flow on 7;S° are the same as the fibres of the Stiefel bundle V,R®.

In the Stiefel manifold, L° is isometric to $*(1) X $'(V2). In the unit tangent
bundle, it is isometric to S*(1) X $*(1). These isometries follow immediately from
the parametrizaton of L’ given below.

We claim that L°, properly oriented, represents the 5-dimensional homology
class 2[V}] in the unit tangent bundle T;S>.

Suppose that F* is the fibre of the unit tangent bundle over the point x, on S°.
Thus

F4={(x0) y):yGSS, (xO’y> =O}

Applying the geodesic flow, L* can be viewed as the image of $* x S' under the
map

(y, 6)— (xocos 8 +y sin 6, —x,sin 6 + y cos 0).
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The projection 7;8°— S§° is an isomorphism on 5-dimensional homology, so we
simply need to check the degree of the map

(v, 8)—>x,cos 0 + y sin 6.

Clearly the S-sphere is covered once for 0 < 6 <x. Note that the above map takes
(v, ) and (y, 8 + ) to antipodal points. Since the antipodal map on S° has
degree 1, our map must have degree 2. The corresponding map for a Hopf vector
field V;, in place of L’ has degree 1, and the claim follows: [L®] = 2[V}].

In contrast to this, we claim that

vol L° <2 vol Vy,.

First we compute vol V. For each complex structure J on R® we have a Hopf
fibration of $° by the unit circles on the corresponding complex lines, and a Hopf
vector field Vi = {(x, Jx):x € §°}. Since J is an isometry, V, is a round 5-sphere
of radius V2 in the Stiefel manifold V,R®. One easily calculates that the unit
5-sphere has volume 7*, and hence vol V; = 4V2 #°.

Next we compute vol L°. Viewed in the Stiefel manifold, this submanifold is
isometric to $*(1) x $'(V2). Since vol $* = (8/3)n%, we have

vol L’ = (8/3)n* X 2aV2=54V2 n?,

verifying the claim.

Thus we have found a submanifold L° of 7,5 in the same homology class as
2Vy, but with less volume. Hence the method of calibrated geometries can not be
used to show that the Hopf vector fields on S° have minimum volume. The same
holds on S7, S§°%, S, . ...

Nevertheless we can carry out the search for G-invariant forms on 7;5%*! =
V,R*"*? for all n, where now G is the group SO(2n + 2) X SO(2) of isometries.

In our earlier problem on $°, there was no ambiguity (except for sign) in the
choice of G-invariant calibrating 3-form

U=V ALA=egAe,Aes—eyAesNe,.

The same thing happens on $***!: there is a unique (up to sign) G-invariant
calibrating 2n + 1 form u on the Stiefel manifold V,R*"*?, and it too can be
written as v A A, where v is the connection form of the Stiefel manifold and
where A is the pullback of a G-invariant 2n-form (also written A) from the
Grassmann manifold G,R*"*% Down there, A represents the “‘other’” generator in
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the middle dimensional cohomology H**(G,R*"*?)=Z + Z, that is, other than
the nth power w" of the Kihler form. This becomes precise when we ask in
addition that A be in the kernel of exterior multiplication by the Kihler form w.
And this in turn is what makes the 2n + 1 form u = v A A closed:

du=d(vAaA)=dvAaArA=2wAA=0.

The 2n +1 form u provides a calibrated geometry on the Stiefel manifold,
while the 2n-form A provides one on the Grassmann manifold. We know from
our previous discussion that u can not calibrate the Hopf vector fields when n = 2.
Defining the submanifolds L*>**!'=S$%"(1) x S(V2) of the Stiefel manifold
V,R**?, and L*" =S$*'(1) of the Grassmann manifold G,R***? just as we did
above for n =2, we will prove in [G-M-Z] the

PROPOSITION. For n=2: The 2n+1 form u on the Stiefel manifold
calibrates the submanifolds L***' and nothing else. The 2n-form A on the
Grassmann manifold calibrates the submanifolds L*" and nothing else.

Note that the subgroup G’ = SO(2n +2) of G = S0O(2n +2) X SO(2) still acts
transitively on 7;5*"*! = V,R***2. If we look for G'-invariant closed 2n + 1 forms,
the choice is much wider, and includes e.g. the pullback to the unit tangent
bundle of the volume form on S$*'*'. Choosing an appropriate G'-invariant
calibrating 2n + 1 form, one easily obtains

vol V =2 vol sphere
for a unit vector field V on a unit sphere.

We can do a little better. Let V be a unit vector field on S***! and u the
calibrating 2n + 1 form on 7,5*"*' mentioned above. Then

volVny= u =c(n) vol $**1,
1% Vy
It follows from an explicit formula for u given in [G-M-Z] that

=2 () /G

For example, c(1) =2, ¢(2)=2%, c(3) =34, ..
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By contrast
vol V, = 2" vol §2"*1,

so that starting on S°, the above inequalities are much weaker than the expected
ones.

Nevertheless, the inequalities report that all unit vector fields on a round
sphere of any dimension fail to be parallel by at least a certain minimum amount.

4. An inequality for the volume of a fibre bundle map over a surface
Our goal here is to prove the following

PROPOSITION. Suppose f:M™— N? is a fibration of the compact Riemann-
ian manifold M™ over the compact surface N°. Then

vol f = vol M + (average vol fibre) (area N),
with equality if and only if f is a conformal submersion.

Recall that we defined the volume of a map f: M — N between Riemannian
manifolds to be the volume of its graph in M X N.

EXAMPLE. Among all maps f:5°— S* of nonzero degree, the conformal
and anticonformal homeomorphisms have minimum volume.

EXAMPLE. Among all maps f:S5°— S of nonzero degree, there are none of
minimum volume. All have volume>2volS®. Some maps have volumes ap-
proaching this lower limit, but none equal it. The identity map $>*— S has
volume =2V2 vol §°.

Homotopically nontrivial maps f:5>— S? behave as in the previous example:
there are none of minimum volume. All have volume > vol §°. Using the equality
in the above proposition, we will see some very beautiful maps which have
volumes approaching this lower limit. By contrast, the Hopf map 4 :S>— $? has
volume =2 vol §°.

Let f: M™— N" again be a smooth map between Riemannian manifolds. For
each x € M, we define a pseudo-norm |df,| for the differential of f at x, as follows.
Pick an orthonormal basis e,, e,, . . ., e, for the tangent space TM,. If m <n,
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define

|df.| = |df.(e)) A - - - A dfi(en)],
the usual norm in /\"” TN,(x). But if m>n, pick the basis for TM, so that

€.+1, - - - » €, belong to the kernel of df,, which is at least m —n dimensional.
Then define

|df.| =df.(e) A - - A dfe(en)l.
Note that |df,| is nonzero when the dimension of ker df, is exactly m — n, and is
zero when the dimension of the kernel is >m — n.

Now define the image volume of the map f by integrating the above
pseudo-norm of its differential over the domain M:

image volf=f |df.| d vol.
M

EXAMPLE. If f:M— N is an embedding, then the image volume of f is
simply the volume of f(M) as a submanifold of N.

LEMMA. Suppose f:M™— N" is a fibration between compact Riemannian
manifolds. Then

image vol f = (average vol fibre) (vol N).

Referring to the picture above, we have
d vol, = |df.|™" du dv,

where du and dv are the volume forms on base and fibre, respectively.
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Integrating over m, we get
image vol f = j |df,| d vol, = j du dv
M M

=f (f dv) du = j (vol of fibre) du
N fibre N
= (average vol of fibre) (vol N),

as claimed.

Again let f:M™— N" be a smooth map between compact Riemannian
manifolds, with m =n. Given xe M, let e,,...,e¢,,€,+1,...,6, be an or-
thonormal basis for the tangent space TM,, chosen so thate,,,, ..., e, belong

to the kernel of df,. Suppose that on the n-plane spanned by e, . . ., e,, the map
df. is conformal, and suppose this is true for each x e M. Then we call f a
conformal submersion. If the constant of conformality is never zero, then f is a
submersion in the usual sense, and hence a fibration.

EXAMPLE. A Riemannian submersion f: M"— N" is a submersion whose
differential is an isometry on subspaces orthogonal to the fibres. An example is
the Hopf fibration h:5°— $*(1/2). Any Riemannian submersion is also a
conformal submersion.

EXAMPLE. Consider the composite map
S3 §553 h ESZ 8'5s2’

where g is a conformal homeomorphism of the three-sphere, i is the Hopf map,
and g’ is a conformal homeomorphism of the two-sphere. Any such map is a
conformal submersion.

LEMMA. Let f:M™— N? be a smooth map of a compact Riemannian
manifold to a compact surface. Then

vol f = vol M™ + image vol f,

with equality if and only if f is a conformal submersion.
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Given x e M™, we choose an orthonormal basis e, e,, e5, ..., e, for the
tangent space TM, so that e;, ..., e, belong to the kernel of df,. Then the

volume element of the graph of f is
|(e + dfei) A(es+dfie)) Aesn--- Ae,
=V1+ Idfxel|2 + |dfxe2|2 + |dﬁrel A dfxezl2
=1+ |df.e, A dfse,,

by elementary linear algebra, with equality if and only if df, is a conformal map of
the e;e,-plane to the tangent plane TN,,.
Integrating this inequality over M™ proves the lemma.

Putting the preceding two lemmas together, we get the proposition stated at
the beginning of this section.

If we apply the equality in the proposition to the conformal submersion
f=g'hg:8’—>§*
defined above, we get
vol f = vol §* + (average length fibre) (area S?).
If g and g’ are the identity maps, then f is the Hopf map h and we get
vol h =2 vol $°.

Now choose the conformal homeomorphism g of S° so that it takes a very small
circle to one of the Hopf circles. Then choose the conformal homeomorphism g’
of $? so that it spreads a small neighborhood of the point corresponding to this
Hopf circle over most of the two-sphere. The composite map f = g’'hg then has
average fibre length very small. As a result, vol f is very close to vol $°. If we
keep the homeomorphisms g and g’ orientation preserving, then f is in the same
homotopy class as the Hopf map A, yet has smaller volume. Amusingly, vol & is
the maximum volume among all maps f of this type. The limiting value of volf,
namely vol §°, can never be achieved for a map homotopic to k.
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