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The fundamental group of compact manifolds without conjugate
points

CurisToPHER B. Croke!" and VIKTOR SCHROEDER®

1. Introduction
The purpose of this paper is to prove the following:

MAIN THEOREM. Let N be a compact manifold that admits an analytic

Riemannian metric without conjugate points. Then every abelian subgroup of
mt(N) is straight.

A Riemannian metric is said to have no conjugate points if the exponential
map exp, : I,N— N is non-singular for every x € N. The straightness property of a

subgroup of a group is an algebraic property that we define below. First however
we mention some consequences of the main theorem.

THEOREM A. Let N be a compact manifold that admits a C™ metric without
conjugate points. Then every nilpotent subgroup of x\(N) is abelian.

THEOREM B. Let N be as in the main theorem. Then every solvable

subgroup X of n,(N) is a Bieberbach group. In particular X has a finite index
abelian subgroup.

Theorem A is significantly easier to prove than Theorem B, as its proof relies
only on the fact that cyclic subgroups are straight. (We prove the straightness of
cyclic groups also in the C*-case, see Lemma 3.1.)

To define the notion of straightness we introduce the word norm | |- of a
finitely generated group I'. Let {y,, ..., y,} be a set of generators for I". Then
for y eI, |y|ris defined as the length of the shortest word in the y,’s and y; "s
representing y. Of course, this norm depends on the choice of generators.
However, as it is easy to see, different sets of generators give rise to equivalent
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162 CHRISTOPHER B. CROKE AND VIKTOR SCHROEDER

norms. That is, if | |} and | |% are two such norms then there is a constant ¢ such
that (1/c) |y|r=<|ylF=<c|y|rfor all y e I A finitely generated subgroup Iy I'is
called straight in I if | |, and | |- are equivalent norms on I;. (Note that this
notion is independent of the choice of generators on Iy or I'.)

These types of theorems have been considered under stronger assumptions on
the Riemannian metric. The case where M admits a metric of non-positive
sectional curvature (K <0) was considered by Lawson and Yau [L-Y] and by
Gromoll and Wolf [G-W] in the early 1970’s. Among other things they prove
that a solvable subgroup of x,(M) must be Bieberbach and that M contains a
corresponding flat manifold (see [C-E], Theorem 9.1 and Corollary 9.7). This
was generalized by O’Sullivan in 1976 [OS] to the case where M has a metric
without focal points. In [G] Gromov discusses the question of straightness of
abelian subgroups in the general setting of convex length spaces.

All of the above assumptions and proofs involve the convexity or monotoni-
city of certain functions. If M is a simply connected manifold of non-positive
curvature and c,, ¢, geodesics of M with ¢,(0) = c,(0), then the distance function
f(@®) =d(c(t), co(t)) is convex; if M has no focal points, then the distance function
f is monotone increasing on [0, »), compare also the discussion in [E-OS]. The
assumption of no conjugate points is equivalent to the synthetic condition that
any two points of M can be joined by a unique geodesic. Note that either
condition ‘‘non-positive sectional curvature” or “no focal points” implies ‘“no
conjugate points”’. The converse is not true by a result of Gulliver [Gul].

Instead of using the convexity or monotonicity of the distance function we use
the concept of Busemann functions. These functions are the main tool in our
argument.

A major open question about compact manifolds without conjugate points is
the following problem, which is often called the “Hopf-conjecture”:

CONJECTURE. Any Riemannian n-torus without conjugate points is flat.

E. Hopf solved this problem for the 2-torus [H], compare also the results of
Green [Gre]. The general case of the n-torus is easy to see under the stronger
condition of non-positive curvature and was proved by Avez [A] under the
assumption of no focal points. If the conjecture is true (a question that is still very
much open) our theorems would imply that if N is a compact Riemannian
manifold without conjugate points such that z,(N) is nilpotent or m(N) is
solvable (and the metric is analytic) then the metric must be flat.

We remark thdt the compactness condition of the main theorem is crucial
even under the assumption of negative curvature. For example, let N be a
noncompact quotient with finite volume of the complex hyperbolic plane. Then
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the subgroup of m,(N) coming from a parabolic end (cusp) of N contains the
Heisenberg group and thus a non-straight cyclic subgroup by Lemma 4.1.

We should say a few words about the analytic assumption in the main theorem
and in Theorem B. The full strength of the analytic assumption is never used and
the theorems should remain true assuming only a C* metric. For our proof we
need only assume a weak rectifiability condition (condition *) on the set of points
which lie on shortest closed geodesics in a given free homotopy class. This
condition is defined precisely before Lemma 2.4, and is clear in the analytic
setting.

The paper is organized into four sections the first of which is this introduction.
In the second section we prove the main technical result, Proposition 2.5. This
says that in the universal covering M of N the Busemann functions associated to
two different axis of the same element of &,(N) differ by a constant. In the third
section we prove the main theorem. The fourth section contains the algebraic
results needed to prove Theorems A and B.

The authors would like to thank W. Thurston, S. Gersten, and M. Gromov
for conversations about Section IV, and R. Edwards for pointing out some
topological pathologies. We also thank V. Bangert, M. Berger and the referee for
information about the history of the ‘“Hopf-conjecture”.

II. Technical lemmas

Let N be a compact C*-smooth n-dimensional Riemannian manifold without
conjugate points. We consider N as M/I', where M is the universal covering space
and I" = 7r;(N) is the group of deck transformations, acting as isometries on M.

The exponential map exp,:T,M— M is a diffecomorphism for every point
x € M. As a consequence, any two points in M can be joined by an (up to
parametrization) unique geodesic. Because there are no cut points, the distance
function d: M X M — R is smooth outside the diagonal. All geodesics c:R—> M
will be parametrized by arc length.

For a geodesic ¢ the Busemann-function b, of c is defined by

b.(x):=1lim (d(x, c(t)) — ?).

Note that the function ¢t~ (d(x, c(¢)) —t) is monotone non-increasing by the
triangle inequality. Therefore b, is well defined. We recall the following
properties of Busemann functions (cf. [E]).

(i) Busemann functions are C'-smooth.
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(i) The gradient Vb, has norm equal to 1. In particular, b, is Lipschitz with
constant 1.

(iii) For given x e M, there is a unique geodesic g with g(0)=x and
b.(g(t)) = b.(g(0)) —t. The geodesic g is determined by g(0) = —Vb_.(x).

(iv) It follows from (ii) and (iii) that for given x e M and r >0 there is a
unique point y with d(x, y) =r such that b.(y) — b.(x) = —r. The point y equals
g(r) in the notion of (iii).

Remarks. (a) If ¢(¢):=c(t + a) is another parametrization of c, then b (x) =
b.(x) —a. Thus, using an orientation preserving reparametrization of ¢ we can
normalize b, to be zero for a given point x,.

(b) The geodesic g given by (iii) is called asymptotic to c. Thus through every
point x € M there is a unique geodesic asymptotic to c. The notion of asymptotic
depends only on the oriented geodesic ¢ and not on the particular parametrization
of c.

WARNING. It is not known in general, whether the relation ‘‘asymptotic™ is
symmetric (cf. [E]). The purpose of this section is to prove, in the special case
that both ¢ and g are axes of the same isometry y, the even stronger statement
that b, — b, is constant.

For an isometry y: M — M we define the displacement function d,: M — R by
d,(x):=d(x, yx). Since d is differentiable outside the diagonal, d, is
differentiable, if y has no fixed points. A geodesic c:R — M is called an axis of y,
if there is a constant L >0 such that yc(t) =c(t+ L) for all te R. For ye I we
define Ax(y) to be the set of all points which are contained in an axis of y.

LEMMA 2.1. Let N=M/I be compact and y € I" be a nontrivial element.

(1) Then d, assumes a positive minimum, mind,,.

(2) The set Ax(y) is equal to the set of critical points of d.,. Furthermore Ax(y)
is the set, where d,, assumes the minimum.

(3) For m=0 we have mind,»=m - mind,.

Remarks. (a) Note that (2) implies in particular that every axis of y is
translated by the same amount, namely by min d,.

(b) For every x e M and every y € I' the displacement d, (x) is the length of an
essential (non-contractible) geodesic loop in N. Namely the projection of the
geodesic from x 'to y(x). Hence in particular mind, =sys (N), where sys (N)
represents the length of the shortest essential geodesic in N. The proof of (2) also
implies that b.(yx) — b.(x) = min d, = sys (N) for all axis ¢ of y and all x e M.
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Proof. (1) Let x; € M be a sequence with d, (x;)— inf, . d,(x). Since N = M/
I' is compact, I" has a compact fundamental domain. Hence there are elements
y; € I' such that the sequence y;(x;) is bounded. Choosing a subsequence, we can
assume that y;(x;) converges to y e M. Since d,,,-(y:(x;))=d,(x;) which is
bounded and d,,,,-(y:(x;)) is approximately d,,,,-(y) for large i, we see
d,.,,(y) is bounded. Since I' operates discretely, there exists a € I' such that
Yiyy: ' = aya™' for a subsequence. Thus lim, .. d,(x;) =d 4y e-1(y) = d,(a”'(y)).
Therefore d, assumes the minimum, min d, .

(2) We compute the gradient of d,. For x e M, let V" (x)(V~(x)) be the in-
itial vector of the geodesic from x to y(x)(y~'(x)). We claim that Vd,(x)=
—(V*(x) + V7 (x)). To see this let c:[0, d,(x)]—> M be the geodesic from x to

y(x). For we T.M let c,:R— M the geodesic with ¢,(0) =w. Using the first
variational formula, we compute

(dyocw)’(o) = <C(dv(x))r Y*W> - <é(0)’ W)-
By applying y;', we have
(e(dy(x)), yaw) = —(V7(x), w).

Thus we see that (Vd,(x), w) =—(V*(x)+ V7 (x), w) for all we T,M and the
claim follows. If x is contained in an axis of y, then clearly V*(x) = —V 7 (x) and
x is a critical point of d,. On the other hand, if x is critical, then V¥ (x) = —V 7 (x)

and x, y(x) and y~'(x) lie on a unique geodesic c. Therefore y leaves c invariant
and c is an axis of y.

If d, is minimal at x, then x is critical and hence contained in an axis of y. It
remains to prove that d, assumes the minimum on every axis. Therefore let
¢:R— M be an axis with yc(¢t) = c(¢t + L) for L >0. Then, for all x € M,

b(yx) =1lim (d(yx, c(r)) — 1)
= linﬂnc (dx,c(t—=L))—1)

=b.(x)—L

Since b, is a Lipschitz function with constant 1, it follows that d,(x)=L =
d,(c(0)). Thus d, assumes the minimum on c.

(3) An axis of y is also an axis of ¥, hence min d,~ is achieved on Ax(y). On
an axis it is clear that dn=m-d,. 0O
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Now let o eI’ be an element which commutes with y. Then d,(a(x)) =
d(ya(x), a(x)) =d(ay(x), a(x)) =d,(x). In particular o leaves Ax(y), the
minimal set of d,, invariant. This observation implies that d, induces a well
defined function d, on M/Z(y), where Z(y) is the centralizer of y in I'.

LEMMA 2.2. The function d, on M/Z(y) is proper.

Proof. Let a be a positive constant. We have to prove that S,:={XxeM/
Z(y)| J,, (¥)<a} is compact. Let x; be a sequence of points in S, and let x, e M be
such that w(x;) = x; where 7: M — M/Z(y) is the canonical projection. Since I is
cocompact there are y; el such that y,(x;) lie in a fixed compact set D (a
fundamental domain). Hence some subsequence converges to y € D. As in the
proof of Lemma 2.1 we see d,,,,-1(y:(x;)) = d,(x;) <a, hence d,,,,-(y) <a + 1 for
i large enough. Thus by the discreteness of I' there are only a finite number of
v;yy:'. Passing to a subsequence we may assume y;yy;'=y,yy; ', hence
Yi'vi€ Z(y). Since d(y;'vi(x), x;) =d(vx;), vj(x;)) <diameter (D), we see
d(x;, ;) < diameter (D). Hence some subsequence converges. [

We denote by Ax(y) the set m(Ax(y)) = M/Z(y). Thus Ax(y) is the set of

minimia of d, and also the set of critical points. Since d, is proper, Ax(y) is
compact.

LEMMA 2.3. The set Ax(y) c M/Z(y) is connected.

Proof. Let U and V be disjoint open sets with Ax(y)c UU V. Let a be the
infimum of d, on M/Z(y)—(UUV). Then a>mind, and U,:={xeM/
Z(y)|d,(%)<a} contains Ax(y) and is contained in UUV. Since d, has no
critical points outside U,, this set is connected by Morse theory. Therefore U, and
hence Ax(y) is either contained in U or contained in V. [

We define a subset A of a manifold V to be locally rectifiably path connected,
if for x € A and every € > 0 there exists a 6 > 0 such that if y € A and d(x, y) <,
then there is a rectifiable path in A from x to y staying in the e-ball around x.

For the rest of this section we make the assumption

(*) The set /ix(y)_ is locally rectifiably path connected.

Note that because Ax(y) is compact, we can choose 6(€) uniformly for all
x € Ax(y).
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Remark. 1f the metric on N is real analytic, then d, and d, are analytic and
the set Ax(y) is an analytic variety which clearly satisfies (*).

LEMMA 2.4. If we assume (*), then any two points x and y in Ax(y) can be
joined by a rectifiable path in Ax(y).

Proof. Let m:M— M/Z(y) be the projection and choose € >0 small enough
such that x is a diffeomorphism on each e-ball in M. If x, y €e Ax(y) with
d(x, y) < 6(€), then m(x) and 7(y) can be joined by a rectifiable path in Ax(y)
contained in the e-ball around m(x). We can lift this ball to M and obtain a
rectifiable curve from x to y contained in the e-ball around x. One checks easily
that Ax(y) = w7 '(Ax(y)), hence the curve is contained in Ax(y).

We now prove that Ax(y) is connected. Let L:=mind,. Then for n >0 the
set U ,,:={xeM/Z(y)|d,(x)<L+n} is connected and diffeomorphic to
M/Z(y) by Morse theory. By lifting this set to M we see that U,,, = {x¢€
M |d,(x)<L+n} is connected for all n. For n small enough, U, ., is contained
in the 8/2-neighborhood Ts,(Ax(y)) and therefore U, ., c T,,(Ax(y)). Here
6 = 6(€) as above.

It follows that any two points in Ax(y) can be joined by a path, which is
contained in T;,(Ax(y)) and as a consequence T5,(Ax(y)) is connected. Thus, if
Ax(y) is not connected, then there are two different components of Ax(y) with
distance smaller than 6 and hence there are points x, y € Ax(y) in different
components with d(x, y) < . But this contradicts to the first part of the proof.

Thus Ax(y) is connected. Now, using the fact that nearby points in Ax(y) can
be joined by a rectifiable path, it is easy to prove that the set of points in Ax(y)
which can be joined to a given x € Ax(y) by a rectifiable curve is open and closed.
Therefore any two points in Ax(y) can be joined by a rectifiable path in
Ax(y). O

PROPOSITION 2.5. We assume (*). Let ¢, and c, be axes of an element y e I
and let b, and b, be Busemann functions of c, and c,. Then b, — b, is constant on
M.

Proof. Let ¢ be any axis of y, then yc(t) =c(t+ L) for L=mind,. By the
proof of Lemma 2.1(2) we sce b;,(c(L))=b;(yc(0)) =b;(c(0))—L for i=1, 2.
Thus the properties (iii) and (iv) of Busemann functions imply ¢(0) = —Vb,(c(0))
and hence V(b,—b,)=0 on Ax(y). Furthermore b;(c(¢))=b;,(c(0))—¢ for
teR by property (iii). We now claim, that for all x e M(b, — b,)(cx(0)) =
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(by = b3)(x) = (b, — by)(c,(0)). To see this we compute for arbitrary s
by(x) =lim (d(x, c\(1)) — 1)
<tim (d(x, x(5)) + d(cx(s), 1(1)) = )
=d(x, c5(s)) + b,(cx(s))
The first part of the proof implies

bi(c2(s)) = bi(cx(0)) — s
and thus

by(x) < (d(x, cx(s)) = 5) + bi(c2(0)).
For s — « we obtain

b,(x) < b,(x)+ b,(c:(0))
and because b,(c,(0)) =0 we have

(b1 = b2)(x) = (b, = b2)(c2(0)).

By interchanging the roles of ¢, and c, we obtain the other inequality of the
claim.

By Lemma 2.4 we can connect c¢;(0) and c,(0) by a rectifiable path in Ax(y).
Since (b, — b,) is C' and V(b, — b,)=0 on Ax(y) and hence on the rectifiable
path from c,(0) to c,(0), it is not difficult to prove, that (b, — b,)(c,(0)) =
(b, — by)(c>(0)) and therefore (b, — b,) is constant. [

Remark. We used (*) only to prove the existence of a rectifiable path from
¢1(0) to c(0) in Ax(y). At first glance, it seems that the connectedness of Ax(y)
and the fact that V(b, — b,) is identically 0 on Ax(y) implies that (b, — b,)(c,(0))
equals (b, — b,)(c2(0)). But we only know that the function (b, —b,) is C' thus
we cannot use Sards theorem to prove that this function is constant on the
connected components of the critical set. In fact, Whitney constructed a
C'-function on R? which is not constant on the components of its critical set.

For y eI’ we define b, to be the Busemann function of an axis of y. By
Proposition 2.5 b, is well defined up to a constant. Thus, if we normalize the
function such that b,(x,) =0 for a given point x,€ M, then b, is well defined.
Proposition 2.5 has the following corollary.
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COROLLARY 2.6. If @ commutes with v, then b,(a(x)) — b,(x) is independ-
ent of x.

Proof. By definition b,(x) = b.(x) for an axis ¢ of y. Since b.(ax) = b, (x)
and a”'c is also an axis of y, Proposition 2.5 implies that b.(ax)— b.(x) is
independent of x. [J

II1. Proof of the main theorem

In this section we prove the main theorem. But first, we prove the (easy)
lemma which will allow us to prove Theorem A.

LEMMA 3.1. If N is a compact manifold that admits a C* metric without
conjugate points then every cyclic subgroup I of I' = n(N) is straight.

Proof. For any elements «, f € I’ we have d(af(x), x) <d(af(x), a(x)) +
d(a(x), x) =d(B(x), x) + d(a(x), x). Hence if {B,,..., B,} is a set of gener-
ators for I'and y=g+'-g2t--- .. i1, we have d(y(x), x) < L;d(B}'(x), x) <
q - (max {d(Bi(x), x)}). Thus we see that d(y(x), x) < (max, {d(Bi(x), x)}) - [v|r
for all ye I'and x e M.

Choose a set of generators {a, B, ..., B,} for I' containing a generator « of
I,. Since |@"|r<n =|a"|, we need only show that |a"|= const. n. Fix x,€ M.
Now d(a”"(xy), xo) = mind,- =n -mind, by Lemma 2.1.3. Hence we can take
const = min d,/max; {d(B;(x,), xo)}. O

For the remainder of this section we assume that the metric satisfies condition
*. We also choose, once and for all, a point x, € M and normalize all Busemann
functions (by adding a constant) to be 0 at x,,.

We will now consider an arbitrary abelian subgroup I, of I = x,(N). Since
there are no torsion elements in I" (from Lemma 2.1.3), I is isometric to Z* for
some k. We choose, once and for all, a basis a4, . .., a; of I;. Using this basis
we can identify Iy with the integer lattice Z* in R* by the correspondence
aft-afre are(ny, ..., n).

LEMMA 3.2. For every yel, we have b,(a7 -a3*----- az(xg)) =
kinb,(a;). In other words the induced map b,: Zk—>R is linear
(by(ny, ..., m)=b,(a - ag(xo))-
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Proof. Let B, and B,eI;. By Corollary 2.6 b,(B1B82(x0)) — b,(Bax0)) =

by (B1(x0))- Hence b, (B1B2(x0)) = by (B1B2(x0)) — by (B2(x0)) + b, (B2(x0)) =
b,(B1(xo)) + b,(B2(x0)). Applying this repeatedly yields the lemma. [

LEMMA 3.3. There exists a choice of y;ely, i=1,...,k and a constant
¢,>0 such that for every Bel, there is an ie{1,..., k} with |b,(B(x))| =

¢ lﬁ‘ro'

Proof. By the previous lemma b, acts linearly on I}, = Z* = R*. Hence we can
extend b, to a linear map r, :R*— R. The lemma is proved by finding y,, . . ., 7«
such that r, , . . ., r, are linearly independent.

Assume, for now, that we have found such a y,,..., v«. Then we can
construct a linear isomorphism r:R*— R* by v—(r, (v), ..., r,(v)). On the
domain R* consider the norm |(x,, ..., x)|p =X, |x;|. On the range we take
the norm |(y,, . . ., y,)|r = max; |y;|. Since r is a linear isomorphism and all norms
are equivalent there is a constant ¢, such that for all v € R%, |r(v)|z =c, |v|p. For
v a lattice point we see that this is exactly the conclusion of the lemma.

We now need to find y,, ..., y, such thatr, , ..., r, are linearly independ-
ent. Assume we have found vy,,...,y; with j<k and r,,..., Iy, linearly
independent. We need to find y;,,. Let K be the common kernel of r,, ..., r,

(i.e. the intersection of the kernels). K has dimension =1 (in fact, by the
independence of {r,}, dimK=k —j=1).

We claim that there is a constant ¢, such that for every y eI, we have
|r,(v)| <c, |v|g, where |v|g represents the Euclidean norm in R*. To see this let
v=(a,,...,a). Then, using the fact that |b,(y)| <d(y, x,) (since [Vb,|=1), we
have

Iry(v)l =

>, aby(axo)| = (2 la) (max b, (@ xo)))

i=1

(8 )t 13) .l

We now choose a lattice point y;,, such that the distance in R* between Yi+1
and K is less than sys (N)/2c,. Recall, as mentioned in the remark Lemma 2.1,
that |b,(y(xo))| = sys (N) for all y € I Let v, € K be such that

sys (N)
2C2

.

lvg — }’1'—1|Es
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Then r,  (vo) =71, (Yj+1) + 7y, (Vo — ¥j+1), hence:

17y, @) = [y (Fia D) = Iy (o = ¥j11)]
= |bY,+|(Yj+l(x()))| - II‘YM(U() — Yj+1)|
= 8YyS (N) —C2 |U() - Yj+l'E

sys (N) _sys (N)

= N) — =
sys (N) —c, 20, >

> 0.

In particular r,  (v,) #0, while r (v))=0 for all ie{l,2,...,j}. Hence
Fyis ooy Iy, AIE linearly independent and the lemma follows.

Proof of the main theorem. Given an abelian subgroup I, < I" with a fixed set
of generators «a, ..., a;, extend this set to a set of generators {;} of I'. Let
| |, and | | represent the word norms with respect to these sets of generators.
By the choice of generators, y € I, implies |y|,=|y|. Hence to prove I is
straight in I' we need only find a constant c¢; such that for every y eI,
lYlr = s lyln.

To see this let ¢, be the constant from Lemma 3.3 and c¢,=
max; {d(B;(x,), xo)}. By the first paragraph of the proof of Lemma 3.1 for y e I,
ly|-= (1/¢s) d(y(xy), xo)- Fix y € I, and let v, be the element of I5, guaranteed
by Lemma 3.3, such that |b, (v(x,))| = ¢, |y|r,- Combining these yields:

17lr /a d(y(xo), X9) =— Iby, (y(xo) > |Y|r.,

Hence the theorem is proved.

IV. Theorems A and B

In this section we prove the algebraic results which are needed to prove
Theorem A and Theorem B. We need a slight extension of the concept of straight
subgroups. Let I" be any (not necessarily finitely generated) group and I, I a
finitely generated subgroup. Then I is called straight in I' if for every finitely
generated subgroup I'" with Iy I'' = I, I, is straight in I'".

LEMMA 4.1. Let I be the Heisenberg group. (That is I is generated by two
elements « and B and further the element y = [, B] commutes with « and with B.)
Then the cyclic group generated by v is not straight.
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Proof. Let | | be the norm of I defined by the generators o and B. Since 8
commutes with [a, B], B also commutes with [, «~']. Therefore we see:

v*=la, BI*=a, Blla, BlaBa™'[a, B]
= afa, Bl[a, BlBa [, B]B~
= a’[B, a”'|Ba™ ' Ba” !B
=a’B[B, a”'la” Ba” B
=[a? B

By induction we have y* =[a”, %], and hence |y*'|r<4-2". It follows that
lim,,_. (1/m) |y™|r=0 and therefore the group generated by y is not
straight. O

Because every non-abelian and torsion free nilpotent group contains a
Heisenberg group, we have the following consequence.

LEMMA 4.2. Let I be a torsion free nilpotent group. If every cyclic subgroup
of I is straight, then I is abelian.

We now focus on solvable groups.

LEMMA 4.3. Let I' be a torsion free solvable group. If every abelian
subgroup of I is finitely generated and straight, then I is a Bieberbach group.

Before we prove the theorem, we recall some facts about crystallographic
groups. A group I' is called crystallographic if I' is isomorphic to a discrete
cocompact subgroup of the isometry group Iso (R”). A crystallographic group I'is
called Bieberbach group if I is torsion free. Then a group I'is a Bieberbach group
if an only if I' is isomorphic to the fundamental group of a compact flat

Riemannian manifold. Crystallographic groups can be characterized algebraically
(see [W], Theorem 3.2.9).

(**) A group I is crystallographic, if and only if I' has a normal free abelian
subgroup I'* of finite rank and finite index in I" which is maximal abelian in
I'. In that case, I'* is unique.

Proof (of Lemma 4.3.). By induction on the length of the derived series we
can assume that the commutator subgroup [I", I'] is a Bieberbach group. By the
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characterization (**) there is a unique maximal abelian normal subgroup A of
finite index in [, I'].

We first claim, that A is a normal subgroup of I'. Since [I', I'] is normal, any
conjugate subgroup yAy ! is contained in [I, I']. Since A is the unique maximal
abelian normal subgroup of [I', I'] and yAy~' satisfies the same properties, it
follows that yAy '=A for all yeI and hence A is normal. Therefore the
centralizer Z(A) of A in I' is also a normal subgroup. Since A is maximal abelian
in [I, I'], we see that Z(A)N[I, I' = A. As a consequence [, [B, v]] is trivial
for a, B, y € Z(A). Thus Z(A) is nilpotent and indeed abelian by Lemma 4.2.

The group I' acts by conjugation on Z(A). Let us consider the map
K:I'> Aut (Z(A)), where K(y) is the conjugation a— yay~'. Note that the
kernel of K equals Z(A). We will show that K(y) has finite order for all y e I.
Assuming this result for a moment, we prove that I' is Bieberbach.

By our assumption, Z(A) is isomorphic to Z* for some k and hence
Aut (Z(A)) is isomorphic to SL, (Z). By Selbergs-Lemma, (cf. [B], p. 38),
SL, (Z) has a torsion free subgroup of finite index. Because every K(y) is torsion,
we conclude that K(I') is finite and Z(A) = kernel K has finite index in I". Clearly
Z(A) is maximal abelian. By (**), I' is crystallographic and because it is torsion
free, a Bieberbach group.

Thus it remains to show that K(y) has finite order or equivalently, that there
exists m e N with y" € Z(A). Let Z(A) be free abelian of rank k and choose
generators ay, . . . , a; of Z(A). We denote by | |4, the word norm with respect
to these generators. Let I'' be the group generated by a,,..., a; and y with
word norm | |r. The straightness of Z(A) implies that there is a constant C such
that for a« € Z(A).

|| 24y < C ||
Furthermore by the choice of the generators of Z(A) we have
™| 24y =m || 204).
Now let BeI" and a € Z(A). Then it is easy to check that [B, a]e Z(A)N

[[, I')=A. Therefore « commutes with [8, «] and hence also with [a, B7'].
Hence we compute:

(8, af* =Bla, B~ JaBp™ ™"
=Bala, B a”
=[B, o]
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and by the same argument [B, a]” =[B, a”']. We now apply these formulas for
p=7y"and a = q;

m

“)’p’ a’i”Z(A) = '[Yps a] IZ(A)

m

“va «, ]IZ(A)

I|— 3|~

<C—|ly" a?llr-

1
m

1
<sC—0Q2m+2
m(m p)

Because this formula is true for all m e N, we see |[y*, a;]|z(4) <2C. Since there
are only finitely many elements in Z(A) with norm <2C there are p <gq with

ly”, a;]=[y% a;] forall i=1,..., k.
It follows that y™ = y?7? commutes with all generators «;, thus K(y™) is trivial.

Proof of Theorems A and B. Theorem B follows from the main theorem and
Lemma 4.3. To see this, one notes that our solvable subgroup £ < I = x,(N) is
torsion free since I is torsion free. Hence to apply Lemma 4.3 we need to show
every abelian subgroup I;,c 2 is straight. But the main theorem tells us I is
straight in I" and it is easy to see, by choosing appropriate generating sets, that if
Iy T" < I' and all are finitely generated then I, straight in I" implies I straight in
r.

Theorem A follows similarly from Lemma 3.1 and Lemma 4.2.
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