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Abelian normal subgroups of two-knot groups

JONATHAN A. HILLMAN

Introduction

Using the algebraic classification of high dimensional knot groups, Hausmann
and Kervaire have shown that any finitely generated abelian group is the centre of
some n-knot group, for each n =3 [21]. On the other hand the only 1-knots
whose groups have nontrivial abelian normal subgroups are the torus knots. (For
the commutator subgroup can contain no nontrivial abelian normal subgroup [38:
Chapter IV.5], so any such subgroup must map 1-1 to the abelianization and be
central. Now use [8]). In [25] we considered the remaining case of 2-knots,
showing that the centre must have rank at most 2, but a gap was later found in
the key lemma of that paper. Here we shall repair that gap and treat the more
general question suggested by our title. We shall show that if a 2-knot group
contains a torsion free abelian normal subgroup of rank r > 1 then the group is an
orientable Poincaré duality group of formal dimension 4 and so r <4. There are
only two such groups with r = 4, while the groups with r = 3 are just the groups of
the fibred 2-knots constructed by Cappell in [9]. Many examples may be
constructed with r =1 or 2 by twist spinning classical knots; our results in these
cases are less conclusive, but suggest that r =2 arises only by generalized twist
spinning [40] torus knots. However there are examples of 2-knot groups with rank
1 abelian normal subgroups which cannot be realized by fibred knots [15, 52]. An
example due to Fox [15] has commutator subgroup the dyadic rationals; we show
that any virtually solvable 2-knot group must be either virtually poly-Z or Fox’s
group or admit no nontrivial torsion free abelian normal subgroup. All the vir-
tually poly-Z groups allowed by our theorems may be realized by fibred 2-knots.

Our argument is based on the idea used in [24] and [25] of embedding the
group ring Z[G] into a larger ring R in which an annihilator for the augmentation
module becomes invertible and for which nontrivial stably free R-modules have
well-defined strictly positive rank, with rank R" =n. (Rings with the latter
property were called “hopfian” in [25]). Under suitable hypotheses on the group
G, Poincaré duality then implies that the equivariant homology of a 4-manifold
with fundamental group G is concentrated in degree 2 and is stably free as an
R-module. Its rank may be computed by an Euler characteristic counting

122



Abelian normal subgroups of two-knot groups 123

argument. If the Euler characteristic is 0 the manifold is aspherical and so G is a
Poincaré duality group. The remainder of our argument rests upon properties of
groups with small cohomological dimension and large centre (principally
Theorem 8.8 of [5]) and special features of certain matrix groups.

There are six numbered sections. The first gives some notation and terminol-
ogy from group theory and the second states some of the results on asphericity
from [25] that may be recovered in strengthened form by means of a result of
Rosset [43]. The next three sections treat the cases when the maximal rank of an
abelian normal subgroup is greater than 2, equal to 2 or 1 respectively. In the last
section the preceding results are applied to the consideration of virtually solvable
2-knot groups and it is indicated how most such groups can be realized by (fibred)
2-knots.

I am grateful to G. P. Scott, and to R. Geoghegan and M. Mihalik for their
help with Theorems 8 and 10 respectively.

§1. Notation and terminology

We shall say that a torsion free abelian normal subgroup of a group G is
maximal, if it has maximal rank and is not properly contained in any other such
subgroup. Note that if G contains an abelian normal subgroup which is either
finitely generated or central, then it contains one of the same rank which is
torsion free.

The centralizer of a normal subgroup A of G is the kernel of the
homomorphism from G to Aut (A) determined by the conjugation action of G on
A, and shall be denoted C;(A). (We shall write C(G) for C5(G), the centre of
G). If A is abelian then it is a central subgroup of Cs(A).

A group is a PDS") group if it is a finitely presentable (orientable) Poincaré
duality group of formal dimension n. A group is polycyclic if it has a composition
series with cyclic factors; the number of infinite cyclic factors is then independent
of the composition series chosen, and is called the Hirsch length of the group
[42:5.4.13]. More generally we may define the Hirsch length of any solvable
group as the sum of the ranks of the factors of its derived series. A group is a
solvable PD, group if and only if it is a torsion free polycyclic group of Hirsch
length n [5: Theorem 9.23].

An automorphism ¢ of a group K is meridional if the normal closure in K of
{k7'¢(k)| k in K} is K, and then the abelianization of the HNN extension Kj
presented by (K, t | tkt™' = ¢(k) for k in K) is infinite cyclic. The automorphism
of an n-knot commutator subgroup induced by conjugation by a meridian is
meridional. Two meridional automorphisms ¢ and ¥ determine isomorphic HNN
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extensions (K3 = K3}) if and only if ¢ is conjugate to y*' in Out(K), the group of
outer automorphisms of K.

A weight class for a group is a conjugacy class whose normal closure is the
whole group. The group is then said to have weight 1. A group G is a high
dimensional knot group if it is finitely presentable, has weight 1, H,(G;Z)=Z
and H,(G; Z) =0 [32]. Two elements of the same weight class of such a group G
determine meridional automorphisms of G’ which are conjugate in Aut (G') by
an inner automorphism of G'.

The subquotient G'/G” may be considered as a (G/G’')-module, via the
conjugation action of G on G'. If G is a knot group, a choice of meridians for the
knot determines an isomorphism Z[G/G']~ A =Z[t, t"']. The module G'/G" is
then a finitely generated A-torsion module on which ¢ —1 acts invertibly. In
particular the annihilator ideal Ann (G'/G") is nonzero. The Alexander polyno-
mial of G is the characteristic polynomial of the meridian acting on H,(G’; Q)
and is an element A of A such that |[A(1)| = 1. It generates a proper ideal in A
(i.e. is not of the form *¢") if and only if G'/G" is infinite. The highest common
factor of the annihilator ideal divides the Alexander polynomial. (See Chapters
III and IV of [26]).

§2. Rosset’s lemma and asphericity

The proof of the key lemma of [25] was fallacious, as pointed out by M. N.
Dyer (c.f. [25 bis]), and the results became moot for several years. Fortunately,
however, Rosset has since provided a correct proof of a closely related result that
may be used instead. We shall restate Rosset’s result as:

ROSSET’S LEMMA [43]. Let G be a group which contains a nontrivial
torsion free abelian normal subgroup A. Let S be the multiplicative system
Z[AN{0} in Z[G]. Then the (noncentral!) localization R = S~'Z[G)] exists and has
the property that nontrivial finitely generated stably free R-modules have well-
defined strictly positive rank, with rank R" =n. Furthermore R is flat as a
Z[G)-module and R ® 76,Z = 0.

The prototype of such a result was given by Kaplansky who showed that for
any group G the group ring Z[G] has this “hopfian” property [31:page 122]. By
means of this lemma we may redeem the results of [25] and restate some of them
in the following strengthened forms. (We shall not repeat the proofs as, apart
from using Rosset’s lemma instead of the key lemma of [25], they are otherwise
unchanged).
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THEOREM 1. Let X be a finite 2-dimensional cell complex with fundamental
group containing a nontrivial torsion free abelian normal subgroup. Then
x(X)=0, and x(X) =0 if and only if X is aspherical.

The assumption that X be 2-dimensional is not needed in order to show that X
aspherical implies x(X)=0; this is in fact Rosset’s application of his lemma.
Gottlieb obtained the first such result under the further assumption that
C(m(X)) #£1 [19]. Kaplansky’s lemma has been used several times in a related
way in connection with the Whitehead conjecture on the asphericity of sub-
complexes of 2-dimensional K(xr, 1) complexes. (See [7], for instance).

COROLLARY. If a finitely presentable group G contains a nontrivial torsion
free abelian normal subgroup then it has deficiency at most 1. If def G =1 and G is
neither Z nor 7* then G has cohomological dimension 2 and the centre of G is
infinite cyclic or trivial.

This partially settles (and goes beyond) a conjecture of Murasugi, that the
centre of a finitely presentable group of deficiency =1 other than Z> be infinite
cyclic or tirival, and be trivial if the group has deficiency =2 [37]. Some of the
arguments of this paper can be seen in microcosm in the following discussion. If
c.d. G=2 and G has an abelian normal subgroup A # 1, either A~=Z and so
[G:Cs(A)]=2 or c.d.A=c.d.C5(A)=2 and so Cg(A) is abelian, by [5:
Theorem 8.8]. If A has rank 1 then Aut (A) is abelian so G' = C5(A) and G is
solvable. (Such groups have been classified by Gildenhuys [18]). Otherwise
A=7*~Cg(A). As C5(A) with an element of infinite order modulo C;(A)
would generate a subgroup of cohomological dimension 3, which is impossible,
G/Cs(A) must be a torsion group, and so finite, as it is a subgroup of
Aut (A) = GL(2, Z), by [31:page 105]. Since G is torsion free it must be Z? or the
Klein bottle group.

THEOREM 2. Let M be a closed 4-manifold with fundamental group G such
that G contains a nontrivial torsion free abelian normal subgroup and
H*(G; Z[G]) =0 for s <2. Then M is aspherical if and only if y(M) =0.

§3. Rank greater than 2
Let K:5%— S* be a 2-knot with group G = x,(S\K(5?)), and let M be the

closed orientable 4-manifold obtained from S* by surgery on K. Then n,(M)=G
and x(M)=0. We shall show that if G contains a torsion free abelian normal
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subgroup of sufficiently large rank then the cohomological hypotheses of
Theorem 2 also hold, and so M is aspherical.

LEMMA. Let A be a torsion free abelian group of rank r and M a free
A-module, M =Z[A]® say. Then H'(A; M)=0 if i <r. If A is finitely generated
then H(A; M) ~Z"P. If r < but A is not finitely generated then H'(A; M) = 0.

Proof. Let N be a free abelian subgroup of A of finite rank s <r. If r <o we
may assume rank N =r and if A is finitely generated we may take N = A. Let
Q = A/N. Since N is an FP group and A is free as an N-module, H'(N; #) =
H'(N; Z[N]) ® ziv M for all i [5:Proposition 2.4]. Therefore H'(N; M) =0 if i <s
and H°(N; M) ~Z Qyn M=~Z[Q]". If A is not finitely generated then Q is
infinite and so H%(Q; Z[Q]”) =0 [5:Lemma 8.1]. The lemma now follows on
applying the LHS spectral sequence H?(Q; HY(N; #M))> HP"(A; M).

THEOREM 3. Let G be a 2-knot group with a torsion free abelian normal

subgroup A of rank r =2. Then G is a finitely presentable PDy group, and so
r=4,

Proof. Cousider the LHS spectral sequence E5Y= HP(G/A; H(A; Z[G])) >
HP™4(G; Z|G)). By the lemma, if r = 3 or if r = 2 and A is not finitely generated then
E89=0 for ¢ <2. If A~=27?then E5?=0 for ¢ <1 and E5*= H?(G/A; Z[G/ A)).
But no group containing Z> as a subgroup of finite index can have infinite
cyclic abelianization (as a knot group must have) and so G/A must be infinite.
Therefore EY = H°(G/A;Z[G/A])=0. In all cases we conclude that
H’(G;Z|[G])=0 for s=<2 and so G is a PD; group by Theorem 2 and the
remarks at the beginning of this section. In particular rank A =c.d. A =4.

In our next result we shall determine the 2-knot groups with such subgroups A
of rank =3. (We shall consider the case r =2 in §4).

THEOREM 4. Let G be a 2-knot group with a maximal torsion free abelian
normal subgroup A of rank r > 2. Then either
(i) A=Cg(A)=G' =2’ and the meridional map is given by a matrix C in
SL(3, Z) such that |det(C — I)| =1; or
(i) A=Z* and G=G(+1) or G(—1), where G(g) is presented by
(x, y, t| xy*x7'y? =1, txt™' = (xy)75 tyt ' =x°), for e = £1.

Proof. By Theorem 3, the manifold M obtained by surgery on a knot with
group G is aspherical. Therefore the covering space M, determined by the
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subgroup A is also aspherical. Hence c.d.A =4, with equality if and only if the
4-manifold M, is also closed, if and only if [G:A] <<, in which case A is finitely
generated. Moreover r=c.d. A, with equality if and only if A is finitely
generated, and so isomorphic to Z’, by [5:Theorem 7.14]. Therefore r =4, and
r =4 implies that A = 7" and [G:A] <.

If r = 3 these conditions imply that A = Z’. The quotient G/A must contain an
element of infinite order. For otherwise the image of G in Aut(A)=GL(3, Z)
under the map determined by conjugation is a finitely generated torsion group,
and so finite by [31:page 105]. Since the kernel of this map is C;(A), we then
have [G:C;(A)] <=, so c.d. C;(A)=4. By [5:Theorem 8.8], C;(A)" must be
free. By assumption r =3, so C;(A)' # 1. If C5(A)' =Z then G is solvable-by-
finite, therefore polycyclic-by-finite and so must contain a normal subgroup B of
finite index which is a poly-Z group [42;5.4.15]. Then BN C;(A) is a normal
poly-Z subgroup of finite index in G, and so of Hirsch length 4, which contains
BN A as a central subgroup. Since [A:BNA]|=[G:B]<x, we must have
BNA=Z7Z' from which it follows that B must be abelian, contrary to the
assumption that r = 3. If C;(A)’ is a nonabelian free group then A N C5(A) =1
and so C;(A)’ maps injectively to G/A. Thus there is an element g in G whose
image in G/A has infinite order, and so the subgroup of G generated by A U {g}
has cohomological dimension 4, and therefore is of finite index in G.

Thus if =3 or 4 the group G is a solvable-by-finite PD}-group, hence
(poly-Z)-by-finite of Hirsch length 4. Therefore G’ is (poly-Z)-by-finite of Hirsch
length 3. We claim that G' is virtually abelian. This is clear if ANG' =27, so
suppose that AN G’ ~Z°. Then ANG' is normal in G, and G/CG(ANG') is a
solvable-by-finite subgroup of GL(2, Z) with cyclic abelianization. Therefore it is
either finite (cyclic or S;) or infinite cyclic. In either case [G':Cs (AN G')] <.
Since C;(ANG') then has Hirsch length 3, and contains Z* as a central
subgroup, it must be virtually abelian, and so the same is true of G'.

Now a torsion free group which contains Z* as a normal subgroup of finite
index is the fundamental group of a flat 3-manifold. On examining the lists in [50;
pages 117, 120] we see that only the groups G, =27’ and G, can occur as knot
commutator subgroups. (For the other groups admit no meridional automorph-
isms, as they have abelianizations of the form Z @ (finite) or (free) @ (Z/22)).

If G' =77 and r = 4, then some power of a meridian would commute with G'.
But the characteristic polynomial of an automorphism of Z* of finite order must
be a product of cyclotomic polynomials, of total degree 3, and therefore must
have ¢t —1 as a factor. Since such an automorphism cannot be meridional, we
must have r =3 when G'=27’. The further details in this case are taken from
[24].

Thus to determine the possibilities for G when r =4 we must find the



128 JONATHAN A. HILLMAN

conjugacy classes in Out (G,) which contain meridional automorphisms. The
group G, has a presentation (x,y, z|xy’x 'y>=yx?>y " 'x*=1, z=xy). The
subgroup A, generated by {x?, y? z?} is a maximal abelian normal subgroup,
isomorphic to Z°, with G¢/A¢=~ (Z/2Z)*. Define automorphisms i and j of G
by i(x)=y, i(y)=x (hence i(z)=x"?y?z"" and i*=id) and j(x)=xy, j(y)=x
(hence j(z)=xyx=2z%""' and j®=1). Then the images of i and j generate
Aut (G¢/Ag) = GL(2, F;) = S;. Let H be the subgroup of Aut(Gg) generated by
the automorphisms listed in the following table.

Effect on
Automorphism  x y z x? y* z?
o xb oy x%z -1 1 1
B x y' yk 1 -1 1
% x oz 1 1 -1
) x x¥y  x%z 1 1 1
£ yix y y*z 1 1 1
¢ zx  ZYy z 1 1 1

(Note that these automorphisms act on Ag=Z7-x*® Z-y*@® Z - z* via diagonal
matrices; the last three columns of the table give the diagonal entries of the
matrices). Then H = ker (:Aut (Gs)— Aut (Gs/Ag)). For an automorphism induc-
ing the identity on G¢/As must send x to x*#y%?z%x, y to x*y*z**y and hence z to
x2@+s)y2a-02-4) 7 The squares of these elements are x**%, y**2 and z*"~*2,
which generate Agq if and only if p=—1o0r 0, t=—-1o0or0 and r=u—1 or u.
Composing such an automorphism appropriately with «, f and y we may achieve
p =t=0and r =u. Then by composing with powers of §, € and ¢ we may obtain
the identity automorphism. These automorphisms satisfy o= f?=y?*=1 and
each pair commutes except for a8 =6 "'a, Be =¢"'8 and y¢ = ¢ 'y. The inner
automorphisms are contained in H, and are generated by fyé (conjugation by x)
and aye¢ (conjugation by y). Therefore H = H/Inn (Gg) is a group of exponent 2
generated by the images of a, B, y and & Since the images of these

: " -1 0 1 0 1 2
elements in Aut (Ge¢/G¢)=GL(2, Z/4Z) are < 0 1), (0 _1), (O _1)

1 0
and ( 5 1) respectively (with respect to the basis {xGg, yGe} for G¢/G¢) and

these matrices generate a group of order 16, we must have H =~ (Z/27)*. Since in
Aut (G,) we have j° = aBye, jiji = 8, ia = i, piy =vi, ja =vyj, jB = 8qj, jy = Bej
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and je = dj, we find that Out (Gg) is a group of order 96, with a presentation
(i,j,a,B, 7, e|la*=B=y*=¢e’=i*=j°=1, a, B, y, € commute, ia = Bi,
iy = aei, ja =vj, jB = aByj, jy = Bej, je = Byj, j* = aPye and jiji = By). There is
an exact sequence

1— (Z/22)*— Out (Gg)— Sy — 1.

If y is a meridional automorphism of G, then it must induce a meridional
automorphism of G¢/A,, and so we must have y =j or j~' modulo H. Conversely
any such automorphism is meridional, for it implies that G, modulo the normal
closure of {g7'y(g) | g in G} is a perfect group, and therefore trivial, since G; is
solvable. There are 32 elements in the cosets jHUj 'H of Out(G,). The
centralizer of j in Out (Gg) is generated by «aff and j, and has order 12. The
distinct cosets of this centralizer in Out(Gg) are represented by
{1, @, v, ay, i, ia, iy, iay}. Conjugating j and j~' by these elements we get 16
distinct elements of jH U j~'H, which all give rise to the group with presentation

(x,y, t|xy>x"y2=1, txt™!

=xy, tyt '=x)
However this group cannot be a PD; group, as already the subgroup generated
by {x?% y? z° t} is nonorientable. The elements jo and jB also have centralizers
of order 12 and their conjugates exhaust the remaining 16 elements of jH U j~'H.
Each of ja and jB is conjugate to its inverse (via i), and so the groups G(+1) and
G(—1) that they give rise to are distinct. Moreover these automorphisms are
orientation preserving on A, and hence on Gg (in fact ja = (iayjyai)®) and so
G(+1) and G(—1) are PD; groups.

Finally in both cases the subgroup generated by AU {t°} is an abelian normal
subgroup of rank 4.

As the characteristic polynomial of a meridional automorphism of Z> must be
irreducible and not cyclotomic the only nontrivial abelian normal subgroup of a
knot group G with G’ =77 is G' itself. In each of the groups G(+1) and G(-1)
the subgroup A, is an abelian normal subgroup of rank 3. Since the characteristic
polynomial of ¢ acting on the subgroup A, of G(¢) is X° — 1, the only candidates
for normal subgroups of rank <3 contained in A, are (essentially) (fr — 1)Aq,
generated by {x%y?, x?z72} and (> +t + 1)A,, generated by {x’y?z%}. It is easily
seen that neither of these groups is even normal in G'. Therefore any abelian
normal subgroup B of G(g) such that B N A, has rank less than 3 must map
injectively to G/G’' and so have rank 1. Such a subgroup must be central.
However the centre of G () is trivial. For if g (with g in G (&)’ = Gg) is central,
then g commutes with ¢, and so g° in A, is invariant under jB. Hence
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g2=(x*y"%z%" for some m in Z. Since t*g®=(t*g)® is also central, the
automorphism (j8)®* must be conjugation by g, i.e. by a power of x?y 2z, But
(B)°(x) =y~?z'x, (iB)°(y)=x"z'y and (jB)°(z) =y *x"*z. Therefore (jB)*'x =
y~"z%x, etc. Since (x%y “2z%Px(x%y "%z%) 7P =y~ *z%x, etc., no nontrivial power
of jB can be conjugation by a power of x’y "’z Hence k =0. But then g is
central in G(¢)' = G, and so g = 1. Thus G(¢) has trivial centre.

Each of the groups allowed by Theorem 4 is the group of some fibred 2-knot,
as we shall now show. (Recall that the groups Z> and G, are the fundamental
groups of flat 3-manifolds, which are in particular Seifert fibred. Note also that
the assumption in Theorem 5 that G be a PD; group is redundant, except
perhaps when H'(G'; Z/2Z) = 0 [24]).

THEOREM 5. Let G be a 2-knot group which is a PD; group such that G' is
the fundamental group of a closed aspherical 3-manifold M(G') which is either
Seifert fibred or sufficiently large. Then G is the group of a fibred 2-knot.

Proof. The manifold M(G’) must be orientable and the meridional auto-
morphism orientation preserving, since G is a PD; group. The meridional (outer)
automorphism may be realized by a self homotopy equivalence of the aspherical
manifold M(G') and therefore by a self homeomorphism, @ say (by [13] or [48]).
We may assume that ¢ fixes a point of M(G'). A fibred knot with group G can
now be constructed by surgery on a cross section of the mapping torus of @, using
[16] to recognize the resulting homotopy sphere as S*.

§4. Rank 2

We shall now suppose that the maximal rank of a torsion free abelian normal
subgroup is 2. Although we have not been able to eliminate the possibilities that
A c G' or that A be not finitely generated, our results suggest that G must be the
group of a generalized twist spun torus knot. We shall use repeatedly in this
section the fact that the subgroup SL(2, Z)' of GL(2, Z) is a finitely generated
free normal subgroup and the quotient group GL(2, Z)/SL(2, Z)' is D,,, the
dihedral group of order 24. (See [42: Section 6.2]).

THEOREM 6. Let G be a 2-knot group with a torsion free abelian normal
subgroup A of rank 2, such that A ¢ G'. Then G is a PD} group, [G:Cg(A)] <2
and G' is a PD3 group with non-trivial centre. If G'/G" is infinite then A =~ 7* and
G is the group of a fibred 2-knot.
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Proof. The group G is a PDy group by Theorem 3. The intersection A N G’
is a rank 1 abelian normal subgroup of G. The automorphisms of A preserving
such a subgroup form a group isomorphic to a subgroup of lower triangular 2 X 2
matrices with rational coefficients, which must be metabelian. Therefore G" ¢
C;(A), and if C;(A) is solvable, G is solvable and so polycyclic. If A = Z* then
G/C;(A) is a metabelian subgroup of GL(2, Z) with finite cyclic abelianization,
and so finite. The group G/Cg;(A) is also finite if A is not finitely generated, for
otherwise ¢.d.C;(A) =3 =c.d.A, so C;(A) is abelian by [5: Theorem 8.8}, hence
G would be polycyclic and so A finitely generated, contrary to assumption. But a
finite lower triangular subgroup of SL(2, Q) with cyclic abelianization must have
order at most 2. Thus [G:C;(A)] =2, so G' = C;5(A) and AN G’ is central in
G’'. The subgroup H of G generated by A U G’ has finite index in G and so is a
PDy group. Since A is central in this group and maps onto H/G' = Z, we have
H~G'xZ, and so G' is a PD3 group. Now a PD; group with nontrivial centre
and infinite abelianization is the fundamental group of a Seifert fibred 3-manifold
[27]. In particular its central subgroups are finitely generated. Therefore A =~ 77,
since A N G’ has rank 1. The final assertion follows from Theorem 5.

We do not know whether A need be central in G, nor whether it need be

finitely generated. However Theorem 6 applies whenever C(G) has rank greater
than 1.

THEOREM 7. The centre of a 2-knot group has rank <2. If rank C(G) =2
then C(G)¢& G', so the conclusions of Theorem 6 hold for A= C(G), while
C(G")=G'NC(G) and is contained in G".

Proof. The centre of G contains a torsion free subgroup of the same rank,
which is necessarily normal in G. Suppose that rank C(G)>1. Then G is a PDJ
group by Theorem 3. Since the groups in Theorem 4 have trivial centre, we must
have rank C(G)=2. Now G' N C(G) is nontrivial and is contained in G" since
G/G'=Z. In particular G’ is nonabelian. Since G’ is the fundamental group of
an open aspherical 4-manifold (the infinite cyclic covering of the manifold M of
§3), we have ¢.d.G'=3. Since 4=c.d.G =c.d.G' +¢c.d.(G/G')=3+1, we have
c.d. G'=3. Butif c.d. G’ =3 and G’ contains a central subgroup isomorphic to
Z* then either G' is abelian or G” is free [5: Theorem 8.8]. Thus C(G) cannot be
contained in G’, and so Theorem 6 applies.

Now ¢.d.C(G') =<2 so either C(G')=Z? or C(G') has rank 1 [5:Theorem
2.81 1In the former case G” must be free, since G’ is nonabelian [ibid]. Since
G'NC(G)cG", we must then have G"=Z and hence G" is central in G'.
Therefore G' is nilpotent and so a nonabelian poly-Z group of Hirsch number 3.
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But such groups have centre Z. Thus C(G’) is a rank 1 torsion free abelian group.
Since C(G') contains G' N C(G) (which also has rank 1) and is characteristic in
G, it follows that C(G’) is central in G; in other words C(G') = G' N C(G) and
so must be contained in G".

The simplest example of a 2-knot whose group has centre Z* is the
6-twist-spun trefoil [S1]. The r-twist-spun (p, g)-torus knot (for p and q relatively
prime) is fibred with fibre the Brieskorn manifold M(p, q, r), and the r'* power of
some meridian is central in the group G of this knot. If p~'+ q~'+r~' =<1 then
M(p, q, r) is aspherical and G' = w,(M(p, q, r)) has centre Z; if also r is odd the
conjugation action of G/G’ on Z=C(G') must be trivial, and so C(G)=Z>.
(Can the assumption that r be odd be lifted?) Note that if p, g and r are pairwise
relatively prime then M(p, g, r) is an homology sphere and G = G' X Z, for there
is then a central element mapping to a generator of G/G'.

More general constructions based on torus knots lead to similar examples [40].
Does every 2-knot whose group has centre Z* derive thus from a torus knot? If
the 2-knot is already known to be a twist-spun 1-knot, then this is usually so. (I
am indebted to Scott for explaining how the manifold M in the next theorem
admits a Seifert fibration invariant under the group action).

THEOREM 8. Let G be the group of the q-twist spin of a 1-knot K, and
suppose that G'/G" is infinite and C(G')=Z. Then K is a torus knot.

Proof. The subquotient G'/G” is the first homology of the g-fold branched
cyclic cover M of S°, branched over K, which has order |[I,-;=, A,(K)({')],
where ¢ is a primitive g™ root of unity [26:Chapter VIII]. Therefore G'/G”
infinite implies that g is not a prime power, and so g = 6. If the manifold M were
a connected sum M,; # M,, then one of the summands, M, say, would have to be
a homotopy sphere, since C(;(M))+# 1. The knot K would decompose accord-
ingly, so that M, would be a branched cyclic cover of S, branched over a knot
summand of K [34]. But any such homotopy sphere must be standard, by the
Smith conjecture. Therefore M is irreducible, and also sufficiently large, and so
must be Seifert-fibred, of type H> x R, SL(2, R), Nil, E*> or §* X R. Now Meeks
and Scott have shown that any finite group action on a closed 3-manifold
admitting a geometric structure of one of the first four of these types (or of type
Sol) may be assumed to preserve such a structure [33]; as none of Z, Z ® (Z/2Z)
or (Z/2Z)*(Z/2Z) can be the commutator subgroup of a knot group the case
5% x R does not arise here. Preservation of such a structure implies that M admits
a Seifert fibration invariant under the action. (When M is flat, i.e. of type E°, one
must observe that the orbifold fundamental group of the orbifold M/(Z/qZ) sits
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in an exact sequence 1—>Z’—>mx— Q-1 where Q is a finite subgroup of
SL(3, Z) mapping onto Z/qZ. Since q > 4 the group Q must be cyclic or dihedral,
and so leaves fixed some nonzero vector in Z°, corresponding to an invariant
Seifert fibration on a 3-torus covering M, which passes to an invariant fibration on
M. Note that in fact we would have g = 6).

Since q > 2 the fixed circle (the branch set in M) must be a fibre of the Seifert
fibration which therefore passes to a Seifert fibration on the knot complement
S’\K. Thus the knot K must be a torus knot [8].

Remark. The condition C(G')=Z alone implies that g > 1. Bedient [4] has
shown that when g =2 the knot is not uniquely determined by the associated
2-fold branched cyclic cover being a particular Seifert fibre space, and need not
be a torus knot. Can the condition “G'/G" is infinite” be relaxed to “q =3"?
(Note that the examples of Bedient do not give counter—examples to the question
preceding Theorem 8, as the branch involution acts nontrivially on the centre of
the fundamental group of the branched cyclic cover).

There are no known examples of the types allowed by the next theorem,
which considers the remaining possibilities in the rank 2 case.

THEOREM 9. Let G be a 2-knot group with a maximal torsion free abelian
normal subgroup A of rank 2 such that A< G'. Then G is a PD] group. If A =7
then either

(i) C5(A)=G', G" is a nonabelian free group and Ann (G'/G") is divisible
by oneof t*+t—1, > —t—1ort*—=3t+1; or

(i) G/C;(A)=1Z/6Z, G" is a nonabelian free group and Ann(G'/G") is
divisible by the cyclotomic polynomial ¢ =1>—t+1; or

(ili) G/Cs(A) = Ds; or

(iv) c.d. Cg(A)=c.d. C5(A) =3 but C5(A) £G'.

If A is not finitely generated then A = C5(A).

Proof. The group G is a finitely presentable PD; group by Theorem 3. If
A =7?then G/Cg5(A) is isomorphic to a subgroup of GL(2, Z) and so has virtual
cohomological dimension =1. Therefore c.d. C5(A) =3 or 4. If A is not finitely
generated then c.d. A =3 so again c.d. C5(A) =3 or 4.

If AcG' and A=7? then 2=cdA=<cdCs(A)=cd.G' =3. If
c.d.C;(A) =2 then Cg;(A) = A. Since C5(A)' < Cs(A) this implies that C;(A)
is nilpotent. Since A is maximal and c.d.C;(A) =3, C5(A) cannot be abelian.
But nonabelian nilpotent groups of cohomological dimension 3 have infinite cyclic
centre, so c.d.C5(A)=4. Therefore [G':C;(A)]=[G:C5(A)]<* and so
c.d.Cg;(A) =c.d.G' =3, contradiction. Thus c¢.d.C5(A)=3 and so Cs-(A)" is a
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free group. If C5(A)' is abelian then the subgroup generated by AU Cg.(A)' is
an abelian normal subgroup of G, so Cs;(A)' € A (by maximality of A). This
leads to a similar contradiction. Therefore Cs:(A)’ is a nonabelian free group,
and ANCg(A) =1. (Similarly, if c.d.C;(A) =3 then C;(A)' is nonabelian
free).

If A=7? and C5(A)< G’ then G/C;(A) is a subgroup of GL(2, Z) with
infinite cyclic abelianization. Such a group must be infinite cyclic. For any
subgroup of GL(2, Z) contains a free subgroup with quotient a subgroup of D;,.
If the abelianization is cyclic then this quotient must be either cyclic (of order
dividing 12) or D; = S;. But an extension of Z/nZ by a free group F(r) which has
infinite cyclic abelianization must be torsion free, and so free by [45:5.B.3]. If an
extension H of D; by a free group F(s) has infinite cyclic abelianization, then we
may assume s > 1 and that the only finite subgroups of H are isomorphic to Z/3Z.
Since F(s) has infinitely many ends, so does H, and therefore H=~B=*D or
B *¢ D or B *., where C=Z/3Z, by [45:5.A.10]. But if H = B * D then either B
or D would be perfect, which is clearly impossible for nontrivial subgroups of H.
If H= B *- D or B *. then B (say) would have abelianization Z/3Z. Furthermore
B#17/3Z and B’ would be free. But then M =B'/B" would be a finitely
generated Z-torsion free module over the ring Z[C]=Z[x]/(x>— 1) such that
M = (x — 1)M. Such a module must be 0, contradicting B # Z/3Z. Thus there is
no such group H, so C5(A) =G’ and G"=C4;/(A)’ is a nonabelian free group.
Therefore A N G" =1, so we may regard A as a sub-A-module of G'/G". Since A
is Z-torsion free, Ann A is principal, generated by A say. Since A = 7>, the lowest
and highest coefficients of A are +1, and the degree of A is at most 2. Since
G/G' =7, we must have [A(1)] =1. Therefore A=>-3t+1, 2 +t—1, £ —t—1
ort>—t+1. Butif A=¢*—1t+1, then ¢®* — 1 would annihilate A, and hence (since
G'cCs(A)) G/ICz(A)=1Z/6Z.

If c.d.C5(A) =4 then G/Cs;(A) is a finite subgroup of GL(2, Z) with cyclic
abelianization, and so G/Cs(A) = D; or Z/nZ with n dividing 12. But if G/C;(A)
is cyclic then A is central in G'. Arguing as before we have G” is free and
ANG"=1, and Ann A is generated by one of the four quadratic polynomials
given above. Since G/Cg(A) has order dividing 12, A must divide > —1.
Therefore A = ¢pg=t>—t + 1 and hence G/C5(A) = Z/6Z.

If AcG' and A’ is not finitely generated then c.d.A=3=c.d.Cs5(A) so
Cs(A)=A as before. If c.d.Cs(A)=4 then [G':A]=[G:Cs(A)]=
[G:Cs(A)] <> so G would be virtually metabelian, hence poly (Z or finite),
contradicting the assumption that A be not finitely generated. Thus ¢.d.Cg(A4) =3
and so A = C5(A).

We remark finally that none of the cases of Theorem 9 can occur when G’ is a
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PD; group, for otherwise C;(A) would have finite index in G' by [46] and so
would also be a PD; group, and therefore abelian, contradicting the maximality
of A. In particular these cases cannot occur for any fibred 2-knot. (We expect that
in fact these cases do not occur at all).

§5. Rank 1

In the rank 1 case G need not be a PD} group. Nor is A necessarily finitely
generated. For instance, Fox found a 2-knot with group @ presented by
(a, t|tat™"=a’). This group is metabelian, with commutator subgroup @'=
Z[}]. the dyadic rationals, and has cohomological dimension 2. However
consideration of how the cohomological hypotheses of Theorem 2 might fail
suggests a useful separation of subcases. Recall that a finitely generated group K
has 0, 1, 2 or infinitely many ends, and that if K is infinite H°(K; Z[K]) = 0 while
if K has 1 end then H'(K; Z[K]) =0 also [49]. I am indebted to Geoghegan and
Mihalik for their help with case (ii).

THEOREM 10. Let G be a 2-knot group with a maximal torsion free abelian
normal subgroup A of rank 1. Then either
(1) G/A is finite, hence G' is finite; or
(i) G/A has one end and G is a PDJ group; or
(iii) G/A has two ends and there is a finite normal subgroup N in G with
G/N = @; or
(iv) G/A has infinitely many ends.

Proof. 1If G/A is finite then A is finitely generated, so A=Z and G has two
ends. But then G must be a finite extension of Z or (Z/2Z)*(Z/2Z) by
[45:4A.6.5]; since G/G'=1Z case (i) follows. If G/A has one end then G is
simply connected at <, by [35: Theorem 1], and then H*(G; Z[G]) =0 for s <2,
by [17], so G is a PD group, by Theorem 2. Thus the only case we need
consider at length is when G/A has two ends.

Since G is a knot group, the abelianization of G/A is cyclic. Therefore if it has
two ends it must have a finite normal subgroup N, with infinite cyclic quotient, so
there is an exact sequence 1—-A— G’'— N,— 1. Since A is torsion free abelian
of rank 1, its group of automorphisms is abelian; since A is normal in G, it must
be central in G', and it has finite index there. Therefore the commutator
subgroup of G’ is finite [42: Theorem 10.1.4]. Hence the set N of elements of G’
of finite order is a finite subgroup which is characteristic in G and A maps
monomorphically to H = G/N. The group H is thus finitely presentable with
H/H' =7 and H' is torsion free abelian of rank 1. According to Trotter [47] the
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A-module H' = H'/H" must have a presentation matrix of the form tA + (I — A)
where A is a d X d integral matrix (with d =rank H' = 1) and where at least one
of A, 1 — A is unimodular. This implies that (up to inversion of the meridian)
H'= A/(t —2) and so H = ®. (This result can also be derived from [20]).

The 2-knot groups in case (i) were determined in [23, 41, 51]. Twist spun
non-torus knots usually have groups in case (ii). We shall see that @ is the only
example in case (iii). The group of a (0-twist) spun (p, g)-torus knot has centre Z
with quotient (Z/pZ)*(Z/pZ) and so is in case (iv).

We shall now examine case (iii) more closely and show that N must be trivial.
For m =1 let ®(m) be the group presented by (¢, a|tat™' =a®"). Then every
subgroup of finite index in @(1) = @ is isomorphic to @(m) for some m. (For if ¥
is such a subgroup then ¥ N @' = 4 - Z[3] for some odd A=1, so ¥ is generated
by a* and t"a* (for some m=1 and u in Z[3]) with a single relation
(t"a*)a*(t"a*) "' =a*?"). Let ®@(m)(=Z[3]) be the kernel of the homomorphism
from @(m) onto Z sending ¢ to 1 and a to 0.

LEMMA. Let Y be a closed orientable 4-manifold with x(Y) =0 and such that
there is an epimorphism f:5xt = n,(Y)— ®(m) for some m, with finite kernel. Let
Y be the infinite cyclic covering space of Y determined by it = f~'(®(m)). Then
the integral homology groups of Y are finitely generated A-torsion modules, and
H,(7; Z) is finite cyclic of odd order.

Proof. Since Y is a covering space of a compact manifold and since
Z[n/#] = A is noetherian, the groups H,(Y;Z) = H,(Y; A) are finitely generated
as A-modules. Since Y is orientable, x(Y)=0 and H,(Y;Q)=Q, we have
H,(Y;Q)=0 and the rest of the first assertion now follows from the Wang
sequence for the projection Y— Y (cf. [36]). By Hopf’s Theorem H,(7;Z) is a
quotient of H,(Y;Z) = H,(Y; A), even as a A-module. By equivariant Poincaré
duality Hy(Y; A) sz(Y; A). Since H,(Y; A) is a torsion module, the Universal
Coefficient spectral sequence gives an isomorphism H*(Y; A) = Ext\(H,(Y; A), A).
Now H,(Y; A) = #/a’ and so there is an exact sequence

0> T H(Y;A)> ®(m)=A/(t-2")—0
where T is a finite module. Therefore Ext4(H,(Y;A), A)= A/(t—2™) and so

Hy(Y; A)=(A/(t—2™)=A/(Q"t — 1)=Z[}] as an abelian group. Now i/kerf
=~ Z[3] also, and H,(Z[3]; Z) = Z[3] A Z[3] (by [42:page 334]) =0, and so by the
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LHS spectral sequence for the extension
1> kerf>aA—Z[3]—1
we have that H,(7; Z) is finite. But a finite quotient of Z[3] is cyclic of odd order.

We shall apply this lemma to certain irregular finite covering spaces of the
4-manifold obtained by surgery on a knot with group as in Theorem 10 (iii).

THEOREM 11. Let G be a 2-knot group with a finite normal subgroup N such
that G/N = ®. Then N = 1.

Proof. Let M be the closed orientable 4-manifold obtained by surgery on a
2-knot with group G (as in §3), so 7,(M) = G and x(M) = 0. Choose once and for
all a meridional element ¢ in G.

Let H be the (normal) subgroup of G generated by N U C5(N). Then H has
finite index in G and H/N = ®(m) where t™ generates HG' mod G'. Let H be
the inverse image of @(m) in H. Then H' is finite and C(H) has finite index in H.
Since C(N) = C(H) N N is a finite abelian group and C(H)/C(N) is isomorphic to
®(m), we must have C(H) = C(N) x ¢(m) by [42:page 106], and so there is a
central complement B = @(m) for N in H. Hence H =~ N X ®(m). The comple-
ment B may not be invariant under conjugation by ¢, but 6(b)=b"*"t"bt™"™
defines a homomorphism from B into C(N) (since B and hence t"Bt™™ are
central in H) which must have image finite of odd order. Therefore if D is any
subgroup of N containing U, the odd part of C(N), then BD (=B X D) is
invariant under conjugation by ¢”. Now let p be an odd prime and let N(p) be the
p-Sylow subgroup of N. Then N(p) and so U(p)=U - N(p) are invariant under
conjugation by " and U(p)UB U (t™) generates a (non-normal) subgroup x
(=U(p)- B - (t™)) of finite index in H. The quotient x/U(p) is isomorphic to
®(m), and 7 =U(p)x B. Let Y(p) be the (irregular) covering space of M
determined by #. Then we may apply the lemma to conclude that H,(7; Z) is
finite cyclic of odd order. By the Kiinneth theorem, (U(p)/U(p)') ® B is a direct
summand of H,(#;Z). Since U(p) has odd order and B = Z[3], it follows that
U(p)/U(p)' is cyclic. Hence [U(p), U(p)'] = U(p)'. Therefore also [, #'] = &'
and so if F=F, the homomorphism from H'(#;F) A H'(&; F) to H*(%; F)
determined by cup product is injective [28]. Now let Y(p) be the infinite cyclic
covering space of Y(p) determined by /. Then the classifying map from Y(p) to
K(7;1) is 2-connected, so H'(7; F)=~H'(Y(p); F) and H*(#; F) < H*(Y(p); F).
By Milnor duality [36] cup product gives a perfect pairing of H'(Y(p); F) with
H*(Y(p); F) into H}(Y(p); F). If N(p)# 1 then H'(U(p); F) = F (since U(p)/U
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~N(p) and U(p)/U(p)’ is cyclic). Then H'(&; F)=F? so the image of
H'\(7; F) A H'\(#; F) in H*Y(p);F) is 1-dimensional (by injectivity of cup
product) and must be non-trivially paired with some element of H'(#; F). But
there can be no nontrivial alternating trilinear form on a 2-dimensional vector
space. So N(p) = 1, and thus N must be a 2-group.

Now let A be any abelian subgroup of N. Appealing once more to the lemma
with m=A-B - (t") and & = A X B we find that H,(A; Z) is cyclic of odd order,
as it is a direct summand of H,(7; Z). But H,(A; Z)= A A A by [42:page 334] and
so A must be cyclic. It follows that N must be cyclic (Z/2"Z) or Q(n), a
generalized quaternion group, presented by (x,y|x*=y%, x*=1) for some
n=1. (See [42:5.3.6] or [50: page 161]). Suppose that N+ Q = Q(1). Then N has
no automorphism of odd order and so, returning to the knot group G, the
extension 1> N—G'— @'—1 must split. Hence G'= &' X N, and N must
admit a meridional automorphism. But this is impossible if N is cyclic of even
order, or if N = Q(n) for some n=2. Thus N=1 or Q.

Suppose that there is an exact sequence

1-0->G—->d—1,

where Q is the quaternion group. We shall use equivariant Poincaré duality with
coefficients ¥ = [,[ @] to deduce a contradiction. We shall first describe some of
the properties of this noncommutative ring. Since @ is a torsion free 1-relator
group other than Z, it has cohomological dimension 2, and so the ring ¥ has
global dimension 2. A presentation for the augmentation module F, may be
obtained by means of the free differential calculus: there is an exact sequence of
left ¥-modules

32

0> 25 w2 w5 F,50

where e(g)=1for all gin &, 5,(0, p)=60(a—1)+ ¢(t—1) and 3,(y) = (y(t +
a + 1), y(a*+1)). As a group ring ¥ has a natural involution, defined by g =g~
for all g in @. Moreover ¥ is a twisted polynomial ring. Let E =F,[a* | =
F[a, | n €Z)/(a,,,—a>|n eZ). This is a commutative (Bezout) domain and its
field of fractions K = F,(a* ") is perfect, i.e. the squaring map o is onto. Then
W=E[a"'[t,t7';0]: each element may be expressed uniquely as a sum
Y. t’p,,(a) over m in a finite subset of Z, where each p,,(a) is in E[a”"], while the
multiplication is determined by a, .t = ta, for all n, i.e. ¢t - p(a) = o(p(a)) - ¢ for
p(a) in E[a™']. The ring ¥ has a skew field of fractions L, which as a right
W-module is the direct limit of the system {¥W, | 0+ 0 in W} where each ¥, = ¥,
the index set is ordered by right divisibility (6 < ¢0) and the map from ¥, to
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W, sends y to ¢y, and so L is flat. (Note also that L contains the ring
K[t, t™'; o] which is a skew Euclidean domain. See [12] for a discussion of fields
of fractions of twisted polynomial rings).

Let M?® be the covering space of M with &,(M®)~Q and let H, denote
H,(M; W)= H,(M®;F,) considered as a ¥-module via the action of @ through
covering translations. If M has been triangulated, we may lift the triangulation to
M? and obtain thereby a (cellular) chain complex C, of finitely generated free
W-modules such that H,(C,)=H,. Since M? is a connected open 4-manifold,
H,=TF, (the augmentation module) and H,=0. The ¥-module structure on
H,(M®;F,) = Q/Q' =F} is determined by a homomorphism @— Aut (Q/Q') =
GL(2,2)=S;. Since the abelianization of the knot group G must be infinite
cyclic, the image of @ cannot be trivial or of order 2, and there are essentially just
two possibilities. In the first case the image of @ is cyclic of order 3, so @ — 1 and
> — 1 act as 0, but ¢+ 1. It follows that t — 1 is an automorphism, and that H; with
this module structure, which we shall denote H,, is simple, and the annihilator of
a generator is the left ideal generated by a —1 and #*+ ¢+ 1. There is an exact
sequence

> 2 > Y H.—0

where (6, ¢)=0(a—1)+¢(*+t+1) and 35(y)=(p(*+ta-1)+(a~-
1)*), y(a*—1)). Exactness at three of the modules, and 378;=0 are easily
verified. We may show that ker 85 = Im 35 as follows. Suppose 31(68, ¢) =0. Then
6(a—1)=¢(+t+1). We may write ¢ as ¢ =(Lnert"pm(a))(a—1)* for
some d =0 in Z[4] and where p,,(1) # 0 for some m. Then

P +t+1)= ( > t’"p,,,(a))(t2 +t(a -1+ (a —1)*)a -1~

meF

Since ¥ is a domain we may cancel factors from an equation. Thus if d <1 we
have

( Z t”'pm(a))(t2 +tla—1)4+(@—-1Y ") =6(a— '

meF

s0 on substituting a = 1 we get X,,crt"pm(1) =0 in Fyft, t~']. This contradicts the
assumption on the p,.(a)’s. Thus d =1, so we may write ¢ =7 - (a — 1)%, and it
follows that 6 = n(® +t(a — 1) + (a — 1)°).

Otherwise @ maps onto Aut (Q/Q'), so t maps to an automorphism of order 2
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and a maps to a generator of Aut(Q/Q’)’, of order 3, and the module (now
denoted H;) is again simple. There is an exact sequence

3
0-w 2 2, w0

where (08, ¢)=6(t+a)+ ¢p(a*+a+1) and FH(y)=(y(a*+a*+1), Y+
a’ + a* + a)). (Exactness of this sequence is proved in a similar fashion).

Some information about H, and H; is given by the Universal Coefficient
spectral sequence, which, in conjunction with equivariant Poincaré duality, takes
the form E3?=e'H,>H, ,_, with differential of bidegree (—1,2). Here
e’H = Exti(H, ¥) and H is the right W-module with the conjugate action,
determined by h-y =1y -h, for h in H and y in ¥. Now from the three
resolutions given above we may compute that e'F,=eH, =¢’H; =0, and so
H, =0 in either case. (Note that in fact e’F, = e'F, = 0, which is equivalent to the
fact that the group @ has one end). The spectral sequence then gives an exact
sequence

- —eH,— e?’H,— H,— ¢'H,— 0.

Now since the skew field of fractions L is flat as a right module, H,(L @y C,) =
L ®y H,, and so is nonzero only if p = 2. But since M has Euler characteristic 0,
which is also the Euler characteristic of L ® C, and therefore of L @ H,, we
may concude that L ®yH,=0 also. Therefore e¢’H,=0 (since e’H,=
Hom (H,, ¥) «c Hom (L ® ¢ H,, L)) and we have a short exact sequence

0— ezHl—’Hl_‘)ele‘—)O

in which the middle term has order 4 (as an abelian group). But this is absurd as
eH,~W/I.=W/(*+t(a—1)+(a—1), a*-1)¥ and e*H,= W/l = W/(a*+
a*+1, t +a’+ a*+ a) ¥ are each infinite right ¥-modules. (To see this note that
for instance e’H; contains E/E NI = E/(a*+a*+1) as a sub E-module). Thus
there can be no such 2-knot.

The modules H, and H; are realized by the extensions of @ by Q presented by
(a, x,y, t|tat™ ' =a? xt™'=y, tyt"' =xy, ax = xa, ay =ya, x*=(xy)*=y?) and
(a,x,y,t|tat™ =a?, txt "=y, tyt ' =x, axa ' =y, aya" ' =xy, x*=(xy)*=y?)
respectively. These are in fact high dimensional knot groups.

THEOREM 12. Let G be a 2-knot group with a maximal torsion free abelian
normal subgroup A of rank 1.
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M) IfANG' =1, then A=Z, A c C(G) (with equality if C(G) is torsion free)
and G' is finitely presentable. Moreover G is a PD; group if and only if G' is a
PD7 group if and only if e(G') = 1.

(2) If A< G’ then A < C(G’) (with equality if C(G') is torsion free). If G' is
finitely generated then G is a PD; group. If furthermore G' is finitely presentable
then G' is a PD3 group.

Proof. Since r=1, Aut(A) is abelian, so G'c C;(A). If AL G, then
ANG'=1 and A maps injectively to G/G’' =Z, so A= Z. Since conjugation by
an element of G induces the identity automorphism of G/G’, it follows that A is
central in G, and therefore A = C(G) if C(G) is torsion free (by maximality of
A). The subgroup of G generated by AU G’ has finite index in G, and is
isomorphic to A X G', so G' is finitely presentable. If G is a PD;-group (which
need not be the case when r =1) then A X G' is also a PD;-group, so G' is a
PD3-group and hence e(G')=1. Since ANG'=1, (G/A)' =G' and has finite
index in G/A, so e(G') =1 implies that e(G/A) =1, and so G is a PD;-group by
Theorem 10 (ii).

If AcG’, then Ac C(G') (with equality if C(G’) is torsion free, by
maximality of A). If G’ is finitely generated then G'/A must be infinite and so
e(G/A)=1. Thus G is a PD]-group, by Theorem 10 (ii). Suppose now that G’ is
finitely presentable and Z is an infinite cyclic subgroup of C(G'). Then ¢.d.G' =3
and there is an exact sequence

0—-P—>P,—-P—>FP—7—0

where the P, are projective Z[G']-modules, and are finitely generated for i =2,
since G' is FP,. For the same reason the natural map from H*(G'; Z[G']) ® Z[Z]
to H*(G'; Z|G)) is an isomorphism for s <2. (Cf [S: Theorem 5.3]). This is also
true for s =3. For the spectral sequence for the extension 1-Z—>G'—>J/—1
gives an isomorphism H*(G'; Z[G']) = H*(J; H'(Z; Z[G'])) = H*(J; Z[J]) since Z
is finitely generated. Likewise, writing Z[G] = Z[G']*?’, we have H*(G'; Z|G]) =
H*(J; Z[J)D) = H*(J; Z[J))D, since J is FP,. Therefore H*(G';Z[G])=
H>(G'; Z[G'])'?. On keeping track of the direct sum decompositions, we see that
in fact H}(G'; Z[G]) = H(G'; Z|G']) ® Z[Z] as a Z[Z]-module.

The LHS spectral sequence for the extension 1-G'—>G—Z—1, with
coefficients Z[G], reduces to a Wang sequence

= HY(G"; Z|G]) =5 HY(G';Z|G))— H '(G; Z[G])— . .

Using the above information on HY(G';Z[G]) we find that HY(G'; Z[G']) =
H*'(G;Z|G]) =0 for ¢ #3 and H*G';Z[G']) =~ H*(G; Z[G]) = Z. Thus if we



142 JONATHAN A. HILLMAN

dualize the above Z[G']-resolution of Z by means of P* = Hom (P, Z[G']) we get
an exact sequence

0— P}—> Pf—> P> P> HXG';Z[G')=7Z—0

The dual P* of a projective module P is finitely generated if and only if P is.
Therefore P37 and hence P, are finitely generated. Thus G’ is FP. As
HY(G'; Z|G']) = Z if q =3 and 0 otherwise, this implies that G’ is a PD7 -group.

The group G of a (0-twist) spun torus knot has C(G)=Z, C(G)NG' =1 and
G’ free of even rank (so e(G’) # 1). The group of a twist spun prime knot (other
than a torus knot or certain rational knots) is usually a PD} -group with C(G)~Z
and C(G)N G’ =1. The groups of Theorem 14(iii) below are PD7-groups with
G' finitely presentable and (excepting the group of the 6-twist spun trefoil knot)
have centre Z contained in G'. Yoshikawa has constructed a 2-knot whose group
has centre Z contained in G’ and such that G/C(G) has infinitely many ends [46].

Note finally that Theorem 12(2) applies if we assume only that G’ has a
central element z of infinite order. For the normal closure of (z) in G is then a
cyclic module over Z[G/G']|= A, and so its Z-torsion subgroup has finite
exponent, e say. The normal closure of (z¢) in G is then a torsion free abelian
normal subgroup of G of positive rank.

§6. Virtually solvable 2-knot groups

We shall apply the above results to the determination of the virtually solvable
2-knot groups which contain nontrivial torsion free abelian normal subgroups. All
except for Fox’s group @ are virtually poly-Z. If we assume further that G’ be
nilpotent, we need make no assumption about torsion free abelian normal
subgroups. Let /* = SL(2, Fs) and for each k=1 let T (k) be the extension of
Z/3*Z by Q with presentation

1 1 3k

(x,y,z|x*=(xy)’=y* zxz7 ' =y, zyz ' =xy, ¥ =1).
THEOREM 13. Let G be a virtually solvable 2-knot group which has a
nontrivial torsion free abelian normal subgroup A. Then either
(i) G is a torsion free virtually poly-Z group of Hirsch length 4 and of
orientable type, and G’ is virtually nilpotent; or
(i) G'=(Z/nZ) x P where P=1, Q, I* or T(k) and (n,2|P|)=1, and we
may assume that the meridional map multiplies the cyclic factor by —1, is
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the identity on 1*, and sends x, y in Qtoy, xy and x, y, zin T(k) to y~!
x~', z7! respectively; or

(iii) G = .

’

Proof. We may assume A maximal and apply Theorems 3, 10 and 11. (Note
that since G/A is a finitely generated virtually solvable group it cannot have
infinitely many ends).

If G is a virtually solvable PD group then it is torsion free and virtually
polycyclic, by [5: Theorem 9.23], and hence virtually poly-Z, by [42:5.4.15]. The
commutator subgroup then has a nontrivial maximal (free) abelian normal
subgroup, B say, of rank at most 3, the Hirsch length of G'. If B has rank 2, then
G'/B has Hirsch length 1 and so is two-ended. It follows that G’ has a
characteristic subgroup with quotient either (Z/2Z)*(Z/27Z) or Z. But no such
group can be the commutator subgroup of a knot group. Thus B has rank 1 or 3
and G' is then easily seen to be virtually nilpotent.

Otherwise G = @ or G' is finite; the further detail in the latter case follows
from [14, 23].

There are finitely generated infinite solvable groups that contain no nontrivial
torsion free abelian normal subgroups, but we do not know whether such can
arise as high dimensional knot groups. (Very likely there are such). However a
solvable group which is constructable in the sense of Baumslag and Bieri [3] must
contain such a subgroup, for every subgroup of a constructable group is (torsion
free)-by-finite. In particular polycyclic groups and finitely presentable groups
which are nilpotent-by-(infinite cyclic) (for instance @) are constructable [3, 6].
We can be much more specific about 2-knot groups of the latter type.

THEOREM 14. Let G be a 2-knot group with G' nilpotent. Then either
(i) G' =7 and the meridional map is given by a matrix C in SL(3, Z) such
that det (C — 1) =1; or

(i) G' = F(2)/F(2),, the free nilpotent group of class 2 on two generators,
presented by (x,y |[x, [x, y]|=[y, [x, y]] = 1) and the meridional map is

given by x—x°y® and y—xy? where (Z Z) is one of (1 ;),
11y (1 1y /=1 1y
(—1 0)’ (1 0) m( 1 0>’0’
(ili) G' has a presentation (x,y, z|[x,y]=2z9 [x, z]=[y, z]=1) for some
odd q > 1 and the meridional map is given by x — x°y®, y > xy9, z—z7!

where (a b)i (1 1) r(—1 1)'
c d/®\1 0/ 1 o)
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(iv) G has a presentation {(a,t|a" =1, tat"'=a"") for some odd n = 1; or

(v) G has a presentation {a, x,y, t|a" =1, x*=(xy)*=y? ax =xa, ay = ya,
tat ' =a"', txt7'=y, tyt~' =xy) for some odd n =1; or

vi) G = .

Proof. By the remark on page 265 of [6], G is constructable. Since every
subgroup of a constructable solvable group is (torsion free)-by-finite [3], G must
have a nontrivial torsion free abelian normal subgroup. Moreover G is a virtual
duality group and H*(G;Z[G])=0 for k # h(G), the Hirsch length of G, by
[3:Theorem B]. Thus if #(G) > 2 Theorem 2 applies so G is a PD; group, hence
polycyclic. Therefore G’ is a nilpotent poly-Z group of Hirsch length 3, by
[42:5.2.20], and thus is an extension of Z> by Z; the further details in cases (i),
(i) and (iii) are taken from [24]. If #(G) = 1 then G’ is a torsion group, so finite
by [3:Proposition 1], and cases (iv) and (v) follow from Theorem 13. Finally if
h(G) = 2 then the elements of finite order of G’ form a (characteristic) subgroup
T [42:5.2.7] which is again finite by [3] and the torsion free nilpotent group G'/T
must be abelian of rank 1, since it has Hirsch length 1. Therefore G/T = & by
Theorem 10 (iii), and case (vi) follows from Theorem 11.

COROLLARY. If G is a metabelian 2-knot group then either G' =77 or Z/nZ
for some odd n, or G = .

The determination of the abelian 2-knot commutator subgroups is essentially
due to Yoshikawa [53], who however did not exclude the possibility that
G' =& ®(2/52).

Each of the groups allowed by Theorem 13 is the group of some 2-knot.
Examples of type (i) were first given by Cappell [9] for the case G’ = Z°. Cappell
and Shaneson used such knots to give examples of distinct 2-knots with
homeomorphic exteriors [10]. These knots have been examined in further detail
by Aitchison and Rubinstein [1]. If G’ is poly-Z, then it is either Z> or nilpotent
of class 2. In the latter case G’ is a discrete uniform subgroup of the
3-dimensional Lie group of upper triangular 3 X 3 matrices over R [24]. (The
6-twist spun trefoil is such a knot). In general the commutator subgroup of a
group of type (i) is the fundamental group of an aspherical closed Seifert fibred
3-manifold, by [2] and [44], and so G is the group of a fibred 2-knot, by Theorem
5.

In another paper we shall show that the exterior of a 2-knot whose group is
torsion free virtually poly-Z is determined up to homeomorphism by the group
together with a weight class [29]. If G’ = Z* the weight class for G is unique up to
inversion, and the knot is determined up to a finite ambiguity by its Alexander
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polynomial [24]. (The corresponding assertion in [24] for the other poly-Z groups
is not justified, as the role of the weight class was overlooked there). No 2-knot
with G’ = 27> can be a twist spun 1-knot, for a meridional automorphism of Z°
cannot have finite order (cf. the proof of Theorem 3).

Fox constructed 2-knots with commutator subgroup Z/(2n +1)Z, for any
n =1 [15: Examples 12 and 15]. These have been shown to be the 2-twist-spins of
certain twist knots by Litherland (for the case n =1, which is the 2-twist-spun
trefoil) and Kanenobu [30] (for all n =1). Thus these knots are all fibred, with
fibre a punctured lens space [54]. (See also Section 6 of [39]). All the other
possibilities for G’ finite allowed by [23] have been realised, most as twist-spun
classical knots, by Yoshikawa [51]. Plotnick [39] and Gonzales-Acuna have shown
that no outer automorphism of I* = SL(2, 5) can be realized as conjugation by a
meridian in a 2-knot group, thus resolving the one uncertainty about 2-knot
groups with G’ finite remaining in [23]. The method is essentially to show that an
outer automorphism induces the identity on H3(S(3); Z) = Z/3Z while it induces
—1 on Hy(S(5);Z)=127/5Z, where S(p) is the p-Sylow subgroup. If it were
geometrically realizable, these calculations would lead to an inconsistency when
considering the effect on the universal cover of the manifold obtained by surgery
on the knot. Plotnick and Suciu [41] have determined all the fibred 2-knots with
fibre a punctured spherical space form, and have found representatives for the
weight classes when G’ is finite.

Fox’s Example 10, with group @, is not fibred, as its commutator subgroup is
not finitely generated, and so cannot be twist spun. However it is a ribbon knot,
as can be seen by “thickening” a suitable immersed ribbon D? in S° for the
stevedore knot 6, (the equatorial cross-section of Example 10) to get an
immersed ribbon D’ in S*. Alternatively, we may construct a ribbon 2-knot with
group @ by using the equivalent (Wirtinger) presentation (u, v, w|vuv™'=w,
wuw ™' =v) and the method of [26; Chapter II]. (The presentations are related
by u—ta, v—tlat”' and w—t). Are all 2-knots with group @ topologically
equivalent?

It is well-known that all 2-knots are slice knots [32]. However knots with
groups of type (i) or (ii) cannot be homotopy ribbon, let alone ribbon. For the
manifold obtained by surgery on a homotopy ribbon knot bounds a 5-manifold
(the complement of some slicing 3-disc in the 5-disc) with Euler characteristic 0
and built out of 0, 1 and 2-handles [11]. Considering the dual handle decomposi-
tion relative to the boundary, we see that the fundamental group of this
5-manifold, which has deficiency 1, is the knot group. Thus if Theorem 1 applies
this group must have cohomological dimension 2 (and in fact the 5-manifold is
aspherical) and so (i) cannot hold, while H,(G'; Z) must be Z-torsion free by [26;
Theorem II1.10] and so (ii) cannot hold. (In fact Cochran has shown that the
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result of surgery on a homotopy ribbon 2-knot is never aspherical. He also raises
the question as to whether the group of every ribbon 2-knot has a 2-dimensional
Eilenberg-Mac Lane space [11}).
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