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Tight immersions of highly connected manifolds'

GuUDLAUGUR THORBERGSSON

1. Introduction

One expects that most compact manifolds do not admit any tight immersions
into a Euclidean space. We will support this in the case of highly connected
manifolds. More precisely, we will give restrictions on the topology of (k —1)-
connected 2k-dimensional manifolds that admit tight immersions into Euclidean
spaces. We will also determine the possible codimensions of such immersions.

Known examples of highly connected manifolds that admit tight immersions
are (SK x SX)# - .- # (8% x §%), the projective planes P,F where F =R, C, H or
O and all surfaces with the exception of the Klein bottle and the projective plane
with one handle for which no tight immersions have yet been found; see section
2. It is not unlikely that these manifolds and their connected sums with copies of
P,F and —P,[F are the only examples.

Notice that the k-th Stiefel-Whitney class w,(M*) vanishes if M* = (§* x
SKy# < -« #(S¥x §%). We have w,(M*)#0 if M* = PF # N°*, where k =
dimgF and N%* is (k — 1)-connected. In general one can show that w,(M**)=0
for a (k — 1)-connected 2k-dimensional manifold with £ # 1, 2, 4 or 8; i.e. if 2k is
not the dimension of a projective plane; see section 4. A geometric interpretation
of the condition “w,(M*)=0" for highly connected manifolds is that no
homology class has self-intersection number 1 mod 2.

The following theorem together with results of Wall [Wa] show that there are

many examples of highly connected manifolds which do not admit a tight
immersion.

THEOREM A. Let M** be a (k — 1)-connected compact manifold with
we(M*) =0 which admits a tight immersion into a Euclidean space and assume
that k>2. Then M* has the same cohomology ring as (S* x S*) # --- #
(S* x $*) over the integers.

'Work partially done at IMPA in Rio de Janeiro and supported by the exchange program of
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Tight immersions of highly connected manifolds 103

We can prove much more if the dimension of the manifold is 4.

THEOREM B. Let M¥ be a (2l — 1)-connected compact manifold with
wy(M*) =0 which admits a tight immersion into a Euclidean space and assume
that | > 1. Then M* is diffeomorphic to the connected sum

(S xSy # - #(SHxSH#ZX

where %' is a sphere with some differentiable structure. (The same conclusion is true
for k =3 and 7 where k is as in Theorem A.)

We believe that X in Theorem B can be proved to have the standard
differentiable structure and hence be deleted from the connected sum. This would
complete the classification of 4/-dimensional (/> 1) highly connected manifolds
with wy,(M*) = 0 which admit tight immersions. The proof of Theorem B is based
on the methods of the paper [KW] by Kulkarni and Wood.

One expects that a P} can be decomposed off a highly connected manifold
M* with w,(M**) # 0 which admits a tight immersion into a Euclidean space. It
can be proved that at least the cohomology ring is no obstruction; see Theorem D
below.

We had to exclude four-dimensional manifolds in the above theorems. The
following theorem is sufficient to prove that there are infinitely many four-
dimensional manifolds which do not admit tight immersions.

THEOREM C. Let f:M*— E**! be a substantial tight immersion of a simply
connected compact manifold. Then, after a suitable choice of orientation:

(i) =2 implies that M* can be decomposed diffeomorphically as M* = (§* X
S?) # N* and the Betti number B,(M*;Z) is even. In particular, if the Stiefel-
Whitney class w,(M) # 0, then B,(M;Z) =4.

(ii) ! =3 implies that M* can be decomposed diffeomorphically as M* = P,C #
N*.

The proof of Theorem C is much more difficult than that of Theorem B and
relies in a more essential way on tightness.
As an application of Theorem C we will prove.

COROLLARY. There are infinitely many simply connected compact four-
dimensional manifolds, among them the Kummer surface, which do not admit any
tight immersions into a Euclidean space.
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The Kummer surface is defined as
Kz{[z()’ oo ,Z3]EP3C|28+- . +z‘%=0}

It is the simplest algebraic surface which cannot be obtained as a connected sum
of copies of $? X §?, B,C and —P,C. It is a conjecture in differential topology that
all simply connected compact four-manifolds can be written as a connected sum
of copies of §*, §*x §?, B,C, —P,C and K.

The non-existence of a tight immersion of the Kummer surface follows
immediately from Theorem C and a recent result of Donaldson [Do 2] which says
that the Kummer surface cannot be decomposed diffeomorphically.

The other four-dimensional manifolds not admitting tight immersions are not
explicitly given in the proof of the Corollary. They arise from algebraic surfaces
of even degree in P,C by splitting off copies of S x S? if the algebraic surface
itself allows a tight immersion. It is only for the Kummer surface that we use
Donaldson’s results. The rest of the proof of the Corollary only uses the theory
developed in this paper and some facts about characteristic numbers of algebraic
surfaces.

We believe that the decomposition result in Theorem C can be generalized to
higher dimensions. The next theorem, which refines a result of Kuiper, shows
that the cohomology ring does not give an obstruction to such a generalization.
We will also determine all possible codimensions of tight immersions of
2k-dimensional (k — 1)-connected manifolds, although one case remains open if
one distinguishes the cases of vanishing and non-vanishing k-th Stiefel-Whitney
class. Theorem D will be used in the proofs of Theorems A, B and C.

THEOREM D. Let f:M** — E**' be a substantial tight immersion of a
compact (k — 1)-connected manifold.

(i) Assume that the k-th Stiefel-Whitney class w,(M**) vanishes. Then the
codimension l is 1 or 2.

(i) Assume that the k-th Stiefel-Whitney class w,(M**) does not vanish. Then
k=1,2, 4o0r8.

If k =1 or 2, then the codimension l is k, k + 1 or k + 2.

If k =4 or 8, then the codimension |l is k + 1 or k + 2.

Furthermore, the intersection form decomposes as (1) © B over the integers if
k > 1. (We exclude the case k =1 since the intersection form of a non-orientable
surface is not defined over the integers.)

Remarks. (a) This theorem refines a result of Kuiper [Ku2], p. 231. In
particular, (i) is equivalent to a part of his result. In (ii) the estimate /<k +2 is
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due to Kuiper. Notice that it follows from the assumption w,(M**) # 0 without
using tightness that k =1, 2, 4 or 8 and that the codimension / cannot be smaller
than k. In part (ii) arguments involving tightness are therefore only needed to
exclude the case / = k and to decompose the intersection form.

(b) Using Theorems A and C, we can add the following conclusions to part
(i): The Betti number B,(M**;Z) is even and, if k >2, the intersection form is
equivalent to

0 1 0 +£1
(1 iO)GB---EB(I O)(+ifkiseven,—ifkisodd)

over the integers. For kK =2 we use that the intersection form is indefinite. By the
classification of indefinite inner product spaces of type II in [MH] (here type II is
equivalent to wy(M*) = 0) we therefore see that the intersection form for k =2 is
equivalent to

e

over the integers. We believe that m can be proved to be 0. We have m = —2 and
n =3 for the Kummer surface which does not admit a tight immersion as we saw
in the Corollary to Theorem C.

If one compares Theorem D with the examples in section 2, then one sees that
all allowed codimensions actually occur in the examples with the exception of the
following case which we formulate as a problem.

PROBLEM. Does there exist a tight immersion f:M*— E° of a simply
connected compact manifold with non-vanishing second Stiefel-Whitney class?
(There are such examples with vanishing Stiefel-Whitney class; e.g. the product
embedding S* X §* « E* X E* = E®).

Theorem C gives as an obstruction that 8,(M*; Z) = 4. M. Hirsch gave in [Hi],
p. 271, a necessary and sufficient condition for a compact four-dimensional
manifold to admit a smooth immersion into E®. This condition can be expressed
as follows: wy,(M*) is the reduction modulo 2 of a class & € H*(M*; Z) such that
(a?, [M]) = —=30(M), where o(M) is the signature of M* An immediate
corollary is that P,C cannot be immersed into E° It also follows at once that
P.C # (—P,C) can be immersed into E° but not tightly by Theorem C. A
candidate for a simply connected compact four-dimensional manifold with
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non-vanishing second Stiefel-Whitney class which could be tightly immersed into
E®is P,C # P,C # (—PC) # (—PC).

The paper is organized so that examples are given in section 2, definitions and
technical results in section 3 and the proofs of the Theorems in section 4.

The paper is fairly self-contained. The book [CR 3] and the survey articles
[Ku 2] and [Ku 3] are good introductions to the subject.

2. Examples

In this section we discuss systematically the 2k-dimensional (k — 1)-connected
manifolds which are known to admit tight immersions and which codimensions of
such immersions are known to occur.

(i) Kuiper has shown that all compact surfaces can be tightly immersed except
maybe the Klein bottle and the projective plane with one handle for which no
such immersions are yet known; see the papers [Ku 1, 2, 3]. The oriented surfaces
(i.e. w;(M?)=0) can be tightly immersed with substantial codimensions 1 and 2
and there are tight immersions of non-orientable surfaces (i.e. w;(M?) # 0) with
substantial codimensions 1, 2 and 3; see Theorem D.

(ii) Here we discuss examples of tight immersions of highly connected
manifolds with w,(M*)=0. The only such manifolds known to admit tight
immersions are the connected sums (S* x $¥) # - - - # ($* x §*) (see Theorems
B and A) and the occurring substantial codimensions are 1 and 2 (see Theorem
D).

A tube of constant radius in E**! around S* c E**'c E**! is a tight
hypersurface homeomorphic to $* x §*. Hebda [He] has shown that one can also
realize the connected sum of arbitrarily many copies of S* xS* as a tight
hypersurface by taking a tube in E®**' around a ball in E**' which has
sufficiently many spherical holes. This example is not C* but it can be smoothed.

The product embedding of two convex hypersurfaces in E**' is tight,
homeomorphic to §* x S* and has substantial codimension two. To obtain a tight
embedding of the connected sum of arbitrarily many copies of S* x S* with
codimension two we imitate the above construction of Hebda and the examples of
tight surfaces in E* in [Ku2], p. 213. We choose two convex hypersurfaces in
E**! such that one of them has an open planar set A and the other has a set B
which .is congruent to I x SX~!, where I is an open interval and $¥7' is a
(k — 1)-sphere of radius &. The product A X B lies in a (2k + 1)-dimensional
subspace and has a'subset congruent to I“*! X §¥~!. Now we can “make holes” in
AXB=I*""x S§*"! as in Hebda’s example above to get a tight embedding of
(S* x S) # - - - # (S* x §¥) with substantial codimension two.
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(iii) Examples of tight immersions of highly connected manifolds with
w(M*) # 0 are the standard embeddings of the projective planes P,R, P,C, P,H
and P,O; see [Ta] and [Ku 3]. Their substantial codimension is k + 2. They lie in
spheres and can therefore be stereographically projected into a E***' where they
are also tight; see Theorem D.

There are therefore two main questions: Do there exist tight immersions of
connected sums of copies of AF and —PF? and the question already mentioned
in the introduction about tight immersions of M* into E®°.

3. Convex cycles

This section consists of basic definitions and some technical results which will
be used in the proofs of the Theorems in the introduction. Particularly important
is Lemma (3.6) on the existence of convex cycles.

3.1. DEFINITION. An immersion of a compact manifold into a Euclidean
space is said to be fight if there is a field such that all singular cycles with
coefficients in that field which bound in the manifold also bound in the
intersection of the manifold with almost every halfspace containing the cycle.

This definition is the latest in a series of equivalent definitions of tightness
which we will review for the sake of motivation. Finally we will give a new
definition in terms of Cech cohomology which will be useful for technical reasons.

Chern and Lashof [CL] proved that the total absolute curvature of an
immersion of a compact manifold into a Euclidean space is greater or equal to the
sum of the Betti numbers for any field. Immersions satisfying equality for some
field are now called tight, but they had other names in the beginning. Inspection
of the proof of the Chern-Lashof theorem immediately leads to the following
equivalent definition: An immersion is tight iff every height function which is a
Morse function has the minimal number of critical points required by the Morse
inequalities for some field. (Notice that almost every height function is a Morse
function.) The proof of the Morse inequalities shows that this is equivalent to the
following: An immersion f: M — E of a compact manifold into a Euclidean space
is tight iff the induced homomorphism of singular homology groups with respect
to some field F

H.(f7(S); F) > H«(M; T)

is injective for every « and almost every halfspace S; or equivalently iff there is a
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field F such that
H*(M;F)— H*(f~'(S); F)

is surjective for every x« and almost every halfspace S. It is possible to go to limits
and replace “almost every halfspace” by “every halfspace” if the singular theory
is replaced by Cech theory. We will not use Cech homology in this paper since it
is not a standard theory. Cech cohomology on the other hand is well-known and
can be found in the standard textbooks on topology. It is also used in the Duality
Theorem which we will apply in the proof of (3.6). The symbol H* will refer to
Cech cohomology and H, and H* to the singular theory.

It is important to define tightness for topological spaces for use with Kuiper’s
top sets which are the central technical tool of the theory. Their definition is given
below.

3.2. DEFINITION. A continuous map f:X — E of a compact connected
topological space into a Euclidean space is called tight if there is a field F such
that the induced homomorphisms in Cech cohomology

H*(M;F)— H*((5); )

are surjective for every « and every halfspace S. We will also say that f is tight
with respect to | or [F-tight. We will not refer explicitly to the field in the notation
when the meaning is obvious from the context.

The convex hull of a subset X in E will be denoted by #(X). The boundary of
the convex hull 3%(X) will be called the convex envelope of X.

A top set is the preimage of the maximal value of a height function, i.e. a
function of the type & - f: X — R where & is a unit vector in E. A top® set is a top
set of a top set. A top*set is inductively defined as the top set of a top* ™' set. A
top*map is f restricted to a top*set. It is proved in [Ku 3], p. 102, that top*maps
of tight maps are tight.

It is not true in general that top maps are injective. A nice counterexample for
closed surfaces in E> due to Banchoff can be found in [CR 2]. A somewhat less
natural such example can be obtained as follows: Take the product immersion
f X c:M?x S'— E° where f is a tight surface in E> with self-intersections and ¢ a
convex curve in E2 Then for a fixed ¢, € S' the top map f X c(¢,) is not injective.
The following lemma about injectivity of top maps will be important in the proof
of (3.6).

3.3. LEMMA. A top*map of an F-tight immersion is injective and its image is
convex if the corresponding top*set is a Cech cohomology point with respect to .
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Remark. Kuiper proved in [Ku 3], p. 120, that the image under a tight map of
a set which is a Cech homology point is convex if tightness is defined in terms of
Cech homology. Lastufka proved in [La], p. 382, that a top*map is injective if its
image is convex. We will use this result of Lastufka in the proof.

Proof. We prove the lemma by induction. Assuming (/;) we will prove (/,,,)
where the induction hypothesis (/) is defined as

(1) top*maps are injective and their image is convex if the corresponding
top*sets are Cech cohomology points and their images lie in affine
subspaces of dimension =/.

(I,) is of course trivial and (/;) follows easily. We therefore assume that () is
proved up to / for [ = 1.

Let X be a top*set which is a cohomology point and such that dim (f(X)) =
[+ 1. We know by (/;) that f is injective on any top*set of X and hence that f is
injective on the preimage of the convex envelope 3#(f(X)) of f(X). It also
follows from (7;) that 3% (f(X)) = f(X). Denote the inverse image of the convex
envelope 3 (f(X)) by Y.

We first prove that f(X) is convex. Assume that f(X) is not convex. Then
there is a point x in the interior of #(f(X)) which does not lie in f(X). The point
x can be used to define a retraction r of X on Y as follows: A point pe X is
mapped by r onto the preimage of the point of 3%(f(X)) which lies on the ray
from x through f(p). The map r is well defined since f is injective on Y and it is
obviously a retraction. The set Y is homeomorphic to S’ and hence it cannot be a
retract of a space which is a cohomology point. Thus f(X) must be convex.

Now it follows from the theorem of Lastufka that we quoted in the remark
before the proof that fis injective. W

The next two lemmas are preliminary for the more important lemma (3.6).

3.4 LEMMA. Assume that f:M — E is a tight immersion with respect to the
field F. If the height function 5 - f has a non-degenerate critical point p of index k,
then H*(f~'(S); F) # 0, where S is the halfspace {x e E| & - (x — f(p)) =0}.

Proof. We first remark that the definition of tightness immediately implies
that the cohomology sequence of the pair (f~'(S;), f~'(S,)), where S, S, are
halfspaces, splits into short exact sequences

0— H*(f'(S), f () = H*(f'(8) > H*(f7'(82)) = 0.

This proves the lemma since it follows from Morse theory that there is an £ >0
such that H*(f~'(S), f'(S_.)) #0, where S_.,={x e E|E- (x—f(p))=—¢}. A
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Let f: M — E be an immersion. We denote the second fundamental form of f
by « and its normal bundle by NM. It is easy to show that p € M is a critical point
of the height function & - f iff £ € N,M. The Hessian of the critical point is § - .
A convex point of fis a point whose image lies in the convex envelope d#(f(M))
of f(M). A non-degenerate convex point is a convex point which is a non-
degenerate minimum of some height function. If p e M is a non-degenerate
convex point, then a(X, X)#0 for every non-zero XeT,M and the set
{a(X, X)| X € T,M} is contained in a halfspace of N,M. We denote the convex
hull of {a(X, X)| X e T,M} by K,. It is easy to see that K, spans N,M at a
non-degenerate convex point if f is tight.

3.5 LEMMA. Let p be a non-degenerate convex point of the tight immersion
f:M— E. Let hc N,M be a hyperplane of support of K, and let £ € N,M be
orthogonal to h with § - a(X, X) =0 for every X e T,M.

(i) Then €, ={X e T,M | a(X, X)€h} is a linear subspace and a(%é,, T,M)c
h.

(if) Let &(t) be a curve in N,M such that §(0) =& and &(t) - a(X, X) <0 for
every non-zero X € €, and t+0. Then there is an € >0 such that the height
function &(t) - f has a non-degenerate critical point in p of index equal to the
dimension of &, for every 0<t=ge¢.

Proof. (i) The quadratic form & - a(X, X) is positive semi-definite. Hence its
nullspace is &, which is therefore a linear subspace. We have a(é,, T,M) since &,
is the nullspace of & - (X, Y).

(ii) Suppose there is a sequence ¢, — 0 such that the height functions &, - f are
degenerate where &§; = §(¢;). The index of §; - f is greater than or equal to dim &,
for every i since its Hessian is negative definite on &, by assumption. Therefore
there is for every i a subspace & of dimension d>dim &, such that
& - a(X, X)=0 for every X € &,. Let (X, 0<j=d) be an orthonormal basis of
€. There is a subsequence (i') of (i) such that (X;;) converges to a unit vector X;
for every j, 0<j=d. (X)) is an orthonormal basis of a space & of dimension d
such that & - a(X, X) =0 for every X € €. This implies that a(X, X) € h for every
X e € since & - a(X, X) =0 for every X e T,M and § - h = 0. Hence € c &, which
is a contradiction since dmé=d>dim %,. B

The following lemma is of central importance for the proofs of our theorems.
It is intended to replace arguments involving integrable distributions in more
special situations, see [Ch], [CR1], and [Th1]. Notice that neither do we assume
that the dimension of the manifold M is 2k nor do we make assumptions on the
codimension. The notation used is introduced before and in lemma (3.5).
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3.6 LEMMA (Existence of convex cycles). Let f:M — E be a tight immer-
sion of a (k — 1)-connected compact manifold. Let p e M be a non-degenerate
convex point. Assume that H is a hyperplane in E containing T,M such that
h =H 0 N,M is a hyperplane of support of K,, that only meets K, in a ray. Assume
that dim &, = k. Denote the convex envelope of f(M) N H by Q. Then

(i) H supports f(M)

(i1) Q c f(M) and f is injective on f~'(Q)

(iii) Q spans a (k + 1)-dimensional affine subspace of E

(iv) the fundamental cycle of f~'(Q) is non-trivial in M, i.e. the homomorph-
ism H,(f~'(Q)) = H(M) in singular homology is injective with respect to the
same coefficient field as the tightness of f

(v) there is a neighborhood U of p such that f(UYNQ =f(U)NH and
UNf~Y(Q) is a differentiable submanifold with tangent space &, at p.

Remark. Notice that the (k + 1)-dimensional affine subspace of E spanned by
Q does not in general contain the ray # N K,. The cycle f~'(Q) will be called a
(non-degenerate) convex cycle. We will sometimes write Q instead of f~'(Q)
although we mean a subset of M. We will also use the term convex cycle for Q as
a subset of E.

We first give an application of the lemma.

3.7 COROLLARY. Let f:M* — E**! =2, be a substantial tight immer-
sion of a (k — 1)-connected compact manifold. Let p be a non-degenerate convex
point. Then there pass at least two different (but possibly homologous) convex
cycles Q, and Q, through p that only have the point p in common. Both Q, and
Q5 are differentiable around p and they intersect transversally.

Remark. More precisely, we have a family of different convex cycles which
can be parameterized by §'7%, but we do not know whether the family is
continuous. For further details on this, see the proof of Theorem D in section 4.

Proof. Here we only prove the case / =2. The general case will be proved in
the proof of Theorem D. The image of T,M under «, the set {a(X, X)|X e
T,M}, is a sector bounded by two rays on lines 4, and h,. The sector does not
degenerate to a line, i.e. h, # h,, since f is substantial and p a non-degenerate
convex point. It is an immediate consequence of (3.4) and (3.5) that dim &, =
dim &, = k. Thus we have two convex cycles Q, and Q, by (3.6) mapped into H,
and H, respectively, where H; is the affine span of h; and T,M. The tangent space
T,M only mee*~ **in n by tightness. Thus it follows that O, and Q, only can meet
in p. They meet there transversally since their tangent planes €, and &,, meet
there transversally, see (3.5). W
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Proof of (3.6). The proof will be divided into several steps to make the
exposition clearer. The steps do not correspond to the different parts of the
lemma.

(i) Let £e N,M be a non-zero vector orthogonal to h and such that
§- a(X, X)=0 for every X € T,M. This is possible since the set {a(X, X)| X €
T,M} lies in a halfspace bounded by A. Then it follows from lemma (3.5) that
there is a sequence (&;) of vectors in N, which converges to & and has the
properties that p is a non-degenerate critical point of &, -f of index k and
& - a(X, X)<O0 for every non-zero X € ,. Furthermore the sequence can be
chosen in such a way that § and (&) lie in a two-dimensional subspace and &, ,
lies between § and &, for every i. We denote the closed halfspace in E bounded by
the hyperplane orthogonal to &; and not containing &; by §;. We now show that

f—l(Sl) bel(sz) = Df—l(si) >- - of7Y(H).

It follows from the choice of the sequence (§;) as lying in a two-dimensional
subspace and converging monotonically there to & that if the sequence (f~'(S;))
would not be monotonically descending then there would be an iy>0andag e M
such that f(q) were contained in the interior of S; for every i > i, and f(q) and &
would lie on different sides of H. Hence the height function & -f would be
negative in q. By turning & slightly in the two-dimensional space spanned by (§;)
and & we would obtain a vector §' such that §'- «(X, X)>0 for non-zero
XeT,M and &' -f(q)<0. The point p would be a non-degenerate relative
minimum of &’ - f with value 0. Hence there would be a height function &" - f, &”
close to &, which is a Morse function with at least two relative minima. This
contradicts the tightness of f. The sequence (f~'(S;)) is therefore monotonically
descending and f'(S;) of'(H) for every i. It follows similarly that f~'(H)=
M.

This argument also shows that f(M) must lie on one side of H which proves
part (i) of the theorem. In other words, f~'(H) is a top set.

The cohomology group H*(f~'(S;)) is non-trivial by lemma (3.4) since & - f
has a non-degenerate critical point of index k in p. The homomorphisms
H*(M) — H*(f~(S;)) > H*(f~'(S;)), i <j, are surjective by tightness. The fact
that H*(M) is a finite dimensional vector space implies that H*(f~!(S,)) —
H*(f~'(S;)) is an isomorphism for every j > i > i, for some i,. Hence H*(f~'(H))
=lim_, H*(f"(5;)) #0.

(ii) In this step we prove that there is an affine subspace G in H such that
H*(f"'(G)) #0 for some x>0, and the convex envelope Q' of f(M) N G contains

f(p) and there is a neighborhood V of f(p) in Q' contained in f(M). Moreover,
f~Y(G) is a top*set of M.
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We let Q denote the convex envelope of f(M) N H as in the statement of the
theorem. Let G, denote the affine hull of Q. We first show that f(p) e Q. Let
ne€N,M be such that n-a(X, X)>0 for every Xe T,M. Then n-f has a
non-degenerate relative minimum in p which is an absolute minimum by
tightness. Hence the hyperplane through f(p) orthogonal to n only meets f(M) in
f(p) and f(p) is therefore in the convex envelope of f(M)NH, i.e. f(p)€ Q.
Assume there is in every neighborhood V of f(p) in Q a point x € V — f(M). Let
(x;) be a sequence of such points which converges to f(p). Let P, =G, be a
hyperplane of support of Q at x,. We can assume that the sequence of
hyperplanes (P,) converges to a hyperplane P, which is a hyperplane of support in
f(p). The plane P, meets f(M) in some point for every i since P, supports the
convex hull of f(M) N H. The map f | f~'(P,) is a top map of the top set f~'(B,) of
f~Y(H) and hence tight. It follows that H*(f '(P;))#0 for some >0 since
P.Nf(M)=f(f"'(P)) would otherwise be convex by (3.3) and consequently
x; € f(M), which is a contradiction. The homomorphisms H*(f~'(H))—
H*(f~'(P)) are surjective by tightness. Let (U,) be a monotonically descending
sequence of closed neighborhoods of f~!(P,) in f~'(H) such that f~'(P)) =M U,
obtained as the preimage of halfspaces with boundaries parallel to F, By
tightness of f|f~'(H) we have that H*(f"'(H)) —» H*(U)— H*(U,), i >j, are
surjective homomorphisms. It follows at once that for every i there is a k such
that f~'(P,) = U, for j > k. Consequently H*(U))# 0 for every i and since they are
all finite dimensional vector spaces, the surjective homomorphisms H*(U;) —
H*(U;) are isomorphisms for every i >j>some i,. Hence H*(f™(P,)) = lim_,
H*(U;) # 0 by the continuity of Cech cohomology. Notice that the dimension of
the linear span of f(M) N B, is smaller than the dimension of the linear span of
f(M)NH=f(M)N G, Let G, be the linear span of f(M) N PF,. If the convex
envelope Q, of f(M) N G, does not have a neighborhood V of f(p) contained in
f(M), then we can repeat the argument above and find a hyperplane P, < G,
supporting O, at f(p) and satisfying H*(f~'(P,)) # 0 for some * >0. Inductively
we can continue this until we finally come to a plane G such that the convex
envelope Q' of f(M)N G has a neighborhood V of f(p) contained in f(M) and
H*(f~'(G)# 0 for some « > 0. We have by construction that f~'(G) is a top set.

(iii) In this step we prove that dim G <k + 1. We also show that 0 =Q' =G
if dimG =k +1. Finally the claim in part (v) will be proved under the
assumption Q = Q".

Assume that dim G =k’ + 1>k + 1. We first prove that dim (G N T,M) =k’
We can represent Q' locally around f(p) as the graph of a convex function. The
convex function is differentiable on a dense set & where its gradient is also
continuous. The hyperplane of support is unique in a point g above % and
identical with its tangent plane T,Q' c T, M. We choose a sequence of points (g;)



114 GUDLAUGUR THORBERGSSON

above & that converges to p and a convergent subsequence of (7, Q") with limit
P. The plane P supports Q' at p and is contained in T,M since it is a limit of
planes in TM. It follows that P =G N T,M since G is not contained in T,M. Let
G* be the orthogonal complement of G in T,M + G. The space G* is
(n — k')-dimensional since dim(T,M +G)=n+1, where n=dimM. Let
(e;,...,e,_x) be a basis of G*. The map F=(F,...,F,_,): M—> R"*
defined by F, =¢; - f is of maximal rank in p since G* N N,M = 0. The set F~'(0)
is therefore a k’-dimensional manifold around p which f maps locally homeomor-
phically onto a neighborhood V of f(p) in Q. The Hessian of the height function
& - f is negative definite on the tangent space f,'P of F~'(0) at p since f~'(S,)
contains a neighborhood of F~'(0) around p. But this is a contradiction since the
index of §; - fis k<dim P =k'.

The above argument also shows that if dim G = k + 1, then a neighborhood V
of f(p) in Q' is a k-dimensional differentiable manifold and there is a
neighborhood U of p in M such that f(U)NQ'=f(U)NG and UNf Q") =
f~'(V). The tangent space of f~'(Q’) is &, since this is the only k-dimensional
subspace of T,M on which the index form of every &, - f is negative definite.

It also follows from dim G =k + 1 that Q = Q'. To prove this it suffices to
show that f(M) N H < G. Assume that f(M) N H is not contained in G. Then
every neighborhood of p in M contains an element g such that f(g) e H — G,
since otherwise there would be a hyperplane in H that cuts f(M) N H into more
than two pieces which is impossible by tightness. There is a neighborhood V of p
such that F(q) is a regular value for every g € V, where F=(F,...,F,_,) is
defined as above. There is a curve ¢q(t), 0=t=<1, in V such that gq(0)=p,
q(1) € H — G and such that F~'(F(q(t))) can for every t be parameterized locally
around ¢(¢) by a map U(t): D*' — M (D* is the unit k’'-disk) which is continuous
in ¢+ and such that U(t)(8D*)c{& -f<0}. The map U(0) is a non-
nullhomologous relative singular cycle of the pair ({&; - f =0}, {& -f<0}). On
the other hand U(0) is homologous to U(1) with image in {&; - f <0} and hence
nullhomologous which is a contradiction. Thus f(M)N H c G.

(iv) We first prove that dim G =k + 1. We know that H*(f~'(G))#0 for
some « >0 and that H*(M) — H*(f~'(G)) is surjective for every . We will show
that H*(f"'(G)) =0 for » =dim G which by the assumptions on the topology of
M implies that dim G =k + 1. To this end we construct on open manifold # of
the same dimension as G and embed f~'(G) into .. It then follows from the
general Duality Theorem that H*(f~'(G)) =0 if + = dim G.

We define the manifold # and the embedding of f~'(G) into # as follows:
For every point ¢ in f~'(G) we choose a neighborhood U, of ¢ on which f is
injective. We choose these neighborhoods so small that f is injective on U, U U,
if U, NU,,+J. We choose an open neighborhood V, of f(q) such that the
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connected component of f~'(V,) which contains p lies in U,. This is possible since
f is locally injective. Now let # be the set of equivalence classes in the disjoint
union of the family {V,|q ef~'(G)} defined such that xe V, and yeV,, are
equivalent iff x=y and U, NU,,+ . M has a canonical structure as an open
manifold of the same dimension as G and f induces an embedding of f~'(G) into
M. We have thus proved that dim G =k + 1 and hence that dim G =k +1 by
(iii).

We use similar arguments to prove that Q < f(M) and that f|f~'(Q) is
injective. If a point y € Q is not in f(M), then we choose a hyperplane R in G

supporting Q at y. The top*map f|f '(R) is tight and consequently
H*(f"'(R)) #0 for some x>0 since f(M)NR would otherwise be convex by

(3.3) and hence contain y. But on the other hand by arguments as above we see
that this + must be smaller than dim R <dim G =k +1 which implies that
H*(M)— H*(f"'(R)) cannot be surjective which is a contradiction. Thus we
have proved that Q = f(M). Notice that we have proved that the top sets of Q are
cohomology points. This implies by (3.3) that f | f~'(Q) is injective.

It is only left to prove that Q is not nullhomologous in M or equivalently that
H*(M) — H*(Q) is surjective. By tightness, this is the same as to prove that
H*(f~'(G)) —» H*(Q) is surjective. This follows since Q is a retract of f~!(G).
The retraction can be defined exactly as the retraction in the proof of (3.3) using
that we have already proved that f is injective on f~'(Q) and that there is a point
close to p in the convex body bounded by Q which does not lie in the image of f
by the already proved part (v) of the lemma. W

4. Proofs of the theorems

We begin with the proof of Theorem D.

Proof of Theorem D. We will use in the proof that w,(M*)+0 iff the
self-intersection number mod 2 of some k-dimensional Z,-homology class is one.
This one sees as follows:

The Poincaré dual cohomology class « in H*(M; Z,) of a homology class in
H,(M; Z,) with self-intersection number one has the property that o U ar is the
fundamental cohomology class of M. We review that the Wu class v, is defined
implicitly by the condition (BUB, i) = (B U, i) for every B e H*(M, Z,)
where ji is the fundamental class of M, see [MS], p. 132. The Wu class v, of M is
clearly non-zero and hence by Wu’s formula for the k-th Stiefel-Whitney class,
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see [MS], p. 132,
wi(M) = 8q°(vi) + Sq*(1) = v,

we have that w,(M) # 0. Reversing the arguments proves the converse.

(i) We prove (i) by showing that there is a convex cycle with self-intersection
number one if the codimension is greater than two. Let pe M be a non-
degenerate convex point and let K, be the cone in N, spanned by {a(X, X) | X €
T,M} as in (3.6). Let h, be a hyperplane in N, that supports K,. We want to
show that h, meets K, in a ray. Let exp (K},) be the set of such hyperplanes. Then
K, is the closure of the convex hull of the rays h N K, for h € exp (K, ); in symbols
K, = #(Uheexpx,) h N K},), see [Le], p. 44. Thus there is for every hyperplane h,
a sequence (h; N K,) of rays, h; € exp (K,), that converges to a ray R in hyN K,,.
It follows from (3.4) and (3.5) that &, is k-dimensional for every h € exp (K,).
Thus it follows that dim {X | a(X, X)e R} =k. If R+ h,N K, then we would
have that dim &,,> k which is impossible by (3.4) and (3.5). It follows that every
hyperplane of support h of K, satisfies the hypotheses of (3.6) and these
hyperplanes correspond continuously and one-to-one to the elements of a sphere
S'~2, Thus for every such & we have a convex cycle Q,, and any two only meet in p
and there they meet transversally which shows that they are representatives of
non-trivial homology classes in H,(M, Z,). (We have not claimed that Q, depends
continuously on A, but this seems likely.) There are only finitely many such
classes, but an infinity of convex cycles, which shows that at least two of them
must be homologous. This proves part (i).

(i) If w,(M*)#0, then the k-th Stiefel-Whitney class of the normal bundle
cannot vanish and the codimension / of f is at least k. On the other hand [ =k + 2
by a theorem of Kuiper [Ku 2], p. 231. We will prove further below that [ # k if
k>2.

Next we prove that k=1, 2, 4 or 8 if w,(M?*)+0. (Instead of using Lemma
(3.6) about the existence of convex cycles we could argue without using tightness
as in the proof of Theorem 3 in [Mi].) We will assume that k = 3 and prove that it
is either 4 or 8. If k =3, then we have proved that the codimension / = k =3 and
we can use the arguments in (i) to find a convex cycle Q with self-intersection
number one. If & € H*(M?*, Z,) is the Poincaré dual of Q, then we have that
aUa is the fundamental cohomology class of M?*. Hence we see that
(v, O =(vi, anNp)={(v,Ua, i) =(aUaq, 1) =1 and since w,(M)=v, it
follows that w,(M) | Q does not vanish. Thus we have proved that TM | Q has
non-trivial k-th Stiefel-Whitney class. Theorem 1 in [Mi] says that if an
On-bundle over a k-sphere has non-vanishing k-th Stiefel-Whitney class, then
k=1,2,4o0r8.
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Now assume that k >2 and k =/. Then we have just proved that there is a
convex cycle Q such that TM | Q has a non-trivial k-th Stiefel-Whitney class. Any
neighborhood U of Q therefore satisfies w,(U)+#0. Let H be a supporting
hyperplane of f(M) that contains Q. Then H contains all tangent planes T,M at
points p € Q. Thus there is a neighborhood U of Q such that 7o f:U — H is an
immersion, where x is the orthogonal projection. This is a contradiction since
w,(U) # 0 and the codimension of z o fis k — 1.

Finally we prove that the intersection form decomposes as (+1) @ B if k > 1.
If k =2, then this follows from Donaldson’s theorem [Do 1] and the classification
of indefinite inner product spaces [MH]. If kK > 2, then / > 2 and there is a convex
cycle with self-intersection number +1. Hence the intersection form
decomposes. W

Proof of Theorem A. The cohomology ring of M* is of course completely
determined if we know its intersection form. If k is odd, then the intersection
form is skew (symplectic). By the Corollary on p. 7 in [MH] there is a basis for
H,(M?*; Z) such that the intersection form takes the form

0 -1 0 -1

(1 0)69' '63(1 0)

Thus M** has the same cohomology ring as (§* x §)# - - - # (§* x §%) for k
odd.

If k is even, then the intersection form is symmetric. We first prove that the
Pontrjagin classes of M®* vanish. Let f:M>* — E**! be a substantial tight
immersion of M**. Then it follows from Theorem D that /=1 or 2. If / = 1, then
the Pontrjagin classes of the normal bundle of course vanish. If / = 2, then we can
consider the normal bundle to be a complex line bundle. The Chern classes of this
line bundle vanish since k >2, i.e. H*(M**; Z) = 0. Thus the Pontrjagin classes of
the normal bundle vanish also in this case since they are a product in the Chern
classes; see [MS], p. 177. Now it follows that the Pontrjagin classes of M** all
vanish since the cohomology of M** does not have torsion; see [MS], p. 175. This
implies by the Signature Theorem that the signature of M** is 0. The intersection
form of M** is of type II since w,(M**) =0 and it is indefinite since its signature is
0. By the classification of indefinite symmetric bilinear forms we thus have that
the intersection form of M** is equivalent to

(1 o)eel) o)

This is the intersection form of (S x §%) # . - . # (S* x §¥) for k even. W
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Proof of Theorem B. We use the methods of Kulkarni and Wood in [KW] to
prove the theorem. We only sketch the proof and refer to section 12 of [KW] for
more details and references to the literature.

We set k = 21.

Since k >2 we can by results of Whitney and Haefliger and Theorem A find
embeddings of spheres into M>* which represent a basis of H,(M*;Z) and have
the property that each sphere only meets one another sphere and this one it only
meets once and transversally. Assume that the normal bundles of all these
spheres are trivial. Let §; and S, be two such spheres with a common point. Then
S, U S, has a neighborhood which is diffeomorphic to a neighborhood of the one
point union $¥ v $¥ in §* x $¥ whose complement is a 2k-dimensional ball. Hence
one can decompose M* as claimed in the theorem.

Thus it is left to prove that the normal bundles are trivial. Let f: M* — E***/
be a substantial tight immersion. By Theorem D, / <2. The normal bundle of f
restricted to the above embeddings of spheres are all trivial since £ > 2. Thus one
sees that the normal bundles in M** of the spheres are stably trivial. The Euler
characteristic of the normal bundles is 0 since the self-intersection numbers of the
spheres are 0. For k even (and k =1, 3, 7) stably trivial k-plane bundles over $*
are trivial if their Euler characteristic is 0. This finishes the proof of the
theorem. W

Proof of Theorem C. (i) We assume that the codimension /=2. Let p be a
non-degenerate convex point and let O, and Q, be the convex cycles through p
which exist by (3.7). One sees easily that p can be chosen so that the convex
cycles through neighboring points are homologous to Q, and Q, respectively. (If
it turns out that the convex cycles depend continuously on the supporting
hyperplane, then this is of course always the case; see also a remark in the proof
of Theorem D.) The self-intersection numbers of Q, and Q, are 0 or 1 since two
different convex cycles which meet intersect in a convex top set contained in the
tangent plane of any of the common points. The projection of a sufficiently small
neighborhood U, of Q, into the supporting hyperplane containing Q, is a
codimension 1 immersion and hence it follows that w,(U,) vanishes. Similarly one
sees that wy(U,) vanishes for a sufficiently small neighborhood U, of Q,. By (3.7)
the cycles O, and Q, are smooth submanifolds around p. They can be smoothed
everywhere to give smooth submanifolds of M which are diffeomorphic to $* and
arbitrarily close to Q, and Q,. (This can e.g. be done as follows: One first notices
that no supporting hyperplane in (Q,) of Q, meets the normal space of f. Hence
Q, can first be approximated in the Euclidean space (Q,) by a C™ convex
hypersurface and then regularly projected into f(U,) = U,. The same can be done
with O,.) We denote these submanifolds also by Q, and Q,. The second
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Stiefel-Whitney classes of the normal bundles of O, and Q, in M vanish since
wy(U;), wo(U,), w»(Q,) and wy(Q,) vanish. The Euler numbers of the normal
bundles which coincide with the self-intersection numbers of Q, and Q, are
therefore even. By the above we therefore see that the Euler numbers of the
bundles are 0. By the classification of 2-plane (circle) bundles over S* in [St] we
see that O, and Q, have trivial normal bundles in M. By arguments as in the
proof of Theorem B we can therefore split off §* x 2.

It follows from the result of Hirsch quoted in the introduction that a
four-manifold which admits a (not necessarily tight) immersion into E° has even
second Betti number.

(i1)) We assume now that / > 2. With the methods in part (i) of this proof and
in part (i) of the proof of Theorem D we find an embedding ¢ of S* into M whose
normal bundle has Euler characteristic one (or minus one, but then we change
the orientation). By the classification of 2-plane (circle) bundles over S° in [St] we
see that the boundary of a tubular neighborhood of @(S?), considered as a circle
bundle over S?, is equivalent to the Hopf fibration. One can now remove the
tubular neighborhood and glue a four-cell instead to obtain a manifold N such
that M=PC#N. R

Proof of the Corollary. Let M be an algebraic surface of even degree d =4 in
P,C without singularities. Then the second Stiefel-Whitney class w,(M) vanishes.
(w»(M) is the mod 2 reduction of the first Chern class ¢,(M) = (4 — d)g, where g is
the Kihler class induced from P;C.) If M admits a tight immersion into a
Euclidean space, then the codimension / is 1 or 2 by Theorem D. Codimension
I =1 can be excluded for d =4 since the Pontrjagin class p,(M) #0. Thus [ =2
and we can use Theorem C to decompose M as (S°x $°) # N,. The intersection
form of M is

01
mEs®n<1 O)’ m >0,

since w,(M) =0 and the signature of M does not vanish for d =4. Hence the
intersection form of N, is

mEg® (n — 1)((1) (1)>

Either N, cannot be tightly immersed or it decomposes as (S* X §%) # N, where
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the intersection form of N, is

mEg;® (n — 2)(0 1).

1 0

We can continue this until we arrive at a manifold N; which does not admit a tight
immersion. This cannot take more than n steps since a manifold N, with
intersection form mE, cannot split as (S* X §?) # N, ,. (Of course we will stop after
at least n — 1 steps by Donaldson’s Theorem, but we do not need this difficult
result.) The manifold N; which does not admit a tight immersion has the same
signature as the algebraic surface M of degree d that we began with, i.e.
o(N;) = (1/3)d(4 — d*). Two different even degrees =4 thus give two different
examples of manifolds that cannot be tightly immersed.

Now assume that M is the Kummer surface, i.e. d =4. Then it follows from
Donaldson’s result in [Do 2] that M cannot be decomposed as (S*x S?) # N*.
Hence there cannot exist a tight immersion of the Kummer surface. W
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