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Changes of sign of error terms related to Euler’s function and to
divisor functions

Y.-F. S. PETERMANN

1. Introduction

Let
3 2
R(x) := <D(x)—;_—2-x (x=1), (1)

where @(x) := X,.=, ¢(n) and ¢(n) is Euler’s function. If one computes values of
R(n) and of

R(=)i= 3 ¢(m) = % = R(n) - 9(n),

m<n

one comes to suspect that R(x) changes sign very frequently between consecutive
integers, but that there are very few integers n for which R(n) <0.

Sylvester even conjectured in 1883 ([32] and [33]; the reference to [31] in [7]
and [20] is mistaken) that R(n) > 0 for all positive integers n. But [33] contains a
table of ¢(n), ®(n) and 3n*/x* for 1 <n =< 1000; Sylvester does not seem to have
noticed that the entries @(820) = 204376 and 3.820%/7° =204385.09 . . . disprove
his conjecture. Sarma [23] (attributing the conjecture to Pillai and Chowla)
rediscovered this counterexample in 1931.

Let Xz(x) denote the number of changes of sign of R(¢) in the interval
1<t<x, and Ng(x) the number of changes of sign of R(n) on the integers n with
1<n<x (i.e. the number of integers n, 1 <n <x, such that R(n)R(n — 1) <0).

In 1967 Erdos conjectured [5] that

Nr(x)=Cx +o(x) (x—x) (2a)
for some positive constant C; in 1985 he proposed [6] the weaker

Nr(x) = Q(x) (x—=). (2b)

84
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In 1951 Erdos and Shapiro [7] proved that
R(x) = Q,(x logloglog log x), 3)
and hence that
Ne(x)—> (x> ).
The only other result in the literature is due to Proschan (1971, [20]):
Ne(x) = IL(x) + O(1) (x—), @)

where [L(x) is the smallest integer k& such that logy(x), the 4k-fold iterated
logarithm of x in a sufficiently large basis, is either smaller than 2 or undefined.
We show in Section 3 of this paper that

Xg(x)=Cx +o(x) (x—x), (5)
where
8 a’
C2§(1—£)=1.57004..., 6)

and in another article [18] that

Ng(x) = (Ezé—i - 5) loglogx + O.(1), forany &>0. (7)

For the divisor functions o,(n) := Y d*, we consider the error term
Fi(x) := Si(x) — Ti(x), (8)

where

Si(x) := 2, ai(n) ©)

n=sx
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and
(a° logx (y+log2m) _
6T T2 T 2 (k=-D
Ti(x):=q SA+K) . e 5(=k) _ (10)
X - Rx - =5 (0, <)
[ xlogx + 2y —1x +3 (k=0)

(v is Euler’s constant and { is Riemann’s zeta function). Let X, (x) denote the
number of changes of sign of F.(¢) in 1 <t <x, and Ng,(x) the number of changes

of sign of F,(n) on the integers n, 1 <n <x. It follows from a result of Steinig’s
[28] that

Xr(x)=4Vx + O, (1), forall keR; (11)

there is no result in the literature concerning Ng (x).
We show in Section 4 that

8 L2 k) )
=0 (15D )L ox), forall keR, 12
XFk(x)>3<1 4{:(2+2‘k‘)x oi(x), fora € (12)
and in [18] that
2
NFﬂ(x)Z(@—e)loglogx+O€(1), for all &>0. (13)

Estimate (12) improves (11) when it is non-trivial, that is for

|k| > ko= 0.6236622. . . (14)

In Section 5 we consider error terms associated with the lattice points in
certain four-dimensional ellipsoids, which are closely related to the error terms
F_, and F. The author wishes to thank Prof. J. Steinig for the time he spent to
read the manuscript of this article and for his many useful suggestions.
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2. Two general theorems

Let us first define what we mean by the number of changes of sign of a
real-valued function f in a non-empty interval /1.

DEFINITION.
1) We say that f is of constant sign in [ if either f =0 or f =0 throughout /.
2) We say that f has N changes of sign in [ if [ can be partitioned into N + 1
subintervals I, i=0, 1,..., N (I, and [,,, being consecutive), with the
following properties:
i) fis not identically zero in any /;
ii) fis of constant sign in each [;;
iii) fis of opposite signs in /, and /. ;.
3) We say that f has a finite number of sign changes in I if there is an N =0
such that f has N changes of sign in [.

Throughout this article, we consider functions f:[1, *)— R which have a
finite number of sign changes in (1, x) for all x > 1, and we denote this number by
Xr(x).

We also set I,=(n,n+1) and I,= [n, n+ 1) for each integer n =1, and
{x}:=x—[x]if x is real. If E is a finite set, |E| denotes its cardinality.

THEOREM 1. Let f:[1, *)— R be such that for each n =1,

fx)=f(n) - C{x}+06(x) if xel, (15)
where C is a constant, C # 0, and

B(x)=o0(1) (x—=x). (16)

Suppose further that there is a constant K >0 such that
f fA(u)du=Kx +o(x) (x—=x). (17)
1
Then, as x — =,

Xi(x) zg (1 - %)x + o(x). (18)
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If in addition the distribution function for f,

D¢(u) := lim

X—»x

(19)

[{n=x, f(n) = u}|
X

exists and is continuous, and if f itself is monotonic on each interval I, (decreasing
if C >0, increasing if C <0), then as x —

X;(x) =2 |D,(0) — D;(C)| x + o(x). (20)

THEOREM 2. Let f:[1, )= R satisfy conditions (15) through (17) of
Theorem 1. Let h:[1,*)—>R be positive, and g :[1, *)—> R be such that as
X —>x,

g(x) = h(x)(f(x) + o(1)). (21)
Then as x — =,

X,(x) = g (1 - %’g)x +o(x). 22)

If in addition f satisfies condition (19), and if the function g/h is monotonic on
each I, (decreasing if C >0, increasing if C <0), then as x — =,

Xe(x) =2|D;(0) = D,(C)| x + o(x). (23)

Proof of Theorem 1. We may suppose C >0 (if C <0, consider —f instead of
f). We may also restrict ourselves to the case where x is an integer. For r >0, set

Ax)={n=x, |f(n)—C2|<r},
B.(x)={n=x, |f(n)—C/2|=r}.

From (16), (17) and Cauchy’s inequality,

f: B(u)f(u)du =o(x); (24)
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then from (15) and (16),

[ Fu) du = f C(Fu) = 8)Y? + 20(u)f () — 6°(u)) du

=3 [ g -cryar+ [ @owrw - 0%w) du

n=1+<0

= E‘j ((f(n) — C/2)* + C*/12) + o(x),

n=1

whence
Yo : C?
fl fA(u)du=r*|B,(x)| + i + o(x),
that is
f‘fz(u) du =(r’+ C*/12)x — r* |A,(x)| + o(x). (25)

From (17) and (25) we have

2

K C
A, 2(1——,+ :
A, = (1= 5+

)x + o(x). (26)
Now take r = C/2 — g, with 0 <& < C/2. Condition (15) implies that f decreases
by C +o(1) on I,. Hence by definition of A,(x) there is an N = N(¢) such that f
changes sign from + to — on I, whenever n =N and n € A,(x). This means that
the number of sign changes of f from + to — on (1, x), say X/ (x), is at least

K c?
(1 T(Cl2=e) T12(CI2= E)Z)X ~N+px),

where p(x) =o0(x) as x— x. Hence if x is large enough to ensure that x = N/¢
and |p(x)| < ex, then

X7 (x)= (3 —4K/C?)x — 8(e)x — 2ex, 27)

where 6(€)— 0 as e— 0+. Since € can be arbitrarily small, and as between two

changes of sign from + to — there must be one from — to +, we have proved
(18).
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Suppose now that we also have (19) and that f is monotonically decreasing on
each I,. For r >0, let

D, := D{(C/2—r)— D{(C/2 + r); (28)

then we have

|A,(x)| = Dyx + o(x). (29)

With the same argument we used to deduce (18) from (26) we obtain from (29)
and the continuity of Dy

X,(x) = 2Dcnx + o(x). (30)

We will now show that

X,(x) =2Dcux + 0(x); (31)

(20) then follows from (28), (30), and (31).

Proof of (31). As we pointed out above, X;(x)=2X;(x)—1. Since f
decreases on each I,, f changes sign at most once there (necessarily from + to —).
And since f(n) —f(n+17) = C +0(1), there is for each € >0 an N = N(¢) such
that if f changes sign on I, and n = N, then f(n) € (0, C + €). So we have

X7 (x)=(Ds(0) = Di(C + €))x + N + o(x)
= (Df(0) — Ds(C + €))x + &x, (32)

for x sufficiently large; (31) now follows from (32) and the continuity of D;. R

The proof of Theorem 2 is straightforward, since Theorem 1 can be applied to
the function f* := g/h. Indeed, if D, exists and is continuous, then D . also exists
and Dy = Dy.. 1

3. Error terms associated with Euler’s function

We first define the summatory functions @ and @’ and the corresponding
error terms R and H: for x =1,

®'(x):= D,

n=sx

%n—):;%x-i-li(x) (33)
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and

O(x):= 3 pln) =i~

T2
n<x T

x>+ R(x). (34)
We consider the changes of sign of H and R, and prove

THEOREM 3. As x — =,

XH(x)zg (1—;—:)x+o(x)=(l.57004. x4+ o0(x), (35)
Xo(x) zg (1 - %)x +0(x), (36)
Xy (x) =2(Dy(0) — Dy(6/7%))x + 0(x), (37)
Xe(x) = 2(D1y(0) = Dyu(6/72)x + 0(x). (38)

Proof. The hypotheses of Theorem 1 are satisfied by f(x)=H(x), with
C =6/n? and K = 1/2x%. Indeed

x 1
fl Hz(u)du~ﬁx (x — %) (39)

is a theorem of Chowla’s [3, (48)] (see Remark 2 in Section 6). And (33) shows
that

H(x)=H(n ——J%{x} for xel,. (40)

This proves (35).
Estimate (37) follows from Theorem 1 by using the existence and continuity of
D,;, proved by Erdos and Shapiro [8].
For (36) and (38) we use the estimate

R(x)=xH(x) + o(x) (41)
due to Pillai and Chowla [19, p. 99] (see Remark 1). As it is easy to see that

R(x)/x is decreasing on each I,, the hypotheses of Theorem 2 are satisfied if we
take f(x), C and K as above, g(x) = R(x) and h(x)=x. 1§
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Theorems 1 and 2 can also be applied to a class of error terms including H and
R, first studied by Proschan [20], and for which Sivaramasarma [27, (7.1.45)]
determined the constant K of (17). This is done in [17, I1.2].

4. Error terms associated with divisor functions

Let F; be defined as in (8). We shall prove the following theorem about its
changes of sign.

THEOREM 4. Let k be the solution of the equation
E(2ky) =48(2 + 2k,) (42)

in the interval (1/2, ). Then if k,< |k|, we have, as x — =

80 tQIKD
’”*(x)“3(1 4;(2+2)k|))"+0"(") (43)

(Using a variant of Simpson’s approximation method, B. Gisin computed
ko= 0.6236622010. . .).
In order to deduce Theorem 4 from Theorems 1 and 2 we need three lemmata

LEMMA 1. As x— o,

F(x) :=xF_,(x) — Fi(x) = o(x), (44)
F(x)=0x*™?) for —-1<k<-3, (45)
FE(x)=x*F_i(x) +o(x*) for i<k=1. (46)

Proof. Estimate (44) is classical (see Remark 4 in Section 6). For (45) see
[3, (112)]. An estimate implying (46) can be found in [13, (6)] (see Remark 5). 1§

LEMMA 2. With F as in (44), we have

F(x)= L CEL)di+0(1) (x— ) (47)
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Proof. On the one hand,
S o-(m—n)= | S0 dr
n=<x 1

and on the other,

> o_(n)(x — n) =x5_,(x) — Si(x).

By using (8), (10) and £(0) = —31, we get (47). 1

LEMMA 3. As x > x,

B

t Sm-
fl F= (1) dt T (48)
and for —1 <k < -3,
g _E(=2K)8(1 - k)
J; Fi(t) dt 1262 = 20) (49)

Proof. (48) is due to Walfisz [36, (I)] and (49) to Chowla [3, (7)]. They
considered an error term slightly different from F, (see Remark 3) and proved,
respectively, that for k = —1,

fx (F_l(t) - (_}ilo_ggf_))zdt _ ((y + log 27)? N 572

. : = 4)x +0(™?) (50)

and that for —1 <k < -1,

fl (B - _e_(_—_f_)) o (CZ(—k) 02—k

5 7 126G - 20) )x + O(x***logx). (51)

(48) follows from (50) with (47) and (44), and (49) from (51) with
f E()dt =0 %) if —1<k=-4, (52)
1

which we proceed to prove. For —1 <k = —3%, we have

E(x)=— 2 n*W(x/n)—x* > n~*W(x/n)+ O(x*?), (53)

n=vx n=<vx
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where ¥(y):= {y} — 3 [3, (65)], whence

ka(z) dt=— S n"f; W(tin) dt —

n=vVx

> nk f t“W(t/n) dt + O(x'**?)

n=vVx n

x/n x/n
=—- > n'f“f W(u)du— D, nf W W) du + O(x'*2) = O(x'**?). 1

n=vx n<Vx

After this preparation, we pass to the proof of Theorem 4. We shall restrict
ourselves to the case |k| =1 (for the case |k| > 1, see Remark 6). We consider
four subcases.

a) k=—l:ifn=x<n+1,

2

Foi(x) = Fa(n) = {x} + O(1/x), (54)

whence with (48), conditions (15) through (17) of Theorem 1 are satisfied by
f(x)=F_,(x), with C = 7%/6 and K = 57°/144.

b) k= +1: with (44), we see that g(x) = F(x) and h(x) = x satisfy condition
(21) of Theorem 2, if f(x) is as in Case (a).

c) k e (=1, —ko): we have by (10), if x € I,

F(x)=F(n) = £(1 - k){x} + O(x"), (55)

whence with (49), conditions (15) through (17) of Theorem 1 are satisfied by
f=F, with C=§(1-k) and K = §{(—2k)&*(1 — k)/12&(2 — 2k).

d) k € (ko, 1): with (46) we see that if f=F_,, and C, K are as in Case (c),
condition (21) of Theorem 2 is satisfied by g(x) = F.(x) and h(x) =x*. 1

S. Error terms associated with the lattice points in certain four-dimensional
ellipsoids

Arnold Walfisz considered in [36] and [37] the quadratic forms

o=ni+n3+nj+ng
Q.= n?+n2+2n%+2n3,
Q, = n?+2n+2n5+ 4n3,
Qs =n?+2n%+4n% + 8nj3,

(56)
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the associated four-dimensional ellipsoids
0=0v=x (k=0,1,2,3)

of respective volumes

.77:2

Wk(x) =2k—+l'x2 (k =O, 1, 2, 3),

and the corresponding error terms

P(x)= D 1=We(x) (k=0,1,2,3).

Qr=x
He showed that

Py(x) = 8E;(x) — 32E,(x/4),

Pi(x)=4E(x) —4E,(x/2) + 8E\(x/4) — 32E,(x/8),

Py(x) =2E\(x) — 2E\(x/2) + 8E,(x/8) — 32E,(x/16),

Pi(x) = E\(x) — E(x/2) + 8E,(x/16) — 32E,(x/32) + O(x”"®),

(where E,(x) = Fi(x) —x/2 — £(—1)/2; see Remark 3) and that

Tt e {O(xm)(k =0, 1, 2;[36])
3.22k+1 O(x*"log? x)(k = 3;[37)).

j] ) Pi(t)dt =
Using
F(x) = O(x™),

where F is as in (44) (see Remark 4), we can rewrite (60) as
P.(x) =xR(x)+ O(x*®) (k=0,1,2,3),

where

Ry(x) = 8F._,(x) — 8F_,(x/4),

R,(x) = 4F_,(x) — 2F_,(x/2) + 2F_,(x/4) — 4F_,(x/8),
Ro(x) = 2F_,(x) — F_,(x/2) + F_,(x/8) — 2F_,(x/16),
Ra(x) = F_,(x) — 3F_,(x/2) + 4F_,(x/16) — F_,(x/32).

95

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)
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Integrating by parts in (61) and using (63) we obtain

2

f Ri(t) dt = 52]:—_—,x +O0(x™logx) (k=0,1,2,3). (65)
1

It is not difficult, using (64) and (54), to show that for x € I, we have

2

Ry(x) = Re(n) — —g,; (x} +0(1/x) (k=0,1,2,3). (66)

We see with (63) through (66) that Theorems 1 and 2 can be applied; we obtain
THEOREM S. For P, as in (59) (k =0, 1, 2, 3) we have

Xp, (x) zg (1 - —]%)x +o(x) = (1.045527 .. .)x + o(x). (67)

For k =0, this improves
Xp(x)=2Vx + 0(1), (68)

which is implied by a general result of Steinig’s [28, (4.5)].

6. Remarks

Remark 1. If f is strictly monotonic on each I,, we have the trivial upper
bound

Xi(x)=2x+ 1. (69)
This, with the example below, shows that (18) can be sharp: if
W(x):={x} -3,

(15) holds with C = —1, and we have

j WAty dt ~x/12 (x> x);
1
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thus by Theorem 1
Xy(x)=2x + o(x).

(69) should also be compared with (83).

Remark 2. Chowla’s estimate of the error term in (39) was O(x/log*x). For
better estimates, and also for estimates of R(x) — xH(x), see [26], [30], [27]; [30]
also gives estimates subject to the truth of the Riemann hypothesis.

One can obtain a simpler proof of (39) than in [3] by adapting the arguments
of Lemmata 3.2. and 3.3 of [8]. One gains the advantage of not having to prove
Lemma 7 of [3] (Hilfssatz 6 of [34]).

Remark 3. Some authors (Walfisz [34-37], Chowla [3]) considered another
error term E; defined by

2

Si(x) =: —]lr—zx2 + E\(x) (70)

Sk(x)=:C—(11—_€Ik—)x”"+é‘(l—k)x+Ek(x) (—1<k<1,k+#0) (71)
e

S_i(x) =: v ilogx + E_,(x) (72)

(hence the estimates (50) and (51)). This is a more natural choice than F;, in the
sense that

o(x)  (k=1)
Ex)= Z((j’)”) ?ji;?m (73)
o(logx) (k=-1),
whereas
E(x)#o(l) (-1=k=1). (74)

F, is the error term one obtains when dealing with S, by the complex variable
methods developed by Chandrasekharan and Narasimhan to exploit the
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representation

> on(n)n~ =E(s — k)E(s) (Res>max (1, k + 1)) (75)

n=1

and the functional equation satisfied by {(s — k)Z(s) (see [1], [2], [9], [10]). It
seems to be the ‘‘right” error term to consider if one is interested in the change of
sign problems. To be concrete, let us say that a good point in favor of F, for these
problems is that for kK <0, we have

f xa(t) dt = o(x), (76)

which shows that the mean value of F.(¢) is 0. As for £ or 0 estimates, since
E.(x)—F(x)=0() for k<0, (77)

the results one obtains for any one of these error terms are also true for the
other.

Remark 4. 0O-estimates of the error term in (44) were successively improved in
[38], [12], [13], [35], [16]. The current record-holder is Recknagel [22] with

F(x) = O(x'®%%), (78)

A special case of a result of Segal’s [24] reads

> F_y(n) =’{—§x +0(x"), (79)

n=x

which is equivalent to
F(x) = O(x"4 (80)
(use (47) and (54)). Segal pointed out in [25] that his proof of (79) is incorrect. In

fact, (79) itself is incorrect: see [17, Appendix ]. (However, [25] was sometimes
overlooked, as in {14] and [29]).

Remark 5. To our knowledge, the best O-estimate to date of Fi(x) — x*F_,(x)
for 3 <k =1 comes from using [22] instead of the weaker [15] in [11, Corollary 1
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p. 403]. One obtains
Fo(x) =x*F_,(x) + Ox*"™¥)  (4<k=1), (81)
where

rlz(ii +(&)e 0=r<3g)
m+ () (S=t<1l)
9(t)=ﬁ Qi+ (h=t<s (82)
WG Gh=t<i

Lo+ Go) (B=t<i).

Remark 6. Most authors who studied the S, restricted themselves to the

case |k|=1 (“to avoid unnecessary complications” according to Cramér [4]).
Estimates of

F.(x), j]ka(t)dt and fFi(t)dt

for the case |k| > 1 are apparently unavailable in the literature. With the help of
the existing proofs [3] of such estimates for |k| <1, together with Ramanujan’s
estimate [21] of F(x) — x*F_,(x) for 0 <k <=, extending the domain of validity
of (43) to |k|>1 is only a matter of tedious and unoriginal calculation. We now
observe that

.8 k) \ .
him > (1 'm) =% (83)

with (69), this shows that the constant in (43) is in some sense best possible.
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