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Changes of sign of error terms related to Euler&apos;s function and to
divisor functions

Y.-F. S. Petermann

1. Introduction

Let

R(x):=&lt;P(x)--2x2 (*&gt;1), (1)

where &lt;P(x) := !!„&lt;* &lt;t&gt;{n) and &lt;f&gt;(n) is Euler&apos;s function. If one computes values of
R(n) and of

one cornes to suspect that R(x) changes sign very frequently between consécutive

integers, but that there are very few integers n for which R(n)&lt; 0.

Sylvester even conjectured in 1883 ([32] and [33]; the référence to [31] in [7]
and [20] is mistaken) that R(n)&gt;0 for ail positive integers n. But [33] contains a

table of &lt;t&gt;(n), &lt;P(n) and 3n2/jt2 for 1 &lt; n &lt; 1000; Sylvester does not seem to hâve

noticed that the entries 4&gt;(820) 204376 and 3.8202/^2 204385.09. disprove
his conjecture. Sarma [23] (attributing the conjecture to Pillai and Chowla)
rediscovered this counterexample in 1931.

Let XR(x) dénote the number of changes of sign of R(t) in the interval
1 &lt; t &lt; x, and NR(x) the number of changes of sign of R(n) on the integers n with
1&lt; n &lt;x (i.e. the number of integers n, 1&lt; n &lt;x&gt; such that R(n)R(n - 1) &lt; 0).

In 1967 Erdôs conjectured [5] that

NR(x)=Cx + o(x) (*-&gt;*) (2a)

for some positive constant C; in 1985 he proposed [6] the weaker

NR(x) £2(x) (je-?*). (2b)

84
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In 1951 Erdôs and Shapiro [7] proved that

R(x) Q±{x log log log logx), (3)

and hence that

The only other resuit in the literature is due to Proschan (1971, [20]):

(*-&gt;*), (4)

where IL(x) is the smallest integer k such that log4Ar(jc), the 4/c-fold iterated
logarithm of x in a sufficiently large basis, is either smaller than 2 or undefined.

We show in Section 3 of this paper that

XR(x) Cx + o(x) (jc-^oc), (5)

where

Css-ll 1 1.57004... (6)

and in another article [18] that

+ Of(l), for any £&gt;0. (7)

For the divisor functions ak(n) := Zd\n dk, we consider the error term

Fk{x):=Sk(x)-Tk(x), (8)

where

Sk(x):=2ok{n) (9)
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and

Y-F S PÉTERMANN

Tk(x) :

ji2 logx (y + log2;r)

£(-*)
(A: *0,-1) (10)

(y is Euler&apos;s constant and Ç is Riemann&apos;s zêta function). Let XFk(x) dénote the
number of changes of sign of Fk(t) in 1&lt; f &lt; je, and NFt(x) the number of changes
of sign of Fk(n) on the integers n, \&lt;n&lt;x. It follows from a resuit of Steinig&apos;s

[28] that

XFk(x) &gt; 4Vjc + O*(l), for ail k e M ; (H)

there is no resuit in the literature concerning NFk(x).
We show in Section 4 that

¦ok(x), for ail fceR, (12)

and in [18] that

ÏE{\), for ail e&gt;0. (13)

Estimate (12) improves (11) when it is non-trivial, that is for

|*|&gt;*o 0.6236622... (14)

In Section 5 we consider error terms associated with the lattice points in
certain four-dimensional ellipsoids, which are closely related to the error terms
F_! and Fx. The author wishes to thank Prof. J. Steinig for the time he spent to
read the manuscript of this article and for his many useful suggestions.
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2. Two gênerai theorems

Let us first define what we mean by the number of changes of sign of a

real-valued function / in a non-empty interval /.

DEFINITION.
1) We say that / is of constant sign in / if either / &gt; 0 or / ^ 0 throughout /.

2) We say that / has N changes of sign in / if / can be partitioned into N + 1

subintervals /,, / 0, 1, N (/, and /l+1 being consécutive), with the

following properties:
i) / is not identically zéro in any It ;

ii) / is of constant sign in each /, ;

iii) /is of opposite signs in /, and /l + 1.

3) We say that / has a finite number of sign changes in / if there is an N ^ 0

such that / has N changes of sign in /.

Throughout this article, we consider functions /: [1, &lt;*)—&gt;R which hâve a

finite number of sign changes in (1, jc) for ail jc&gt; 1, and we dénote this number by
Xf(x).

We also set ln (n, n + 1) and /„ [n, n + 1) for each integer n &gt; 1, and

{x} := x - [x] if x is real. If £ is a finite set, |£| dénotes its cardinality.

THEOREM 1. Letf:[l,*)-+Ube such that for each n &gt; 1,

f(x)=f(n)-C{x} + 0(x) if xeîn9 (15)

where C is a constant, C =f 0, and

8(x) o(l) (*-**). (16)

Suppose further that there is a constant K&gt;0 such that

f f2(u) du &lt; Kx + o{x) (je-**). (17)

Theny as x—&gt;^}

(\) + (18)
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// in addition the distribution function for /,

:. Un.

exists and is continuous, and iff itself is monotonie on each interval în (decreasing

if C&gt;0, increasing if C&lt;0), then as x—&gt;™

Xf{x) 2 \Df(0) - Df{C)\ x + o{x). (20)

THEOREM 2. Let /:[1, «&gt;)-&gt;R satisfy conditions (15) through (17) of
Theorem 1. Let h : [1, »)—&gt;U be positive, and g : [1, &lt;«)—»R 6e 5Mc/i r/ia^ as

(21)

as x

(22)

// in addition f satisfies condition (19), anrf i/ r/ie function g/h is monotonie on
each ïn {decreasing if C&gt; 0, increasing if C &lt; 0), f/ien as jc —&gt; »,

Xg(x) 2 10,(0) - Df(C)\ x + o(jc). (23)

Proof of Theorem 1. We may suppose C&gt;0 (if C&lt;0, consider —/instead of
/). We may also restrict ourselves to the case where x is an integer. For r &gt; 0, set

Br(x)={n^x,\f(n)-C/2\&gt;r}.

From (16), (17) and Cauchy&apos;s inequality,

fe(u)f(u)du=o(x); (24)
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then from (15) and (16),

ff\u) du f((f(u) - 6{u)f + 26(u)f(u) - 6\u)) du

=&apos;S f (f(n)-O2)dt+ \\28{u)f(u)-d2(u))du

S «/(&quot;) ~ C/2)2 + C2/12) 4- o{x),

whence

jXf\u) du &gt; r2 \Br(x)\ + ~^x + o(jr),

that is

f /2(w) rfw &gt; (r2 -h C2/12)x - r2 \Ar(x)\ + o(jr). (25)

From (17) and (25) we hâve

^4 (26)

Now take r C/2 - f, with 0 &lt; e &lt; Cil. Condition (15) implies that / decreases

by C + o(l) on /„. Hence by définition of Ar{x) there is an N - N(e) such that /
changes sign from + to — on /„ whenever n^N and n eAr(x). This means that
the number of sign changes of /from + to - on (1,jc), say Xf(x)f is at least

where p(x) o(x) as jc—&gt;^c. Hence if x is large enough to ensure that x&gt;Nle
and |p(jc)| &lt; ex, then

A7(jc) &gt; (| - 4/C/C2)jc - ô(e)x - 2ex, (27)

where ô(e)-&gt;0 as e-^O-f. Since e can be arbitrarily small, and as between two
changes of sign from H- to - there must be one from — to +, we hâve proved
(18).
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Suppose now that we also hâve (19) and that/is monotonically decreasing on
each /„. For r &gt;0, let

Dr := Df(C/2 - r) - Df(C/2 + r); (28)

then we hâve

\Ar(x)\ Dj + o(x). (29)

With the same argument we used to deduce (18) from (26) we obtain from (29)
and the continuity of Df

Xf(x)&gt;2Da2x + o(x). (30)

We will now show that

o(x)&apos;, (31)

(20) then follows from (28), (30), and (31).

Proof of (31). As we pointed out above, Xf{x) &gt;2Xf{x) -1. Since /
decreases on each /„, /changes sign at most once there (necessarily from + to -).
And since f(n) —f(n + 1&quot;) C + o(l), there is for each e &gt; 0 an N N(£) such

that if / changes sign on /„ and n&gt;N, then f(n) e (0, C 4- e). So we hâve

X;(x) &lt; (0,(0) - Df(C + e))x + N + o(x)

Df(C + e))x + ex, (32)

for x sufficiently large; (31) now follows from (32) and the continuity of Df. I
The proof of Theorem 2 is straightforward, since Theorem 1 can be applied to

the function /* := g/h. Indeed, if Df exists and is continuous, then Dr also exists

and Df Dr. I

3. Error ternis associated with Euler&apos;s function

We first define the summatory functions 0 and 0&apos; and the corresponding
error terms R and H: for x ^ 1,

(33)
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and

*(*):= 2 &lt;Kn) =:-zx2 + R(x). (34)

We consider the changes of sign of H and R, and prove

THEOREM3. Asx^*,

XH(x) ^ | (l - ~)x + o(x) (1.57004. .)x + o(x), (35)

(36)

XH(x) 2(DH(0) - DH{6ln2))x + o{x), (37)

A&quot;w(jc) 2(£&gt;w(0) - Dh(6/jz2))x + o(x). (38)

Proof. The hypothèses of Theorem 1 are satisfied by f(x) H(x), with
C 6/^r2 and /C l/2^r2. Indeed

r 2
I n lu) du ~~ ^x (x—&gt; 3g) (^y)

J,
V &apos; lit2 V &apos; V 7

is a theorem of Chowla&apos;s [3, (48)] (see Remark 2 in Section 6). And (33) shows

that

H(x) H(n)-\{x} for xeîn. (40)

This proves (35).
Estimate (37) follows from Theorem 1 by using the existence and continuity of

DHy proved by Erdos and Shapiro [8].
For (36) and (38) we use the estimate

due to Pillai and Chowla [19, p. 99] (see Remark 1). As it is easy to see that

R(x)lx is decreasing on each /„, the hypothèses of Theorem 2 are satisfied if we
take f(x), C and K as above, g(x) R(x) and h{x) x. I
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Theorems 1 and 2 can also be applied to a class of error terms including H and

/?, first studied by Proschan [20], and for which Sivaramasarma [27, (7.1.45)]
determined the constant K of (17). This is done in [17, II.2].

4. Error terms associated with divisor fonctions

Let Fk be defined as in (8). We shall prove the following theorem about its
changes of sign.

THEOREM 4. Let k{) be the solution of the équation

Ç(2*o) 4Ç(2 + 2*o) (42)

in the interval (1/2, ^). Then if ko&lt; \k\, we hâve, as x—»&lt;*

&lt;43)

(Using a variant of Simpson&apos;s approximation method, B. Gisin computed
*:„ 0.6236622010...).

In order to deduce Theorem 4 from Theorems 1 and 2 we need three lemmata

LEMMA 1. Asx-+°°,

F(x):=xF_l(x)-Fl(x) o(x), (44)

Fk(x) O(jc&lt;1+*&gt;/2) for -\&lt;k&lt;-{, (45)

Fk{x) xkF-k{x) + o{xk) for {&lt;k*\. (46)

Proof. Estimate (44) is classical (see Remark 4 in Section 6). For (45) see

[3, (112)]. An estimate implying (46) can be found in [13, (6)] (see Remark 5). I

LEMMA 2. With F as in (44), we hâve

(*-&gt;x). (47)
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Proof. On the one hand,

and on the other,

2 a_,

By using (8), (10) and t(0) -\, we get (47). I

LEMMA 3. Asjt-»oc,

~i£* (48)

and for -KK-j,

/. (48) is due to Walfisz [36, (I)] and (49) to Chowla [3, (7)]. They
considered an error term slightly différent from Fk (see Remark 3) and proved,
respectively, that for k -1,

(fc±ioM^ + o,,,») (50)

and that for -l&lt;k&lt;-\,

(48) follows from (50) with (47) and (44), and (49) from (51) with

f Fk(t) dt O(xl+k/2) if -Kifcss-i, (52)

which we proceed to prove. For —1&lt; fc &lt; — \, we hâve

Fk(x) - 2 nkV(xlri)-xk 2 rt~*H*/«) + O(**/2)&gt; (53)
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where W(y) := {y} - é [3, (65)], whence

\*Fk{t)dt - 2 nk f V(tln) dt - £ «&quot;* f tkW(tln) dt + O(xx+k&apos;2)

- S nk+i F
&quot;

V(u) du - 2 nf&quot;ukV(u)du + O(xi+kl2) O(xl+k/2). I
«sVa •&apos;ai n^y/x •&apos;ai

After this préparation, we pass to the proof of Theorem 4. We shall restrict
ourselves to the case \k\^l (for the case \k\ &gt; 1, see Remark 6). We consider
four subcases.

a) k -1: if n &lt; jc &lt; n + 1,

n1
F-X(x) F_!(n) - — {x} + O(1/jc), (54)

o

whence with (48), conditions (15) through (17) of Theorem 1 are satisfied by

f(x) F_!(jc), with C jt2/6 and /C 5^2/144.

b) k -f 1: with (44), we see that g(jc) F!(jc) and h(x) x satisfy condition
(21) of Theorem 2, if /(jc) is as in Case (a).

c) ke(-l, -k0): we hâve by (10), if x e ïn

Fk(x) Fk(n) - £(1 - k){x} + O{xk), (55)

whence with (49), conditions (15) through (17) of Theorem 1 are satisfied by

/ Fky with C £(1 - A:) and /C t(-2/c)£2(l - *)/12£(2 - 2k).
d) A: 6 (k0, 1): with (46) we see that if f F_k, and C, /C are as in Case (c),

condition (21) of Theorem 2 is satisfied by g(x) Fk(x) and h(x) xk. I

5. Error ternis associated with the lattice points in certain four-dimensional
ellipsoids

Arnold Walfisz considered in [36] and [37] the quadratic forms

x nî + nl + 2nl + 2nl
2 n21 + 2nl + 2n23 + 4nl { }
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the associated four-dimensional ellipsoids

0&lt;Qk&lt;x (k 0,1,2,3) (57)

of respective volumes

Wk{x) ^x2 (* 0,1,2,3), (58)

and the corresponding error terms

Pk(*)= S 1-W*(jc) (* 0,1,2,3). (59)

He showed that

P,(jc) 4£,(jc) - 4£,(*/2) + 8£,(*/4) - 32£,(x/8),
P2{x) 2£,(jc) - 2£,(jc/2) + 8£,(jc/8) - 32£1(x/16), l &apos;

,(jc) - E^x/2) + 8£,(jc/16) - 32jE:1(jc/32) 4- O(jc5/6),

(where EA{x) FA{x) —x/2 — Ç(-l)/2; see Remark 3) and that

n2
3 \O{x5l2){k 0, 1, 2; [36])

Using

where

*,,(*) 8F_i(jc)-8F_,(jc/4),
RM) 4F_,(jc) - 2F_,(jc/2) + 2F_,(jc/4) - 4F_,(jc/8),

F(jc) O(x™), (62)

where F is as in (44) (see Remark 4), we can rewrite (60) as

Pk{x)=xRk{x) + O{x™) (A 0,1, 2, 3), (63)

- F_,(*/32).
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Integrating by parts in (61) and using (63) we obtain

(k=0, 1,2, 3). (65)

It is not difficult, using (64) and (54), to show that for x e /„ we hâve

(£ 0,1,2,3). (66)

We see with (63) through (66) that Theorems 1 and 2 can be applied; we obtain

THEOREM 5. For Pk as in (59) (k 0, 1, 2, 3) we hâve

XPk(x) ^
3 (l ~ —)x + o(x) (1.045527 .)x 4- o(x). (67)

For k 0, this improves

XP0(x)&gt;2^x + O(l), (68)

which is implied by a gênerai resuit of Steinig&apos;s [28, (4.5)].

6. Remarks

Remark 1. If/ is strictly monotonie on each /„, we hâve the trivial upper
bound

Xf(x)^2x + 1. (69)

This, with the example below, shows that (18) can be sharp: if

(15) holds with C — 1, and we hâve

f V\t)dt-xl\2 (jc-&gt;x);
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thus by Theorem 1

Xq,(x) &gt;2x + o(x).

(69) should also be compared with (83).

Remark 2. Chowla&apos;s estimate of the error term in (39) was O(x/\og4x). For
better estimâtes, and also for estimâtes of R(x) - xH(x), see [26], [30], [27]; [30]
also gives estimâtes subject to the truth of the Riemann hypothesis.

One can obtain a simpler proof of (39) than in [3] by adapting the arguments
of Lemmata 3.2. and 3.3 of [8]. One gains the advantage of not having to prove
Lemma 7 of [3] (Hilfssatz 6 of [34]).

Remark 3. Some authors (Walfisz [34-37], Chowla [3]) considered another
error term Ek defined by

(70)

(71)

=: ^-x - \ logjc + £_,(*) (72)
o

(hence the estimâtes (50) and (51)). This is a more natural choice than Fk, in the
sensé that

Ek(x)

o(x2) (k 1)

o(x) (0&lt;fc&lt;

o(xi+k) (-Kfc
lo(logx) (* -l

(73)

whereas

Fk(x)*o(l) (-1***1). (74)

Fk is the error term one obtains when dealing with S* by the complex variable
methods developed by Chandrasekharan and Narasimhan to exploit the



98 Y -F S PÉTERMANN

représentation

X ok{n)n~s £(s - £)£(*) (Re s &gt; max (1, k +1)) (75)

and the functional équation satisfied by Ç(s - k)t;{s) (see [1], [2], [9], [10]). It
seems to be the &quot;right&quot; error term to consider if one is interested in the change of
sign problems. To be concrète, let us say that a good point in favor of Fk for thèse

problems is that for k &lt; 0, we hâve

k{t)dt o(x), (76)

which shows that the mean value of Fk{t) is 0. As for Q or 0 estimâtes, since

Ek(x)-Fk(x) O(l) for k&lt;0, (77)

the results one obtains for any one of thèse error terms are also true for the

other.

Remark 4. 0-estimates of the error term in (44) were successively improved in

[38], [12], [13], [35], [16]. The current record-holder is Recknagel [22] with

F(jc) O(jc109/382). (78)

A spécial case of a resuit of Segal&apos;s [24] reads

2F-M) ^x + O(xM), (79)

which is équivalent to

O(jc1/4) (80)

(use (47) and (54)). Segal pointed out in [25] that his proof of (79) is incorrect. In
fact, (79) itself is incorrect: see [17, Appendix ]. (However, [25] was sometimes

overlooked, as in [14] and [29]).

Remark 5. To our knowledge, the best 0-estimate to date of Fk(x) —xkF_k(x)
for 2

&lt; k s 1 cornes from using [22] instead of the weaker [15] in [11, Corollary 1
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p. 403]. One obtains

Fk{x) xkF.k{x) + O{xm-k)) (è&lt;*sl),

where

TT2

99

(81)

(82)

Remark 6. Most authors who studied the Sk restricted themselves to the
case \k\ ^ 1 (&lt;4to avoid unnecessary complications&quot; according to Cramer [4]).
Estimâtes of

Fk(x), fFk(t)dt and fF2k{t)dt

for the case \k\ &gt; 1 are apparently unavailable in the literature. With the help of
the existing proofs [3] of such estimâtes for |/c|^l, together with Ramanujan&apos;s

estimate [21] of Fk(x)—xkF_](x) for 0&lt;/c&lt;^, extending the domain of validity
of (43) to \k\ &gt; 1 is only a matter of tedious and unoriginal calculation. We now
observe that

8

H-
(83)

with (69), this shows that the constant in (43) is in some sensé best possible.
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