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On foliations of R"*' by minimal hypersurfaces

BRUCE SOLOMON

Introduction and preliminaries

This paper sets forth several basic theorems regarding foliations of R"*! by
minimal hypersurfaces; here n+1=8, for reasons discussed below. First we
outline our primary results.

In §1, we prove a local result (Theorem 1.1), concerning smoothness. It is
shown that any a priori merely continuous foliation of an open subset of R"*! by
minimal hypersurfaces is actually Lipschitz, and oriented by a Lipschitz unit
normal. This result is sharp, as evidenced by several accompanying examples, and
perhaps surprisingly so, since minimal hypersurfaces are themselves always real
analytic. We proceed in §2 to study the global structure of such foliations, when
they are defined on all of Euclidean space. In this regard, Theorem 2.3
establishes that, in any dimension, the leaf space of the foliation is R, the real
line. Geometers, it seems, are often unaware that this is far from being true for
general hypersurface foliations of R"*', even when leaves are assumed proper
and real-analytic, even if n + 1 =2 (cf. §2 below). In Theorem 2.4, we specialize
to foliations which have an asymptotically regular leaf. This natural hypothesis
always obtains in the critical case n + 1 =38, and the theorem states that such a
foliation is diffeomorphic to the cartesian product of a contractible area-
minimizing hypersurface with R, and that, near infinity, each leaf looks like the
central cone over a homology (n — 1)-sphere embedded ‘“‘symmetrically”’ in the
unit sphere S” (cf. remarks following Theorem 2.4).

Our interest in foliations of R"*' by minimal hypersurfaces derives from a
very natural problem which has yet to be solved. We precede its statement with a
few words of background.

Recall that a solution of the minimal surface equation in R"” is a function
whose graph in R”*! is a minimal hypersurface. The classical Bernstein problem,
which asks whether an entire solution is necessarily a linear polynomial (i.e.
whether its graph must be an affine hyperplane) is well-known, and has a long,
fascinating history. Bombieri, DeGiorgi, and Giusti solved it completely in 1968
([BDG]), building upon a number of other important works (e.g. [B], [FW], [D],
[A], and [S]]) in doing so. Their result (the “Bernstein Theorem”) states that
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68 BRUCE SOLOMON

entire minimal graphs are always hyperplanes when n + 1 =<8, whereas in any
higher dimension, this assertion fails.

Consider, however, that R"*! is foliated by the vertical translates of any
entire graph, minimal or not. In light of this simple observation, the following
deeper, but perhaps more natural (from a geometric standpoint) problem seems
inevitable.

Is every foliation of R"*' by minimal hypersurfaces a foliation by parallel affine
hyperplanes?

When n + 1 # 8, the theory developed in connection with Bernstein’s problem
yields an answer: affirmative if n + 1 <8, negative if n + 1> 8. But in the critical
dimension n+ 1=38, it appears quite difficult to settle this question. More
generally, one might ask, when n + 1> 8, whether such foliations always arise by
translating an entire minimal graph, or, whether the assumption of an asymptoti-
cally regular leaf implies that all leaves are parallel hyperplanes. We would guess
that both these questions have negative answers in high dimensions. Some
discussion of this is given following the proof of Theorem 2.4.

Henceforth our basic setting will be a codimension one, C* foliation of R"”*!
(or some open subset thereof) which will generally be denoted by %. Here
k, n =0 are unrestricted non-negative integers. We thus have a decomposition ot
R"*! into a union of n-dimensional submanifolds, called the leaves of %, and

each point of R”*! has a neighborhood U where there is a distinguished C*
coordinate system

(x,y):U—- R" xXR.

That is, for each t € R, y~'(¢) is a connected component of A N U for some leaf
A € . Furthermore, we will always assume that leaves of & are minimal, i.e.,
smoothly immersed submanifolds having zero mean curvature.

Of special interest, particularly in §2, will be the case in which leaves are

hypersurfaces. By this we mean a codimension one, locally integral current S of
the form

S = 9[V], V cR**! open,
where [V] denotes the current corresponding to oriented integration of (n + 1)-

forms over V. (The reader may wish to consult one of the books by H. Federer
[FH] or L. Simon [SL], if unfamiliar with the theory of integral currents.) This
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point of view will be useful to us because there is a geometrically natural topology
on the space of hypersurfaces; the integral flat topology [FH, 4.3.16] or (SL, §31).
Roughly, two hypersurfaces are close in this topology if their difference bounds
an open set having ‘“small”’ volume in any ball.

When the support of a hypersurface S (denoted spt(S)) is a Riemannian
submanifold of R"*', we may sometimes refer to this submanifold as ‘“the
hypersurface S”°. No serious ambiguity will arise through this practice.

A further useful aspect of hypersurfaces is the naturality with which one can
impose a more global variational hypothesis than that of minimality; namely, that

of area-minimization. A hypersurface § is said to be area-minimizing in an open
set UcR™*! if

IS (B)= IS + Z|| (B,)

for all sufficiently large r >0, whenever Z is a hypersurface having compact
support in U. (We use B, to denote the open ball of radius r >0 and center at the
origin O € R"*"). Roughly speaking, this means that no compact piece of S in U
can be replaced by a piece having less n-dimensional area, without introducing
boundary.

Before we proceed, it is our pleasure to thank the Mathematical Sciences
Research Institute in Berkeley, Indiana University, Bloomington, and the Centre
for Mathematical Analysis in Canberra, for supporting this research.

§1. Local regularity

In this section, we discuss the smoothness of foliations having codimension
one minimal leaves. Our basic result is the following.

(1.1) THEOREM. Let ¥ be a codimension one, C° foliation of an open set
UcR"*. If all leaves of F are minimal, then ¥ is oriented by a locally Lipschitz
unit normal vector field, and admits a locally Lipschitz structure.

Though it gives only local C*' regularity, this theorem is actually sharp. We
illustrate by some simple examples.

Let UcR? be the open disc of radius 1 and center at the point (2,0).
Consider the foliation of U by straight line segments, given as level sets of the
Lipschitz (but not C') function

yix y=0

y, y<0

fix,y)= {
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A moment’s meditation on this example makes it clear that more regularity
than Theorem 1.1 provides cannot be expected, at least locally. On the other
hand, it may be true that a global C° foliation of R"*! by minimal hypersurfaces
is necessarily C' or smoother, possibly even real analytic. This is true when
n +1<8 of course (at least, assuming leaves are proper) but it appears to be a
considerably more subtle matter when n + 1> 8. Indeed, if true, it must depend
on the metric properties of R"*'. For, if we interpret the open disc above as the
“Klein model” for hyperbolic 2-space [HCV, §35], we obtain a C° foliation of the
hyperbolic plane by proper minimal (in fact, totally geodesic) hypersurfaces,
which is locally Lipschitz, but not C'.

It may also be worth mentioning here that the normal to a C° foliation of
R"*! by real analytic — but not minimal — leaves, is generally discontinuous. For
example, one can foliate the upper half plane in R? with leaves which are all
homothetic images of the graph {(x, f(x)):x € R}, where f(x) = (7t/2) + tan™'(x).
The x-axis then completes this foliation continuously to the closed half plane, and
reflection across the x-axis even gives an entire foliation of R?. Each leaf is real
analytic, but the normal to this foliation is clearly discontinuous at the origin.

Having brought the content of Theorem 1.1 into focus with the above
examples, we now proceed to its proof.

Proof of Theorem 1.1. First, by the purely local nature of the theorem, it will
suffice to assume that % is comprised of the level sets of a single continuous
function y: U — R having no extrema in U, and which separates leaves. Denote
by A, the leaf y~'(¢).

Next, we claim that (in contrast to the last example above) the unit normal v
to & is continuous. Since we are free to reparametrize y, it will suffice to derive
the continuity of v on 4, (i.e. at t =0). If p € 4 and B,(p) = < U for some r >0,
then one easily sees that as t— 0, A,— A, as hypersurfaces in B,(p), in the
integral flat topology. Under our present hypothesis that all leaves are minimal, it
is a basic fact that whenever K « — U is open and convex, and A€ & is a leaf,
AN K is area-minimizing. (We do not argue this fact here, because a stronger
version of it is proved later, in Lemma 2.2.) In particular, therefore A, N B,(p) is
minimizing for each ¢t € R, and hence the convergence A, — A, is governed by the
basic regularity theory for minimizing hypersurfaces [FH, 5.3.14], which provides
that integral flat convergence of minimizers to a smooth limit is actually smooth
convergence. More precisely, for sufficient small |t|=0, A, N B,(p) can be
expressed as the graph of a function f;: 4, — R (relative to the unit normal v on
Ag) in B,(p), where f, — 0 in the C* norm for every a >0, as ¢t — 0. This clearly
gives the continuity of v on A, N B,(p), hence throughout U.

We emphasize that this C* convergence of nearby leaves to A does not imply v
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is C,_; for all & >0. Indeed it cannot, by virtue of the first counterexample
preceding this proof. We can show, however, that v is locally Lipschitz; we now
proceed to do so.

For this, observe that since v is continuous, we may restrict our attention to a
neighborhood in which v barely varies. Indeed, it will suffice to consider the case

U=B;X1,
v(0)=(0,0,...,0,1)=:n,
where, for each r >0,
B,=B,(0)cR", I,=(-r,r)cR.
Moreover, we may assume without loss of generality that
supy |[v—n|< 3§, (1.2)

where 8 >0 will be chosen shortly. It will then be shown that there is a constant
C = C(n, ) such that

[v(®) - v <Clx -yl (1.3)

whenever X, y e W:=B, X I,.

For this purpose we now define V:=B,X I, and note that whenever
u:R" — R is any smooth function, the unit normal v to the graph of u in R"*!
satisfies the elementary estimates

[v—n[® o |v—ml
1 <D .. —
sy e A LU Ay e
for each x e R", v being evaluated at (x, u(x)) e R"*!, provided |v —n]*<1.
Hence we may choose 6 >0 in (1.2) sufficiently small to ensure that for each
te 1, the leaf of ¥ containing (0,0, ...,0,t) eV is the graph of a function

(1.4)

u,:B3—‘) 12.

Now, the minimality of leaves of & implies that, for each ¢ € I, u, satisfies the
minimal surface equation

a’(Du,) - Dyu, = 0.
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Here and henceforth we employ the summation convention, and have, for
1<i,j<n,

(92
- ox; Ox;

aij(P) =(1+ lplz)aij — PiPj» D; = D,D;

0; being the Kronecker symbol, and p any vector in R". The point here is that
since |u,| <2 on B;, we may invoke well-known a priori estimates for the minimal
surface equation [GT, Corollary 16.7] to obtain, for any given multi-index 8, a
constant C = C(n, B) such that

sup {|D%u,(x)|:x € B;} <C. (1.5)
In particular, our bound on |u,|, hence the constant in (1.5), is independent of
tel,.

Suppose then, that s,t € /;, s > ¢, and denote by vj the positive difference

vy =u, —u,>0.
It is a standard observation that v} satisfies an elliptic differential equation, but
we wish to emphasize here that vj satisfies such an equation having smooth
coefficients. Precisely, we have

A’(x) - Djv} + B'(x) - Dv; =0,

where

AY(x) = a’[Du,(x)],
B'(x) = Dyu(x) - Il D, a"*[tDu,(x) + (1 — t)Du,(x)] d,

(see [BIJS, §I1.7.1]). From these formulas, it is easy to verify, using (1.5), that for
any «a € (0, 1), there are constants A >0, C <, such that

AlpP<Aipp,<|pP forall peR" (ellipticity)
|A%o 4:8,» |B'|0,a:8, < C (uniform Holder continuity),

The Holder norms above being denoted as in [GT, p. 53]. Moreover, these
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bounds are independent of s, t € L,, despite the dependence of A”, B’ on s, ¢,
because (1.5) holds uniformly. Our positive solutions v; are therefore governed
by the classical Schauder estimates, and satisfy a Harnack inequality. We proceed
to exploit these facts.

First of all, the Schauder interior estimates [GT,6.2] yield a constant C
independent of s, ¢t € I,, such that

supp, |Dvi| < C - supg, |vj]. (1.6)

At the same time, using the Harnack inequality (e.g. [GT, 9.25]), we obtain, for
any x € B,,

supg, |vf| < C - infg, |uj| < Cuj(x). (1.7)

Combining (1.6) and (1.7) with the definition of v;, we therefore see that for any
xeB,, s, tel,

|Duy(x) — Du(x)| < C(n, 8) |u,(x) — u(x)|,
so that, by (1.4), we have

[v(x, us(x)) = v(x, 1, ()] = C Ju,(x) — u,(x)]. (1.8)

That is, v satisfies a Lipschitz condition between pairs of points in V which are
“vertically” aligned. We extend this relationship to arbitrary pairs of points in V
to obtain (1.3), as follows.

Let x, y € V. Then there exist x, y € B, s, t € I}, such that

X = (X, u,(x)), y= (yr us(y))°
We then define

y =0, uly)).

Consequently,
[v(E) — v(@)| = |[v(x) — v)| + () — v,
and from (1.8), we have C = C(n, ) such that

lv@) — vl =Cly - Jl.
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Furthermore, from (1.4), (1.5), and the mean value theorem we have C =
C(n, 8) such that

|V()2) - V()-;)I =C |Du,(x) - Dur()’)l
= Csupg, |D?u,| |x — y|
=Clx -yl

Thus
[v(x) —v(@)| < C(|x = 3| + [y - 3)),
implying
[v(®) — v <2C(|x = 3|* + |y = 51 (1.9)

Now, if (¥ —y), (§ —y) were perpendicular (i.e., (¥ — y) horizontal), we would
immediately obtain the desired Lipschitz condition (1.3). But recall that § >0
bounds |v — n|, hence |Du,| by (1.4), so that the vertical component of (¥ — y) is
controlled. It is therefore elementary to deduce (1.3) from (1.9) despite
non-perpendicularity. We have proven that v is locally Lipschitz.

The remaining assertion of Theorem 1.1 requires us to establish that & has an
atlas of distinguished coordinate charts which are bilipschitz homeomorphisms.
Again, however, it will suffice to consider the particular neighborhood V studied
above, and, in our notation there, to show that the bijection

(x, u,(x)) < (x, 1)
is bilipschitz on V. We leave the details of this argument to the reader; it i1s quite

straightforward in view of (1.4), our choice of §>0, and the following
consequence of the Harnack inequality satisfied by v} in (1.7). Namely,

ug(x) — u,(x) = vi(x)
< Cui0)=Cy(s — 1)
< Guilx) = G(u(x) — u,(x)).

This concludes our proof of Theorem (1.1).

(1.10) Remark. Theorem 1.1 remains true with R”*! replaced by any smooth
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ambient manifold. The argument of Theorem 1.1 is further complicated by the

need to write leaves as graphs over a given base leaf, instead of over B, = R”, but
no essentially new ideas are involved.

(1.11) COROLLARY. Let ¥ be a codimension one, C° foliation of a
Riemannian manifold M. If & is oriented, and all leaves are minimal, then any
positive linear combination of closed leaves (with orientations induced by %) is
homologically area-minimizing in M.

Proof. Since v is locally Lipschitz (Theorem 1.1), it is differentiable almost
everywhere (Rademacher’s Theorem [FH, 3.1.6]). A standard calculation using
the minimality of leaves then shows that div(v)=0 almost everywhere. &
therefore corresponds to a calibration of M, in the sense of Harvey & Lawson

[HL]. The result follows immediately, then, as in [HL] or [SD], by the divergence
theorem.

§2. Global structure

In this section we prove two global theorems concerning “‘entire” foliations of
Euclidean space by minimal hypersurfaces. While the first (Theorem 2.3) is valid
quite generally, the second (Theorem 2.4) requires that some leaf be
asymptotically regular (see below). This requirement is always satisfied in R®, but
is a significant restriction in higher dimensions. A few preliminary facts are in
order before we state and prove these results.

Let % denote a C* foliation of R”*! by minimal hypersurfaces. Implicit in our
earlier definition of hypersurface, is the assumption that every leaf of ¥ is
properly embedded (for short, proper). This assumption is rather strong, though it
can be deduced from minimality when n =2, or from real-analyticity of & for
arbitrary n. We do not know how to remove it in general.

An important aspect of properness is the fact that each leaf of & separates
R"*!. It follows from this that the leaf space of % is locally homeomorphic to R
(e.g., see [H]). The latter space, denoted here by A(F), is the set of leaves of Z,
topologized so that the obvious projection map

R - A(%F)

is continuous. The fact that A(%) is locally R makes it a C* one-manifold, but
consideration of simple examples shows that in general, A(¥) is not a Hausdorff
space. Indeed, as is nicely elucidated in a 1957 paper of Haefliger and Reeb
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[HR], every simply connected non-Hausdorff one-mainfold is the leaf space for a
smooth foliation of R? by properly embedded curves.

One property that A(%) does inherit from R”*', is simple connectivity. (The
proof of this, which makes an amusing exercise, again uses the fact that R"*,
hence A(%), is separated by each leaf.) It is well-known that a simply connected
one-manifold which is Hausdorff, is homeomorphic to R. The following Lemma
generalizes this fact to the non-Hausdorff case.

(2.1) LEMMA. (Haefliger & Reeb [HR, §1.2, proposition 1). Let A be a
simply connected one-manifold, not necessarily Hausdorff. Then there exists a
globally defined local homeomorphism f: A — R.

This result is a key tool in proving the next Lemma, from which Theorem 2.3
will quickly follow. Below, leaves A4,, A, € & will be termed inseparable if, as
points in A(%), they do not have disjoint open neighborhoods.

(2.2). LEMMA. Let ¥ be a C* foliation of R"*' by proper minimal
hypersurfaces, k =0. Then any finite sum of arbitrarily oriented, pairwise
inseparable leaves, is area-minimizing.

Proof. Suppose A, ..., A,, are pairwise inseparable. They by letting
[fA(F)—> R

be as in Lemma 2.1, and replacing f by f — f(4,) (without renaming), we clearly
obtain a local homeomorphism f such that

0=f(A)=f(A2) =---=f(Am).

Next, give each A; an orientation, sum the resulting hypersurfaces to form a
locally integral current

T::A,] +A.2+' * .+A'm)
and let r > 0. By using the compactness theorem for integral currents [FH, 4.2.17]
or [SL,$§27], we may obtain, as the limit of a minimizing sequence, a
hypersurface §,, which is minimizing in B(O, r), and satisfies

spt (T — S,) = B(O, r), (T -S,)=0.

The same holds for any indecomposable component [FH, 4.2.25] of T - §,, and
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we now restrict our attention to one such, call it Q. Note that in view of [FH,
4.5.17], we may reorient Q so that Q = 3A for some bounded measurable set
Ac B(O, r), i.e. Q is a hypersurface in our terminology.

Now, at some point p in the compact, connected support of Q, the continuous
function

R 5 A(F) DR

must attain a maximum. Let A, € # be the leaf through p. Since f is locally
monotonic, it follows from the constancy theorem [FH, 4.1.7] that A (which is
connected because Q is indecomposable) lies in the closure U of one connected
component of R, ,, ~A,. Moreover, Q clearly minimizes area in R"*' ~spt (T),
so that spt (Q)Nspt(T)#0, and we may apply the generalized maximum
principle [SL, 37.10] to deduce that in a neighborhood of p, spt(Q) coincides
with A,. But the set of points where Q contacts 4, is then both open and closed in
spt (Q) ~spt(T), whence fom must vanish identically on spt(Q), and we
conclude that spt (Q) < A, cspt (7).

Each indecomposable component of T — S, is therefore seen to be a compactly
supported n-cycle in a non-compact, n-dimensional manifold. Such cycles
necessarily vanish (as currents; constancy theorem again), hence 7 — S, = 0. Since
r >0 was arbitrary, we have that T is area-minimizing, as desired.

We may now easily state and prove the first main result of this section.

(2.3) THEOREM. Let & be a C* foliation of R"*' by proper minimal
hypersurfaces, k=0. Then A(F) is C* diffeomorphic to R (homeomorphic if
k = 0).

Proof. We show that A(%) is a Hausdorff space. Having noted earlier that
A(%) is a simply connected C* one-manifold, it then follows immediately that
A(%) is homeomorphic to R, and in the C* sense, when % is C*.

Suppose A(%) were not Hausdorff. Then we could find a pair of distinct but
inseparable leaves A, A, € . Each of these leaves divides its complement in R"*!
into exactly two connected open sets. For each (i, j) = (1, 2), (2, 1), let 0; be the
unique component of R"*!'~ A, which does not contain A, Thus O,U0, is a
non-empty, disconnected open set, call it O, whose topological boundary is
A;NA,. But we may orient A, and A, so that the resulting hypersurface A, + A,
forms the oriented boundary of O:

30 =4, + A,.
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On the other hand, since A, and A, are inseparable, it follows from Lemma 2.2
that 30 is actually area minimizing. This directly contradicts a theorem of
Almgren and DeGiorgi (as attributed by Bombieri & Giusti [BG, Theorem 1)).
Namely, an open set O0cR"*' having area-minimizing boundary is always
connected. Hence no such pair of inseparable leaves can exist, A(%) is Hausdorff
and the proof of Theorem 2.3 is complete.

We now need to define asymptotic regularity, for which purpose we recall the
construction, due to W. H. Fleming [FW], of “tangent cones at infinity”’. (This
construction is also central in the result of Almgren/DeGiorgi to which we
reduced Theorem 2.3 above.)

Let S be an area-minimizing hypersurface. By well-known arguments, every
sequence of radii {r,;} — 0 has a subsequence for which the corresponding
sequence of homothetic images {(r;)«S} converges, in the integral flat topology,
to a homothetically invariant area-minimizing hypersurface C; i.e. C is a
hypercone. (Here (r;) signifies the homothety x — rxx for x e R"*'.) We will say in
this case, that S is asymptotic to C. Note that S may be asymptotic, in this sense,
to more than one such cone, depending on the defining sequence {r;}. This
ambiguity will not be a source of difficulty below, however.

If S is asymptotic to a cone C which is smooth away from the origin 0 e R"*',
we will say that S is asymptotically regular. In this situation spt (C)NS" is a
smooth minimal hypersurface of the unit sphere $” = R"*!, which will be referred
to below as the associated link at infinity.

(2.4) THEOREM. Let ¥ be a C* foliation of R"*' by proper minimal
hypersurfaces, and suppose some leaf Ae % is asymptotically regular. Let
3"~ < 8" be the associated link at infinity. Then

(i) & is C*-diffeomorphic to A X R.
(ii) A is contractible.

(iii) There is a diffeomorphism of S" which exchanges the two components of
S" ~ X while leaving X pointwise fixed.
(iv) X is a homology (n — 1)-sphere.

Proof. Suppose € >0 is given. By Theorem 1.1 and the simple-connectivity of
R”*1 there is a global, locally Lipschitz unit vector field v, normal to #. Let

V. Rn+1 — Rn+l
be a C* approximation to v, with

17 -vll-<e
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(since v is locally Lipschitz, this can be achieved on annuli by mollification, then
on R"*' by partition of unity.) We henceforth assume 0<e <1, so that ¥ is
bounded and everywhere transverse to %; in particular v never vanishes. The
fundamental existence/uniqueness/smooth-dependence theorem for ordinary
differential equations consequently gives a C* embedding

G:AXR—R" !
such that

3
By Gx,t)=voG(x, 1), G(x,0)=x.

Inverting G on its image 0:= G(A X R), and projecting A X R — A, we obtain a
C” submersion

Y:0— A
By Theorem 2.3, there is also a C* submersion
m:0—- R

whose level sets are the leaves of #. (Here and below, one must argue slightly
differently in case kK = 0. We leave this to the reader.) Since the leaves of & are
infinitely smooth, and transverse to ¥, the product map

(p, 1):0— AXR

is then clearly a C*¥ embedding. Conclusion (i) of the theorem is now easily
derived with the aid of two facts: 0=R"*!, and (v, 7) is surjective. Both these
facts are immediate consequences of the following claim.

(2.5) CLAIM. Each integral curve of the vector field v meets every leaf of .

To verify this claim, let a, B e ¥ be arbitrary, with ¥ pointing info the
component U, of R"*' ~ & which contains . Fix also an arbitrary point y € a. It
will then suffice to show that the integral curve which enters U, at y eventually
crosses 8. We will accomplish this in the process of proving conclusion (iii) of the
theorem.

Denote by Cs, U*, and U~ respectively, the cone over 2, and the two
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(exactly two, by [BG]) components of R**' ~ Cs. Let
Qt:=S"NnU", Q :=S"NU"

be the corresponding components of $” ~2. By our hypothesis of asymptotic
regularity, there are radii r, — 0 for which the corresponding sequence 4, :=(r;) «A
converges to Cy in the integral flat topology. For each i=1,2,3,..., consider
the “rescaled” foliation % :=(r;)%, which contains A;, and define ;", A; € &, to
be the unique leaves (one on each side of A;) having distance € >0 from X. Since
each A, A; is minimizing (Lemma 2.2), it is standard that (for suitable
subsequences) {A;"}, {A;} converge, as i —» x to area maintaining-hypersurfaces
having distance £ >0 from X. In addition, however, since A," lies on one side of A,
for each i, lim,_,.. A;" is supported on one side of lim,_,. A, = Cs. Similarly for A;".
This situation is a rather special one in light of the following result of Hardt &
Simon [HS, Thm. 2.1]:

There is a unique area-minimizing hypersurface T} (respectively, T.)
supported in the open set U™ (respectively, U™), having distance € >0 from 2. T;
and T, are smoothly asymptotic to Cs near infinity, and representable (in polar
coordinates) as radial graphs over Q%, Q7 respectively. As e >0, T, T; — Cs,
and uniformly so outside B, (O, 1).

We immediately see from this that
M—>T: A —>T.;, as i—>x,

and that T}, T are diffeomorphic (by graphing) to %, 7, respectively.

Combining these facts with the basic regularity theory [FH, 5.3.14] for
area-minimizing hyp ersurfaces (which, again, says that weak (i.e. integral flat)
convergence of minimizers to a smooth limit is actually smooth convergence), it
follows that by making £ >0 small, and then rescaling (i.e., choosing i large), we
may proceed under the following assumptions.

(2.6) F contains leaves A", A~ such that any leaf y € ¥ between A* and A~
(i.e. #(A7)=7a(y)=na(A")) is expressible in & = {x e R""':4 < |x| <3} as the
graph over a domain in Cs (relative to the unit normal v on Cs) of a function
whose gradient is small; that is O(¢).

(2.7) There are diffeomorphisms

¢.:Q*—> D*:=A*NB, (0,1)



On foliations of R”*! by minimal hypersurfaces 81

such that for any weZ2, po ¢ (w)=w. Here p is defined, on a tubular
neighborhood of X containing 3D*, dD~, to be the ‘“‘nearest point retraction”
onto 2.

(2.8) Letting a, B € ¥ and y € a be as mentioned earlier in reference to claim
2.5, we have

a(A)<n(a)<mx(B)<m(A*), and |y|<1.

From (2.6) and (2.8), we can now deduce claim 2.5. For, (2.6) shows that in
&, any leaf of ¥ between A~ and A" is ‘“nearly paralle]” to CsN . By
pre-assigning € >0 small enough, therefore, we can clearly arrange that any
integral curve of the approximately normal vector field ¥, which meets S§”"
between A~ and A*, passes through both these leaves, hence a posteriori through
both a and B. Since ¥ points into U, on «, and never vanishes, the integral curve
of ¥ which enters U, at y € @ must eventually meet $” N U,. If it does so between
A~ and A", then we have just seen that it must eventually reach S. If not, it
clearly meets S” after having already passed through B. This establishes claim 2.5,
hence proves conclusion (i) of our theorem.

Conclusion (ii) of the theorem follows directly from conclusion (i), because
for each i=1,2,3,..., the homotopy functor x; commutes with cartesian
product, and m,(R"*")=m;(R)=0. It is well-known that contractibility of a
manifold is equivalent to triviality of all its homotopy groups [GM, II1.B].

To get conclusion (iii), observe that by the argument for conclusion (i), %
itself gives an isotopy from D™ to D~ through diffeomorphisms. But then by (2.6)
and (2.7), the corresponding map

o pr—p- o

is a difftomorphism, whose restriction to 3Q%=3=3Q" is isotopic to the
identity on X. This diffeomorphism can then be smoothly modified in a collar
neighborhood of 327, so as to leave X pointwise fixed. Conclusion (iii) is now
evident.

Finally, we deduce conclusion (iv) from (iii) by noting that for each
0 <k <n — 1, Mayer-Vietoris gives an isomorphism

(iq_jv)

O—H,(2) — Hk(g+) ® H(27)— 0
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where i and j denote the obvious inclusions. But since i and j are essentially the
same map, by conclusion (iii), (i., —j4«) cannot be an isomorphism unless
H,(2)=0. Recalling the well-known fact that compact embedded minimal
hypersurfaces in S" are always connected, we see that H,(X) = H,(S""") for all
k =0. This completes the proof.

We conclude with a few remarks.
Theorem 2.4 suggests an interesting extension of the spherical Bernstein
problem [Y]:

Which (n — 1)-dimensional homology spheres can be minimally embedded in
the unit sphere S"? More restrictively, which can bound area-minimizing
hypercones?

Several authors have found non-equatorial minimal hyperspheres in $* ([FK],
[HW], [TP]). Though none of these examples are known to bound minimizing
cones, experience indicates that in sufficiently high dimensions, some of them will
(cf. [HsS)).

Regarding more general homology spheres, M. Kervaire [KM] has shown that
when n >S5, there are infinitely many homology (n — 1)-spheres which bound
contractible smooth manifolds. But if »>5 and " is contractible, its double
D(€L") is simply-connected and bounds £ x[-1,1], which is then
diffeomorphically an (n + 1)-ball by the h-cobordism theorem [MJ, §9 Prop. A].
Hence D(£2) is a smooth n-sphere. In particular, the situation described in
Theorem (2.4), where a homology sphere 2 decomposes S” as the double of a
contractible manifold, is topologically very common. This again suggests that in
sufficiently high dimensions, there will be minimizing cones on homology spheres.

In such a case, the existence of non-hyperplanar foliations of R”*' by
asymptotically regular minimal hypersurfaces is, for large n, made rather
plausible. Neither could such a foliation arise by translating an entire minimal
graph because such graphs are never asymptotically regular [D]. Thus, although
the italicized question posed in our introduction may have an affirmative answer
in R®, the obvious generalizations mentioned there for higher dimensions are
probably false.
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