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Cohomology with free coefficients of the fundamental
group of a graph of groups

KenneTH S. BROWNY and Ross GEOGHEGANV

Let G be an HNN extension H *, with base group H, associated subgroup
A c H, and monomorphism 7:A — H. Consider the Mayer-Vietoris sequence
with ZG coefficients

-+ —=>H%G,ZG)—> H(H,ZG) % H*(A,ZG)— - - -

(cf. [1], [2], or [6]). We will be interested in the case where H and A are assumed
to be of type FP, for some n. [Recall that a group K is said to be of type FP, if
the ZK-module Z with trivial K-action admits a projective resolution which is
finitely generated in dimensions <n.] Bieri ([1], Theorem 6.6) showed in this case
that the map « is a split monomorphism for q <n, provided A and 7(A) are of
finite index in H, and he deduced under these hypotheses that G is a duality
group if H and A are duality groups. He proved similar results for amalgamated
free products in which the amalgamated subgroup is of finite index in both free
factors.

In this paper we generalize Bieri’s results by (a) dropping the finite index
hypotheses and (b) allowing G to be the fundamental group of an arbitrary finite
graph of groups of type FP,. There is a Mayer—Vietoris sequence analogous to
that above, and we give an interpretation (in dimensions <n) of a and its kernel
and cokernel in terms of the tree X associated to G [9]. This leads to a short
exact sequence for computing H*(G,ZG), involving the compactly supported
cohomology of X with coefficients in the system {H*(G,, ZG,)}, where G, ranges
over the vertex and edge groups. See Theorem 2.2 for the precise statement.

We are able to deduce, among other things, sufficient conditions weaker than

those of Bieri for o to be a monomorphism. In the HNN case, for instance, we
prove

! Partially supported by the National Science Foundation.
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32 K. S. BROWN AND R. GEOGHEGAN

THEOREM 0.1. Let H and A be of type FP, and let the restriction map
H9H,ZH)—> HY(A,ZH) be a monomorphism for some q=<n. Then
a:H(H,ZG)— HA, ZG) in the Mayer— Vietoris sequence is a monomorphism.

This holds, in particular, if A is of finite index in H, e.g., if H=A; 17(A),
however, is allowed to be arbitrary. A concrete example of this situation is given
in [5], where we use Theorem 0.1 to show that a certain interesting group F of
type FP, has HY(F,ZF)=0 for all q.

Finally, in case (H:A)<w and G=H *, as above, we obtain a result
(Theorem 3.3) relating properties of H*(G, ZG) to corresponding properties of
H° '(H,ZH). In particular (i) if H is an m-dimensional duality group, then G is
an (m +1)-dimensional duality group, and, (ii) if H is of type FP,, q=n and
1<(H:A)<o, then H ' (H,ZH) Z-free implies HY(G, ZG) Z-free.

The paper is organized as follows. §1 contains some general observations
about H*(G, ZG) as a functor of G. These results might be well-known, but we
know of no reference for them. In §2 we apply the results of §1 to the
Mayer—Vietoris sequence discussed above. In particular, Theorem 2.2 falls out
immediately. §3 contains examples, including Theorem 3.2 which implies
Theorem 0.1, above. Finally, an appendix contains a direct proof via normal
forms of Theorem 0.1 for the benefit of the reader who is not familiar with the
theory of graphs of groups.

Some of the results of this paper were announced in [4].

§1. Preliminaries: Functorial properties of H*(G, ZG)

Let D*(G)= H*(G,ZG). We want D* to be a functor.

Recall that group cohomology is contravariant with respect to group
homomorphisms and covariant with respect to coefficient module homomorph-
isms. It will be convenient to formalize this as in [2], §1I1.8, by viewing H*(—, —)
as a contravariant functor on the following category U : the objects are pairs
(G, M), where G is a group and M is a left G-module; a morphism (G, M) —
(G',M') is a pair (u:G— G',v:M'— M), where u is a group homomorphism
and v is an abelian group homomorphism such that v(u(g)m') = gv(m’) for g€ G,
m'e M'. Equivalently, v is a G-module homomorphism when M’ is regarded as a
G-module via u.

Let € be the category of groups and monomorphisms. There is a covariant
functor d : € — AU taking G to (G,ZG)and i:H—> G to d(i):(H,ZH) — (G, ZG)
given by d(i)=(, (i), where (i™)%g)=i"%(g) if gei(H) and (i™H)%g)=0
otherwise. [Here and throughout this section we use a superscript 0 to denote the
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“extension by zeroes” to ZG of a map defined on a subset of G.] We now set
D*(i)=d(i)*: D*(G) —» D*(H); in other words, letting s{4 be the category of
abelian groups, D*: %€ — & is the composition € g, A, a contravariant
functor.

Some familiar concepts fit into this framework.

EXAMPLE 1.1. Let i:H— G be an inclusion with (G:H)<w. Then
D*(i): D*(G) - D*(H) is an isomorphism; in fact, it is the usual Shapiro’s
Lemma isomorphism. This follows from the description of the latter given in [2],
§111.8, exercise 2.

Suppose H and H’ are subgroups of a group G and suppose g is an element of
G such that gHg '< H'. Suppose M is a G-module and N (resp. N’) is an
H-submodule (resp. H'-submodule) such that g7'N’< N. Then there is a map
(cp Ag—):(H, N) = (H', N'), where c,(h)=ghg™" for he H and A ,+(n)=g 'n’'
for n'e N'.

EXAMPLE 1.2. If we set H=H'=G and M= M’ = N'=7G, one checks that
d(c,) = (id, py)°(cgy A1) : (G, ZG) — (G, ZG), where p,(x) = xg. The map (cg, A1)
induces id on H*(G,ZG) (cf. [2], 111.8.3). So D*(c,) = (id, p,)*. Thus the left
conjugation action of G on itself induces, by contravariance of D*(—), the usual
right action of G on H*(G, ZG) coming from the right-multiplication action of G
on ZG.

We wish to study H*(H, ZG), where H < G, in the context of the functor D*.
More generally, if S is a G-set, i.e., a set with a left G-action, let G, be the
1sotropy subgroup of G at se S, and let S, be a set of representatives for
S mod G. Then we wish to study D, s, H*(G,, ZG) functorially.

For se€S and ge G, the isomorphism c, : G, — G, induces an isomorphism
D*(c,): D*(G,,) — D*(G;). Let

D¥(S)=® D*(G,)

seS

and

D) = [1 p*G,).

seS

These are right G-modules in a natural way, via the isomorphisms D*(c,). [In case
S has only one element, for instance, this is the G-module structure on D*(G)
discussed in Example 1.2. In the general case D*(c,) is induced by d(c,)=
(id, pg)o(cg, Ag-1) Where (in the terms preceding Example 1.2) H= G, H' = G,
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M=ZG, N=ZG, and N'=7G,g.] In the rest of this section, we will show that
D(S) is functorially isomorphic to @D,.s, H*(G,, ZG) under suitable finiteness
hypotheses —see 1.6 below.

First, we look at a special case. Let H be a subgroup of G and let S = G/H =
{gH | g€ G}. Then D¥(G/H)= D*(gHg ') where g ranges over a set of rep-
resentatives for G/H. For each coset representative g there are morphisms

(c,A —1)

(H,ZG)—— (gHg ', Z[gHg ")

(C =1 ,AO)

(H,ZG) < (gHg ™', Z[gHg ™))

inducing
¢, : D*(gHg™") — H*(H, ZG)
¢, :H*(H,ZG)— D*(gHg™)

and, hence, morphisms of abelian groups
¢ v -
D¥(G/H) — H*(H,ZG) — D¥(G/H).

[Recall that, according to the convention mentioned above, A2:ZG — Z[gHg '] is
given by g'+> gg’ if g’e Hg ! and g’ 0 otherwise.] Our main interest here is in
the map ¢, but ¢ is useful because it enables one to compute ¢ ' in case ¢ is an
isomorphism. Note that ¢, and ¢, depend only on the class of g in G/H because
of the invariance of H*(H, —) under H-conjugation (cf. [2], I11.8.3).

PROPOSITION 1.3. o is the canonical inclusion of the sum in the product.
¢ is a monomorphism for any H and is an isomorphism in dimensions <n if H is of
type FP,. ¢ and ¢ are morphisms of right G-modules, where H*(H,ZG) has the
usual right G-action coming from the right action of G on ZG.

Proof. The first sentence is checked in . It follows that ¢ is a monomorph-
ism. The left H-module ZG decomposes as €D ZHg™ ', g ranging over coset
representatives. The inclusions associated with this decomposition define ¢’ in the
following diagram of .abelian groups, which clearly commutes:

®H*(H,ZHg ™"

D (cq. Ag-% \"

® H*(gHg ', Z[gHg ') —— H*(H,ZG)

ll
D¥(G/H)



Cohomology with free coefficients 35

If H is of type FP,, ¢' is onto in dimensions <n [1, p. 9] hence also ¢. We have a
commutative diagram
D*(cg)

D*(gHg™') —> D*(H)

| |+

. | ‘)*
H*(H,ZG) =25 H*(H,ZG)

from which it follows that ¢ is a morphism of G-modules. A similar argument
works for . ||

We can apply 1.3 to general G-sets by decomposing them into orbits. If S, is a
set of representatives for the G-set S, there is a monomorphism of right
G-modules @ : D¥(S) —»D,.s, H(G,, ZG); if each G, is of type FP,, then & is
an isomorphism in dimensions <n.

Next we wish to consider the effect on D&(—) of maps between G-sets. Let S
and T be G-sets and let f:S — T be a map commuting with the G-action. It is
easy to construct an induced map f*:D&(T)— DX(S) by using the inclusions
i : Gy = Gy (s € S) and the induced maps D*(i;) : D*(Gy()) — D*(G;). Namely,
given (u,).c With u, € D*(G,), set f*((w,)) = (v,), where v, = D*(i;)(us()) € D*(G;).
In case f* carries DE(T) into DE(S), we will also write f* for the induced map
DE(T)— DE(S). This in fact happens under suitable finiteness hypotheses, as we
will see below.

The crucial case to understand is that where S = G/H and T = G/K, where
H, K < G. In this case f: G/H— G/K is necessarily given by f(gH)= gg,K for
some g, such that H < goKgo'. Let v:(H,ZG) — (K, ZG) be the map (c 1, Ap).
Note that y* in the following proposition does not depend on the choice of g,.

PROPOSITION 1.4. The diagram
H*(K,ZG) —*> D¥(G/K)

1 b
H*(H,ZG) — D¥(G/H)

commutes. In any dimension where ¢ : DE(G/H) — H*(H, ZG) is an isomorphism,
f* carries D&(G/K) into DE(G/H), and the resulting diagram -

D4(G/IK) 25 H*(K,ZG)
f"‘l lv"'
D&(G/H) —=> H*(H,ZG)

also commutes.
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Proof. For any ge G there is a commutative diagram

(Cagp™ AQ

(K, ZG) == (g0 Kgo'g™, Z[ggoKgs'g "]

1 o

(H,ZG) AT (gHg ', Z[gHg™ '),

where i is an inclusion map. The first assertion of the propositions now follows at
once from the definitions, and the second assertion follows from the first. ||

An important special case of 1.4 is that where K = G and g, = 1. One obtains,
in particular:

COROLLARY 1.5. Let H= G be a subgroup of type FP,. Then there is a
commutative diagram

D*(G) == H*(G,Z1G)

l |-

D¥&(G/H) —<— H*(H,ZG)

in dimensions =<n, where res is the usual restriction map and the left hand vertical
arrow has as components the maps D*(i,) : D*(G) — D*(gHg™") induced by the
inclusions i,:gHg '— G (ge G/H). In particular, for any de D%G) (q=n),
D*(i,)(d) =0 for almost all ge G/H. |

By decomposing a general G-set into orbits and applying 1.3 and 1.4 we get
the following result, which will be needed in the next section. Let f:S— T be a
map of G-sets. Let S, (resp. T,) be a set of representatives for S (resp. T) mod G.
For each s e S,, let fo(s) be the element of T, which is equivalent to f(s) mod G,
and choose g, €G such that f(s)=gfo(s). Then G, < Gy, = 8g,Grs8: - Let
Ys : (G, ZG) = (Gy sy, ZG) be the map (c,.1, Ay ).

PROPOSITION 1.6. Suppose that G, and G, are of type FP, for all s€ S and
t € T, and suppose further that the inverse image under f of any G-orbit in T consists
of only finitely many G-orbits in S. Then f*:D&(T)— D%(S) is defined in
dimensions <n and there is a commutative diagram

DY(T) 5> @ H*G,ZG)

g l

DX(S) = @ H*(G,Z0G),
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where the unlabelled vertical map is given by (U),cr,">(V)scs, With v, = v (U ))-
All maps in this diagram are maps of right G-modules. ||

§2. The Mayer-Vietoris sequence with ZG coefficients

Let G be the fundamental group of a finite graph of groups of type FP,, and
let X be the associated tree [9]. Recall that X is oriented and comes with an
orientation-preserving left G-action. For any vertex or edge o of X we denote
by G, the isotropy subgroup of G at o. By hypothesis, then, each G, is of type
FP,.

Let X, be the set of vertices of X and let X, be the set of positively oriented
edges of X. Let Y, (p =0, 1) be a set of representatives for X, mod G. Then the
Mayer—Vietoris sequence for computing H*(G, ZG) has the form

--— HYG,2G)— [ HYG,2G6)3 [] HYG,.,Z2G)— - --

veYy ecY,

([6]; see also [2], §VIL.9). It is a sequence of right G-modules. Note that the
direct products here are in fact direct sums since Y, and Y, are finite. We wish to
use 1.6 to interpret the map «.

Recall that a can be described as follows (cf. [2], §§VII.8 and VIIL.9). For any
ec Y, let o(e) (resp. t(e)) be the origin (resp. terminal vertex) of e, as in [9]. Let
vole) (resp. v,(e)) be the element of Y, equivalent to o(e) (resp. t(e)) mod G.
Choose g;(e)e G (i =0, 1) such that o(e) = go(e)vy(e) and t(e) = g,(e)v,(e). The
elements go(e) induce maps (Cye)1s Agye)) : (Ges ZG) = (Goyey ZG) as before,
which in turn induce a map B:D,.v, H*(G,, ZG) — D, .y, H*(G., ZG). Simi-
larly, g,(—) and v,(-) yield a map 8:D,.y, H*(G,,ZG) > DB, .y, H*(G,, ZG),
and the map « that we are interested in is 6 — 3.

The hypotheses of 1.6 are satisfied, so we have:

PROPOSITION 2.1. The functions o,t:X,— X, induce maps o*, t*:
D&(X,) — DE(X,) in dimensions =n. The map « in the Mayer—Vietoris sequence
is isomorphic to t*— o™ in dimensions <n. ||

This result can be conveniently rephrased in terms of cohomology of X with
compact supports. For each integer ¢ we have a “coefficient system” 2% on X
which associates to each vertex or edge o the group D?G,) and to each
incidence relation “v is a vertex of e” the map D*(G,) — D%(G.,) induced by the
inclusion G, — G,. We can therefore form, in the usual way, the cochain complex
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C*X, 2%, with C°(X, DY) =[l,ex, D (G,) (p=0,1). Let C¥X 2=
®06Xp D%(G,) = D}(X,). We say that @9 is locally finite if for each vertex v and
each d € D(G,) the image of d in D(G,) is zero for almost all edges e of which
v is a vertex. In this case C*(X, 9?) is a subcomplex of C*(X, @), and we denote
by H%(X, 9?) the resulting cohomology groups. A restatement of 2.1, then, is:

THEOREM 2.2. Let G be the fundamental group of a finite graph of groups of
type FP,. Then 99 is locally finite for q<n, and the map « in the Mayer—Vietoris
sequence, above, is isomorphic to the coboundary map C2(X, @) — CL(X, 99).
Consequently, ker a =~ H2(X, @?), coker a =~ HX(X, 2?), and the Mayer—Vietoris
sequence yields a short exact sequence of G-modules

0— Hc(X, 2°") —» HYG, ZG) - HJ(X, 2%) -0

for q=n, where the (right) G-module structure on H*(X, @) is induced by the
conjugation isomorphisms D*(c,) : D*(G,,) = D*(G,). ||

Remark 2.3. The free coefficient module ZG can be replaced by an induced
module ZG® A in this and the previous section, and everything goes through
without essential change. Dually, one can prove analogous results relating homol-
ogy of G with coefficients in a coinduced module Hom (ZG, A) to homology of X
based on infinite chains.

Remark 2.4. With a little more effort, one can generalize the results of this
section to the case of a G-CW-complex X in the sense of [2]. The analogue of
the Mayer—Vietoris sequence above is the equivariant cohomology spectral sequ-
ence converging to HE(X,ZG) [=H*(G, ZG) if X is contractible], with E;-term
involving the groups H*(G,, ZG) as o ranges over the cells of X. If X is finite
mod G and each isotropy group is of type FP,, then there is an analogue of
Theorem 2.2 which expresses the E;-term in total degrees =n as the cochain
complex of X with compact supports and coefficients in systems 29 ={D(G,)}.
We have only treated the case where X is a tree, however, since the resulting
low-dimensional cohomology groups H?(X, 29) (p =0, 1) are often easy to com-
pute, and one obtains thereby concrete applications. We will illustrate this in the
next section.

§3. Examples

We continue to denote by G the fundamental group of a finite graph of groups
of type FP, and by X the associated tree. To avoid trivialities, we will assume that
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X is infinite. [If X is finite, then G is an amalgamated free product of a finite tree
of groups, and the construction is trivial in the sense that one of the vertex groups
is equal to the whole group G.] As our first illustration of Theorem 2.2 we will
generalize results of Bieri ([1], Theorems 6.3 and 6.6 and Proposition 9.16(b)) on
the cohomology of amalgamations and HNN extensions. In the amalgamation
case Bieri required the amalgamated subgroup to be of finite index in both free
factors, and in the HNN case he required both associated subgroups to be of finite
index in the base group. Both of these cases are included in the following:

THEOREM 3.1. Suppose for each edge e of X and each vertex v of e that
(C,:G,) <o,

(i) The groups D?(G,), where o ranges over the vertices and edges of X, are all
canonically isomorphic to the group D®=H°(X, @9). The latter admits a right
G-module structure which, for all o, is consistent with the usual action of G, on
D%(G,).

(i) The map « in the Mayer—Vietoris sequence for G with ZG-coefficients is a
Z-split monomorphism for q<n, with cokernel G-isomorphic to HX(X,Z)@D*
(with the diagonal G-action).

(iii) HYG,ZG)~HXX,Z2)®@D** for q=n; hence H*G,ZG) is 1Z-
isomorphic (non-canonically) to a direct sum of E— 1 copies of D', where E is the
number of ends of X (necessarily, E is 2 or ).

(iv) If the vertex and edge groups are duality groups then so is G. The vertex and
edge groups all have the same dimension m and all have the G-module D = D™ as
dualizing module; G has dimension m +1 and dualizing module H.(X, Z)®D.

(Note that the FP, hypothesis is irrelevant for (iv) since duality groups are
known to be of type FP, [3].)

Proof. Example 1.1 shows that the map D*(G,) — D*(G,) is an isomorphism
whenever v is a vertex of e. The first assertion of (i) follows at once.

The G-action on D% = H%(X, 9%) required for the second assertion is induced
as in 2.2 by the conjugation isomorphisms D*(c,): D*(G,,) = D*(G,); it is
consistent with the usual action of G, on D?(G,) by Example 1.2. To prove (ii)
and (iii), note that C*(X, 29)~ C*(X, Z)®D*. Since H2(X,Z)=0 and HX(X, Z) is
free abelian of rank E—1, (ii) and (iii) follow easily from Theorem 2.2. Turning
now to (iv), recall (cf. [1] or [2]) that a group H is a duality group if and only if (a)
H is of type FP,, and of finite cohomological dimension; and (b) there is a unique
integer m such that D™(H) # 0, and this D™(H) is Z-torsion-free. The integer m
in (b) is then the dimension of H, and D™(H) is the dualizing module of H.
Suppose now that the G, all satisfy (a) and (b). It is then well-known that G
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satisfies (a) (see, for instance, [1], proof of Propositions 2.13 and 6.1). Next note
that the G, all have the same dimension m and the same dualizing module
D = D™ by (i). And (iii) shows that D(G)=0 for q# m+ 1 and that D™*(G) =
H)(X,Z)®D, which is Z-torsion-free. Thus G satisfies (b), whence the first
assertion of (iv); the rest of (iv) has been proved along the way. ||

Next we wish to concentrate on the HNN case but, as promised in the
introduction, drop the finite index hypothesis. Let G be an HNN extension H *,
with respect to 7: A = B, where A and B are subgroups of H; thus G is
obtained from H by adjoining a new generator t and relations ¢t 'at = v(a) for all
acA.

THEOREM 3.2. Suppose that H and A are of type FP, and that the restriction
map H9(H,ZH)— H*(A,ZH) is a monomorphism for some q=n. Then
H?(X, %) =0. Consequently, the map o : H*(H,ZG) — H%(A, ZG) in the Mayer-
Vietoris sequence is a monomorphism, and there is an isomorphism H*(G,ZG)=
HI(X, @97Y).

Proof. Recall that the tree X in this case has a “fundamental” edge e, of the
form

Oo—>—0
Vo tyg

with the following properties: (a) every positively oriented edge of X is equivalent
mod G to ey; (b) every vertex of X is equivalent mod G to v,; and (c) the isotropy
subgroups of G at v, and e, are given by G, = H and G, = A. These properties
imply: (d) the positively oriented edges of X starting at v, are given by (geo)gcra
and the positively oriented edges of X ending at v, are given by (gt 'eg) crym-

In view of Corollary 1.5, the restriction map H%(H,ZH)— H9(A,ZH) for
q=n can now be identified with the map D%G, )— €D, D*(G,) whose compo-
nents are induced by the inclusions G, — G,,, where e ranges over the positively
oriented edges starting at v,. Our hypothesis that this map is a monomorphism
can therefore be restated as the following property of the vertex v,: For every
non-zero d € D9(G, ) there is a positively oriented edge e starting at v, such that
the image of d in D%(G,) is non-zero. Since every vertex of X is equivalent to
vomod G, it follows that every vertex has this same property.

It is now immediate that H2(X, 29) = 0. Indeed, an element of H2(X, @) is a
compatible family d =(d,),.x, where d, € D*(G,) and d,=0 for almost all v.
[“Compatible”” means that if v and w are the vertices of an edge e then d, and d,,
have the same image in D%(G,).] Suppose there is a non-zero such family, and let
v be a vertex such that d,# 0. By the previous paragraph, we can then find a
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positively oriented edge starting at v such that d is also non-zero at the terminal

vertex of the edge. Repeating this argument, we obtain an edge path of positively
oriented edges

with d#0 at every vertex. Since X is a tree, this path contains infinitely many
distinct vertices, contradicting the fact that d, =0 almost everywhere. ||

Finally, we specialize still further to the case where (H: A) <; B, however, is
allowed to be arbitrary.

THEOREM 3.3. Let G be an HNN extension as above with H and A of type
FP, and (H:A)<x. Then res: H*(H,ZH) — H*(A,ZH) is a monomorphism.
Hence 3.2 applies and H*(G,ZG)= H)XX, 2% ") for q<n. Moreover:

(i) If D"'Y(H) is Z-torsion-free for some q <n then D%(G) is Z-torsion-free.
(i) If (H:A)>1 and D '(H) is Z-free for some q <n, then D%(G) is Z-free.

(iii) If H is an m-dimensional duality group, then G is an (m +1)-dimensional

duality group.

Proof. Example 1.1 shows that D*(G,) => D*(G,) for every vertex v of X and
every positively oriented edge e starting at v. Arguing as in the proof of Theorem
3.2, one shows that res is a monomorphism. Now fix q<n and set 2 = 9*"! and
D, =D*'(G,). (i)—(iii) will be based on the following computation:

LEMMA 3.4. If (H: A)>1 then there is a subset S of X, such that H,(X, D) is
Z-isomorphic to D,.sD,. If (H: A)=1 then there are subsets W, of X, (k=0)
such that H:(X, D) is Z-isomorphic to the direct limit of a system of the form

> @d D,—» b D,—>---

veW, veW; 4

(i) and (ii) of the theorem follow immediately from the lemma; and (iii) then
follows from (i) and what was proved earlier, via the usual criterion for duality (cf.
proof of 3.1). It remains to prove the lemma.

The definition of H(X, &) shows that the latter is the abelian group generated
by the groups D, (e X;), subject to relations of the following form for each
ve X,: for each deD,, ), *+p,.(d) =0, where e ranges over the elements of X,
having v as a vertex and p, . : D, — D, is induced by the inclusion G, — G,,. [The
sign above depends on whether v is the initial vertex or the terminal vertex of e.]
The set of relations of this form associated to a given v will be denoted R,. Recall
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that p,. is an isomorphism if v is the initial vertex of e. Hence if we choose for a
given v one e € X, starting at v, then R, can be viewed as expressing the elements
of this D, in terms of the others.

Now let V, be the set of vertices of X whose distance from our fundamental
vertex v, is k. Let M, be the abelian group generated by those D, whose vertices
are in |J;= Vi, subject to the relations R, for ve|Ji<x-; Vi. Then we have a
direct system

oM o> M,

and H)(X, @) is the direct limit. [Note: M, is in fact HX(X, X*; @), where X* is
the full subgraph of X with vertex set | J;—« V;.] For any we V,,, let e(w) be the
edge in X, connecting w to V,. Then the passage from M, to M, ., consists of
adjoining new generating groups D, (w € V, ;) and new relations R, (v e V).

Recall that each vertex of X is the initial vertex of precisely (H:A) edges in
X,. For v e V,, all except possibly one of these terminates in V, . [The exception
is e(v), if the latter starts at v.] So if (H: A)>1 there must be at least one w in
Vi +1 such that e(w) is oriented from v to w. In this case, then, R, can be used to
eliminate the generating group D,,), and it follows that M, ., = M, DD, g, D.)
for some set E, of edges joining V, and V,,,. Passing to the limit, we find
HXX, @)=, s D,, where S =, E..

Suppose now that (H: A)=1, so that every vertex v is the initial vertex of
exactly one edge in X;. Then a reduced path in X necessarily consists of zero or
more positively oriented edges followed by zero or more negatively oriented
edges. In particular, the path from v, to a vertex we V,,; must end with a
negatively oriented edge unless w=t**'v,; hence e(w) starts at w unless w =
t“*1v,, in which case e(w) is the edge t“e, from t*v, to t“*'v,. For v = t“v,, then,
R, can be used as above to eliminate the generating group D,(., where
w=t*"1y,. For ve W, =V, —{t“v,}, on the other hand, R, expresses the ele-
ments of Im {D,,— M.} in terms of the D, for we W, ,,. If we now assume
inductively that M, =@, w, D.,, it follows easily that M, =@, cw, ., Dew)
Since D, = D, for ve W,, this completes the proof. ||

Remark 3.5. It follows from the proof that the map M, — M,,,, in case

H = A, is equivalent to the direct sum of card (W, ) copies of the restriction map
H*Y(H,ZH)— H (B, ZH).

Remark 3.6. It is not clear to us whether Theorem 3.3(ii) can be improved to
include the case H=A. In case n=q=2 this can be done, provided the
hypothesis that H and A be of type FP, is strengthened to “finitely presented.”
Then, combining results in [7] and [8], one gets D*(G) Z-free when H = A.
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Remark 3.7. As we write, there is no known example of a group G of type
FP, and an integer q<n for which D?(G) is not Z-free. For the topological
meaning of this problem, see [7].

Appendix: A proof of Theorem 0.1 using normal forms

The map HY(H,ZG)— H*(A,ZG) is denoted by a in §§1-3. Here it is
convenient to denote it by ay, reserving the letter a for a cochain map which
induces it.

We recall the definition of a normal form in G. Let {Au|ue U} and
{Bv | v € V} be the right cosets of A and B in H, where U and V are sets of coset
representatives, both containing 1. Let ¢ be the stable letter in H %, (with respect
to 7: A = B). A normal form is a product ht®'w, - - - t*w, where (i) he H and
g==x1,G)if gg=—1, wye U, (iii) if g, =1, w; € V, and (iv) t°1¢t"° does not occur.
h is called the initial element. The normal form is special if its initial element is 1.
The length of the above normal form is n. Each element of G can be written as a

normal form uniquely. If g, g, € G, the product g,g, is reduced if its normal form
is the product of the separate normal forms of g, and g,.
We need the following commutative diagram for q=n

HY(H,ZH)®4 ZG %> HY(H,ZG)

al l‘“

H%A,ZH)®y4 ZG =25 HYA, ZG).

To set it up, we start with a free ZG-resolution Py of Z, and define the morphisms
in the following diagram

Homy(P,,ZH) ®y4 ZG —— Homy(P,, ZG)

l

Hom, (P, ZH) ®y4 ZG —> Hom, (P, ZG)

by: u(f®x)=p,f, v(f®x)=p,f and a(f)=f—AfA,-. Here p, and A, stand for
right and left multiplication by z. It is well known (see [1]) that uy and vy are
isomorphisms when q=n, and that a4 (in the Mayer-Vietoris sequence) is
induced by a. Define @ to get commutativity.

LEMMA Al. Let c®x e HA(H, ZH) @y ZG, where x is a special normal form.
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Then a(c®x) has the form

res (¢)®@x — Z Qtx (v eV).

LEMMA A.2. Let M be a right H-module. Suppose

Y m®x=) ) m,®tx

xeX xeX veY,

in M @y ZG, where X is a non-empty finite set of special normal forms in G, and
Y, is a finite subset of V for each x € X. Suppose every m, ,# 0. Then some m, = 0.

Theorem 0.1 follows easily from Lemmas A1 and A2. Suppose 0 # ), cx ¢, ®x
eker @, where X is a finite non-empty set of normal forms, and each ¢, #0€
H4H,ZH). We may assume each x is special. By Lemma Al,

Y res(c)®x=) Y m, ,Qtvx

xeX xeXveY,

as in the hypotheses of Lemma A2, which therefore implies res (c,) = 0 for some
x. This contradicts the fact that res is a monomorphism. It only remains to prove
Al and A2.

Proof of Lemma A1l. Let S be the set of special normal forms; then G =
U{Hs|seS}. HY(A,ZG)=H%A,@®sZH) can be canonically identified with
@s H(A, ZH), since A is FP, and q=<n. If x' is such and d € HY(A, ZH), then
the element of @3 HY(A, ZH) whose only non-zero entry is d in the Hx' position
is mapped by v! to d®x’. Now, tH=J,.v Atv < J,v Htv, so any element of
ZtH lies in @D, .y ZHtv. In the light of these remarks, if vz'oagouy is applied to
c®x, one clearly obtains an element of the form stated. ||

Proof of Lemma A2. We will repeatedly use the cancellation principle that if
me®@go=Yi_1 m®g in MAy ZG with my#0, then g,e Hg, for some i. In
particular this results out card X =1 in the hypothesis of the lemma.

Suppose the Lemma is false. Pick a counter example for which card X is
minimal (necessarily =2). Let X € X be of maximal length. Let X'=X\{x}.

m®@%+ ), m®@x= ) Y m, ,Qtx+ 3 mg, Wk

xeX’ xeX veY, veY,

m;®X must cancel with some m,. , @t'x’ where x'e X', v'eY,. X=h'tv'x’
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(h' € H). The latter is reduced, by maximal length. Thus x = tv'x’, reduced. We

claim Y; is empty. Suppose there exists ¥ € Y;. Applying the cancellation princi-
ple to the above equation we get

tox = h"t"x" (h"eH,x"e X',v"e Y,),

for the other possibility, t0x = h"x", is ruled out by maximal length since tdx
(=totv'x") is reduced. If h"tv"x" is reduced then x = x", a contradiction. If h"tv"x"
is not reduced then length (x") >length (h"tv"x") =length (t6x) =length (x)+1, a
contradiction. The Claim is proved. Thus if we let Y, =Y, \{v'}, and Y.=Y,
when x# x’, we get

Y m®x=) Y m, ,®tx

xeX' xeX' veY,

and all m,#0. X' # ¢ and card X’ <card X, a contradiction. ||
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