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Earthquakes are analytic

STEVEN P. KERCKHOFF*

Various approaches to the study of Teichmuller space tend to emphasize
different properties which are natural in a given context. For example, its complex
analytic structure is natural when considering it as the space (T,) of all marked
Riemann surfaces of genus g (up to equivalence) or as a subset of quasi-Fuchsian
groups. It is well-known that the complex analytic structure of T, is quite
inhomogeneous. In particular, the only biholomorphic self-mappings come from
the properly discontinuous action of the (Teichmuller) modular group ([7]).

On the other hand, T, (via the uniformization theorem) is also the space of
hyperbolic structures on a surface of genus g. From this point of view, T, is
naturally a real analytic manifold, its structure coming from the isomorphism
between PSL(2,R) and the group of isometries of two-dimensional hyperbolic
space. In contrast to the complex analytic case there are many real analytic maps
of T, to itself. It is reasonable, therefore, to further restrict oneself to maps which
arise from geometric deformations of the hyperbolic structure, or to those which
preserve some geometric quantity on the surfaces themselves.

The maps discussed in this paper are closely related to geodesic length
functions (generalized from the length of closed geodesics to the length of
geodesic laminations) in that they preserve the hypersurface level sets of these
functions. They are the time 1 maps of a 6g-6 dimensional family of flows, no two
of which agree at any point (see Proposition 2.6 at the end of this paper).

The flows are parametrized by the space ML of geodesic laminations u € ML
and are denoted by %,. The integral curves of these flows are the earthquake
deformations of hyperbolic structures which generalize the classical Fenchel-
Nielsen twist deformations. That these older deformations are real analytic is
well-known; since they are “dense” in the set of earthquake flows, we can think
of the general %, as a limit of these twist flows. (Indeed, that is how they are
usually defined.) The primary purpose of this paper is to show that this limiting
process is geometrically and analytically well-controlled.

* During preparation of this work the author was supported in part by NSF Grant MCS 82-03806.
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18 STEVEN P. KERCKHOFF

THEOREM 1. The earthquake flows %, on T, are real analytic for every
geodesic lamination p.

The approach taken here is not quite as direct as the preceding discussion
suggests, since it doesn’t distinguish between the classical twist case and the
general case. It is, however, often useful to keep the limiting process in mind.

The proof of Theorem 1 is fairly straightforward, combining an elementary
normal families argument with known facts about both the real analytic structure
of T, and about the behavior of the geodesic length function under earthquake
deformations.

As a corollary we find that the length, I,, of a geodesic lamination, , is
equally smooth. In particular (Corollary 2.2), for u a fixed lamination, it is real
analytic as a function of T,. As p varies the [, vary continuously in the
C™-topology for functions on compact subsets of T,.

Since much of the background material is hard to reference, we have given an
expository account of it in Section I. Further discussion of geodesic laminations
and earthquakes may be found in [8] and [4]. The proof of Theorem 1 is
contained in Section II.

LA.

A hyperbolic surface, M, is a surface of genus g, g=2, with a metric of
constant curvature-1. It is isometric to a surface of the form H?/I" where H? is
two-dimensional hyperbolic space and I' is a discrete subgroup of isometries
isomorphic to ;M. M determines I" up to conjugacy in the group of isometries of
H?, which we identify with PSL(2,R). Let 3 be a fixed topological surface of
genus g. The Teichmuller space of genus g (T,) is the space of marked hyperbolic
surfaces; i.e., hyperbolic surfaces with a fixed isomorphism of 7,3 to I" where two
surfaces are thought to be equivalent if there is an isometry between them
respecting this isomorphism. Equivalently, T, is the subset of discrete representa-
tions of 7,3 into PSL(2,R) up to conjugacy. It is known to be diffeomorphic to
an open cell of dimension 6g —6. The space of Fuchsian groups I' together with
an isomorphism from ;3 to I' will be denoted by R,; it is diffeomorphic to
T, X PSL(2,R) and will be called the representation space of genus g.

For computational purposes, the upper half-space of C serves as a convenient
model for H?, but the point at infinity has a less (artificially) distinguished
character if we identify the upper half-space with the upper hemisphere of the
Riemann sphere € (=C Ux). The extended real axis R U will be denoted by R: it
is preserved by isometries of H?. However, since it will be necessary to consider
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homeomorphism of C to itself which do not preserve [fR, it is useful to consider R
as a circle bounding the upper hemisphere, thus emphasizing that its topological
character is unchanged under homeomorphism.

Any isometry of H? extends continuously to its boundary, denoted by S., and
called the circle at infinity. (This is the unit circle in the Poincaré disk model, R in
the upper half space model.) Since M is a closed, non-singular surface, all of the
elements y of I" are hyperbolic; i.e., y acting on the closure of H? has exactly two
fixed points, both on S, one attracting and one repelling. Pairs of points on S
are in 1-1 correspondence to geodesics in H?; the geodesic corresponding to the
fixed points of y e I' projects to the unique geodesic in M in the free homotopy
class of y € ;3 (under the isomorphism of I with m,23).

Since there is a given isomorphism between any two I, I"e€ R,, there is a
canonical 1-1 correspondence between elements in I' and those in I" which
induces a like correspondence between closed geodesics on the quotient surfaces
M and M'. In other words, we can talk about the geodesic corresponding to the
conjugacy class of y€ 7,3 on every M € T,. Similarly, since two geodesics in H?
intersect at most once, different points of intersection between two closed
geodesics in M correspond to intersections between distinct lifts of the geodesics
to H?. Thus the correspondence between endpoints of SL via the isomorphism
between I' and I’ induces an identification between points of intersection of
geodesics on M and M'.

Because fixed points of I' and I'’ are both dense in S, there is a unique
homeomorphism of the circles at infinity for I" and I'' extending the correspon-
dence between fixed points. It follows that the identification between geodesics
and their intersections on M, M’ e T, carries over to infinite, non-closed geodesics
as well. Nielsen showed that every lift to H?> of any homotopy equivalence
between M and M’ (respecting the isomorphisms to ;3 as usual) extends
continuously to a homeomorphism on S., depending only on M, M’ and the
choice of lift. These extensions are precisely the maps given by extending
continuously the isomorphism between I' and I"’. (Different choices of I and I'"’
with quotients M and M’ amount to different lifts.)

R, inherits a real analytic structure as a subset of the set of representations of
m,3 into the real analytic Lie group PSL(2,R). T, similarly inherits an analytic
structure as a quotient space of R,. If I'e R, and an element is represented by a
matrix A €I’ (well-defined up to multiplication by —I) then it is an elementary
fact that the geodesic representing y in H?*/ =M has length [ (M) where
cosh [ (M) =3 |tr A|. In particular, L, is a real analytic function on T, and R,. In
fact, the lengths of finitely many closed curves completely determine the hyper-
bolic structure on M; locally 6g —6 lengths serve as co-ordinates. (See e.g., [2],
[3].) Whenever analycity on T . Or R, is discussed in this paper, it is with respect
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to this analytic structure; lengths of closed curves will generally serve as conve-
nient co-ordinates. It should be noted that any two sets of “length co-ordinates”
are analytic functions of each other since they are both determined by the traces
of finite products of a fixed generating set for 3.

Finally, we need to know how R, sits in the space of all representations of 7,3
into PSL(2,C), in particular, in the subset CR, of quasi-Fuchsian groups. A
quasi-Fuchsian group is a quasi-conformal deformation of a Fuchsian group. By
this we mean that I’ c PSL(2, C) satisfies I" = fI'f~* where I is Fuchsian and f and
f~! are quasi-conformal maps of the Riemann sphere C to itself. These groups act
properly discontinuously on two connected, simply-connected domains (2, i =0, 1
in C, and have as limit set A a topological circle, which separates the (2, and
which is the image under f of the circle limit set of the Fuchsian group.

As in the Fuchsian case, [ <CR, is assumed to possesss an isomorphism to
a3 so that f is uniquely determined on S and the limit sets for different I'’s are
canonically identified. (Fixed points of group elements in I are still dense in A.)
Moreover, the Riemann surfaces S; defined by 2/I' (I’ acts conformally on €)
define points in T,, and this ordered pair of points determines I up to conjugacy
in PSL(2,C). Thus, CR, = T, X T, X PSL(2, C) (although as a complex manifold it
is probably best to write it as T, x T, X PSL(2,C) if T, is given its usual complex
structure.) The subset of groups conjugate to a Fuchsian group are characterized
by the property that S, and S, are mirror image surfaces, or equivalently, that A
is a geometric circle. R, =CR, is the subset where A is the circle R<C.

Although T, has a complex structure, it is not natural in our context; in
particular, the functions to be considered in Section 2 are not complex analytic.
When extended to CR,, however, they are complex analytic which greatly
simplifies convergence questions. The main relationship between CR, and R,
which we need in this paper is the following:

PROPOSITION 1.1. R, is a real analytic submanifold of CR,. The induced
structure is the analytic structure determined by the geodesic lengths of closed curves.

This proposition is well-known and there are numerous possible proofs. The
proof below is included for completeness and follows Bers’ proof in [1] that CR,
is a 6g—3 complex dimensional manifold.

Proof. Let I' be a Fuchsian group and let a;, b; be the standard generators for
.3 so that [[.., [a;, b:]1=1 is the single defining relation. If A,, B; are matrices
representing a; and b; respectively (choose 2g—1 signs arbitrarily), then by
conjugation assume that

0
Ag=(g p_l) Bg-—-(z g) a#0,vd—a?=1. 1)
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Then, if [I21 [A,, B,]= (z ‘o the equation

BgAgB;IAgl-_-(“"z(l_p—z) oy(1-p?) )=(x y)

oy(1-p%) 1+0*(1-p%/ \z w @
is satisfied. Similarly, the groups I' whose matrices, A,, B;, near those of I' and
satisfying (1) and (2) (with all entries replaced by nearby entries) determine a
neighborhood of I' in the submanifold of CR, normalized by (1). It is not hard to
see that Ag, I§g are uniquely determined (in PSL(2, C)) by (2) for arbitrary %, y, Z,
w so that the matrices Ai, ﬁi, i=1,2,...,g—1, serve as local co-ordinates (i.e.,
choose three entries from each matrix) for groups in CR, normalized by (1). The
groups which are Fuchsian have matrices with real entries. Conversely, if x, y, z, w
are real, then, by (2), p, 8, ¥ and & are either real or pure imaginary, and if either
§ or ¥ fails to be real, then so does &. Since &, §# 0 by hypothesis, it follows that
all solutions near I" for which A, B, i=1,2,..., g—1, are real have real entries.
Thus all 2g generators are real iff the first 2g—2 are; hence in these local
co-ordinates, the Fuchsian groups are precisely those with all real co-ordinates. A
group is in R, <CR, iff it is conjugate by an element in PSL(2,R) (which
preserves R) to one with real entries satisfying (1). Thus the proposition
follows. O

LB.

A geodesic lamination £ is a closed subset of a hyperbolic surface which is a
union of simple geodesics and which satisfies the following local condition: There
are open sets U; covering &£ together with diffeomorphisms ¢; from U; to R? such
that ¢,(U, NE¥)=(0, 1) x B; where B; is a closed subset of R. On the overlaps
U NU, ¢ od;' is of the form (x, y) — (f(x, y), (g(y)); i.e., it preserves horizontal
arcs. In other words, & is a “partial foliation” of M. We also assume that & has a
transverse Borel measure p invariant under translation along £ whose support is
all of £. We will dop the notational distinction between £ and its measure and
denote both by “n”, “v”, etc. The space of all such laminations ML on M is
homeomorphic to R®®. (For a discussion of the topology on the space of
geodesic laminations see [4] or [8].) If we throw out the ‘“zero’ lamination and
identify two laminations which are equal under multiplication of the transverse
measure by a scalar, we get the space P¥ of projective classes of laminations
which is homeomorphic to §%77,

Given u we can define f, du for any suitable transverse arc A by integrating
the transverse measure over A. The intersection number i(y, n) of u with any
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simple closed curve y on M is inf,. ., du where the v’ run all curves isotopic to y.
Similarly i(A, ), A, a transverse arc, is inf4. {5 du where A’ runs over all arcs
isotopic to A with endpoints fixed. In both cases the infinum is realized by the
unique geodesic in the corresponding isotopy class.

The simplest example of a geodesic lamination is a simple closed geodesic ¢
with 7 times the counting measure as its transverse measure. Then i(y,u)=r
i(y, ¢) where i(y, ¢) is the minimum number of intersections under isotopy of y
between vy and ¢. The function i(y, *) is continuous on #ZL; one way to define the
topology on M is to embed it as a subset of function space R, where S is the set
of isotopy classes of non-trivial, simple closed curves.

If v is a closed geodesic on M, we can define the total cosine cos (y, u) =
§,cos 8du of y with u where 6 is the angle of intersection of y with u (measured
counterclockwise from vy to w). The integral exists because the simplicity of u
uniformly bounds the local variation of 6. (See [4] for a more detailed discussion.)
If w=(p, r)e SXR, then cos (ty, w) =rd cos 0, where the sum is over the intersec-
tions of the geodesics ¢ and .

Although weighted simple closed curves are very simple examples of geodesic
laminations, Thurston [8] shows that S XR, is dense in ML and S in dense in PZL.
This allows one to extend many operations and concepts from simple closed
curves to general geodesic laminations. The deformations defined below are one
such example.

If a lamination is lifted to H® each (infinite) geodesic converges to a point on
S. in each direction. Conversely, the pairs of points on S. determine the
geodesic. Therefore, the map between the circles at infinity for two surfaces M
and M’ discussed in IA allows a canonical identification between the laminations
on M and those on M'. Simplicity of leaves is invariant under this equivariant
map since it is equivalent to nonlinking of the endpoints of a leaf and all of its
lifts. We will implicitly make this identification by talking about a lamination w on
all M € T, simultaneously.

Given any hyperbolic surface M and simple closed geodesic v on M we can
define a new hyperbolic structure M, by cutting along y and glueing it back with a
left twist of distance t. To determine a well-defined point in T,, we must keep
track of homotopy classes of curves. This is done by identifying the homotopy
class of a closed curve ¢ on M with the homotopy class of the curve ¢’ on M,
determined by following the image of ¢ in M, until it hits y (assuming it does),
going along <y to the left distance ¢, continuing along the image of ¢ and so on.

This cutting and glueing operation will be called the time t twist along vy (often
called a Fenchel-Nielsen twist). As t varies, the surfaces M, define a path in T,
denoted by &, (t) (M will always be implicit) and called the time t twist deformation
along v. The time t twist along y can be generalized to a time ¢ twist deformation
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determined by (v, r)e S XR, = ML by taking it to be the time tr twist along v.
Since S XR, is dense in ¥ we make the following:

DEFINITION. For any M e T,, n € M, the time t earthquake deformation,
8,(t), determined by p is the limit in T, (for each t) of the time t twist
deformations of M determined by (y, r;)e SXR, where (vy,, r,) > n in MZ.

The following result is proved in [4]:

PROPOSITION 1.2. The limits €, ,(t), (v, ) = n are independent of the

approximating sequences so that €, (t) is well-defined. 6,(t) is a C* curve in T, for
all we MEL.

It follows from the work of Wolpert [9] that &, (t) is C>. We will show in this
paper that the curves are analytic; in fact, they are the integral curves of an
analytic flow defined on T,. The geodesic lengths of closed curves provide analytic
co-ordinates for T, so the first step is to see what the derivatives of the length
function, l,, of a fixed closed geodesic, ¢, are along €, (t). This is contained in

PROPOSITION 1.3 ([4]). dly/dt={,cos 6 du along the earthquake path €, ().

The goal of Section II is to study how cos 6 and hence dl,/dt varies as a
function of Me T,

IL

With the background material established in the previous section, we proceed
here to the proof of the main theorem, which is restated below. As previously
discussed, we can identify a fixed geodesic lamination w € #Z on every hyperbolic
surface M € T, simultaneously. This allows us to identify, for each t €R, the time ¢
carthquake deformation of M determined by u for every Me T,. Thus, for any
fixed u e ML a flow F, is defined on T,. Although the earthquake maps on the
surfaces are complicated and not generally C’, the flows are very smooth.

THEOREM 1. The earthquake flows %, are real analytic for every u € #ML.

COROLLARY 2.1. The geodesic length function, l,, ¢ any closed curve, is
analytic along every earthquake path €, (t).
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The length I, of a geodesic lamination v € ML is defined as the total mass on
the surface M of the measure which is the product of Lebesque measure along the
leaves of v and the measure v transverse to the leaves. Equivalently, I, is the limit
of rl, where (y, r)eSXR, <ML converges to v in ML. (This equivalence is
proved during the proof of Corollary 2.2.)

COROLLARY 2.2. The length 1, of the lamination v € ML is analytic along
8, (1) for all u € MEL. 1t is analytic on all of T, and constant along €,(t). Hence %,
preserves l,. As p varies the 1, vary continuously in the C™-topology for functions on
compact subsets of T,.

The proof of Corollary 2.2 is at the end of this section. Corollary 2.1 follows
immediately from Theorem 1.

We will show that the vector fields on Teichmuller space which generate the
earthquake flows are real analytic. Since the lengths of finitely many closed curves
provide local (analytic) co-ordinates, it suffices to show that the first derivative of
the geodesic length function, I, of any closed curve ¢ in the direction of the flow
is an analytic function of the point in T,. By Proposition 1.3, this derivative at
Me T, in the direction of %, equals the total cosine, f, cos 8du, of u with @,
where 6 is the angle on M from ¢ to u at every point of intersection between ¢
and p. Owur first goal, therefore, is to understand how 0 varies with M for each
such intersection.

First, notice that points of intersection between ¢ and u on two distinct
surfaces M and M’ are in a canonical 1-1 correspondence. This correspondence is
induced by the maps on the circles at infinity for M and M’ respectively as
discussed in Section IA. The angle of intersection between the two geodesics can
be computed in terms of the cross-ratio of their endpoints.

DEFINITION. The cross-ratio x(a, b, ¢, d) of four points in Cis equal to

(a—c)(b—d)
(a—d)(b—c)

(a,b,c,d)=

The cross-ratio is invariant under linear fractional transformations and calcula-
tion shows that if q;, b;, i =1, 2 lie on R then

6 cosf+1
x(ay, by, by, ay) = COSz‘i:"T“ (1)

where (aq, by, a,, b,) are the endpoints of two geodesics [, i=1,2 arranged



Earthquakes are analytic 25

counterclockwise around R and 6 is the angle of intersection between the
geodesics. The angle 6 is clearly an analytic function of the endpoints so we want
to show that these vary analytically on R,.

When an endpoint, x, is a fixed point for an element y € I';, analyticity is clear,
for we can write y as a finite product of fixed generators of Iy, which, by
definition, vary analytically as functions of R,. Since vy varies analytically so does
x. Fixed points of group elements are dense in SZ so the general case will follow if
the functions fr(x;): R, — S', (x; fixed points of v;, x; — x), converge nicely. Since
this situation is most simply analyzed, via normal families, when the maps are
holomorphic, we allow deformations within the complex Lie group PSL(2,C).
This is the reason for the discussion of quasi-Fuchsian groups in Section 1.A.

PROPOSITION 2.3. Fix I'ye R, and denote by fr-:SL— A =C the map from
the circle at infinity of I', to the limit set A of I' e CR,. Then, for any x € SL, the map
¢ (I') = fr(x) from CR, to € is complex analytic.

Proof. In the case x is a fixed point of some element ye Iy, the proposition
follows as before from the fact that vy is finite product of generators which vary
analytically. For a general xeS. let x;, > x, x; fixed points of v,el,. Let
&:(I') = fr(x;)) and ¢(I") = fr(x).

Since fi- is continuous for each I' and x; — x, then fr(x;) — fi-(x) for each I" so
¢; — ¢ pointwise. Furthermore, for I restricted to a compact set of CR,, fr is the
restriction to SL=MR of a family of K-quasiconformal mappings of the Riemann
sphere to itself. A sequence of K-quasiconformal mappings converging to another
K-quasiconformal mapping converges uniformly on compact sets ([6]). There-
fore, for every I' e CR,, there is an open set containing I" for which either 1/|¢,| or
|| is bounded (depending on whether or not ¢(I')=x) for i>N, some N. In
other words, the ¢, are locally bounded. Since they are all complex analytic, they
form a normal family, and the limit ¢(I") = fr(x) is analytic. O

The function cos 6 can be extended to arbitrary collections (a,, by, a,, b,) by
formula (1). It will be a complex analytic function of the endpoints {a;, b;}. We can
then extend the function [, cos 6 du. to a neighborhood of R, in CR,. The integral
exists and is approximated uniformly on compact sets of CR, by its Riemann sums.
To see this, note that it is true on R, because the leaves of u do not cross. (This
was discussed in 1.B.) Furthermore, the maps fr from S to A are equicontinuous
on compact subsets of CR, by the proof of Proposition 2.3 so the local variation
of cos 6 is still uniformly bounded. Thus the integral is approximated uniformly by
its Riemann sums as claimed.

We can now prove Theorem 1.
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Proof of Theorem 1. By Proposition 2.3 cos 6 is complex analytic on CR,, and,
by the discussion above, the integral §,cos 6du is approximated uniformly on
compact subsets of CR, by its Riemann sums so that it is also complex analytic.
The real part of the integral is analytic and since cos 6 is real on the real analytic
submanifold R,, {;cos 8 du is real analytic on R,.

The real analytic structure of T, is determined by the lengths I, of finitely
many simple closed geodesics ¢ and the derivative of I, along the flow %, is
fscos 8du by Proposition 1.3. Thus I, itself is analytic along %, and &, is an
analytic flow. O

Before proving Corollary 2.2, we digress for a brief discussion of the length [,
of a geodesic lamination v and its derivative along %,.

DEFINITION. The length, I,(M), MeT,, of a geodesic lamination v is the
integral over M of the product measure dv X dl where dl is the length measure
along the leaves of v.

LEMMA 2.4. Given any sequence c;p; of weighted simple closed geodesics
converging in ML to v, and any MeT,, c¢l, (M) converges to 1,(M). The con-
vergence is uniform on compact subsets of T, ; hence l, is continuous on T,. In fact
I, (M) is continuous with respect to the pair (M, v).

Proof. If we denote by d¢; the counting measure on ¢; then I, (M)=
fmdd; X dl. Cover the support of v with finitely many quadrilaterals with the
following properties:

i) Two opposite (‘“horizontal’’) sides are disjoint from v.

i) The remaining two (‘“‘vertical’’) sides are transverse to » and each leaf of v

crosses from one side to the other.
It suffices to prove the lemma on a single quadrilateral Q.

By definition (see [4]), convergence of ¢;¢; to v implies that, on any finite set
of transverse geodesic arcs, A;, endpoints disjoint from v, the intersection num-
bers and total cosines of c;¢; with the A; converge to those of v with the A,.
Moreover, if we let the A; vary continuously with the hyperbolic structure, the
intersection number and total cosine are continuous as functions on T, X #ZL so
the convergence is uniform on compact subsets of T,.

To see that the intersection number is continuous on the product, note that
because the leaves of all laminations and the arcs A; move continuously with the
hyperbolic structure, M, we can assume, by restricting to a small neighborhood of
a given structure M,, that only geodesics in a given neighborhood of the
endpoints of the A; move across the endpoints as we vary M. Since the measure
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with respect to v of some neighborhood of the endpoints is zero, the measure of
this neighborhood with respect to other laminations can be made arbitrarily small
on M, by restricting to small neighborhoods of v in M£. Thus the change in the
intersection number with the A; is uniformly small on this neighborhood of v as
we vary over the chosen neighborhood of M,. Continuity follows. The same
argument shows that the angles of intersection and total cosines are also continu-
ous as functions on the product.

In particular the above discussion applies to any finite subdivision of one of
the horizontal arcs A of Q if Q, A, and its subdivision vary continuously with the
hyperbolic structure. Restricting to a single sub-arc, we see that the variation of
the angle of intersection for the leaves of a lamination is bounded, independent of
the lamination, depending only on the length of the sub-arc A;. This is because
the leaves of a lamination do not cross. It follows that the shortest and longest
pieces of leaves in Q going from a fixed A; to the opposite side of Q are
universally close, depending only on the shape and size of Q, and going to zero as
the length of the A; go to zero. Since the shape and size of Q and the length of A,
vary continuously with the hyperbolic structure, the estimate for the difference
between the shortest and longest pieces of leaves can be made uniform on a
compact subset of T,, independent of the lamination.

It follows that the integrals defining the length, restricted to Q, can be
uniformly approximated by their Riemann sums, i.e., for any £ >0 there is a
subdivision A; of A such that

de; x dl = i(A;, $)I | <ei(A, ¢))
“Q
Similarly,
dvxdl—Y i(A, v)l|<ei(A, v)
“Q

where I; (I{”) is the length of any arc of v(c;¢;) going from A, to the opposite side
of Q. The estimates are uniform on compact subsets of T, and the only restriction
on the weighted curves c¢;¢; is that they are close enough to v so that the total
length of the arcs crossing A but hitting the top or the bottom of Q is small.
(These arcs are counted in the integral but not in the sum.)

Finally, since for any finite collection of A;’s and a given compact subset of T,,
the intersection numbers and angles of intersection (hence the I{” also) converge
uniformly, we can always find an integer N such that for the collection of arcs
needed for the first estimates we have

YilA, M- Y ci(A, e)IP|<e, i>N
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Since ¢ is arbitrary the lemma follows from the three estimates and the triangle
inequality. O

Given any two geodesic laminations, w, v, we can define the product measure
du X dv on M. First, consider any quadrilateral Q whose ‘“‘horizontal” sides, A,
A,, are parts of leaves of v and whose ‘““‘vertical”’ sides B,, B, are parts of leaves
of u. Furthermore, we require that i(A;, u) =i(A,, w) and i(B,, v) =i(B,, v); i.e.,
no leaf of either u or v hits the same side twice. Then, by definition, du X dv(Q)
equals the product i(B;, v)i(A,, w). The measure of an arbitrary Borel set is
defined in the usual way. The measure is defined to be zero at any point of
tangency of pu and v; i.e., on any common leaf.

When p and v are weighted simple closed geodesics, the derivative of [, with
respect to twisting along u is easily seen to be the weighted sum of cos @ at the
finite number of intersections of w and v. (See, e.g., [4] Lemma 3.2.) This is just
famcos 0 du X dv when dp and dv are both atomic. Proposition 1.3 covers the case
when only dv is atomic. For the general case we have the following:

PROPOSITION 2.5. The function l, is C* along the earthquake path &, (t)
with derivative [, cos 6 du X dv, where 0 is the angle (measured counterclockwise)
from v to . at each point of intersection of u and v.

Proof. Take any sequence c;¢; of weighted simple closed curves converging to
v in ME. Then we will show that

ci.[w cos Odu X de;, — j cos 0 du X dv 2)
M

uniformly on compact sets of T,. Thus

dl
¢ly, —1, and c,-—-‘-i-‘f-‘—>'[wcos9duxdv

along ¥,(t), uniformly for t=<T. The proposition will then follow.

The proof of (2) is essentially the same as that of Lemma 2.4. Cover the
support of du X dv by finitely many geodesic quadrilaterals of the type described
above with vertical sides in u and horizontal sides in ». Restrict, without loss of
generality, to a single such quadrilateral Q which we further subdivide into similar
quadrilaterals Q, with sides of length less than 8. To apply the discussion from the
proof of Lemma 2.4 perturb the Q, slightly so that the vertical sides are disjoint
from p, the horizontal sides from » and assume that they move continuously with
the hyperbolic structure, M. For 8 sufficiently small, cos 6 will vary less than any
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given £ on every Q, so

I cos de.de—Zcos O(xj)J' du X dv
Q Q

7

<z-:j du X dv
Q

for any choice of x; in Q. Similarly,

cjj cos O du X do; — Z cos O(yj)cij du xXdg,| < SC"I du X do;
Q Q Q

for any choice of y; in Q; in the intersection of u with ¢;.

These estimates depend only on &§; hence they are uniform in M. As in the
proof of Lemma 2.4, for a fixed subdivision Q; and compact region of T,, we can
find an N such that for i > N the Riemann sums are approximated uniformly by
those of the ¢@. From the estimates above and the triangle inequality the
integrals are similarly estimated. But, by choosing & sufficiently small and N
sufficiently large, this holds for any £ and the proposition follows. [J

Now the proof of Corollary 2.2 is straightforward.

Proof of Corollary 2.2. From Proposition 2.5, the derivative of I, along &, (t)
is:

dl
E—;—’=JM cos Odu X dv

where 0 is the angle (measured counterclockwise) from v to u at each intersection
of u and ». Proposition 2.3 implies that cos 6 varies analytically over CR, at each
intersection of w and v. As in the proof of Theorem 1, this implies that I, varies
analytically along &, (t). When u = v the first derivative is identically zero so I, is
constant. To see that [, is analytic on all of T, note that all of its directional
derivatives are analytic either by Proposition 2.6 below or by the fact that
tangents to classical twist flows span the tangent space at every point (see [10]).
That the functions I, converge to [, in the C-topology (on compacts) as p;
converges to u similarly follows from [, (M) converging to [, (M) and the fact that
when complexified, the derivatives of [, along classical twist paths converge
uniformly to those of |, on compact neighborhoods of R, in CR,. [

Although it is not necessary in the proof of Corollary 2.2, it seems worthwhile
0 point out (Proposition 2.6) that every tangent vector in T, is tangent to a
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unique earthquake path. The main point is the following theorem which is proved
in [5] where it is of more central importance:

THEOREM. If two geodesic laminations p. and v on M€ T, have the same
total cosine with every closed geodesic on M, then u = v.

PROPOSITION 2.6. Every tangent vector in T, is tangent to a unique earth-
quake path in T,.

Proof. Since the space of geodesic laminations and the tangent space at any
point M in T, are homeomorphic to 6g—6 dimensional balls, it suffices, by
invariance of domain, to show that the map associating a lamination u with the
tangent to the integral curve (earthquake path) of &, through M is continuous,
proper, and 1-1. From Proposition 1.3 continuity and properness are immediate.
Similarly, from this proposition, it follows that if ¥, and &%, are tangent at M,
then {4 cos 6 du =, cos 6 dv for every closed geodesic ¢. In other words, all the
total cosines are equal, so, by the Theorem above, this implies that . = v and the
map is 1-1. O
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