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The growth of entire and harmonic functions along
asymptotic paths

Joun Rossi! and ALLEN WEITSMAN

1. Introduction

In a recent paper of Lewis and the two authors [5], the following generaliza-
tion of a theorem of Huber [4] is proved.

THEOREM A. Let f be a transcendental entire function. Then there exists a
path I" from O to o such that

lim l—o—g——‘f—(—i)—‘:oo (1.1
z>= log|z]
zell
ITF@)=If@I*® O=e(z)—>0,z—>x) (1.2)
where I(I'(z)) is the length of I" from 0 to z and
J —lxldz|<oo (for all A>0). (1.3)
r Ifl

In [7], one of the authors has proved.

THEOREM B. Let f be an entire function such that for some K >0 at least one

of the level curves |f|= K tends to ©. Then there exists a path I from O to = such
that

log |f(2)|>]z|"/*7=® (1.4)
and
I(T'(2))=(log |f(z)])< == (1.5)

where ¢ >0 is an absolute constant and 0=¢(z) -0 as z — .

! Research carried out as a NATO Postdoctoral Fellow at Imperial College, London.
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2 JOHN ROSSI AND ALLEN WEITSMAN

In this paper we prove

THEOREM 1. Let f be as in Theorem B. Then there exists a path I" from 0 to «
such that (1.4) holds and

I (log|f)~@™» |dz| < (for all A >0). (1.6)
r

Whereas (1.1) and (1.2) imply (1.3), we note that because of the presence of c,
(1.4) and (1.5) do not imply (1.6). The constant ¢ is a by-product of the proof of
Theorem B. We use a totally different approach in proving Theorem 1.

COROLLARY 1. Let u be a nonconstant harmonic function in C. Then there
exists a path I from 0 to o« such that (1.4) and (1.6) hold with log |f| replaced by u.

The proof of Corollary 1 is immediate from Theorem 1. Indeed, if u is any
such harmonic function and v is its harmonic conjugate in C then f=¢e“"™ is
transcendental and entire with u =log|f|. Clearly by the harmonicity of u every
level curve of |f|=1 (u=0) extends to .

We also prove

THEOREM 2. Let f be an entire function of order p = such that for some
K >0 the set {z :|f|> K} contains at least two components. Then there exists a path
I' from O to « such that

log |f(z)|> |z D@ (0=g(2) >0 as z —> ) 1.7)
and
J (log |f)) 1@ Vel gzl <o (for all A>0). (1.8)
r

(We note that by hypothesis and an easy application of the Ahlfors, Denjoy,
Carleman method, p=1 and thus 2p—1)/p=3.)
Examples in Eremenko [3 p. 681] show that £(z) cannot be replaced by 0 in
(1.4) and (1.6).
By modifying his examples slightly, we can find an entire function f of order
p, 1 <p =oo such that

j (log [f (2)])~@* e |dz| = oo



The growth of entire and harmonic functions 3

for every path I' on which |f|>1. This shows that (1.5) and (1.7) are “‘sharp”
independent of (1.4) and (1.6).

Barth, Brannan and Hayman [2, Theorem 2] show that &£(z) cannot be
replaced by 0 in (1.4) where log |f| = u is harmonic. Brannan has pointed out in
private communication that their example can be modified to show that (1.5) is

also ‘“‘sharp” for harmonic functions. Specifically one can construct a harmonic
function u such that

I u(z)?|dz|=o
r

for all paths I' where u>0.

2. Preliminary lemmas

Let D be an unbounded regular plane domain. We let 8%(r) = if {|z| = r} = D.
Otherwise we let r0*(r) equal the length of the longest arc in the intersection of
{lz} =} and D. Recall that a set G has log density one if (log r)™" [ dt/t = 1
as r— o, We state

LEMMA 1. Let D be as above and suppose

inf lim 0*(r) = z G=a<x) (2.1)
G r—»o o
reG

where the inf is taken over all sets G of log density one. Then there exists v >0
harmonic in D such that for all ze D

v(z)=|z|*7*) (0=e(z)) >0 as |z]|>=). (2.2)

We remark that without the log density statement, (2.2) was proved in [2] with

=1
a =3,

Before we prove Lemma 1 we need the following lemma which asserts that the
inf in (2.1) is attained.

LEMMA 2. There exists a set G of log density one such that

lim 6*(r) = Ky (2.3)
r—»co a

reG
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Proof. Let 1.m. (E) = [ dt/t for any measurable set E < [0, ). By (2.1) we may
find G,, n=1,2,... such that

o*(r) =T+~ (2.4)
a n
and
Lm. (G, N[1,r])= (1 —i—) log r (2.5)

provided re G,, r=r,. We may choose r, so large that

logr,=logr,_,, n=2,3,... (2.6)
n—1

Define G =J%_; G, N[r,, 1.41]- To see that log dens G =1, choose £ >0 and
let N be such that 3/N <e. Suppose re G and r,=r<r,,, for some n=N+1.
We have by (2.5) and (2.6)

lm. (GN[1, r)=l.m. (G, N[r._1, . D+1.m. (G, N[r,, r])

1 1
2(1— )log r,—logr, .+ (1-———) logr—logr,
n—1 n

1 1
= — logr,—logr,_ +<1——>
1 ogr,—logr,_, " log r

2 1
= — logrn+(1~——)logr
n—1 n

3
2(1—n_1)logr
3
.2(1‘_}\_[) logr
=(1—¢)logr.

Since £ was arbitrary G has log density one.
Furthermore given &£ >0, there exists N such that 1/N<e and if r=ry we
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have by (2.4) and the definition of G that 0*(r)<(w/a)— €. This implies

fim 0*(r) == . 2.7)
r—»c0 o

reG

Since G has log density one, (2.7) and (2.1) imply (2.4). Lemma 2 is now proved.

Proof of Lemma 1. We denote by %,(r), i=1,2,... any nonnegative sequ-
ences such that n;(r) — 0 as r — «. Then with G as in Lemma 2, we have

0*N=——0"—  (reG). (2.8)
a—mn,(r)

Also if a € E where E is compact in C and |a|=1

L.m. (G N[lal, F1=[1- ()] logé—l (2.9)

uniformly in E.
By (2.8) we have

j MO 4 < () log (2.10)
GN[lal, r] t Ial

uniformly in E.

Let Dg be any component of D N{|{| < R}. Pick z € Dy with |z| <R/4 and let
wg (z) be the harmonic measure of {|{{|= R}NaDg with respect to z and Dg. Then
by an inequality found in [8, p. 116] we have

R/2 dt
wgr(z) =9./2 exp {“’I‘I‘LZl ‘t‘e—;’(t—)} (2.11)

By (2.8)-(2.11) we have for z € E compact in C

lzl)"‘“"“"" 2.12)

wg(z)= K(‘ﬁ

where K is a constant depending only on E.
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Let ¢(r) be any convex increasing function of log r such that

log ¢(r) o

(r > x) (2.13)
log r

and

re —m,(r)

(logr)*”

o@2r)= (2.14)

We now employ a technique similar to the one used in Lemma 1 of [2]. Let
Dy be as above. Then there exists a unique function vg(z) harmonic in Dy,
continuous in Dg such that for z € 9Dy

vr(2) = ¢(z)). (2.15)

Let R,=2",n=0,1,2,... and define Dg_ as before making sure that Dr_ 2
Dy . Let w,,, n=v be the harmonic measure in Dg_ of the portion of dDg_ in
{l¢|=R,}. Then for all z € Dg, |z|=R,/4, we have

wn,(2) = g (2). (2.16)
Choose R, to be the smallest radius greater than 4|z|. Then for ze

Dg_N{|z|=R\/4}, n =k, we have by (2.12), (2.16) the definition of ¢, and the fact
that |z|=R,/8,

0 () SSR)+ T SR, )00, (2

v

n—1
S@lzD+k 2" 2 SR IR,

= 1
=¢@8lz)+k lz\"‘(l + ;k v+ 1)2)

=k, lz|* (2.17)
where k,>0 is a constant depending only on the compact set |z| = Rg/4.

Since ¢ is a convex function of log r, we have that ¢(|z|)—vg (z) is subhar-
monic in D and equal to 0 on dDg_. Thus for ze Dg we have

g, (2) = ¢(z)). (2.18)
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Also if m=n and z e D, we have

Vg, (2) = Vg (2). (2.19)

By (2.17)~(2.19), vg_ is an increasing sequence of harmonic functions uniformly
bounded on compact sets. By Harnack’s Theorem v(z) =lim,,_,., g _(2z) is harmo-
nic in D. Thus (2.2) follows easily from (2.13) and (2.18).

3. Proof of Theorem 1 when f has no zeros

We assume first that f has no zeros. Then every level curve of log|f|=1
extends to . Thus if D is any component of {z :log |f|> 1}, D is simply connected
and contains no full circle |z|=r for r=r,. Thus we may find a function v
harmonic in D satisfying (2.2) for @ =3. Now let zo,€ D. We can find § >0 such
that

log |f(zo)|— dv(z0)>1. (3.1)

Define w=8v and let w* be the harmonic conjugate of w in D. Then
¢ =e™* ™" is analytic in D with no zeros such that

log [¢|=w (3.2)

satisfies (2.2) (for possibly another £(z)).

Set F=f/¢ in D. By (2.2), (3.1) and (3.2) log F has boundary values on aD
not exceeding 1 and is greater than 1 at zo€ D. Thus every component %, R=1
of {z:|F|> R} is nonempty and contained in D.

To construct our path I' we will use extremal length arguments in each %g.
We define extremal length as in [1. p.11]. Let ¢ be a family of curves. The
extremal length A (%) of ¢ is defined as

2
M= )

where

L(p)= éggL pldz|, A(p)= ”' p? dx dy

C

and p =0 ranges over all measurable functions for which A(p) #0, .
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To get the construction started let R,> e be such that F’' # 0 when |F| = R, and
take a component Fr = D with {,€ 0% arbitrarily chosen. It follows from the
Cauchy-Riemann equations that arg F is then monotone on %, so that for some
m >0 a branch of the function w =log F maps a neighborhood of an arc of 0%y,
containing ¢, univalently to a neighborhood of a segment

To={w=log Ry+iv:fpp—n=v=yp+n}

with the arc of 3%, and the segment T, corresponding. By replacing F by F¥
where K is a sufficiently large positive integer we may assume that 7 is arbitrarily
large. This modification of F will in no way affect our method and so we asume
that n = e in the definition of T,.

Recall the function &(r) in (2.2). Fix A;>0 such that

2+4e) ¥ (27: I i rdr )ms 1. (3.4)

i=0 0 [ej - 1 + lOg RO+ r%_e(r)]“+2)\°

This is possible since the left side of (3.4) converges for every A,>0.

With ¢, as chosen, we let Q, be the square in the w-plane defined by
Qo=1{(s, tp):log Ry<s<2e+log Ry, Yo—e<t<ygt+e} Set vy=1v,={(s1t):
log Ry=s <s'} where t, ranges between y,—e and ,+e and s'<log R,+2e.
The point s’ is chosen to be log Ry+2e if the inverse h(w) of log F can be
uniquely continued on v, from log R, to log Ry+2e. Otherwise s’ is chosen so
that (s, t,) is the first point on the horizontal segment vy, where h cannot be
continued uniquely. Since s’ >log R, and since h cannot tend to 8%, < D this can
only happen if either there exists a point z, € ¥ _ such that log F(z,) =(s’, t,) and
F'(z)=0o0rif h—>xas w— (s, ty).

By taking unions over all such horizontal segments and their preimages in the
z-plane, we obtain a measurable set ¥ < ¥ which maps 1-1 under log F to a
subset Q, of Q,. Let ¢ be the family of all horizontal segments in Q, connecting
both sides of Q,. Since Qg is a square this implies [1,p.12] that A (%) =1.
Furthermore since the curves in % are no “longer” than those in ¥, we have in the
notation of [1, p. 12] that % <% and so A(%)=<1. Let C be the collection of the
images under h of those curves in % which extend all the way across Q,. Then
C = h(%)—C,—C, where C, are the curves which run into points where F'=0
and G, are the unbounded curves. But the number of curves in C; is countable
and the curves in C, extend to «. Thus it is easy to see [6, Theorems 2.13 and
2.14] that AM(C)=A(h(%)). Since (log F)'#0 on h(%), it is easy to show that
A(h(9) = A(%). This gives

AO)=1. (3.5)
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On C we take (in (3.3)) p = po = (log |f]) > and p = 0 off C. Clearly A(p)# 0.
To show that A(p) # = we have by (2.2), (3.2) and the fact that the union of the C
lies in F < Fg,

p

A(po)= | | (og |f)~**°r dr do

J 4

F

=< | | (log Ry+ 8v)* *ordrdé

J J

F

= 2qrj (log Ry+r: =)=+ 2o gr

0
< oo, (3.6)

Let us define for R and A positive

o 172
K(R,\)= (217[ (R +risM)=4-2%, dr) . 3.7)
o

Thus it follows by (3.3), (3.6) and (3.7) that there exists in C a curve B,< Fr,
that joins a point z € 0%y, to 8%, g, for some component F,g = Fg, of the set
{z :|F|>e**R,}. Furthermore

J_ (log |f|)™*™ |dz| =2K(log Ry, Ao)- (3.8)
Bo

We let B, correspond to v, in Q,. Then a similar procedure is applied to
the rectangle So={(s,t):e+log Ro<s<2e+logR,, to<t<ty+2e?} in the
w plane where the bottom of S, corresponds to half of B, under a branch
h of (logF)™!. Here we consider the family of vertical segments y= Vo =
{(so, t): to—e2<t<t,+e?} in S,. As before we obtain a family ¢ whose union is

mapped 1-1 onto a set £ < F,.g,. Since S, is a rectangle of length 2e¢” and width e
we obtain with C as before

2
ME) = A(@) = A(9) = 2% = 2e.

e

So in € we again get a curve &, whose image v, under log F is a vertical
segment joining the two sides of S, and

J_ (log |f))™>7 |dz| =4eK(log Ro, Ao). (3.9
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We now cut 3, off where it joins @, at log R;(=log R, + e) and obtain the first
piece Bo < B, of our curve I'. With A, still fixed we continue with the square

Q,={(s,t):log R, <s<2e*+log Ry, ty<t<t,+2e?}

and obtain a curve $3; on which F’# 0 joining &, to the boundary of a component
F22g, < Fg, of the set {z:|F|>e**’R,}. Then (3.6) becomes

| Goglfy> 2o ldel<2Ktog Ry, A9
B4

We now cut &, off where it joins B, and obtain the second piece a, of I'. Let B,
correspond to v, in Q, and define the rectangle

S.={(s,t):e*+log R, <s<2e’+log Ry, t; <t <t;+2e>}.

Again we find that the extremal length of the vertical lines joining the two sides of
S, is 2e. So we again obtain a curve &, such that

J'_ (log |f) % |dz|=4eK(log Ry, o).

1

This process is continued yielding a curve BoUa,UB;Ua;U---UB,Ua, ex-
tending from 9%y, to the boundary of a component ¥ where

log R, =e"—1+log R, n=0,1,2,... (3.10)
Our construction yields
[ og1fh>ldel <2K (08 R, o)
B:

and

L (log |f))~> " |dz|=4eK(log R;, Ao).

@,

Adding these contributions and taking into account (3.4), (3.7) and (3.10) we
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obtain

(o]

(og |f)) 72 |dz| = (2+4e) 'Z K(log R;, Ao)

JB()UQOU"'UBnU&n j=0

=(2+4e) ), K(e'~1+1log Ry, Ao)

i=0

=1

independent of n. We keep A, fixed until N is so large that

Q2+4e) Y (Z"F rdr )ms%. (3.11)

i=0 b (ef —1+log Ry +r/27s™)y+,

At this point we change A, to Ay/2 with (3.11) playing the role of (3.4). We
then continue from the arc &, where |F|= Ry in place of the original arc vy, on
|F| = R,. In the general case we obtain a sequence

O:N0<Nl<’ * '<N

]

such that
log Ry, =e™ ™M-1+1log Ry, i=1,2,... (3.12)

The N; are chosen such that

(4+2e) i K(e"—1+log Ry, Ao/(j+1)) =27 (3.13)

n=0

with By Uay U - -UBy,,, Uay,, extending from 8%, to 8Fy, ., and satisfying

| (og £/ |dz]

N Vo Us - UB | Ve,

=(4+2e) Y, K(e"—1+log Ry, Ao/(j+1))

n=0

Let I'=ByUaoU: - UB Ua,U- - Then since log|f|>1 in D and hence on
I' we have

J, dog 1>+ tdzi< [ aogish-=viaz

if A >A’. Thus it follows from (3.13) and (3.14) that I’ satisfies (1.6) for all A >0.
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4. Proof of Theorem 1—general case

When f has zeros the proof in §3 must be modified slightly. First of all by
hypothesis there exists a component D of {z :log |f(z)|>1log K} such that 8*(r) <
2 for r =ry, where we can assume K >e. Thus we can still find v satisfying (2.2)
and (3.1). Since D is not necessarily simply connected, we can only define a local
conjugate of w=8v and so our function F is now multivalued. However |F| and
log |F| are single valued and subharmonic in C. Thus we see that %y is again
nonempty for all R=K.

We then proceed as before taking vy, to be a level curve of |F|= R, extending
to infinity, where F’ #0 and find a curve 3,. We remark that 8, never intersects a
level curve |F|= R, Ry<R < R +2e which forms a loop. In fact inside such a loop
|FI|<R so if B} is the portion of 3, joining R, to R, B% must pass through some
point z, where |F(z)|> R. This is impossible since 8% is the image under h of the
horizontal segment beginning at log R, and ending at log R. Hence we can find an
a, as before. We now continue as in §3.

5. Proof of Theorem 2

To prove Theorem 2 we need the following.

LEMMA 3. Let f be entire of order 3<p<w. If D is any component of
{z:|f(2)|>K}, K> e then

su 1@9*0)22 (5.1)
Gpr——»oo P

reG

where the sup is taken over all sets G of log density one.

Proof. Suppose on the contrary that the left side of (5.1) equals m/p,, p1>p.
As in Lemma 2 we may find a set G of log density one where the sup on the left
side of (5.1) is attained. Thus for r=r,, re G

9*(,)_<_p1 (p1=p2>p). (5.2)

Let z e D and choose R such that |z|<R/4. With the notation of (2.11) we
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have
on(2)=942exp {0, Lm . )
<9J2exp {~pa(1- £, log (ERl)}

where (since log dens G =1) g,, — 0 as m — o, Thus by (2.12) we have for fixed
z€ Dy

1=log|f(z)|=<log K +log M(R, f)wg(z)

=K, log M(R, f) (%)pz(lmem}

where K, >0 is constant. Then

1 /R p,(1—¢ )
log M(R, f)=— (—) .
K; \z|

Since z is fixed this implies that f has order at least p,> p, a contradiction. Thus
(5.1) holds and Lemma 3 is true.

Proof of Theorem 2. Let D, be a component of {|f|> K} and suppose

inf lim 0% (r) = T l=a<x) (5.4)
G r—o» a
reG

where the inf is taken over all sets G, log dens G =1 and 0% corresponds to 0* for
D,. Since there exists another component D, of {|f|> K}, (5.4) implies

sup lim 63(r) <2 -z (5.5)
reG @

where 6% corresponds to 6* for D,.
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By Lemma 3 we must have

Teon-Z
p «a
or
p
> . 5.6
=5 (5.6

By Lemma 1, (5.4) and (5.6) we may find a function v harmonic in D, such
that for all ze D,

v(z)?_‘zl[plﬂp—l)]——eﬂzl) (058(‘Z|)—>0 as ‘z‘——)oc). (57)

We now define ¢ and F as in the proof of Theorem 1. The proof of Theorem 2
now follows in the same way as that of Theorem 1 using p/(2p—1) instead of 1.
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