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The growth of entire and harmonie functions along
asymptotic paths

John Rossi1 and Allen Weitsman

1. Introduction

In a récent paper of Lewis and the two authors [5], the following generaliza-
tion of a theorem of Huber [4] is proved.

THEOREM A. Let f be a transcendental entire function. Then there exists a

path F front 0 to oo such that

KF(z))&lt;|/(z)|e(z) (0&lt;e(z)-*0,z-&gt;œ) (1.2)

where l(F(z)) is the length of F from 0 to z and

f ïè:Mz|«» (forain&gt;0). (1.3)
Jr \î\

In [7], one of the authors has proved.

THEOREM B. Let f be an entire function such that for some K &gt; 0 at least one

of the level curves \f\ K tends to ». Then there exists a path F from 0 to &lt;» such

that

log|/(z)|&gt;|z|1/2~6(2) (1.4)

and

/(r(z))&lt;(log|/(z)|)c+2+e(z) (1.5)

where c&gt;0 is an absolute constant and 0&lt;e(z)—»0 as z—&gt;°°.

1 Research carried out as a NATO Postdoctoral Fellow at Impérial Collège, London.
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2 JOHN ROSSI AND ALLEN WEITSMAN

In this paper we prove

THEOREM 1. Letfbeas in Theorem B. Then there exists a path rfrom 0 to oo

such that (1.4) holds and

f (log|/|)-(2+x)Mz|&lt;œ (forallk&gt;0). (1.6)
Jr

Whereas (1.1) and (1.2) imply (1.3), we note that because of the présence of c,

(1.4) and (1.5) do not imply (1.6). The constant c is a by-product of the proof of
Theorem B. We use a totally différent approach in proving Theorem 1.

COROLLARY 1. Let u be a nonconstant harmonie function in C. Then there

exists a path F from 0 to oo such that (1.4) and (1.6) hold with log |/| replaced by u.

The proof of Corollary 1 is immédiate from Theorem 1. Indeed, if u is any
such harmonie function and v is its harmonie conjugate in C then f=eu+w is

transcendental and entire with u =log|/|. Clearly by the harmonicity of u every
level curve of |/| 1 (u 0) extends to oo.

We also prove

THEOREM 2. Let f be an entire function of order p^oo such that for some
K&gt;0 the set {z :\f\&gt;K} contains at least two components. Then there exists a path
F from 0 to &lt;*&gt; such that

)]-e(2) (0&lt;e(z)--»0 asz-&gt;oo) (1.7)

and

f Oog|/|r[(2p-1)/p]+x|dz|&lt;oo (forallk&gt;0). (1.8)
Jr

(We note that by hypothesis and an easy application of the Ahlfors, Denjoy,
Carleman method, p &gt; 1 and thus (2p — l)/p &gt;^.)

Examples in Eremenko [3 p. 681] show that e(z) cannot be replaced by 0 in
(1.4) and (1.6).

By modifying his examples slightly, we can flnd an entire function / of order
p, 1 &lt; p &lt; oo such that

t
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for every path F on which |/|&gt;1. This shows that (1.5) and (1.7) are &quot;sharp&quot;

independent of (1.4) and (1.6).
Barth, Brannan and Hayman [2, Theorem 2] show that e(z) cannot be

replaced by 0 in (1.4) where log |/| u is harmonie. Brannan has pointed out in
private communication that their example can be modified to show that (1.5) is

also &quot;sharp&quot; for harmonie functions. Specifically one can construct a harmonie
function u such that

f u(

for ail paths F where u &gt; 0.

2. Preliminary lemmas

Let D be an unbounded regular plane domain. We let 0*(r) &lt;» if {\z\ r}^D.
Otherwise we let rd*(r) equal the length of the longest arc in the intersection of
{\z\ r} and D. Recall that a set G has log density one if (log r)&quot;1 JGn[i,r] dt/t —&gt; 1

as r -&gt; oo. We state

LEMMA 1. Let D be as above and suppose

infïïm0*(r) - (|&lt;a&lt;oo) (2.1)
G r—?&lt;» ot

r&lt;=G

where the inf is taken over ail sets G of log density one. Then there exists v&gt;0

harmonie in D such that for ail zeD

u(z)&gt;|z|&lt;*-e(lzl) (0&lt;e(|z|)-&gt;0 as |z|-&gt;oo). (2.2)

We remark that without the log density statement, (2.2) was proved in [2] with

Before we prove Lemma 1 we need the following lemma which asserts that the
inf in (2.1) is attained.

LEMMA 2. There exists a set G of log density one such that

hm 0 (r) —. (2.3)
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Proof. Let l.m. (E) JE dt/t for any measurable set E c [0, &lt;»). By (2.1) we may
find Gm n l, 2,... such that

0*(r)&lt;-+- (2.4)
a n

and

l.m.(Gnn[l,r])s:(l--)logr (2.5)
\ n)

provided r e Gm r &gt; rn. We may choose rn so large that

1

n-1 logrn&gt;logrn_!, n 2,3,... (2.6)

Define G Un=i Gn fl[rm rn+1]. To see that log dens G 1, choose e &gt;0 and

let N be such that 3/N&lt;e. Suppose reG and rn&lt;r&lt;rn+1 for some n&gt;N+l.
We hâve by (2.5) and (2.6)

l.m. (Gn[l, r])&gt;l.m. (G^iHCr,,.!, rn]) + l.m. (Gnn[rn, r])

&gt; 1 r log rn -log rn_x4- 1 — log r-log rn

r log rn -log rn_! + (l log r
n — 1 \ ni

&gt;(l-e)logr.

Since e was arbitrary G has log density one.
Furthermore given e&gt;0, there exists N such that 1/N&lt;e and if r&gt;rN we
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have by (2.4) and the définition of G that 0*(r)&lt;(ir/a)-e. This implies

(2.7)

Since G has log density one, (2.7) and (2.1) imply (2.4). Lemma 2 is now proved.

Proof of Lemma 1. We dénote by 17, (r), i 1, 2,... any nonnegative séquences

such that Tï,(r)—»0 as r-*°°. Then with G as in Lemma 2, we have

0*(r)&lt; ^— (reG). (2.8)
aTh(r)

Also if a s E where E is compact in C and |a| &gt; 1

l.m.(Gn[|a|,r]2t[l-T|2(r)]log~7 (2.9)

uniformly in E.

By (2.8) we have

f (210)

uniformly in E.
Let DR be any component of DD{\Ç\&lt;R}. Pick zeDR with |z|&lt;R/4 and let

&lt;°r(z) be the harmonie measure of {|f | R}naDR with respect to z and DR. Then
by an inequality found in [8, p. 116] we have

(2.11)

By (2.8)-(2.11) we have for zeE compact in C

^) (2.12)

where K is a constant depending only on E.
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Let &lt;f&gt;(r) be any convex increasing function of log r such that

a (r-*oo) (2.13)
logr

and

&lt;M2r)&lt;- -5. (2.14)
(log r)2

We now employ a technique similar to the one used in Lemma 1 of [2], Let
DR be as above. Then there exists a unique function vR(z) harmonie in DR,
continuous in DR such that for z e dDR

vR(z) &lt;f&gt;(\z\). (2.15)

Let jRn 2n, n 0,1,2,... and define DRn as before making sure that DRn+i 2
DRn. Let o)nv, n &gt; v be the harmonie measure in DRn of the portion of dDRn in
{|£|^JRV}. Then for ail zeD^, |z|^jRv/4, we hâve

wn,v(2)^wRv(z). (2.16)

Choose Rk to be the smallest radius greater than 4|z|. Then for ze
&amp;Rn H{|z|&lt;RJ4}, n&gt;k,we hâve by (2.12), (2.16) the définition of &lt;£&gt;, and the fact
that |z|&gt;Kk/8,

n-lI &lt;f&gt;(Rv+1)ù&gt;nJz)

v — k

\) + k\2

skjzl- (2.17)

where fctX) is a constant depending only on the compact set \z\^RK/4.
Since &lt;J&gt; is a convex function of log r, we hâve that &lt;£(|z|) — u^Cz) is subhar-

monic in Dj^ and equal to 0 on dD^. Thus for z € DRn we hâve

^&lt;t&gt;(\z\). (2.18)
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Also if m &gt; n and z e DRn we hâve

vRm(z)&gt;vRn(z)- (2.19)

By (2.17)^(2.19), uRn is an increasing séquence of harmonie functions uniformly
bounded on compact sets. By Harnack&apos;s Theorem v(z) limn_^O0vRn(z) is harmonie

in D. Thus (2.2) follows easily from (2.13) and (2.18).

3. Proof of Theorem 1 when / has no zéros

We assume first that f has no zéros. Then every level curve of log |/| 1

extends to &lt;». Thus if D is any component of {z : log |/| &gt; 1}, D is simply connected
and contains no full circle \z\ r for r&gt;r0. Thus we may flnd a function v
harmonie in D satisfying (2.2) for a \. Now let z0 e D. We can find 8 &gt; 0 such

that

Iog|/(z0)|-ôi;(zo)&gt;l. (3.1)

Define w 8v and let w* be the harmonie conjugate of w in D. Then
&lt;t&gt; ew+lw* is analytic in D with no zéros such that

log |4| w (3.2)

satisfies (2.2) (for possibly another e(z)).
Set F fl&lt;t&gt; in D. By (2.2), (3.1) and (3.2) log F has boundary values on dD

not exceeding 1 and is greater than 1 at z0 g D. Thus every component ^R, R ^ 1

of {z : \F\ &gt; R} is nonempty and contained in D.
To construct our path F we will use extremal length arguments in each ^R.

We define extremal length as in [1. p. 11]. Let S be a family of curves. The
extremal length A(^) of &lt;S is defined as

where

| p\dz\,|
c

and p&gt;0 ranges over ail measurable functions for which A(p)^O, &lt;».
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To get the construction started let Rq&gt; e be such that F f 0 when \F\ Ro ;

take a component \çD with Co^^Ro arbitrarily chosen. It follows from the
Cauchy-Riemann équations that arg F is then monotone on dSP^ so that for some

r\ &gt; 0 a branch of the function w log F maps a neighborhood of an arc of d^^
containing £0 univalently to a neighborhood of a segment

To {w log Ko +iv : i^0—tj &lt;i; &lt; i/ro+t)}

with the arc of dSFj^ and the segment To corresponding. By replacing F by FK
where K is a sufficiently large positive integer we may assume that r\ is arbitrarily
large. This modification of F will in no way afïect our method and so we asume
that 7) e in the définition of To.

Recall the function e(r) in (2.2). Fix Ao&gt;0 such that

i
&lt;1. (3.4)

This is possible since the left side of (3.4) converges for every Ào&gt;0.

With i^0 as chosen, we let Qo be the square in the w-plane defined by
Q0 {(s,t0):logR0&lt;s&lt;2e+\ogR0, ^0-e&lt;r&lt;^0 + e}. Set y yto {(s,t0):
logJR0&lt;s&lt;s&apos;} where t0 ranges between il/0~e and ^0 + e and s&apos;&lt;log K0 + 2e.

The point sr is chosen to be logi*0 + 2e if the inverse h(w) of log F can be

uniquely continued on y^ from logi?0 to logjR0 + 2e. Otherwise s&apos; is chosen so
that (s&apos;, t0) is the first point on the horizontal segment 7^ where h cannot be
continued uniquely. Since 5&apos; &gt; log jR0 and since h cannot tend to dâ^ ç D this can

only happen if either there exists a point zx € 9*^ such that log F(zt) (s&apos;, t0) and
F&apos;(zi) 0 or if h -» 00 as w -? (s\ t0).

By taking unions over ail such horizontal segments and their preimages in the
z -plane, we obtain a measurable set ^^:^Ro which maps 1-1 under log F to a

subset Qo of Qo. Let &lt;$ be the family of ail horizontal segments in Qo Connecting
both sides of Qo. Since Qo is a square this implies [l,p. 12] that \(CS) 1.

Furthermore since the curves in % are no &quot;longer&quot; than those in % we hâve in the
notation of [l,p. 12] that $&lt;&lt;§ and so A(^)^l. Let C be the collection of the
images under h of those curves in % which extend ail the way across Qo. Then
C h(($) — C1 — C2 where Cx are the curves which run into points where F&apos; 0
and C2 are the unbounded curves. But the number of curves in Cx is countable
and the curves in C2 extend to 00. Thus it is easy to see [6, Theorems 2.13 and

2.14] that À(C) A(ft(#)). Since (logF)&apos;^O on h{%\ it is easy to show that
Thisgives

A(C)&lt;1. (3.5)
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On C we take (in (3.3)) p po (log \f\)~2~K° and p 0 off G Clearly A(p) + 0.

To show that A(p) £ oo we hâve by (2.2), (3.2) and the fact that the union of the C
lies in 9^9^

#
(3.6)

Let us define for R and À positive

K(R, A) (lir f (3 7)

Thus it follows by (3.3), (3.6) and (3.7) that there exists in C a curve Po^^
that joins a point zea^ to d^^Ro for some component 9e2*Roc&amp;^ of the set
{z : |F| &gt; e2e,Ro}. Furthermore

aog|f|r2-x«|dz|&lt;2K(logR0,À0). (3.8)

We let /30 correspond to 7^ in Qo. Then a similar procédure is applied to
the rectangle So {(s, r) : e + log Ko &lt; s &lt; 2e + log R05 t0 &lt; t &lt; t0 + 2e2} in the
w plane where the bottom of So corresponds to half of |30 under a branch
h of (log F)&quot;1. Hère we consider the family of vertical segments y ySo

{(s0, t): to-e2&lt;t &lt;to+e2} in So. As before we obtain a family &lt;§ whose union is

mapped 1-1 onto a set £ £ 9eeRo. Since So is a rectangle of length 2e2 and width e
we obtain with C as before

A(C) A(«)&lt;A(«) —= 2e.
e

So in # we again get a curve a0 whose image ySo under log F is a vertical
segment joining the two sides of So and

\dz\&lt;4eK(log 2*0, Ao). (3.9)
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We now eut j30 off where it joins â0 at log JRx(&gt;log JR0 + e) and obtain the first
pièce 0o ^ Po of our curve F. With Ao still fixed we continue with the square

Qi {(s, 0*logi*i&lt;s&lt;2e2 + logJR1, to&lt;t&lt;to + 2e2}

and obtain a curve jSx on which F&apos; ^ 0 joining à0 to the boundary of a component
^c2e2Riç^Ri of the set {z:\F\&gt;e2e2R^. Then (3.6) becomes

f Oog |/|r2-x° \dz\ &lt;2K(log Rl9 Ao).

We now eut à0 ofï where it joins Pi and obtain the second pièce a0 of F. Let p1

correspond to yh in Qx and define the rectangle

Sx {(s, t):e2 + \ogRl&lt;s&lt;2e2 + logR1, t1&lt;t&lt;t1 + 2e3}.

Again we fînd that the extremal length of the vertical Unes joining the two sides of
St is 2e. So we again obtain a curve àx such that

x° |dz| s4eK0og Rlt Ao).

This process is continued yielding a curve f$0\Ja0U fixUotxU- • *U/3nUân ex-
tending from 33^ to the boundary of a component ^^ where

log Rn &gt; en » 1 + log Ro n 0,1, 2,... (3.10)

Our construction yields

f Oog|/|)-2-xo|dz|&lt;2K:(log^,Ao)

and

f (log i/|r2-x° \dz\ &lt;4eK(log «y, Ao).

Adding thèse contributions and taking into account (3.4), (3.7) and (3.10) we
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obtain

f (Iog|/|r2-x»|dz|&lt;(2+4e) £ K(\ogR,,k0)
U3nUân

(2 + 4e) I K(e&apos;-l + logR0,À0)
j=0

independent of n. We keep Ao fixed until N is so large that

rdr

At this point we change k0 to Ào/2 with (3.11) playing the rôle of (3.4). We
then continue from the arc ân where \F\ RN in place of the original arc y0 on
\F\ Ro. In the gênerai case we obtain a séquence

0 No&lt;N1&lt;&quot; -&lt;Nj

such that

log RNj 2»eNrN&gt;-r + log RNii / 1, 2,... (3.12)

The Nj are chosen such that

(4 + 2e) X K(en-l+logJRNj, Ao/(/ + l))^2~J (3.13)

with |3NjUaN]U-&quot;U/3Nj+lUdNj+l extending from d^RNj to 5^rNj+1 and satisfying

•&apos;ft-. I I» I I ..I 11] I l_.

n=0

Let T j80Ua0U- • -UpkUakU- • • Then since log|/|&gt;l in D and hence on
F we hâve

dog i/ir2-* idzi &lt; [ oog i/ir2-*&apos; idzi

if A &gt; A&apos;. Thus it follows from (3.13) and (3.14) that T satisfies (1.6) for ail A &gt;0.
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4. Proof of Theorem 1—gênerai case

When / has zéros the proof in §3 must be modifiée slightly. First of ail by
hypothesis there exists a component D of {z :log |/(z)|&gt;log K} such that 0*(r)&lt;

2tt for r&gt;r0, where we can assume K&gt;e. Thus we can still find v satisfying (2.2)
and (3.1). Since D is not necessarily simply connected, we can only define a local
conjugate of w 8v and so our function F is now multivalued. However \F\ and

log \F\ are single valued and subharmonic in C. Thus we see that &amp;R is again

nonempty for ail R^K.
We then proceed as before taking 70 to be a level curve of \F\ Ro extending

to infinity, where F&apos; ^ 0 and find a curve j§0. We remark that j80 never intersects a

level curve \F\ R, Ro ^ R &lt; R + 2e which forms a loop. In fact inside such a loop
|F|&lt;K so if j3* is the portion of j30 joining Ro to jR, (5* must pass through some
point z0 where \F(z)\&gt;R. This is impossible since @* is the image under h of the
horizontal segment beginning at log Ro and ending at log R. Hence we can find an
d0 as before. We now continue as in §3.

5. Proof of Theorem 2

To prove Theorem 2 we need the following.

LEMMA 3. Let f be entire of order |&lt;p&lt;o°. If D is any component of
{z:\f(z)\&gt;K}, K&gt;e then

suplim0*(r)&gt;- (5.1)
Gr r-*oo Q

reG

where the sup is taken over ail sets G of log density one.

Proof. Suppose on the contrary that the left side of (5.1) equals Tr/pu pi&gt;p.

As in Lemma 2 we may find a set G of log density one where the sup on the left
side of (5.1) is attained. Thus for r^rQy reG

0*(r)&lt;- (Pl^p2&gt;p). (5.2)
P2

Let zeD and choose JR such that |z|&lt;JR/4. With the notation of (2.11) we



The growth of entire and harmonie fonctions 13

have

&lt;oR(z)&lt;9V2exp(-p2| -H
*&gt; JGn[2|z|, R/2] f J

&lt; 9V2 exp {-P2(l - em) log (j^

&lt;5.3)

where (since log dens G 1) em —»• 0 as m -* ». Thus by (2.12) we have for fixed
zeDR

1 &lt;log \f(z)\ &lt;log K+log M(R, /)ù)R(z)

P2(l-em)

r)
where Kt&gt;0 is constant. Then

Since 2 is fixed this implies that / has order at least p2&gt;P&gt; a contradiction. Thus
(5.1) holds and Lemma 3 is true.

Proof of Theorem 2. Let Dx be a component of {|/|&gt;K} and suppose

inflim0î(r) - (è&lt;a&lt;oo) (5.4)
G r-*» q

where the inf is taken over ail sets G, log dens G 1 and 0* corresponds to 6* for
£&gt;i. Since there exists another component D2 of {|/|&gt;K}, (5.4) implies

s\iplim 0f(r)^27r (5.5)
Gr r—x» qreG

where 0f corresponds to 0* for D2.
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By Lemma 3 we must hâve

-&lt;2tt
p a

or

(5.6)

By Lemma 1, (5.4) and (5.6) we may find a fonction v harmonie in Dx such

that for ail zeDt

v(z)&gt;|z|[p/(2p-1)]-e(|2|) (0&lt;e(|z|)-&gt;0 as |z|-&gt;«). (5.7)

We now define &lt;f&gt; and F as in the proof of Theorem 1. The proof of Theorem 2

now follows in the same way as that of Theorem 1 using p/(2p—1) instead of \.
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