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The topology of a moduli space for linear dynamical systems

Uwe HELMKE

1. Introduction

Several basic questions in linear control theory are related to problems
concerning the topology of spaces of linear dynamical systems as e.g. the orbit
space %, ,.,(F) of controllable linear systems given by

x(t) = Ax(t)+ Bu(t)
y(t) = Cx(t)

(with m inputs, p outputs and state space F") or the space Rat,,,,, (F) of all pxXm
proper rational transfer matrices

G(s)=C(sI-A)'BeF"*™(s)

with McMillan degree n.

To illustrate this point a bit, we recall (Hermann and Martin [17]) that any
rational transfer matrix G eRat,,, ,(F) defines a unique holomorphic map
¢ :P,(C) = G,.(C™*P) into the Grassmann manifold G,,(C™"?) which sends each
s eC to the graph of the linear map G(s):C™ — CP. Moreover, in this way the
space Rat,,,, , (C) is identified with the complex manifold of all holomorphic maps

¢ :P,(C) = G,.([C™™),

of degree_ n, which satisfy the base point condition ¢(®)=C™.
By means of this construction, Hermann and Martin [17] proved that the
system theoretically defined McMillan degree of a transfer matrix G(s) is equal to

the first Chern class of a certain holomorphic vector bundle £; on P;(C), hence a
topological invariant. Here &; is defined as the pull back of the dual bundle U™ of
the universal vector bundle U on G, (C™*P) via the Hermann-Martin map
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¢ : P,(C) = G,,(C™"?). Moreover, the Birkhoff-Grothendieck decomposition
&=0n)d - - do(n,)

turns out to be equivalent with Brunovsky’s canonical form [5], which is of well
known importance in systems theory; see [15], [17], [24].

We further note that the space Rat,,,, , (C) of linear systems and in particular
the manifold Rat, ,,; (C) of based holomorphic maps from P;(C) to P,.(C) arises
also naturally in physics, namely in the so-called ‘“nonlinear o-models” of
two-dimensional Yang-Mills theory; see e.g. Atiyah [1], Atiyah and Jones [2].

Despite the great importance of the moduli spaces Rat,, ,,, , (F) their topology is
still not sufficiently understood. Partial results have been obtained by e.g. Broc-

kett [4], Byrnes and Duncan [9], Delchamps [11], Segal [25]; see also [16] and
section 5 of this paper.

In this paper another natural class of linear dynamical systems is studied: the
orbit space 3, ,,(F) of all controllable linear systems. This space %, ,,(F) has the
advantage to be easier to analyse than Rat, ,, , (F), furthermore the vector bundle

3 .mp) on X, . (F) (defined in section S) may serve as a ‘“‘partial compactifica-
tion” for Rat,, ., (F).

To define 3, ,,.(F), recall that a linear dynamical system
(A, B): x(t)= Ax(t)+ Bu(t)

with x(t)eF", u(t)eF™, AeF™", BeF"™™, (F=R or C) is controllable iff the
generic rank condition rk (B, AB, ..., A" 'B)=n holds. This condition implies
that for any states x,, x, in F" and times t,<t, there exists a control function u on
[to, t;] and a solution x(t) of (A, B) with x(ty) = xo, x(t;1) = x;.

Let En,m(ﬂ:) :={(A, B)eF"" xF"*™ |tk (B, AB, ..., A" 'B)=n} denote the
Zariski-open set of all controllable systems (A, B). Any linear change of coordi-
nates z = Sx in the state space F" transforms (A, B) into the equivalent system

(SAS™, SB): z(t) = SAS™'z(t)+ SBu(t).
This defines an algebraic group action on Sm@®)

a:GL,F)x 3, F)— 2, .F)

(S, A, B) — (SAS™', SB),
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called the similarity action on Sn,m([F). Each two similar systems (A, B),
(SAS™!, SB) have the same systemtheoretic properties. Therefore the orbit space

Spm(F):= 3, . (F)/GL,(F)

of the similarity action should be viewed as the true space of all controllable linear
systems.

We always endow 3, .(F) with the quotient topology.

Previous work of Hazewinkel, Kalman [13], [14], Byrnes, Hurt [7], [10] has
shown that 3 . (F) is a connected algebraic manifold of dimension mn; %, ,,.(F) is
non-compact and for n =1 or m =1 there are diffeomorphisms

3 F)=F" 1)
2 mE)=FxP,,F) (2)

In particular %, ,.(F) is a generalization of projective spaces.

Byrnes [7] has shown that 3, (F) is homologically nontrivial for m >1 by
finding lower bounds for the Betti numbers. In [6] the author constructed a cell
decomposition of 3, ,.(F) to determine the Betti numbers. By a direct calculation
it was found that 3, , (C) has the same homology groups as the Grassmann
manifold G, (C™*"~"). However the method of [16] worked only over the field of
complex numbers F =C. In this paper a different cell decomposition of 3, ,.(F) is
constructed which will enable us to compute also the mod 2 Betti numbers of
3. m([R). By combining these calculations with [16] we will show that again the
mod 2 Betti numbers of %, ,.(R) coincide with those of the Grassmann manifolds
Gn (Rm+"—l).

One should perhaps remark that besides these computational coincidences of
the Betti numbers of 3, ,,(F) with those of G,(F™*"™"), no direct relation to the
Grassmann manifold G, (F™*"") is known so far. Nevertheless it appears that the
orbit space 3,,,, (F) of controllable linear systems shares many interesting topolog-
ical properties with the Grassmann manifold.

This paper is organized as follows: In section 2 we show that a well known set
of arithmetic invariants for the similarity action « -the Kronecker indices of
(A, B) - define a Whitney stratification of En,m (F). The main technical result of this
paper appears in section 3 where we explicitly characterize those Kronecker strata
which are contained in the closure of a given one. These are described by an
ordering on the set of combinations. To prove our main result Theorem 3.1 we
need an explicit description of the covers of this ordering; this is done in
Appendix A. The Whitney stratification of fn,m (F) induces a cellular decomposi-
tion of the orbit space J3,, ,,(F). Using a result of Borel and Haefliger we compute
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the Betti numbers of 3, ,.(F) and then prove that the mod 2 Betti numbers of
3 .m(R) are equal to those of the real Grassmannian G,,(R™*"'). Section 5 deals
with the Betti numbers of Rat, ., (R). Using a result of [16] (where it is shown
that the spaces Rat, ,,,(F) and 3, ,,.(F) are homotopy equivalent up to a certain
degree), we apply our previous results on 3, ,(R) to determine the first
max (m, p) — 1 mod 2 Betti numbers of Rat,,,, (R).

This work was part of the author’s doctoral thesis [16a] written at the
University of Bremen.

I like to thank the Forschungsschwerpunkt Dynamische Systeme, Bremen
University, for supporting this work and especially my advisors Prof. Dr. D.
Hinrichsen and Prof. Dr. H. F. Miinzner for many helpful discussions and
comments. I like further to thank Prof. Dr. C. 1. Byrnes for many helpful
discussions on ‘“‘the geometry of linear systems’.

2. Kronecker indices

We start by describing a well known class of arithmetic invariants for the
similarity a:GL,(F)x 3, ,.(F) = 3,.,.(F), introduced by Brunovsky [5], Popov
[21].

Let F denote either R or C.

Let (A, B)e En,m(lF) be a controllable linear system and let by, ..., b,, denote
the column vectors of the n X m-matrix B. Consider the following deletion
procedure on mn vectors of F":

Delete in the list (b4, ..., b, Aby, ..., Aby, ..., A" by, ..., A" 'b,.), while
going from the left to the right, all vectors A'b; which are linear dependent on
the predecessors.

Symbolically:

b1—9b2‘—)' "—)bm—‘l
L Ab,— Ab,— - > Ab,—

L

—J
l__)An——lbl__>An—1b2__>. . "'"An_lbm
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After a suitable permutation of the remaining vectors one obtains a basis

(bl, Abl, e ey AKl_lbl, e ey bma Abm, o e vy AK"‘—lbm)E GLH([F)

with certain non-negative integers K., ..., K,, satisfying K;+---+K,, =n. The
m-tuple K=K(A,B)=(K,,...,K,,) is called the list of Kronecker indices of
(A, B). By construction, the Kronecker indices are invariant with respect to the
similarity action, i.e. for all Se GL,(F)

K(SAS™',SB)=K(A, B) (2.1)

Any m-tuple of non-negative integers (K4, ..., K,,) with sum equal to n is called
a combination of n with length m; let K, ,, denote the set of all such combina-
tions. The number of these combinations is equal to the binomial coefficient
n+m-—1
card K, ,, = ( )

n

A combination (K,,..., K,,) of n can be visualized by a Young diagram of
appropriate size; for example the Young diagrams for (2, 3, 1) resp. (1, 2, 3) are

2,31 (1,2,3)

Figure 1. Young diagrams.

Remark 2.1. The set {K,, ..., K,,} of Kronecker indices of (A, B) coincides
with the set of minimal indices for the singular matrix pencil (sI,, — A, B). These
minimal indices were studied by Kronecker [20], extending earlier work of
Weierstrass [25] on regular matrix pencils. The system theoretic interpretation of
the minimal indices is due to Kalman [19].

The fbllowing lemma is proved in [16]:
LEMMA 2.2. For any combination K € K,, ,,, the set

Krox (F):={(A, B)efn,m([F) | (A, B) has Kronecker indices K} is an analytic
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submanifold of in‘m(ﬂ:) of dimension

= 1 K, <K,
2+ ) min (K, K))+ ) K, K, = { Lo
" i,jz=1 ( ' ]) iz,— N i 0 Ki = K]-

We call the submanifolds Krox (F) the Kronecker strata of fn,m([F). They form a
decomposition

5.mF)= U Krog (F) (2.2)

KeK, .

of En,m(l}?) into non-empty disjoint submanifolds and each Kronecker stratum is
invariant under the similarity action on X, ,.(F).

There is a system theoretic interpretation of the Kronecker indices which is
useful in order to understand the decomposition (2.2) further.

In both systems theory and its applications to automatic control, the concept
of feedback plays a central role in controlling the dynamics of a given dynamical
system.

input ; output
T, ” dynamical system ,OUP

Y

A

feedback law

N

Figure 2. Feedback loop.

In linear system theory, state feedback is defined by a certain algebraic group
action on the space fn,m(lF) of controllable systems. More precisely, the state
feedback group %,, is the subgroup of GL,.,,(F), consisting of all
(n+m) X (n+ m)-matrices

[+ o)

where Se GL,(F), FeF™™", Ue GL,,(F).
The state feedback action is defined as the algebraic group action

D: Fpu X Z ) = 3, 0 (F)
((S,F,U), (A,B))—(S(A+ BF)S™!, SBU™).
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Brunovsky’s theorem [5] classifies the orbits of this action @ :they are in one to
one correspondence with the partitions = ---=%,=0 of n; see e.g.
Brunovsky [5], Byrnes [8], Hazewinkel and Martin [15] for this result and more
information on the feedback theory for linear dynamical systems.

Instead of dealing with the full state feedback group %, ,, and the correspond-
ing feedback action @ we consider the restricted feedback group F,,,. F,,, is
F 8], with S e GL,(F),
FeF™ ", Ue GL,,(F) upper triangular. F, ,, is a parabolic subgroup of GL, .., (F)
and the restricted feedback action

S
defined as the set of all (n+ m)X(n+ m)-matrices [

¢ :Fp X3 — 3, . (F)
((S,F, U),(A,B))—~(S(A+BF)S !, SBU™Y)

is an algebraic group action.
It is easy to check that the Kronecker indices K(A, B) are invariant under the
restricted feedback action:

K(S(A+BF)S™!,SBU )=K(A, B)

for all Se GL,(F), FeF™™", U e GL,,(F) upper triangular. Even more, these are
the only invariants.

THEOREM 2.3. The orbits of the restricted feedback action ¢ are precisely the
Kronecker strata Krog (F) of %, .. (F).

The proof is by a straightforward modification of the proof for Brunovsky’s
theorem. We omit the details.
Let A denote the relative topological closure of a subset A <3, . (F).

COROLLARY 2.4. For K, LeK,,,:
Krogx (F) € Kro; (F) © Krog (F)NKro; (F) # &.

By the closed orbit lemma, the topological closure Krog (C) of any Kronecker

stratum is an algebraic subvariety of Sn,m (C). Since the orbits of a semialgebraic
group action are semialgebraic again, Theorem 2.3 implies

COROLLARY 2.5. The decomposition of fn,m(R) into Kronecker strata
Krox (R), K€ K,, ., is a semialgebraic Whitney stratification of En,m(R).
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3. Combinatorics of Kronecker strata

In order to compute the Betti numbers of the orbit space 3,,,.(F), we need an
explicit characterization of those Kronecker strata Krog (F) which form the
boundary of a given Kronecker stratum Kro; (F). To do this we study the partial
order on combinations K, ,,, defined by the adherence property

K c L & Krog (F) = Kro; (F) (3.1)

Let = denote the lexicographic order on axm :={0,...,n}x{1,..., m}. For any
combination K € K,, ,,, define

Yi:={,)enxm|0=i=K -1}
and
r; (K):=card {(k, 1) e Yg | (k, D=, j)}, (i, j)e i X m.
Define the Kronecker order < on K, ,, by
KcLor(K)=r, (L) forall (i,j)enxm.

THEOREM 3.1. The Kronecker order = on K, ,, is the adherence order for
Kronecker strata:

Krog (F)(\Kro;, (F)# & © Krog (F)cKro;, (F)© K<L

for K, LeK,,,..

In order to prove this, we need to know the covers of a combination K with
respect to the Kronecker order <. Recall that for any partially ordered set (P, <)
an element y is called a cover for x € P whenever x <y and x <z <y holds for no
zeP.

The covers for the Kronecker order have been explicitly characterized by
H. F. Miinzner in an unpublished manuscript, see Appendix A, Theorem A. It
follows from Theorem A, that any combination L€ K, ,, with K<L can be
obtained from the combination K by a sequence of successive transpositions
K, ..., K.:

Kcch...CKr:L.
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Here a transposition is defined as follows:
Let K€K, ., i, je m with i <j, K;# K;+ 1. A combination T;K:= K is called a
transposition of K iff:
(1) If K;=K,, T;K:=K;
(2) If K;<K;:
K,:=K, for 1#i,j
K, :=K;
K,:=K;
(3) If K;>K;+1:
K,:=K, for l#i,].
K.:=K,+1
K;,:=K;,—1.
For j<i define T;K:= T;K.

EXAMPLE

T34
—>

N

(1,2,6,3) (1,2,4,5)

Proof of Theorem 3.1. We have already seen that
Krog (F) = Kro; (F) © Krog (F)(\Kro; (F)# &

holds.

(a) “Krog (F)NKro; F)¥¢d > K< L”. Let (A, B)e Krog (F) NKrog (F).
Obviously for any (i,j)en X m

r,(K)=1k (B,...,A"'B,A'b,,..., A'b,).

Since thé rank function is upper semicontinuous, any (A, B) € Kro; (F) sufficiently
near to (A, B) satisfies:

rk(B,...,A"'B, A'by, ..., Ah)=ry(L)
=r;(K).
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Therefore r;(K)=r;(L) for all (i,j)eaxm. q.ed.

(b) “K =L = Krog (F) = Kro (F)’. Without loss of generality we can assume
that L is a cover of K, i.e. by Theorem A there exists (i, j)€ i X m with L = T;K.
It is enough to find a pair (A, B) € Krog (F) NKro; (F).

CONSTRUCTION OF (A, B). There exists a unique (A, B) e Krog (F) satis-
fying:
(1) Aib,- = e, k) for all (i, j) € Y}, where e, denotes the r-th standard basis vector
of F".
(2) A¥b;=0 for all jem.
We show that for any €>0 there exists (A, B)eKro; (F) which is e-near to
(A, B).

CONSTRUCTION OF (A, B). L =T,K for i<j, K;# K;+1; w.l.o.g. we may
assume K;# K.

Case 1. K; <K,. Thus

L=K, for l#ij

L;=K;
L]' == Ki
For K; =0 set

-~

A:=A and B:= (by,...,b,), where
by:=b, for s#i
bi o bi +Eb]'.

For K; =1 set

B:=B, A'bh,=A'b, forall r=0, s#i
Ab,:= Ab, ..., A(AX2p,):= A% p,
A(AX71p,):= AXb, + eAXb, = eAXb,

In both cases (A, B) is well-defined and e-near to (A, B). One easily verifies that
(A, B)e 3, .(F) has Kronecker indices (L, ..., L,), ie. (A, B)eKro, (F).

Case 2. K;>K;+1. Here

L‘ == Kl for l# i, j

L=K 1.
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For K; =0 define

A:=A and E:=(51,...,5m) with
by:=b, for s#j

b;:=b; + €Ab; = e Ab,.

For K;=1 define

B:=B, A'h,:=A'b, for all r=0, s#j,
Ab;:= Ab,, ..., A(AX2b):= AKX 1p,
A(AX71b):= AKb, + eAX* b, = e AKH1p,

(A, B) is well-defined, e-near to (A, B) and has the right Kronecker indices
(L4, ...,L,). This shows that

Krox (F)(\Kro, (F) # &J. q.ed.

It follows from Theorem 3.1 that the topological closure of Krog (F) in fn,m([F) is
given by

Krox F)={(A,B)€ 3, ,.F)|tk(B,..., A" 'B,A'b,,..., A'b)=r;(K) for
all (i,j)eaxm.}

Therefore

COROLLARY 3.2. The topological closure Krog (F) is an algebraic subvariety
of 5 (F).

EXAMPLE. The Kronecker strata of Sn,m (F) are linearly ordered by adher-
ence:

O0,n)c(n,0)c(l,n-1Ncn-1,1Nc=2,n-2)c-- .

4. Kronecker cells
The spaces 3,.,.(F) and 3, ,.(F) are related by the principal fibre bundle

7 Sy () > S (F)
(A, B)—[A, B]=similarity orbit of (A, B).
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Since the similarity action « : GL, (F) X Sn,m(lF) — En‘m(ﬂ:) restricts to a free action
with a closed graph on each Kronecker stratum Krog (F) of 3, ,.(F), each quotient

Kro (K):= w(Krok (F)) = Krog (F)/GL, (F)

is an analytic submanifold of ¥, ,.(F) of dimension

n(K)= i min (K, K;) + ., K,

ij=1 i>j

< K.
Ki-—{l Ki <K @.1)

L K=K’

by Lemma 2.2.

LEMMA 4.1. For each combination K € K,, ,,,, Kro (K) is an analytic cell, i.e.
analytically isomorphic to affine space F**.

Proof. Let = denote the lexicographic order on 7 X m. For each 1=1=<m and
(A, B) e Krog (F) there are uniquely determined cj(A, B) eF with

A%b = Y YA BAD,
(L) <(K, 1)
i<K,

By uniqueness, c;(SAS™', SB) = cj(A, B) for all S€ GL,(F). Let ¢, (A, B)eF™*
denote the vector consisting of the n;(K) =card{(i, ))en xm | i <K, (i, j) <(k;, 1)}
components ci(A, B); ¢(A,B):=(ci(A,B),...cn(A,B)). Since n(K)=
n(K)+---+n,(K), c(A, B)elF"®,

The map

t :Krog (F) = GL, (F) xF**

I(A,B):=((by,..., A% by, ..., by, ..., A%7b,), c(A, B))

= (RK(A’ B)’ C(A, B))

is an F-analytic diffeomorphism. Since
[(SAS™', SB) = (SRk(A, B), c(A, B)),
f induces the F-analytic diffeomorphism

t:Kro (K) —» "%
[A,B]—c(A,B). q.e.d.
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We call Kro (K) a Kronecker cell and its topological closure Kro (K) a Kronecker
variety of 2, . (F). By Corollary 2.5 the decomposition of 3, ,, (F) into Kronecker
cells (Kro (K))kck,, is a finite cellular decomposition.

It is in general a difficult problem to compute topological invariants like the
Betti numbers of a space X from a given cellular decomposition (X;);.;. Often one
has to impose additional assumptions on the cell decomposition, e.g. that (X;);;
defines a CW cell complex; but even then the calculations can be quite compli-
cated.

Unfortunately the Kronecker cell decomposition of 3, ,.(F) is not a CW cell
complex, since 3, ,,(F) is non-compact. Therefore we have to look for a different
concept. A decomposition (X;);.; of a real analytic manifold X into disjoint
submanifolds X; is called an analytic cellular decomposition, if the following
conditions are satisfied:

(a) (X;);<r is locally finite and each X is diffeomorphic to some affine space R™,

(b) the boundary of X; in X is contained in the union of cells X; of strictly smaller
dimensions,

(c) the topological closure Z of X; is a locally analytic subvariety of X.

Here a closed subset A < X is called a locally analytic subvariety if for any
a € A there is an open neighbourhood U of a in X and finitely many analytic
functions f;: U — R, jeJ, such that

ANU={xeU]|f(x)=o0 for all jeJ}.

The adherence order on the set of cells X;, i €I, is defined by
isj:o X, cX, ijel

(X,);c1 is said to satisfy the frontier condition, if for all i, jeI:
X,NX+T X cX.

Not all analytic manifolds admit an analytic cellular decomposition. The following
example has been suggested to me by D. Fried and F. Takens: For coprime
integers p, qeN let L(p,q) denote the 3-dimensional lens space. L(p,q) is a
compact analytic manifold which has no analytic cellular decomposition, provided
p is odd. The reason is that in this case there is odd torsion in the integral
homology of L(p, q).

A classical example of a space with an analytic cellular decomposition is the
Grassmann manifold G,(F") of r-dimensional linear subspaces of F". Recall that
the Schubert cells So(a) resp. the Schubert varieties S(a) are defined for any
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sequence a:=(a,,...,a,) of integers a; with
O=a,=---=a,=n-r
by

So(a):={XeG,[F") |dim XNV, ,)=idim(XNV,,;, ,)=i—1
for all 1=si<r}

resp.

S(a):={XeG,[F") |dim(XNV,,)=iforall i<i=<r},

where 0c V,c --- <V, =F", dim V;=1i, denotes a fixed flag of subspaces of [F".
So(a) is a cell of dimension a,+- - -+ a, and dense in the algebraic subvariety
S(a) of G,(F"). The adherence order on the Schubert cells is the product order

SO(a)CSO(b)® a1Sb19 sy arsbr;

Stoll [24].

It is well known that the set of Schubert cells, endowed with this ordering, is a
graded lattice which is rank symmetric and unimodal. In fact, this lattice of
Schubert cells is isomorphic to the lattice of integer partitions; see Brylawski [6].

THEOREM 4.2. The decomposition of the orbit space 3,,,.(F) into Kronecker
cells Kro (K), K € K, .., is a finite analytic cellular decomposition which satisfies the
frontier condition. The adherence order is the Kronecker order on combinations.

Proof. By Corollary 3.2, the closure Krog (F) of a Kronecker stratum is an
analytic subvariety of 3, ,.(F). Therefore the closure Kro (K)= w(Kro (F)) is a
locally analytic subvariety of 3, ,,.(F). The rest follows immediately from Theorem
3.1.

Let (X;)ic; denote a finite analytic cellular decomposition of an analytic
manifold X, dim X = n.

Borel and Haefliger [3] have shown the existence of a mod 2 fundamental class
[X.]e HBM(X;Z,) in the Borel-Moore homology of X. By Poincaré duality,
H2M(X; Z,) is isomorphic to H,_,(X; Z,), the (n — q)-th singular homology group
of X (with coefficients in Z,=Z/27).
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For any non-negative integer q let
cq:=card{ieI|codim X; = q}

denote the number of cells of (real) codimension q. The following result is due to
Borel and Haefliger [3]:

THEOREM 4.3, (Borel-Haefliger). Let X be a real analytic manifold and
(Xi)ier a finite analytical cellular decomposition. Then for any q=0, the set
{{Xi]| codim X; = q} of fundamental classes is a basis for H,(X;Z,) and conse-
quently

H,(X;Z,)=1Zs.

It follows that c, is a topological invariant for X: the q-th mod 2 Betti number of
X.

Let c,(n, m) denote the number of Kronecker cells Kro (K) of %, . (F) of real
codimension q. By the Borel-Haefliger Theorem, Theorem 4.2 implies

COROLLARY 4.4. For any q=0:
Hq (Zn.m ([F)’ ZZ) = qu(n,m ).

More precisely, we have the following result which is analogous to the basis
theorem in the Schubert calculus for Grassmann manifolds [24].

For any Kronecker variety Kro (K) of 3, ,,.(F) with codimension ¢, its funda-
mental class [Kro (K)]e H,(2,,,.(F); Z,) is called a q-Kronecker cycle.

COROLLARY 4.5. The q-th Kronecker cycles form a basis of H, (2., ,.(F); Z5).

Furthermore, since Kronecker cycles are represented by algebraic subvarieties
(see Appendix B), H. (2, ,.(F); Z,) is totally algebraic.

One would like to have a more explicit formula for the mod 2 Betti numbers
of 3, ..(F) than the one given by Corollary 4.4 and the dimension formula (4.1).
In [16], a different cell decomposition of 3, ,,.(F) has been constructed by means
of “Hermite cells” Her (K), K € K,,,,.. Unfortunately, the corresponding decom-
position of 3, ., (R) into Hermite cells does not define an analytic cellular
decomposition: the real Hermite varieties Her (K) are only semialgebraic sub-
varieties of 3, ,.(R). However, for F =C, the Hermite cell decomposition can be
used to effectively determine the Betti numbers of 3,,.(C). A central result
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appearing in [16] is:

THEOREM 4.6. The integral homology groups H, (2, ,.(C); Z) are isomorphic
to the homology groups H,(G,(C"*™™"); Z) of the Grassmann manifold.

By combining Corollary 4.4 with Theorem 4.6 we obtain our main result

THEOREM 4.7. The mod 2 homology groups of %,.,.(R) are isomorphic to
those of the Grassmann manifold G,(R"*™1):

H*(zn,m (R); ZZ) = H*(Gn (Rn+M*‘l); Z2)-

Observe that this result is obtained by a pure dimension count; no direct relation
between the spaces 3,,,.(F) and G,(F**™ ') is known till now.

Remark 1. It follows from Theorem 4.7 that the partially ordered set
(K,.m» <) of all combinations of n endowed with the Kronecker ordering is rank
symmetric and unimodal. It is in general not a lattice.

Remark 2. As a consequence of Theorem 4.7 we see that the Hermite cycles,
introduced in [16], also form a bases for H(3,,,.(R); Z,). Therefore there are two
different basis for H,(3,,,.(R); Z,): The algebraic Kronecker cycles constructed in
this paper and the semialgebraic Hermite cycles of [16].

It seems that they correspond to different kinds of a Schubert calculus for the
cohomology ring H*(Z,,,.(R); Z,). The cohomology ring of 3, . (F) will be studied
in a subsequent paper (joint work with C. I. Byrnes).

5. Topology of the spaces of rational maps

In this chapter the previous results on the topology of X, .. (R) are applied to
compute some Betti numbers of the space Rat,,,,, (R) of all real proper rational
matrices G e R”*™(s) with McMillan degree n. Recall that this space Rat,,,, (R)
can be identified with the manifold of all base point preserving holomorphic maps
of degree n

¢ : Py (C)—> G, (C™™)

which commute with complex conjugation.
Quite a lot is already known about the topology of Rat,, ,,, ,(F) for min (m, p) =
1, due to work of Brockett [4], Byrnes and Duncan [9] and Segal [23]. The
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deepest results have been obtained by Segal [23] who shows that the inclusion
map i:Rat, . ,(C)— Q2%P,(C)) into the loop space of all base point preserving
continuous maps ¢ :S*>— P,(C) of degree n is a homotopy equivalence up to
dimension n(2m —1). The general multivariable case, max (m, p)>1, has been
quite intensively studied in the theses of Delchamps [11] and Guest [12].
Delchamps [11] uses a Morse theoretic approach to study Rat, ., (F). He
computed the Betti numbers of Rat, . (R) (resp. Rat, ,,,(C)) up to dimension
min (m, p)—2 (resp. 2 min (m, p)—2). Even more, for n=1 he computed all
singular homology groups of Rat, ,,, (F). However for n =2 the necessary Morse
theoretic calculations become too involved to be carried out completely. Due to
our complete knowledge of the mod2 Betti numbers of 3, ,,(R), the first
max (m, p)— 1 mod 2 Betti numbers of Rat,, ,(R) will be easily obtained. An
analogous result concerning Rat,,,,,(C) is given in [16].
For n, m, p=1 let

3 mp®):={(A, B, C) eR™ " X R™™ xR"*" | (A, B) controllable}
and
Zn,m,p (R) :zzn,m,p (R)/GLn (R)

denote the orbit space of the similarity action (A, B, C) — (SAS™', SB, CS™") on
3. mp(®R). Byrnes and Hurt [10] have shown that 3, ., ,(R) is a real analytic
manifold of dimension n(m + p) and

P:2me® — 2,..R),[A, B, C]—[A, B],

an analytic vector bundle on %, . (R). In particular 3, ,, ,(R) is homotopy equival-
ent to 3, . (R).
For 0=r=n let

S"mo:=1(A,B,C)e %, .., R) |1k (CT,ATCT,...,(A")"'CT) =1}

and I’{\e&'n,n;,p ®):= S',:,m,p denote the set of all systems (A, B, C) which are con-
trollable and observable. By [16], Thm. 5.1, §;,m,p is an analytic submanifold of
En,m,p(R) with codimension p(n—r) and the union S:=J"2} §:,,m,p is a closed
analytic subvariety of Sn,m,p((R). Note I/l\aﬁn,m,p R)=3 n,m,p(R)\g.

Since the similarity action (A, B, C) — (SAS™', SB, CS™") acts freely and with
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r

a closed graph on §n,m,p and ﬁéfn,m,p (R), the corresponding orbit spaces

Stmp:=Shms/GL, (R)
Rat, ., (R) = Rat,,, , R)/GL, (R)

are analytic submanifolds of %, ,, (R).

Remark. It follows from the main theorem of realization theory for finite
dimensional linear dynamical systems (Kalman [18]), Byrnes and Duncan [9]) that
the orbit spacefl_{\ai/n,m,p (R)/GL,(R) can in fact be identified with the space of all
(strictly) proper rational transfer matrices G e R”*™(s) with McMillan degree n.

Rat, . ,(R) is open and dense in 3, ,, ,(R) and S;, .., has codimension p(n —r).
The set

S:=$/GL,®R) =3, ,.,R)\Rat,, ., ®)

is a closed analytic subvariety of 3, ,, ,(R) with codimension p. Thus the inclusion
map

i:Rat,,.,R) =%, .. [R)
is a homotopy equivalence up to dimension p—2. Since the transposition of
transfer matrices G(s)—> G(s)" defines a diffeomorphism from Rat,, ., (R) onto
Rat, ,,.(R), the homology groups H,(Rat,,.,(R)) are isomorphic to

H,(Rat,, ., (R)) for all q.
Therefore we get

THEOREM 5.1. For max (m,p)=2 there are isomorphisms of (integral)
homology groups

Hq (Ratn,m,p (R)) = Hq (2 n,min (m,p)(R))
for 0=q=max (m, p)—2.
By Theorem 4.7 we conclude

THEOREM 5.2. Let l:=min(m,p) and max(m,p)=2. Then
H,(Rat,,., (R); Z,) is isomorphic to H,(G,(R""'™"); Z) for 0= q =max (m, p)—2.
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Appendix A

In this appendix we prove a technical result concerning a characterization of
the covers for the Kronecker order < on K, ,,. The material in this section is due
to H. F. Miinzner; I like to thank him for his help in these matters.

A useful description of combinations K € K, ,,, is obtained by means of the
counting function z:ZXm —Z, z(i,j):=im +j. z is monotone increasing

(k, D=(, ) = z(k, )=z(, )

and shift-invariant, i.e. z(ix1,j)=z(,j)xm. To any combination K=
(K4, ..., K,,) there is an associated m-tuple s(K)=(s4,...,s,,) defined by

sii=z(K;—1,)=(K;—Um+j
for all jem. s; satisfies

(@) s;+---+s,=mmn-D+im(m+1)
(b) 1-m=s;=mn
(¢) s;=j(mod m).

Conversely, for any m-tupel s=(s,,...,s,) with (a), (b), (c) there exists an
unique K € K,, ,,, with s = s(K). For any real number x, let [x]:=max{leZ |l =x}.
Let < be the Kronecker order on K, ,, and for K€ K,,,, set

hg(r):= Z [r;s,]’ renN.

s =r

Then it is easy to check

Kc L& hg(r)=h, (r) forall reN.

We will make use of the following operation on combinations: Given i, j e m, i # |,
and KeK, . with K;=1. Set ,K:=KeK,,, with

(1) K;:=K, for l#i, j
(2) K,:=K,+1
(3) K;:=K;-1.
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Equivalently, in terms of (5, ..., §,,):=s(K):

(1') §=s for l#i,j
(2) §;=8,+m
(3,) §,~=S,-—m

Similarly, the effect of a transposition T;K (see section 3) can be described as
follows:

For a, beZ, a <b, define

d(a,b):=min{leNy|l=b—a (mod m)}
and d(b, a):=—d(a, b).

For s; <s; let T;s(K):=§ be defined by
(4) §:=s forl#1i,]j

(5) =s]—d(si5 sj)
(6) §;:=s;+d(s; s;)

(]l

(%]
-

while for s; > s;:

=g for l#1, j
=s;+d(s;, s;)
§ =s;—d(s;, s;).

Then Tys=Tys and Tys(K) = s(T;K)
Consider for reNgand K, Le K, ,.:

Ahg (r):= hg(r) — hg (r— 1)
hgp(r):= hg (r)—he(r)
AhK,L(") = hK,L(r) - hK,L(r— 1).

Since h(0)=0 and hg, (r)=0 for r>mn, we have

he(r) = Y. Ay (D)
=1

her (= Y Ahger (1)
=1

=~ Y Ahg, (D)

1>r
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Obviously, Kc L & hg (r)=0 for all r.
One easily shows

LEMMA Al. Letr=Im+j for =0, jem. Then

1 forr>s(K)
0 forr=s;(K)
1 fors;(K)<r=si(L)
(b) Ahg (r)=4 0 fors;(K),s(L)<r ors;(K), s;(L)=r.
=1 fors;(L)<r=s;(K)

(a) Ahg(r)= {

ForK;=s=1let t;K:=t;;o - - - ot;(K)
e —

s-times
For L =t;K, Lemma A1 specializes to

1 forr=s;(K)+Ilm,l=1,...,s

AhK,L(r): -1 forr=Sj(L)+lm,l:1,. v w5 N

0 otherwise

LEMMA A2. Let KeK,,, and L =K.
(@) si(L)<s;(K)=> K<L
(b) 5;(K)<s(L)=> L<K.

Proof. Ahg,(r)=1, resp. —1, resp. 0 for r=s;(L), resp. r =s;(K), otherwise.
Thus s§(L)<s;(K) implies hg;(r)=0, while s;(K)<s;(L) implies hg;(r)=

0. q.e.d.

Analogously one obtains

LEMMA A3. Given Ke Kn,m’ L= Tin, Si(K) +m< Si(K)' Then

S""‘Si

hK,L<r>={1 f"””ﬂ*’m“’ls’s[ﬁ“], 0=t=ds,s)-1

0 otherwise

ie. Kc L.
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Suppose s;(K)+m <s;(K), K := T;K. By Lemma A3, the size of the “‘rectangle”
R{(K):={r=s(K)+Im+t|0=<I=K;,- K, 0<t<d(s5;(K), s;(K))}

measures how much the combinations K and K differ from each other. Therefore
one is led to conjecture that those combinations K = T;K will be covers of K, for
which R;;(K) is as small as possible. This is in fact true:

THEOREM A. Given K, L € K,,,,. L is a cover of K for the Kronecker order <

on K, . iff:

(1) L=T;K for some (i, j)

(2) s;(K)+m <s;(K)

(3) {si(K),...,s (K)}NR;(K)= .

Proof. Clearly these conditions suffice. To prove the necessity, we introduce
s;:=8;(K), §:=s;(L), §:=s;(K), iem. Suppose K<L. It is enough to find an
(i, )e m X m with s; + m <s; and K < T;K<L. In fact, in this case there exists also
(i, j) with R;(K)< R;(K) such that K< T;K<L and conditions (2), (3) are
satisfied for (2, J)-

Let K:=T;K.

CONSTRUCTION OF (i, j). Set

r.:=max{reN | Ahg (r)=1}
r_:=max{reN|Ahg (r)=—-1}

By Lemma A1(b):

r+=maX{§l | §[>S[}=:§i

ro=max{s |s>3}=:s;
Suppose r.>r_. Then for all r>r,:

hir (r) = hgy (r— 1)+ Ahgy (r) = by (r—1)
hir (ry) = hgy (r— 1+1.

Thus hy; (r)=1, contradiction to hgy (r)=0 for r> mn. Therefore s;+m <§; <S;.
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Let

P;:= {r=si+lm+tlOSls[-S-%ﬂ],OStsd(si, s,-)}.

Let je m denote the uniquely determined index such that
(a) s;ePy

(b) d(s;, s?) =min {d(s;, s;) | 5; + m <si}.

In particular s; <s;.

.EJ;:r_.
S;
A (_P
ry=s; 1
S;

Remark 1. For |=1 and 1=t<d(s,s;) given, let s;+Im+t=pm+q for
1=gq=m. Then either s, <s;+m or s, =§,.

Proof. Suppose s,>s;+m and s,<§, It follows from Lemma Al(b) that
s,€P; and d(s;, s,) <d(s;, s;). Contradiction.

By Remark 1, for any [=1 and 1=t<d(s; s;)

Ahg (s;+lm +1)=0

holds.
Since

hir (5 + Im) = Ahgy (s; +1m) + hgy (s; +1Im — 1)

= Ahg; (s;+Im)=1
for 1=sl=(§—s;)/m,
hgr (s;+Im+t)=1
holds for al} 1=sl=(@$—s)/m,0=t=d(s,s;).

Let 5;>§;=r,. Then for r.<r<r_

hi ()= — 3 Ahgy (1) = —Ahgy (r) = 1.

I>r
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For s; <r_=s; we have

hgr (s; +Im+t)=1 for 1sls[ﬁ], 0=t<d(s;s;)-
m

Let K= K. By Lemma A3, K< T,K and hg; (r) = hgy (r) — hgg(r) =

_ {hKL(r)—-l for r=s,+Ilm+t, 1_<_IS[§’—r—n—s—i], 0=t<d(s;,s;)

hgy (1) otherwise.

for all r=0. By assumption, hg; (r)=0 and the previous estimate gives hg; (r)=0
for all r=0. Thus K< L and Theorem A is proved.

Appendix B

We show that the Kronecker cell decomposition of 3, ,,(F) is induced by the
Schubert cell decomposition of the Grassmann manifold G, (F"*P™).

Let R(A, B) denote the vectorspace spanned by the rows of the n X(n+1)m-
matrix (B, AB, ..., A"B). Then

R:3,,.F)— G,F"""™),[A, B]—> R(A, B)
defines an analytic embedding of 3, .., called the Kalman embedding; see Byrnes,

Hurt [10], Hazewinkel, Kalman {14]. Let ¢; denote the i-th standard basis vector
of F"*P™ and 0cV,c -+ © Vi, ym=F""P" the complete flag defined by

F;:=span{eq 1yms - - - » €t Hm—i+1}- For any combination KeKk,,,.
Ye:={(l,)enxm|0=i=<K;—1} has exactly n elements (i, j)< -+ <(in, jn),
ordered lexicographically. Define UK)=(uq,...,u,), where
U :=Miy i1+ jnoes1, 1=t=n. Let ax:=(ay,...,a,) defined by

a:=n+m—-uy,—i+1 for 1=<i=n.

Then O0<a,=--- =a,=(n+1)m—n. Therefore ax is a Schubert symbol for
G, (F™*P™) and satisfies:

(1) ak=a, iff K=L

2) KcL® a(K)=a4L),...,a,(K)=a,(L).

Let Sk := So(ak) denote the Schubert cell of G, (F™"*P™) corresponding to ag, for
any combination K € K,,,.; let further R: 3, . (F) > G,[F"*"™) denote the Kal-
man embedding.
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THEOREM B. Leta=(a,,...,a,), 0<a;,<=---<a,=<(n+1)m-—n.
(1) R7'(Sp(a))# D iff a = ax for some K € K,, .
(2) Kro (K)= R (Sk) for all K€K,
(3) Kro (K)=R (S for all K € K, ..

Proof. Suppose [A, B]le 3, ,.(F) and R([A, B])e Sy(a). Let K=(K,, ..., K,.)
denote the Kronecker indices for (A,B). Set R:=R([A,B]) and
(@y ..., a4, :=ag. The ag’s are defined in precisely the way so that

dim (RN V) =1, dim(RNV;, )=i—-1
holds for 1=i=n. Thus Re Sy(a)NSy(ax), i.e. So(a) NSy(akx) # . This shows

a = ax and Kro (K)< R (Sk). Suppose Kro (K')NR™'(Sk) # &. Then Sk = S,
i.e. ag'= ag. Therefore Kro (K)= R '(Sk).

To prove (3) let = denote the product order on n-tuples a=(a,,...,a,),
b:(bl,...,bn):
aSb:C>a15b1,...,anSb".

By Theorem 3.1,

R7'(Sx)= U R (Sy(a))= U R7(S.)

= UR'(S)= U Kro(L)
LK LeK
= Kro (K).

The Schubert varieties are irreducible algebraic subvarieties of the projective
variety G,(F"*"™). Since the Kalman embedding is algebraic it follows that the
Kronecker varieties Kro (K) are algebraic subvarieties of the quasi-projective
variety 3, ,.(F). It seems interesting to study the singularities of the Kronecker
varieties.
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