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The Smale invariant of a knot

JouN F. HUGHES and PauL M. MELVIN

Smale [S2] associates to each immersion f:S"™ =» R* an element s(f) in
m, Vo (R¥), where V,(R¥) is the Stiefel manifold of n-frames in R*. The map s is an
isomorphism from the set of regular homotopy classes of immersions of S™ in R*
to the set m,V, (R*). Smale [S2, p. 329, questions (2) and (3)] asks for a
characterization of those elements s(f) where f is an embedding. Kervaire [K3]
solves this problem for k 23n +1 and then, together with Milnor [K3] [KM], for
k=n+1. (In all of these cases, s(f)=0 when f is an embedding.) Haefliger [Ha,
4.7] gives a homotopy theoretic solution for all k = n + 3, which, however, does
not lend itself to simple computations. We solve the problem for the case
k=n+2 in this paper, including an explicit means for computing the Smale
invariant (Corollary 2).

If n =1, then there is only one regular homotopy class, and it is represented by
an embedding. The case n =2 is solved by Smale [S1], who shows that regular
homotopy classes correspond to elements of the set m, V,(R*) =Z, and the integer
associated with a self-transverse immersion is the algebraic number of double
points of the immersion. Thus there is only one immersion represented by an
embedding, and its Smale invariant s(f) is zero.

For n> 2, the group ,V,(R"*?) can be identified with the group m,SO(n +2).
We call the image of s(f) under this identification i(f). The main result of this
paper may be stated as follows:

THEOREM. Letf:S" =»R"*? be an immersion. Then f is regularly homotopic
to an embedding if and only if J(i(f))=0.

Here J denotes the Hopf-Whitehead J homomorphism from ,SO(n+2) to
772n+2sn+2-

The proof consists of identifying i(f) geometrically in a more convenient form
than Smale’s original definition, understanding the J homomorphism geometri-
cally, and then combining these when f is an embedding to see that J(i(f))=0.
The proof of the converse is by construction, using examples provided by
Brieskorn [Br].
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616 JOHN F. HUGHES AND PAUL M. MELVIN

Using known properties of the J homomorphism, it follows that there exist
non-trivial embeddings S* < R"*? (i.e. embeddings not regularly homotopic to
the standard inclusion) if and only if n=3 (mod 4) (Corollary 1). This answers
negatively the question raised in Kervaire [K3, §5]: “Is the Smale invariant of an
embedding f:S" & R* with k=n+3 always zero?” Ironically, a proof that
J(i(f)) =0 (properly intepreted) is implicit in [K3], which together with the results
of [MK] might have indicated where to look for counterexamples.

1. Preliminaries

R" denotes coordinate n-space, which we consider naturally embedded in R"*!
as the points with last coordinate zero. B" denotes the closed unit ball in R", and
S" the boundary of B™*'.

V.(R*) denotes the Stiefel manifold of n-frames in R, which we identify with
the space of injective linear maps from R" to R* (associating the frame v, ..., v,
with the linear map sending e; to v;). Similarly we identify GL(k), the set of k X k
invertible matrices, with the space Aut (R*) of linear automorphisms of R*.
GL (k) denotes the matrices of positive determinant in GL(k), or equivalently
the orientation preserving maps in Aut (R*). SO(k) denotes the orthogonal
matrices of determinant one in GL(k), identified with the rotations of R*.

Throughout this paper, all manifolds and maps are smooth. If M is a manifold,
then m,, denotes the tangent bundle of M, and £* denotes the trivial bundle over
M with fiber R*.

Imm (S™,R*) denotes the set of all regular homotopy classes of immersions
f:S" &> R*. We often do not distinguish between an immersion and its regular
homotopy class; thus we may write f<Imm (S™, R*).

Emb (S",R*) denotes the subset of Imm (S",R*) consisting of all regular
homotopy classes containing an embedding.

DEFINITION 1. Let f:S"©>R"*? be an immersion. We define two in-
variants,

i(f e m,SO(n+2)
and the Smale invariant

s(f) € m VR™?),
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as follows:
The invariant i(f):
Extend f to an orientation preserving immersion

F:N(S") e»Rp"*?

where N(S") is a neighborhood of the standard S™ in R"*?. Then dF, the

differential of F, maps N(S") into GL,(n+2). Define i(f) to be the homotopy
class of the map

S"—>SO(n+2): x> GS-dF,,

where GS: GL,(n+2) — SO(n +2) is the Gram-Schmidt map. It is not hard to see
that if n > 1, then i(f) is independent of the choice of F, and in fact depends only
on the regular homotopy class of f. Thus there is a well defined map

i:Imm (S",R"*?) = 7,SO(n +2)

for n>1.

The Smale invariant s(f):

Consider S" as lying in R**'=R" XR, and write points in R"*" as pairs (v, t),
where v eR" and t€R. The northern and southern hemispheres of S™ are then

N={(v,t)eS":t=0}
S={(v,t)e S":t=0}.

If x=(v,t), write X for (v, —t). Stereographic projection from the south pole,
sp=(0,—1), to a plane tangent to the north pole, np =(0, 1), is given by the
formula

2
p:S"—{sp}—>R": (v, t)»—>1—;—tv.

Let q:R" — R""* be the inverse of p, followed by the natural inclusion of S™ in
Rn+2.
Now alter the immersion f by a regular homotopy so that the restriction of f to

the southern hemisphere S agrees with the standard inclusion of S into R"*2.
Define s(f) to be the homotopy class of the map

d(foq)p(x) xeN

S"— V,(R"*?):x {
- ( ) ~ dqp(:‘c) x€S
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(compare Smale [S2]). It turns out that s(f) is independent of the choice of
regular homotopy used to alter f, and so there is a well-defined map

s :Imm (S",R"*?) - «, V,R" ).

Smale [S2] shows that s is a bijection. In fact, using the operation of oriented
connected sum on Imm (S",R"*?), s is an isomorphism of groups (see Kervaire
[K2], Hughes [Hu]).

DEFINITION 2. Let j:R" —R"*? denote the standard inclusion. Define
¢ :SO(n+2)— V,(R"*?) by sending h to hoj. (Here we are thinking of elements
of SO(n+2) and V,(R"*?) as linear maps. On the matrix level, ¢ is simply “‘drop
the last two columns of the matrix”’.) Observe that ¢ induces an isomorphism

¢y :mSO(n+2)— m, V,R")

for n > 2. (To see this, consider the commutative diagram

GL.(n+2)
u o\

SO(n+2) —— V.®")

where (g)=g°j. ¢ is a fibration with a fiber which is homotopy equivalent to

GL.(2), which is in turn homotopy equivalent to S'. Hence ¢ induces an

isomorphism on , for n>2. The inclusion SO(n+2)cGL,(n+2) is a

homotopy equivalence, so induces an isomorphism on =, for every n.)
Combining definitions 1 and 2 we have a diagram

’Tl'nVn(R" +2)

SN

Imm (S". R"+2) _—> 7, (SO(n +2)

(for n>1) with s and ¢, isomorphisms (for n>2).
PROPOSITION. s = ¢y ei. Thus i is an isomorphism for n > 2.
Proof. Let f e Imm (S",R"*?). As in definition 1, we may assume that f agrees

with the standard inclusion on the southern hemisphere S. It is easy to arrange
that F (in the definition of i(f)) is the identity in a neighborhood of S in R"*2.
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Notice that since f=F on image(q), we may write d(fq), =d(Fq), for v in R™
Thus s(f) is represented by the map

d (fq)p(x) = dede(x) X e N

S"— V,R"?):x+— {
dq, ) xeS

(applying the chain rule). This map can be altered by the homotopy

(x. ) > {dedQ(l—:)p(x) xeN

da-vpx) x€eS

resulting in

dF.dq, xeN
st =[x |-txmdr i
dqo xeS

where j denotes the inclusion of R" into R"*2. The last equality follows because
dqo,=]j, as is easily verified. But the map x+— dF, °j is homotopic to x+—>
GS o dF, o], which by definition represents ¢, (i(f)), proving the proposition.

DEFINITION 3. Suppose that M is a manifold, and P and Q are codimension
zero submanifolds with PN Q a submanifold and PUQ=M. Given a map
f:PNQ — GL(k), denote by

B(P,Q,f)

the R*-bundle whose total space is (P XR*)U (Q XR*)/~, where ~ is the equival-
ence relation identifying (x, v) € P xXR* with (x, f(x)v) € Q XR¥, for all x in PN Q.
The projection map for this bundle sends (x, v) to x.

It follows from the homotopy axiom for vector bundles that if f and g are
homotopic maps from PNQ to GL(k), then B(P,Q,f) and B(P,Q,g) are
isomorphic bundles. Also, if f is defined by f(x)=f(x)"1, then B(P,Q, )=
B(Q,P,f) and B(P, Q,f) D B(P, Q, fH=e>*

If an orientable bundle ¢ over M is trivial away from a point (almost
parallelizable), then there is an isomorphism £=B(P,Q,f) with Q=B"",
PNQ=S8"=6B"*', and f:S"— SO(k). The class [f]e w,SO(k) is called the
obstruction to framing &.
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2. The main theorem

From the previous section, there is a commutative diagram:

7, VaR"?)
SN

Emb (8", R"*2) < Imm (8™, R"*?) — m,SO(n+2) —— myn.2(S™*?).

Our main result is:
THEOREM. s(Emb (S",R"*?)) = ¢ (ker (J)).
Proof. It suffices to show i(Emb (S™, R" %) =ker (J). The proof is in two steps.

STEP 1. If fe Emb (S",R"*?), then J(i(f)) =0.

Extend f to an embedding f: M, < R"*? of some compact oriented (n + 1)-
manifold M, with oM,= S". (M, is called a Seifert surface for f.) Consider the
closed, smooth manifold

M=M,UB"*

the union being along dB™"! = §™ = 9M,. We will show that i(f) is an obstruction
to framing the stable normal bundle of M. Step 1 then follows from Lemma 1 of
[MK]. The details follow:

A suitable neighborhood U of B"*! in M can be identified with R™*. Thus we
view R"*?*=R"*'XR = U XR< M XR. The standard orientation on R"*? induces
an orientation on M XR. Within M XR, we identify M with M x{0}. Set V=
M —{0} (here O denotes the origin of R"*! = center of B"*).

Now further extend f to an orientation preserving embedding

F:VXR (_)Rn+2

(see Figure 1).
Let

g=dF|S":S* > GL,(n+2).
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Figure 1

Then

Tvxr | M= B(B""', My, g). (1)

An explicit isomorphism between the bundles is given by assigning to the tangent
vector v to M XR at the point x in M = M x{0}, either

(x’ U) € Bn+1 XR"+2
if xe B"*! (here we think of B""'cR"*!, so veR"™?), or
(x, dF(v)) € My X R"*?

if x € M,. This is well-defined, for if xe MoNB"*'=S", then (x,v)e B"*'xR"*?
is identified with (x, g(x)v)=(x, dF,(v))e MoXR"*?, by the definition of
B(B"*', M,, g) and g.

Let h=GS-g, so that

h:S"— SOn+2).

Note that [h]=i(f), by definition. Furthermore, g and h are homotopic maps (in
GL.(n+2)), so we have

™ @ € ! = TMXR[M = B(Bn+1, MOa g) (by (1))
=B(B"", My, h).
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Now using the Whitney embedding theorem, embed M in $*"*> and let v be
the normal (n +2)-plane bundle of the embedding. Then (1@ e")Dv ==
B(B™', My, h)®B(B"**, My, h) (where h(x)=h(x)™"), and so

V= B(Bn+1’ MO, ii) = B(MO’ Bn+l’ h)
(both bundles are stable normal bundles of M). Since [h]=i(f),

i(f) is the obstruction to framing v. 2)

By Lemma 1 of [MK]}, it follows that J(i(f))=0.

Remark. For the reader’s convenience, here are the details of a proof of the
lemma cited above:

Embed M in S***? so that it is perpendicular to the equatorial S*"*2
intersecting it in the standard S" < $?"*2, with M, lying in the northern hemis-
phere of S*"** (see Figure 2). This may be accomplished by taking a height
function for S$®"*3, making it transverse to the embedding of M, and then
identifying a minimum point. An isotopy taking a neighborhood of this minimum
onto the southern hemisphere alters the embedding to one satisfiying the condi-
tions above.

Consider the normal framing F on S =M N S$>"*? in $>"*2, given by assigning

to a point x € S" the frame (h?x)) € V,.»(R*3). The Thom-Pontrjagin construc-

tion applied to this framed submanifold of $>"*? gives an element of 5, ,S""

n+2

n+1

Figure 2



The Smale invariant of a knot 623

which can be identified with J([h]): Both elements are represented by the map

82n+2 c R2n+3 - Rn+1 X Rn+2

Sn+2 CRn+3 — lRn+2>< R

sending the minimal geodesic arc joining x € S™ X{0} with ye{0}xS"*! to the
minimal geodesic arc joining the south pole with the north pole of $"*? and
passing through h(x)y € S"*' x{0}. (Explicitly, J((h]) maps (u, v)e S****to (0, 1) e
S"*? if u=0, and to (2 |lull h(u/|ul)v, |lv|>—|lul®) otherwise.) Compare Kervaire
[K1, 1.8].

Finally observe that the framing F on S™ extends over M,: B(M,, B"*', h) is
abstractly isomorphic to the normal bundle v of M in S>**>. We may choose an
isomorphism over B"*! which is standard over S" =9B""! (i.e. maps the standard
frame on R"*? to the standard frame on {O}XR""?cR""!'xR"*2=R?"*3), and
extend this to an isomorphism ¥ over the rest of M. But on S™ =dM,, the
standard frame on R™** maps to F under ¥. Hence the image under ¥ of the
standard frame on R"*? over M, provides an extension of F.

Now because the framing extends over M,, the Thom—Pontrjagin construction
yields 0 in 5, .,(S"*?), hence so must J.

STEP 2. If J(x) =0, then there exists f e Emb (S",R""?) with i(f) = x.

Bott [Bo] computes

Z ifn=3o0r7(mod8)
7,S0(n+2)=47Z, ifn=0or1(mod38)

0 otherwise.

Furthermore, by the work of Adams, J:m,SO(n +2)— 7,,.,8"*? is injective for
n=0 or 1 (mod 8) (see Switzer [S, p. 487]). Thus there is nothing to prove except
in the case n=3 or 7 (mod 8), i.e. n=23 (mod 4).

So let n =4m — 1. Write j,, for the order of the image of J: m,,,_:SO(4m +1)
— 1,541, Identifying 74,,—1SO(4m+1) with Z, it suffices to produce an
embedding f:S*" '—>R*"*! with i(f) = £j,,.

First consider the collection of all closed, oriented, almost-parallelizable
4m-manifolds M. The associated signatures o (M) form a subgroup of Z; let
g,,>0 denote the generator. Similarly let p,, >0 denote the generator of the
group of all top Pontrjagin numbers p,,(M). Observe that if o(M) = o,,, then by
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the Hirzebruch Index Theorem, p,,(M)=p,. Also, it is known that o, =
0 (mod 8) (see [KM, p. 531)).

Case 1: m>1. Let f be the inclusion of the Brieskorn homotopy (4m —1)-
sphere ). (2,...,2,3,6(0,/8)—1) into R*"*' = §*™*! — {point}, bounding the Mil-
nor fiber My< S*™*! [Br]. Brieskorn computes

o (MO) = io'my

so by Kervaire-Milnor [KM, 7.5] and the h-cobordism Theorem [S3], dM, is
diffeomorphic to S*™~!. Capping off M, with a 4m-ball to get a closed, almost-
parallelizable 4m-manifold M, we have o (M) = +0,,, and so

Case 2: m=1. Let M be the Kummer surface (see, for example Milnor [M]),
and let M, be the complement of an open ball in M. Note that

p1(M) =p,=48.

It is known that M, can be constructed from the 4-ball by attaching 2-handles
with even framings [Hr][AK] from which it follows easily that there is an
embedding M, & R> (cf. Ruberman [R]). Let f be the restriction of this embed-
ding to aM,= S>.

Now in either case we have an embedding f:S*""! & R*™*! whose image
bounds a submanifold M,, with

pm(M) = £p,,

where M is M, capped off with a 4m-ball. By Theorems 1 and 2 in Milnor-
Kervaire [MK]

Pm =%£a,2m-1)!j,,

where a,, is defined to be 1 for m even and 2 for m odd. Also, by Lemma 2 in
[MK]

pm(M) ==%a,,2m —1)! o, (3)
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where o is the obstruction to framing the stable normal bundle v of M. Thus
0 = %j,,.

But by (2) in Step 1,

i(f)=o. 4)
Hence
i(f) = xjm,

and so f is the desired embedding.

This completes the proof of the Theorem.

Since J:m,SO(n+2)—m,,..,S""* is a monomorphism if n¥ 3 (mod4) (as
noted above), m,,.,S"" is finite, and m,SO(n+2)=7Z if n=3 (mod4), we
deduce:

COROLLARY 1. Emb (8", R"*?) is isomorphic to Z if n=3 (mod 4) and to 0
otherwise.

In fact in the case n =3 (mod 4) (say n =4m — 1), one may identify explicitly
the subgroup Emb (S",R"**)=j,.Z of Imm (S",R"*?)=Z using the following
formula for j,,:

v2(jm)= v2(m)+3 _ 1
v(m)+1 imeO(modp2 )
Uy (jm) = {

0 otherwise

(for p an odd prime)

where v,(k) denotes the exponent of the prime p in the prime decomposition of
k. This formula follows from Lemma 3 in [MK] and the Adams conjecture
(compare Switzer [S,pp. 479, 488]). The first few values of j, are j, =24,
j»=240, j;=504, and j,=480.

One may also give a formula relating the invariant i(f) (for an embedding
f:S™ & R"*?) to the signature of a Seifert surface for f:

COROLLARY 2. If f:S" & R"*? is an embedding, n =4m —1, and M, is an
oriented 4m-manifold in R"*? with aM,=f(S"), then identifying Imm(S", R"*?)
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with Z we have

m
22m-—1(22m—1 _ 1)Bmam

i(f)=+ (M)

where B,, is the m-th Bernoulli number and a,, is 1 or 2 depending upon whether m
is even or odd.

Proof. Let M denote M, capped off with a 4m-ball (o (M) = (M,)). By (3) and
(4) of the proof of the theorem

D= Gm-

Pm(M).
The Hirzebruch Index Theorem (see [MK, p. 457]) gives

2m)!
22m (22m—1 _ 1)Bm o

Pm(M) = (M),

as M is almost parallelizable, and the Corollary follows.
For example, if m = 1, then i(f) = £30(M,).

Remark. Our viewpoint also sheds light on the case of embeddings S" & R*
for k>n+2: If Embg (S",R*) denotes the set of regular homotopy classes
containing embeddings which bound framed submanifolds of R¥, then one has by
an analogous argument to the proof of the theorem

s(Embg (8", R)) = @4 (ker (J))
where

¢y : mSO(k) = m,V, (R")

is the natural map. (Note that ¢, is generally not an isomorphism.) As a
consequence, for example, one has

s(Emby (S, R%)) =0
(in fact Emb (S>,R®) =0 by [S2]), and

s(Embg (S7,R'%)) =720Z2D{0} < Z2DZ, = m,V,[R").



The Smale invariant of a knot 627

QUESTIONS. (1) Is Embg (S™,R"*?)=Emb (S",R"")? (2) For a given n,
what is the largest value of k for which Emb (S™, R*) # 0?

Added in proof: Sylvain Cappell has informed us that our theorem can be
deduced from an unpublished version of his paper with J. Shaneson, ‘‘Singularities
and immersions”’, Ann. of Math. 105 (1977), 539-552.
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