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The rational homotopy of Thom spaces and the smoothing of
homology classes

STEFAN PAPADIMA

1. Introduction

Let G<> SO(n) be a closed connected subgroup and let V™ be a closed
oriented manifold. A homology class z€ H,,_,(V™; Z) is said to be G-smoothable
if z=[W™™], the submanifold W having G as structure group for its normal
bundle. In his famous paper [13] Thom showed, among other things, that the
G-smoothability problem is of a homotopy theoretic nature. One first has to
construct the universal Thom space MG, by taking the Thom space of the bundle
v€ over BG, which is the pull-back of the universal oriented n-plane bundle y"
over BSO(n). If V is a finite complex, a cohomology class ue H"(V; Z) is said to
be G-realizable if u= g*(ug) for some map V & MG, ug being the universal
Thom class. If u is the Poincaré dual of z, then Thom’s result reads: z is
G-smoothable if and only if u is G-realizable.

The problem of deciding the G-smoothability (G-realizability) is in general a
difficult one. There are very few general results in this direction, the oldest and
perhaps the most important also belonging to Thom:

THEOREM ([13], Théoréme I1.25). If G =SO(n) then, for any u, some
nonzero multiple of u is G-realizable.

The question of G-realizability up to a nonzero factor turns out to be a
rational homotopy problem. The answer is strongly influenced by the nature of
the universal Euler class e; € H"(BG; Q), eg =e(y°). The main result of this
paper is:

1.1. THEOREM. (i) If e =0 then: some nonzero multiple of u is G-
realizable if and only if u® is a torsion element.

(ii) If eg# O then: some nonzero multiple of any u is G-realizable if and only if
e is not decomposable in H*BG.

(iii) If V is a finite connected complex such that H'(V; Q)=0 for i>2n+3
then, for any G > SO(n) with ez# 0, some nonzero multiple of any u is G-
realizable.
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602 STEFAN PAPADIMA

COROLLARY. If G is one of the classical groups U(r), Sp(r), r=1, or SU(r),
r=2, with standard embeddings, then some nonzero multiple of any u is G-
realizable.

Proof. By simply checking the conditions on es given in (ii) above (see e.g.
[4]). The first two examples are implicit in [13] (see the remarks following
Théoreme I1.25). For the dependence on the embedding, see the beginning of
Section 4, which is devoted to the proof of Theorem 1.1 and ends with a
discussion of the general solution of the G-realizability problem up to a nonzero
factor.

The rational homotopy approach goes as follows: first “tensor’” with Q the
given problem. For the moment, this means nothing but just making a new
definition: let us say that ve H"(V; Q) is G-realizable if there is a map v
MG, such that f*(ug), = v, where the subscript denotes rationalization ([12], [8]).
One can then try to solve this problem by using the purely algebraic technique of
the minimal models of Sullivan [12].

Supposing that one is able to construct in this way a rational solution
V0-£> MG,, there is still one more thing to do, namely to find V £ MG such that
go=f. This is the general delocalization problem: given a map between localized
nilpotent spaces V,-> M,, is there V % M such that g,= f?

Section 3 is devoted to this problem. Roughly speaking, the main results
(Proposition 3.1 and the remark following it) assert that, whenever V and M are
finite complexes and one of them is a 1l-connected formal space, there is a
delocalization, for any f. As a typical application we offer the following:

1.2. PROPOSITION. Ifue H"(V; Z), where V is a finite complex then: some
Z*-multiple of u is G-realizable if and only if some Q¥*-multiple of u, is
G-realizable.

Both Sec. 4 and the above result depend on the analysis of the homotopy type
of MG, which is carried out in §2. The starting point is to observe a very simple
but very useful fact, namely that the universal Thom spaces are formal. A formal
space is defined by the property that its Q-type is entirely determined by the
cohomology algebra ([12]). Using formality arguments, we give in Theorem 2.6 a
concrete convenient description of the Q-types of universal Thom spaces.

The rest of Sec. 2 contains results of independent interest, derived along the
lines of the central idea of this paper, which says that the universal Thom
constructions possess strong formality properties facilitating precise rational
homotopy computations. For example, Proposition 2.7 and Corollary 2.8 give the
Whitehead product structure of the rational homotopy Lie algebra of MG in
terms of H*BG and eg, thus answering a question raised in [2].
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More applications are contained in [10]. I owe many thanks to the referee for
his valuable suggestions which led to many improvements of this paper.

2. Formality properties of universal Thom spaces

The study of the Q-type of universal Thom spaces was started in [2], where
the cases of MO(r), MSO(r) and MU(r) were considered. In this section we shall
extend the results of [2] to the case G <> SO(n) closed connected arbitrary, using
a new point of view, namely the formality.

2.1. DEFINITION. S is a formal space if, denoting by (/#, d) its minimal
model, there exists a differential graded algebra map (M, d) & (H*4, 0) such that
* .
p*=1id.

2.2. LEMMA. Let M be a formal minimal algebra and ue Z"M such that
[ule H*M is not a zero divisor.

Consider: M Z> M 4A,._,(y)=N, where the right hand extension of M is
constructed by setting dy = u. Then p* is onto, and N is again formal.

Proof. The first assertion is immediate, by looking at the algebraic Serre
spectral sequence of p. Since A is formal, there is a d.g.a. map M5 H* M such
that f¥=id. Construct a d.g.a. map & —2>H*N by fye=p*fu and fu(y)=0.
Since p* is onto, f3=id.

2.3. LEMMA. Let G < O(n) be a closed subgroup. If G is connected or if
G = O(n) then the Thom space MG is formal.

Proof. MG appears as a cofibre in the sequence SG <> BG L MG, where SG
is the associated sphere bundle of y©. We are going to use the fact that the co-
fibre of a formal map is a formal space [3]. A formal map is defined by the
property that its minimal model, say L, ', satisfies an algebraic homotopy
commutativity condition of the form p'f=f*p, where p and p’ are formalization
maps as in Definition 2.1. Since H*BG is a polynomial algebra we only have to
check that SG is a formal space.

If G = O(n), SG has the homotopy type of BO(n — 1) and we are done. If G is
connected, then S" '<> SG — BG is a rational fibration in the sense of [5],
hence we may write a nilpotent model of SG which fits into an algebraic fibre
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sequence of the form
(H*BG, 0) & H*BG® 4A(Zp—1)——> (A(z,_y), d)
when n is even, or of the form
(H*BG, 0) & H*BG® 4 (-1, Yan-) > (A(tns, Y2}, d)

when n is odd, where the d.g.a.’s with induced differential d are the minimal
models of the appropriate spheres.The differential structure of the extensions is
given by dz = e, dx =0 and dy = x>+ sx +¢, for some s, te H*BG. If n is odd or
n is even and eg is nonzero, Lemma 2.2 is available. In the remaining case, the
formality of SG is obvious.

It will often happen that our discussion splits into two rather contrasting cases,
according to the nature of the Euler class. This can be seen as follows: if eg =0
the Gysin sequence of the fibration S"~'<> SG — BG shows that p* is injective
and identifies coker p* =Y "' H*BG; the Barratt—Puppe sequence of the cofibra-
tion SG — BG — MG gives then H"MG =Y" H*BG, with trivial multiplication.
If eg# 0, again by the Gysin sequence p* is onto and ker p* =eg - H*BG; the
exact sequence of the cofibration identifies H*MG = e5 - H* BG, with the multip-
lication induced from H*BG.

The above discussion also shows that H* MG is determined by H* BG and by
es. By the previous lemma, this gives all the information about MG, at least
theoretically. We are going to be more precise about this point in what follows.
To start with, we shall describe H* MG by generators and relations, in the case eg
is nonzero.

Choose a graded complement, X, for e - H*BG in H*BG, with homogenous
well-ordered indexed basis x, and write |a| for deg x,. Let xo=1€ H°BG. Then a
minimal set of generators for H*MG is given by

Z, = eg * X, (2.4)

They form a basis for a graded space Zyo=Y" X (" x = egx, x € X). The relations
among them are described as follows: write

_ k
XoXp = Z €G Yk i € X.

k=0

Then a complete set of relations is given by

Fao = ZaZo— 2, 261 Y. "y =0, b=a>0. (2.5)

k=0
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In particular they all have degrees greater than or equal to 2n +4.

2.6. THEOREM. If e =0 then MG has the Q-type of a wedge of spheres.

If e # 0 then MG fibres over K(Z, n), the fibre having the Q-type of a wedge of
spheres.

Proof. The first assertion is clear. Suppose then that eg# 0 and consider the
fibration given by the universal Thom class F < MG —5K(Z,n) and the

localized fibration K(Q, n— 1) Fy—>>MG,. Since H*(MG; Q) may be iden-
tified with a subalgebra of H*(BG; Q) in such a way that the rational Thom class
is identified with es, we may use Lemma 2.2 to deduce that F is a formal space
whose cohomology algebra has trivial multiplication. Consequently, F, is again a
wedge of spheres. (More precisely, Fo=(V a0 S""*),.)

The rest of this section is not needed for the proof of Theorem 1.1. The results
below show that the rational homotopy theory of universal Thom spaces is a direct
consequence of the cohomological picture, which is a striking formality property,
worth to be included here.

The proofs are slightly more technical; they are based on the bigraded models
introduced in [6], which are the most appropriate ones when dealing with
formality. We shall recall briefly, following [6], the construction of the bigraded
model (AZ, d) of a connected graded algebra H. The generators are bigraded by
Z=6,-Z;, the differential is bihomogenous of upper degree +1 and lower
degreepiol. The graded space Z, is isomorphic to a minimal system of homogen-
ous algebra generators for H and ), Z, is isomorphic to a minimal system of
relations. The modelling map (AZ, d) RN (H, 0) is defined in the obvious way on
Z, and sends Z, to zero, and H(AZ)= Hy(AZ)=H. If S is a formal 1-connected
space, it inherits by Sullivan duality a new grading ,,(S)® Q =@, w5(S), with
5% dual to Z¥.

2.7. PROPOSITION. (i) w(MG) is generated as a Lie algebra by =°.
(ii) For any p=0, w°(MG) = ad(n°)?(w’).

Proof. For any space the Whitehead bracket is dual to the quadratic part of
the differential of its minimal model [12]. Due to the homogeneity properties of
the differential of the bigraded model there is an inclusion valid for any formal
space, namely ad(7w°?(w°) < w®. Therefore (ii) is an immediate consequence of (i).

If S is a formal 1-connected space a similar degree argument provides an
inclusion [#7(S), 7(S)]< w*(S). Moreover, one has a dual Hurewicz exact sequence
(610> H*(AZ) - HY(AZ)— H*(AZ)--> Z,— 0 which gives by Sullivan duality
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an exact Hurewicz sequence:
0 — 7 (S) = m(S) = PH4(S) — 0.

Putting these facts together, it is readily seen that the property stated in (i) is
equivalent with the equality [, ] = ker h (which does not hold in general even
for formal spaces).

If e =0, MG is rationally a wedge of spheres and, by the theorem of Hilton

[7], we are done. If e;# 0, recall the fibration F <% MG LK (Z, n) in Theorem

2.6 and the fact that p induces an injection in rational homology (by Lemma 2.2),
and apply the Hilton theorem again.

2.8. COROLLARY. Suppose that eg is nonzero. Then

(i) w(MG)= w®/{free Lie algebra generated by w2,}, where wo= 1,, which is
generated by the Hurewicz dual of ug, appears as a subalgebra, the Lie algebra
extension is nontrivial unless rank G =1, and the full bracket structure may be
explicitly written down in general using the relations (2.5).

(i) 7° =ad(w2,)"(w2,), for any p>0.

Proof. The decomposition in (i) comes from the exact homotopy sequence of

the fibration F <> MG —> K(Z, n), namely me(MG)= 1, (MG)® p 4 (F)=
T (MG)® 7., (MG). The same argument used in Proposition 2.7 shows that
wl,=[m>,, 7-,]. The free Lie algebra p,mw4(F) being thus generated by the
graded subspace 72, which has the right dimensions in each (lower) degree (see
the proof of Theorem 2.6), the assertion on freeness follows again by Hilton’s
theorem. The equality 7, =70 is a consequence of the Hurewicz theorem.

The Whitehead product w°A#®— 7' is dual to the quadratic part of the
differential Z, — Z,A Z,,, which in turn is obtained by simply taking the quadratic
part of the relations (2.5). To be a little bit more precise, denote by {z*} the basis
of 7° which is dual to the basis {z,} of Z, given by (2.4) and notice that z}
generates o, while {z*},., generate w2,. It is straightforward to see that
[z%, z§]1=0 and that [z%, z}] is Sullivan dual to the element of Z, corresponding
to the relation r,, (2.5), for any b =a > 0. It is now easy to find the coeflicients in

= ), C4lz% z%], for any ¢>0.

b=a>0

In particular, if the decomposition in (i) is a Lie product one then it follows from
the construction of the relations (2.5) that x,x, € e - H*BG, for any a, b>0. We
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infer that H'BG - H'BG c e - H* BG, which forces rank G =1, H*BG being a
polynomial algebra.

The equality (ii) follows exactly as in the previous proposition, with 7~ ,(MG)
replacing w(MG).

3. Delocalization

Let K be a finite simply connected complex and consider the following subset
of the self 0-equivalences of K

f
E={K—->K|f*(x)=t*'- x, any x€ H*(K; Z), for some tec Z*}.

We are going to exploit in this section the fact that the formality of K is
equivalent to the existence, for any t€ Z*, of an f € E which acts on H*(K; Z) by
f*(x)=s"!- x, for some nonzero multiple s of ¢ ([12],[11]).

3.1. PROPOSITION. Let V be a finite complex and K be a finite simply con-
nected complex with localization map 1. If K is formal then, given any map V-5 K,,
there is an f € E and V-5 K such that foh = IH.

Proof. K being formal, the same argument used in [9] (with f restricted to lie
in E) shows that for any integers n, s there is an f € E such that for i < n m;(f) kills
the s-torsion of =;(K) and Im m,(f) s - m,(K).

Now let F— K be the homotopy fibre of K LN K,. Any f € E localizes to f,,
and induces fr : F— F. The remark above implies (via the long exact homotopy
sequence) that for any finite subgroup S < w4 (F) there exists fe E such that
7%(fr) annihilates S.

In order to construct f and H satisfying the desired conclusion we proceed by
induction, putting h,, = h |y~ and supposing that H, :V™— K and f,, € E have
been constructed so that (f,)oh.. = [H,,. The obstruction to extending H,, to
H,.,:V™' 5 K so that (f,)ohm+1=Hpn1 lies in H™Y(V™T V™ 1 (F)).
Since V is finite there is, in fact, a finite subgroup S < m,,(F) such that the
obstruction lies in the image of H™*Y(V™*!, V™; §) - H™*Y(V™*1, v™; . (F)).

Choose f'e E such that m,,,(fp) annihilates S. Then f'H,, extends to H,, ., such
that IH,,.1=(fNo(fr)ohm+1- Put fri1=F'f. Because V is finite this proves the
proposition.

3.2. Remark. A similar (and even simpler) argument shows that, for a formal
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1-connected finite complex K and a 1-connected space X with localization map |,
for any map h: K — X, there is an fe E and H: K — X such that hf =[H (see
also [12], [9).

3.3. Proof of Proposition 1.2. Suppose we have a map ViMGO such that
g*(ug)o=q - u,, for some qe Q*. Since V is finite we may suppose g maps into
(MG"), for some skeleton MG~ of MG. Since MG is formal this is a formal
([12]) finite complex. We may apply the previous Proposition and obtain
f:MG"~ — MG" such that H*f=k" - id, for some ke Z*, and H:V - MGV
such that [H = f,g. It follows that H*ug is a Q*-multiple of u in H"(V; Q), hence
r- H*ug =s-u in H*(V; Z), for a suitable choice of r, s € Z*. Use the formality
again and choose f'e E, MGV I, MGN such that (fY*ug=rt - ug; set then
g'=f'H:V— MG and conclude that st - u is G-realizable.

There is one more application of Proposition 3.1:

3.4. COROLLARY. If G is a compact connected Lie group let us choose
elements c;e H*(BG; Z) which freely generate the algebra H*(BG; Q). Given
any collection of classes a;€ H\(V; Z), where V is a finite complex, there exist
te Z* and a map ¢:V — BG such that

e, =t a, forany i

Proof. Define h:V — BG, by h*(c;)o=(a;)o, any i, and pick a large number
N such that h:V — (BG"),. By Proposition 3.1 one obtains f:BG~ — BG"
such that f*c,=s'- ¢, any i, for some seZ* and H:V — BG" such that
IH = f,h. As in the previous proof one may choose a sufficiently large k € Z*
such that k- H*¢;=ks'%'- q; in H*(V; Z), for any i. The formality of BG"
produces a map f':BGY — BGY and a Z*-multiple of k, say r, such that
(fY*c,=r'%- ¢, any i. We may then take t=rs and £=fH.

4. G-realizability up to a nonzero factor

4.1. Let G‘—'—>SO(n) be an embedding of a compact connected Lie group
and let V™ be a closed oriented manifold. We ought to point out from the
beginning that all the previous constructions, definitions and notations coming
from this situation (MG, G-smoothability, G-realizability, es,...) are in fact
depending on the embedding j and not only on the isomorphism class of G.
The G-abbreviation is only a notational simplification and should not be mis-
leading.
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As a very simple example we may take G = SO(2), embedded in two ways
in SO(4):

(id, 1)

SO(2) —= SO(2)xSO(2)— SO(4).

(id, id)

Denote by j, the embedding onto the first factor of the maximal torus and
by j, the diagonal embedding. For ze H,,_,(V™; Z) they give rise to two
distinct notions of G-smoothability, namely z is G-smoothable if and only if

z=[W™™], with »(W)=¢(®B8  (via j,)
z=[W™™], with v(W)=¢DL (via j,)

where { is a complex line bundle and 6 is the trivial complex line bundle.
Indeed we may take V=P*C and u=a? as the Poincaré dual of z, where
aec H*(P*C; Z) is the canonical generator. Since u is dual to P2C, it is G-
realizable via j,. On the other hand, since u? is a generator of H3(P*C; Z),
Theorem 1.1(i) shows that u is not G-realizable via j;. The point is that the
Euler classes constructed via the two embeddings are different, namely eg =0
via j;, but eg =c3 via j,. We mention that we have no example (in connection
with Theorem 1.1(ii)) where the property of indecomposability of the Euler
class really depends on j.

4.2. Proof of Theorem 1.1
(i) If e =0 then Theorem 2.6 gives a decomposition (MG),= SgVX with
o carrying (ug)o. On the other hand, it is a classical fact that classes ae
H"(V; Q) satisfying a®>=0 all arise from maps V — Sg. Now apply Proposition
1.2.

(ii) Suppose that eg is not a decomposable of H*BG. This implies that
there is a graded algebra map H*(BG; Q) — H*(K(Z, n); Q) sending eg to
(an)o, a,€ H"(K(Z, n); Z) being the canonical generator. Since we know that
H*(MG; Q)=es - H*(BG; Q)< H*(BG; Q) as a subalgebra, the formality of
MG insures the existence of a map r:K(Z, n) - MG, with the property that
r*(ug)o = (ay)o-

Passing to a large skeleton, we may delocalize it via Proposition 1.2, obtaining
a map s:K(Z, n)N = MG such that s*(ug)=q - a,, for some qe Z*.

Finally, given ue H"(V™; Z), represent it by a map i: V — K(Z, n)™ and set
g = sii. Note that we have g*(ug) = q - u, where the factor q depends only on m

and on the embedding G <> SO(n).
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Suppose now that e;# 0 but e € H'BG - H"BG. We shall construct a closed
manifold V and a class u e H"(V; Z) with the property that no nonzero multiple
of u is G-realizable.

Our hypothesis implies that e; may be written in the form eg =e,+- - - €.,
where each e is a linear combination of monomials containing exactly i
generators of the polynomial algebra H*BG(=free graded algebra on {c}).
Choose integers k and [ satisfying

2k=t+2, 4l+2>(t+2n *)

and construct a graded algebra H = A, (x)/(x*")® A 4,..(2)/(z?) keeping in mind
that, since eg is nonzero, n must be even. Notice that H is 1-connected, satisfies
Poincaré duality and has top dimension #0 (mod 4). Taking the formal Q-space
having it as cohomology algebra, there is no obstruction to rational surgery on it
([12],[1]). Therefore there exists a closed manifold V such that H*(V; Q)= H.
Choose ue H"(V; Z) such that u, is nonzero in H"(V; Q).

In order to finish the proof, we are going to show that any graded algebra map
f:H*MG — H* sends (ug), to zero.

We have a graded algebra map A" H*BG)—I;H*MG given by pQ"a)=
ug - a, for any a € H*BG. Putting g = fp, it is immediate to see that

Xa) e(Z ) =o(271) o0 a)

for any a,, ..., a,.;€ H*BG. Suppose that g(}" 1)=q - x, with q# 0.

We first remark that, due to the inequalities (*), the elements {x’ |0<j<t+2}
represent a basis for H=**?", If the monomial c, - - - c,., appears in e; then
necessarily 1<r=<t and 0<|c¢;|<n, for any i. These imply that

q - g(z:'1 ci° c,+1) -x"=0, hence g(zn eG) =0,

Since g(¥"es)=g(X" 1)? this gives x*>=0, a contradiction.

(iii) Suppose eg# 0. As observed in Section 2, H*(MG; Q) has relations only
in degrees =2n +4. On the other hand, the assumption on V implies that it has
the same minimal model as a d.g.a. (A, ds) which is zero in degrees >2n + 3.
Thus given u,e H"(V; Q) we may find a d.ga. map (H*MG,0)— (A, d,)
sending (ug)o to a representative of u, Since MG is formal this yields a
map g: V — MG, such that g*(ug),= uy. Now apply Proposition 1.2.

A solution of the G-realizability problem up to a nonzero factor may be
obtained in general as follows:
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4.3. PROPOSITION. Suppose eg# 0 and let V be a finite connected complex
with minimal model M,. One may construct an affine algebraic variety over
Q, A c My X X, the Q-vector space X and the variety A depending on the embed-
ding j and on M, such that:

(i) pri(A)=Z" My

(i) given ue H"(V; Z), some Z*-multiple of u is G-realizable if and only if
some Q*-multiple of ug lies in [pri(A)]< H" #, = H"(V; Q).

Proof. Denote by # the minimal model of MG and consider the
map [M, M., ] ——> H" M, which sends the homotopy class of the d.g.a. map g to
g*[U]. Here we have written # = (AZ, d) observing that Z" is generated by an
element U such that dU =0 and [U]= (ug),, by the Hurewicz theorem. Proposi-
tion 1.2 may be restated as follows: some Z*-multiple of u is G-realizable if and
only if some Q*-multiple of u, lies in the image of ev.

We therefore have to construct A and show that Im ev =[pr;A]. Pick m>n
such that H'(V; Q)=0 for i>m. Standard algebraic obstruction theory shows
that there is a bijection induced by restriction [AZ, My ] —[AZ=", My ] so we
may consider a second evaluation map Homg ,, (AZ=", #M,,) —> H" M, defined
in the same way and having the same image as the previous one.

The graded algebra maps between AZ=™ and M, are identified with the
vector space [["., Hom (Z, #%) = M, x X. The d.g.a. maps are those determined
by the algebraic conditions imposed by the property of commuting with the
differentials. We shall thus take A =Homg,, (AZ=™, My,) and simply remark
that pr,(A)< Z"#,, and [pr,A]=Im ev.

4.4. Remarks. The proof of Theorem 1.1(ii)) shows in fact that whenever
ec# 0 but ege H'BG - H'BG there exists a class ve H"(V; Q) for which the
G -realizability problem cannot be solved even at the cohomological level, that is
there is no algebra map H*MG — H*V sending (ug), to some Q*-multiple of v.

On the other hand, by exploiting more carefully the structure of the bigraded
model of the formal space MG([6]), it can be shown that if V is a finite connected
complex such that H'(V; Q)=0 for i>3n+4 then, for any G SO(n) with
ec# 0 and for any u € H*(V; Z), some nonzero multiple of u is G-realizable if
and only if there is an algebra map h: H*MG — H*V such that h(ug)o=q - u,,
with q € Q*.

The example below shows that outside this range the existence of a
cohomological solution does not in general imply the G-realizability, thus indicat-
ing the complexity of the problem, as reflected in the fact that in general A
depends on more than H*(V; Q).
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4.5. EXAMPLE. We shall start with G = SO(2) X SO(2) cannonically embed-
ded in SO(4) and we shall construct a 1-connected complex V of dimension 17
and an algebra map h:H*MG — H*V such that, setting h(ug)o=v, no Q*-
multiple of v is G-realizable.

H*BG is freely generated by two elements of degree 2, say e and f, and
e = ef. Writing as in §2

H*BG =eg - H'BGDQ - 1Pspan {e | k=1}Dspan{f' | =1}

use (2.4) to conclude that H*MG is generated by the elements: U = ef, x, = e**'f,
k=1, and y, =ef'*!, 1=1. The relations (2.5) among them are of the following
types:

(L) xx — Uxj i, k=j=1
(L)  Yiye — Uyjrio k=j=1
(L)) xy—-U"'%_, k>I1=1
IVi) xy— Uy, k>1=1
(Vi) xye — U2, k=1.

With this information at hand, it is not difficult to construct a 16-stage minimal
model p:(AZ='¢, d) > (H*MG, 0) which, due to the formality of MG, may be
extended to a minimal model of MG, (AZ, d) (see also [6]). Explicitly, Z<'® has a
basis consisting of elements labeled U, xy, yq,..., X¢, Yé» Z15 - - « » 2145 U1, Uz, ON
which p acts by sending the first of them to the corresponding generators of
H*MG, and the rest of them to zero. The differential structure is defined by
setting dU =0, dx; =0, dy, =0, for 1<i=<6, the elements dz; correspond to the
relations (I)-(V) with degrees <16 as follows: dz,=V,, dz,=1,,, dz;=11,,,
dz,=1,,, dzs=11,, dzg= 1115, dz; =1V, dzg=V,, dzg=I3,, dz o= II5,, dz;; =
III;,, dz,,=1V3,, dz53=1,,, dz,4,= II,,; finally:

dUl = UZ6+ V12,7 X124

dUz = UZ7_ V121 + X123.

Note that [dv,] and [dv,] form a basis of H'7(AZ='3, d). Construct a 16-stage
minimal algebra

Mis=(AZ=", d)®(A(xg, Y6), 0)
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and extend it to a minimal # by defining inductively:
My =M, QA (HP ' M, ), for p>16

in order to have H'# =0 for i>17. Take then V to be a 1-connected finite
complex with the property that . = 4.

Associating to each generator of H*MG of degree <16 the corresponding
cohomology class of # gives rise to an algebra map h: H*MG — H*V, due to the
fact that all relations of degree <16 hold by construction in H* /.

Suppose now that v is G-realizable up to a nonzero factor, which implies that
there exists a d.g.a. map F:(AZ='® d)— M, such that F(U)=k - U, with
k e Q*.

Consider the d.g.a. involution (AZ='¢,d) > (AZ='%,d) defined by: Ue U,
iy, (1sis<6), z,092zy, 2,923, 24925, 264> 27, 2Zg<>2g, Zo<> Zjq,
2119 212, Z13€> Z14, Vg < U,. Writing the conditions of commutation with the
differentials for F, one finds out that there exist constants a and b with ab = k>
and such that the following hold

G(U)=kU, G(x)=ax;, G(y)=by;, G(zy)=k’z,,
G(z,)=a%z,, G(z3)=b%z5, Gl(z¢)=k?azs, G(z5)=k?bz,

either for G = F or for G = Fs.

Restrict F and s to 15-stage models. Since F*[dv;]=0in H" M5 (i =1, 2), we
infer that in both cases we must have G*[dv;]=0 in H s (i = 1, 2). This would
imply that [dv;]=0 in H' (AZ='%, d), a contradiction.
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