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Normalizing the cyclic modules of Connes*

W. G. Dwyer and D. M. Kan

§1. Introduction

1.1. Summary. This paper deals with simplicial modules X which, in each
dimension n&gt;0, hâve an extra degeneracy map sn+1:Xn —»Xn+1 (satisfying the
usual identities, except that, in gênerai, dosn+1^ snd0:Xn —»Xn). We call them
duplicial modules, because omission of the initial face maps d0 : Xn+1 —? Xn (n &gt; 0)
leaves a cosimplicial module (with the degeneracy maps as coface maps and the
remaining face maps as codegeneracy maps). Our key observation (in §3) then is,

that one can normalize duplicial modules, just like simplicial and cosimplicial
ones, and that the resulting normalization functor is an équivalence between the

category of duplicial modules and the category of &quot;duchain complexes&quot;, i.e.

diagrams of modules of the form

8 8

î± l/2±ç
d d

in which d2 0 and &lt;52 0, but in which the d&apos;s and the ô&apos;s are otherwise
independent.

1.2* Motivation and application. In our investigations of the cyclic objects of
Connes [2] we noted that a cyclic module X is just a duplicial module which
satisfies the cyclic identities (dosn+1)n+1 id : Xn —&gt; Xn (n &gt; 0). This suggests that a

study of duplicial modules could be of use for a better understanding of cyclic
modules. Indeed, the normalization resuit mentioned above (1.1) immediately
implies that the category of cyclic modules is équivalent to a full subcategory of
duchain complexes, and our results (in §6) on the natural self maps of duplicial
modules yield a rather simple characterization of this subcategory in terms of
polynomial identities in dô and ôd.

* This research was in part supported by the National Science Foundation
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1.3. Main résulte and organization of the paper
(0 The duplicial indexing category Kop. This is a small category with the

property: if R is a ring with 1^0 and R dénotes the category of (left). jR-modules,
then a duplicial R-module is just a factor Kop-*R. In §2 we first define Kop

directly, as an extension of the simplicial indexing category Aop and then show, that
Kop can be constructed as an amalgamation of the simplicial indexing category Aop
and the cosimplicial indexing category A, by identifying, in each dimension, the
degeneracy operators (in Aop) with ail but one of the coface operators (in A) and
the codegeneracy operators (in A) with ail but one of the face operators (in Aop).
We also note that the cyclic indexing category Aop of Connes [2] can be obtained
from Kop by the addition of certain &quot;cyclic&quot; relations.

(ii) The normalization. Next (in §3) we observe that one can normalize
duplicial modules, just like simplicial and cosimplicial ones, and that this normalization

induces an équivalence between the category RK°P of duplicial R-modules
and the category R(d, 8) of (see 1.1) duchain complexes over R.

(iii) Homotopy théories of duplicial modules and duchain complexes. If one
defines weak équivalences between duplicial modules as maps which induce

isomorphisms on the homotopy groups of the underlying (see 1.1) simplicial
modules as well as on the cohomotopy groups of the underlying (see 1.1)

cosimplicial modules, then (§4) the resulting homotopy theory is équivalent to a

more familiar homotopy theory of the maps A&apos; -&gt; A of differential graded modules,

for which A&apos; has trivial homology in positive dimensions and A has trivial
homology in négative dimensions. Of course (ii), a similar resuit holds for duchain

complexes.

(iv) An Eilenberg-Zilber theorem. An application (in §5) is an Eilenberg-Zilber
theorem for duplicial modules: the normalization of the (dimensionwise) tensor
product of two duplicial modules is, as a duchain complex, naturally weakly
équivalent to the tensor product of their normalizations.

(v) The ring of natural self maps. The normalization (ii) induces an isomorph-
ism between the ring EndRK°P of the natural self maps of duplicial R-modules
and the ring End R(d, 8) of the natural self maps of duchain complexes over jR. In
§6 we show that thèse rings are isomorphic to the ring ER of séquences of
polynomials in one variable with coefficients in the center of R and with the same

constant term, and we then use this resuit to give (as promised in 1.2) a simple
characterization of the full subcategory of R(d, 8) which (under the normalization
functor) is équivalent to the category of cyclic R-modules.

(vi) Homotopy théories. In the appendix (§7) we make clear what exactly we
mean by the homotopy theory of a category with respect to a subcategory (of weak
équivalences), and when two such homotopy théories will be called équivalent.
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§2. The duplicial indexing category Kop.

After defining the duplicial indexing category Kop as an extension of the
simplicial indexing category Aop, we show that Kop admits the self dual présentation

in terms of AOÎ&gt; and A mentioned in 1.3(i). We also note that the cyclic
indexing category Aop of Connes [2] can be obtained from Kop by the addition of
certain &quot;cyclic&quot; relations, which are closely related to a curious natural transformation

from the identity functor of Kop to itself.
Recall that the simplicial indexing category Aop is the category with objects

0,1,2,... and generating maps

d^n-^n-l 0&lt;i&lt;n, n&gt;0

st:nl
subject to the usual relations [7, p. 1], and that dually the cosimplicial indexing
category A is the category with objects 0,1,2,... and generating maps

dl:n-l-&gt;n 0&lt;i&lt;n, n&gt;0

subject to the dual relations. Then one can define as follows:

2.1. The duplicial indexing category Kop. This is the category with objects
0,1,2,... and generating maps

d^n-^n-l 0&lt;i&lt;n

subject to the relations

dtdj dj-idx and SjSt sts j_! 0 &lt; / — 1

dtSj sJ_1d,:n-^n 0&lt;/-l&lt;n

id

Note that do^n+i i2 snd0 : n -&gt; n.
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Clearly the obvious functor j:JLop-»Kop is 1-1 and so is dually the functor
k:A-+Kop given by

(s1 :n-&gt; n-1)-^ (dn_! :n-^ n-1)

There is also an isomorphism m :Kop%K (the opposite of Kop) given by

(dt :n -&gt; n-1) -* (sn_(:n-1 -&gt; n)

(sI:n-l-&gt;n)-^(dn_l:n-&gt;n-l)

which has fhe property that mj fcop and mk /op.

2.2. Remark. One often identifies the category 4 with the category of the
weakly monotone functions between the finite ordered sets of integers (0,..., n).
In a similar manner the category K can be identified with a category P of weakly
monotone and &quot;periodic&quot; functions between copies of the ordered set of the

non-negative integers N= (0,1, 2,...). More precisely:
Let P be the category whose objects consist of one copy pn of N for each

integer n &gt; 0 and which has as maps pn —&gt; pn&gt; the weakly monotone functions /
which are periodic, i.e. f(j + n + l) f(j) + n&apos;+l for ail jeN. One then readily
vérifies that P is indeed isomorphic to K (the opposite of Kop); the opposite of the

map dx :n —&gt; n —1g Kop corresponds to the function pn_i —&gt; pn given by / —» / for
/&lt;î and /—&gt;/+l for \&gt;i, and the opposite of the map sx :n-l—»n€Kop
corresponds to the function pn-*pn-i given by /-»/ for ;&lt;î and /-&gt;/ —1 for
j&gt;i. This implies that the opposite of the map dosn+1:n—&gt;n corresponds to the
function pn —? pn given by / -&gt; j 4-1 for ail /.

It is also not difficult to see that the copy of A (resp. Aop) contained in K
corresponds to the subcategory of P which consists of the functions /:pn-^Pn&apos;

such that f(n)&lt;n&apos; (resp. /(0) 0).

An immédiate conséquence of this remark is the existence of

2,3. A curious natural transformation. The functor v which assigns to every
object neKop the map

is a natural transformation from the identity of Kop to itself.
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Moreover one has

2.4. PROPOSITION. The cyclic indexing category Aop [6] can be obtained

from Kop by adding the &quot;cyclic&quot; relations

vn (dosn+1)n+1 id :n -* n n &gt; 0

Proof. This is a straightforward calculation in which one takes tn+1
(dosn+1)n (dosn+i)~1 : n —» n, or equivalently sn t^liSo : n — 1 —* n.

§3. The nonnalization

Let R be the category of (left) modules over a ring R with 1^0, let RK°P

dénote the category of duplicial R-modules (the objects are the functors Kop-&gt; R
and the maps are the natural transformations between them) and let R(d, 8) be

the category of duchain complexes over R (1.1). The key resuit of this paper then
is that (3.3) one can normalize duplicial R-modules, just like simplicial and

cosimplicial ones, and that (3.5) the resulting functor N : RK°P —» R(d, 8) is an
équivalence of catégories.

We start with a brief review of the relevant facts in the simplicial and

cosimplicial cases [7, §22].

3.1. The simplicial case. Let R(d) dénote the category of chain complexes
over R, i.e. diagrams in R

l/0 &lt;— Ui *— JJ2 &lt;— • • • with d2 0

and consider, for every simplicial JR-modules X, its total complex TXeR(d) given
by TnX Xn(n&gt;0) and

£-V } 1 \lsl V &quot;V&quot; C ~VOX — /. v x.) HtX X t: s\-n
i=0

as well as two subcomplex of TX, the normalized complex NX and the bulk
complex BX, given by

NnX Xn Piker dx Pi • • • Hker dn

BnX Xn H(im s0U • •
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Conversely, for UeR(d), its denormalization N&apos;U is the simplicial R-module
which, in dimension n, consists of the direct sum

where each slk- • • stlUn-.k dénotes a copy of l/n_k and the direct sum is taken
over the set I of ail non-empty séquences of integers (ik,..., it) such that
n&gt;ik&gt; • • • &gt; ii^O; the degeneracy operators are the obvious ones and the face

operators are determined by the requirement that dox dx and dtx 0 (0^ i ^ n)
for ail xeUnc N&apos;nU. Then,

(i) BX has trivial homology in ail dimensions,
(H) TX BX®NX, and
(iii) the functor N : RA°P -» R(d) is an équivalence of catégories with as inverse

the functor Nr : R(d) -» RA°P, i.e. the compositions N&apos;N and NN&apos; are naturally
équivalent to the identity functors of RAop and R(6) respectively.

Dually one has

3.2. The cosimplicial case. Let R(ô) dénote the category of cochain
complexes over R, i.e. diagrams in R

U0^U1^U2^&apos;&quot; with Ô2=O

and consider, for every cosimplicial R-module X, its total complex TXeH(8)
given by TnX Xn(n&gt; 0) and

Sx n£ (~Dldlx xeXn,
i=0

as well as two subcomplexes of TX, the normalized complex NX and the bulk
complex BX, given by

NnX Xnnkers°n ••• Hkers&quot;&quot;1 n&gt;0

BnX=Xnn(imd1n • •• Himdn) n&gt;0.

Conversely, for UeR{8), its denormalization N&apos;U is the cosimplicial K-module
which, in dimension n, consists of the direct sum
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where each dlk • • • dlll/n_k dénotes a copy of l/n_k and the direct sum is taken
over the set J of ail non-empty séquences of integers (jk,..., jt) such that
n&gt;jk&gt;- • • &gt;/i&gt;0; the coface operators dl (i&gt;0) are the obvious ones and d°
and the codegeneracy operators are determined by the requirement that, for ail
xe[/ncN&apos;nU, one has slx 0 (0&lt;i&lt;n) and

Then again:
(i) BX has trivial cohomology in ail dimensions,
(ii) TX BX0NX, and
(iii) the functor N:RA —» R(ô) is an équivalence of catégories with as inverse the

functorN&apos;:R(8)-&gt;RA.

Combining 3.1 and 3.2 one finally gets

3.3. The duplicial case. For a duplicial R -module X, one can consider its total

complex TXgR0,S) (1.2(ii)) given by TnX Xn (n&gt;0) and

n n + 1

dx= X {-\)ldxx and Sx I (-l)lsn+1^x xeXn
i=O i=0

as well as two subcomplexes of TX, the normalized complex NX and the bulk
complex BX, given by

1n ••• flkerdn n&gt;0

nX Xnn(ims0U • • • Uimsn_!) n&gt;0.

Conversely, for UeR(d,8), its denormalization N&apos;U is the duplicial jR-module
which, in dimension n, consists of the direct sum

where each slk • • • sHUn-k dénotes a copy of l/n_k and I is as in 3.1; ail but the
last degeneracy operator are the obvious ones, while the last degeneracy operator
and the face operators are determined by the requirement that, for ail x e Un &lt;=¦

N&apos;nU, dox dx, dxx 0 (0 &lt; i &lt; n) and

n+l
Sn+1X ÔX ~ Y, (-l)lSn+l-^
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A lengthy but straightforward calculation now yields:

3.4. THEOREM. LetXeRK°P. Then

(i) H*(BX) H*(BX) 0, and
(ii) TX BX@NX.

3.5. THEOREM. The functor N:RK°P-*R(d, 8) is an équivalence of
catégories with as inverse the functor Nf :R(d, 8) —&gt; RK°P.

3.6. Remark. Another way to verify 3.5 is to note that there is a push out
diagram of catégories

i I
A &gt; Kop

where AnAop dénotes the subcategory of Kop gênerated by the maps d,:n-»
n-l(l&lt;i&lt;n) and st :n -*• n + 1 (0&lt; i &lt; n). The appropriate normalization functor

then yields an équivalence of catégories RAnAop—&gt; (graded R-modules) and
therefore, to give an object of RK°P amounts, after normalization, to giving a chain
complex A over R and a cochain complex B over R such that A and B agrée as

graded R-modules.

§4. Homotopy théories of duplicial modules and duchain complexes

We show that the homotopy theory of duplicial modules, which takes into
account both the underlying simplicial and cosimplicial structures, is équivalent to
the homotopy theory of certain maps of differential graded modules (1.3(iii)). Of
course a similar resuit holds for duchain complexes. What we mean by &quot;homotopy

théories&quot; and when two such homotopy théories will be called &quot;équivalent&quot; will
be made précise in the appendix (§7).

We start with some preliminaries (4.1 and 4.2).

4.1. Differential graded modules
(i) We dénote by dgR the category of differential graded (left) R-modules (in

which the differentials are of degree -1) and by dgR_ and dgR ^ dgR the full
subcategories spanned by the objects with trivial homology in positive and

négative dimensions respectively.
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(ii) A map A^&gt; Be dgR is called a weak équivalence if it induces isomorph-
isms HtA ~ HXB on the homology groups. The category dgR then admits a closed

model category structure in the sensé of Quillen [3, §3] with thèse weak équivalences

and with as fibrations the maps which are onto.
(iii) Two maps /, g : A —» B e dgR are called chain homotopic if there exists a

chain homotopy D:f—g, i.e. a séquence of maps Dt : At —»Bl+1eR such that
dDl + Dl_ld fl-gl for ail î. Clearly chain homotopic maps are homotopic, i.e.

(7.7), they hâve the same image in the localization of dgR with respect to the
weak équivalences.

4.2. Maps of differential graded modules
(i) We dénote by (dgR, dgR) the category of maps in dgR, (i.e. the category

which has as objects the maps a:A&apos;—»AedgR and as maps (a:Ar^&gt;A)-+
(b:B&apos;-*B) the pairs of maps /&apos; : A&apos; -&gt; £&apos;, / : A -&gt; B e dgR such that bf fa) and

by (dgR_,dgR+)c(dgR,dgR) the full subcategory spanned by the maps A&apos;—»

A g dgR with A&apos; e dgR_ and A e dgR+.
(ii) A map (/&apos;,/): (a : A&apos;-» A)-* (b :B&apos;-»E)e(dgR,dgR) will be called a

weak équivalence if /&apos; : A&apos; —&gt; B&apos; and / : A —» B are weak équivalences in dgR. The

category (dgR, dgR) then admits a closed model category structure with thèse weak
équivalences and with as fibrations the maps (/&apos;, f) for which both /&apos; and / are
fibrations in dgR.

(iii) Two maps (f,/), (g&apos;, g):(a:A&apos;-» A)-&gt;(6:B&apos;-*B) in (dgR,dgR) are
called chain homotopic if there exists a chain homotopy (D&apos;, D, E) : (/&apos;, /) — (g&apos;, g),
i.e. séquences of maps D[: A[-+ B[+1, Dl:AI-+ Bl+1 and Et : A;—» Bl+2€R such

that aD; + Dl/_1a /[-gl/, dDl + Dl_1d fl-gl and dEl-El-ld=bl+1D&apos;l-Dlal for
ail L Again one readily vérifies that chain homotopic maps in (dgR, dgR) are
homotopic (7.7).

We also hâve to define

4.3. Weak équivalences in RK°P and in R(a, 8). A map X^ YeRK°P will be

called a weak équivalence if it induces isomorphisms 7rj*X«irj*Y (i&gt;0) on the

homotopy groups of the underlying simplicial modules as well as isomorphisms
7rlfc*X«7rlfc*Y (i^O) on the cohomotopy groups [1, Ch. X, §7] of the underlying

cosimplicial modules. Similarly a map l/-&gt; VeR(d, 8) will be called a weak

équivalence if it induces isomorphisms H.U — H^ and HlU~HlV (i^O) on the

homology ând cohomology groups.
Theorems 3.4 and 3.5 now immediately imply

4.4. THEOREM. The functors T, N:RK°P-»R(d, S) of 3.3 préserve weak

équivalences and induce équivalences between the homotopy theory of RK°P and the
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homotopy theory of R(d, 8) (with respect to the weak équivalence of 4.3, of
course).

The main resuit of this section now relates those homotopy théories to that of
(dgR_,dgR+). If s : R(d, 8) -» (dgR_, dgR+) dénotes the splitting functor which
sends an object UeR(d, 8) to the map K&apos;-*KedgR with KLn Kn Un for
n &gt;0 and KLn= Kn 0 for n &lt;0, then one has

4.5. THEOREM. The splitting functor s :R(d, 8)^&gt; (dgR_,dgR+) préserves
weak équivalences and induces an équivalence between the homotopy théories of
R(d, 8) and (dgR_, dgR+) (with respect to the weak équivalences of 4.3 and 4.2
respectively).

As a map U —» VeR(d, 8) is a weak équivalence iff the induced map si/-»
sV e (dgR_, dgR+) is so, an immédiate conséquence is the following resuit on

4.6. Duchain homotopies. Call two maps /, g: L/—» VeR(d, 8) duchain
homotopic if there exists a duchain homotopy (D\ D, E) :/~ g, i.e. maps D[ : Ut —&gt;

Vl_1(i&gt;0), D.&apos;.U,^ Vl+1 (i&gt;0) and EX : UX -&gt; V2_l(0&lt;i&lt;2) in R such that
8D[ -h D&apos;l+l8 dD, + D^d /, - &amp; for i &gt; 0, D[8 0, dDQ 0, dEx ~ E28 D\ and

dEo-E18 0. Then duchain homotopic maps are homotopic (7.7).
Another conséquence of 4.4 and 4.5, which can also easily be obtained

directly is the

4.7. COROLLARY ON ONE-SIDED HOMOTOPY THEORIES. The

homotopy theory of RK°P with respect to the maps which induce isomorphisms on the

homotopy (resp. cohomotopy) groups of the underlying simplicial (resp. cosimpli-
cial) modules is équivalent to the homotopy theory of the category dgR+ (resp.

dgR_) (with weak équivalences as in 4.1).

Proof of 4.5. Let C c (dgR_, dgR+) be the full subcategory spanned by the

maps K&apos;-*KedgR such that K&apos;0^K0 is 1-1 and K[ K_t 0 for i&gt;0. The
restriction s&apos;:R(d, ô)-»C of s then has a left adjoint r:C-*R(d, 8) with the

property that, for every object (Kr -&gt; K) e C, H*r(K&apos; -» K) is naturally isomorphic
to H*K, while H*r(Kf -» K) is naturally isomorphic to H*K&apos;. As r préserves push

outs and K&apos; —» K fîts into a push out diagram

(O-+M) &gt; (O-+K)
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where 0 dénotes the trivial object and M is given by Mo K&apos;Q and M, 0 for ij= 0,

one only has to verify this property for the other three corners, which is

straightforward. Using this property one now readily shows that r and s&apos; both
préserve weak équivalences and that both adjunction maps are weak équivalences.

On the other hand, given an object (A&apos;~*A)e (dgR_, dgRJ, one can, in a

functorial manner, construct a commutative diagram in dgR

i i i i i

in which
(i) the horizontal maps are weak équivalences,
(ii) the maps A —? C and G&apos; -* E&apos; are isomorphisms,
(iii) the map C&quot; —» C is onto,
(iv) the second square is a pull back and Et 0 for i &lt;0,

(v) G, 0 for i&lt;0 and the map G[-*GX is 1-1 for i&gt;0, and
(vi) K&apos;o 0 for i&gt;0,

and hence (K&apos;-*K)eC.

The theorem now follows by combining the above results with 4.2, 7.5 and
7.6.

We end with the construction of

4.8. A closed model category structure for R(d, S). The category R(d, 8)
admits a closed model category structure in which the weak équivalences are as in
4.3 and in which a map is a fibration iff it is onto in dimensions &gt;0.

4.9. Remark. The normalization functor N (3.3) of course induces a corres-
ponding closed model category structure on RKoP with weak équivalences as m 4.3.

Proof of 4.8. Let 0 dénote the trivial object and, for every integer n &gt; 0, let Dn
stand for the (free) object with one generator xn the dimension n, and let S&quot; (resp.
Sg) be the object with one generator yn (resp. y^) in dimension n and one relation
dyn 0 (resp. 8y&apos;n= 0). Then one readily vérifies that a map in R(d, 8) is a fibration
(resp. a trivial fibration) iff it has the right lifting property with respect to the maps
0-»Dn with n&gt;0 (resp. the maps S£~1-*£)n given by yn-x-&gt;dxn (n&gt;0), the

maps S£+1 -&gt; Dn given by y&apos;n+1 -*&gt; 8xn (n &gt; 0) and the map 0 -&gt; S£ D°). The rest
of the proof then is as in [3,3.1].
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§5. An Eilenberg-Zilber theorem

An application is the following Eilenberg-Zilber theorem for duplicial modules.

5.1. THEOREM. LetX, YeRK°P. Then the duchain complexes N(X&lt;g)Y) and
NX(g)NY (where N is as in 3.3 and ® dénotes the dimensionwise tensor product
in RK°P and the obvious graded tensor product in R(d, 8)) are naturally weakly
équivalent (in the sensé of 4.3).

To prove this we first recall simplicial and cosimplicial versions of the

Eilenberg-Zilber theorem [7, p. 129].

5.2. The simplicial case. Given two simplicial JR-modules X and Y, let X® Y
be their dimensionwise tensor product (which is often denoted by X x Y) and
consider the maps

and TX(g&gt;TY^ T(X® Y)€R(d)

given by the formulas

n

X dnxn)®(d0- - • d^yj xneXn, yneYn.

I (-De(a)(sba • • • sblxp)&lt;8&gt;(Sap ¦ • ¦ sa,yq) xp e Xp, yq e Yq,q) I (-De(a)(
(a,b)

where e(a) Y^=\ (û, + l~0 and the sum Y*{a,b) is taken over ail (p, q)-shuffles
(a, b). Then the compositions gf and fg are the identity in dimension 0 and there are
natural chain homotopies D:gf~ id and D:fg~ id for which Do and Do are the

zéro maps.
Dually one has

5.3. The cosimplicial case. Given two cosimplicial R-modules X and Y, let
X® Y dénote their dimensionwise tensor product and consider the maps

T(X® Y) U TX® TY and TX® TY ±&gt; T(X® Y) e R(8)

given by the formulas (see 5.2)

I I (-l)c(ûV&gt; • • • sb&lt;ocn)®(sa* • • • sa»yn)
p+q=n (a,b)

g(*p&lt;8&gt;yq) idn ¦ ¦ ¦ d^lxp)®{dp-1 ¦ ¦ ¦ d°yq).
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Then the compositions gf and fg are the identity in dimension 0 and there are
natural cochain homotopies D&apos; : g/~ id and D&apos; :/g ~ id for which D\ and D&apos;x are the

zéro maps.
In view of 4.2 and 4.5, combination of 5.2 and 5.3 yields

5.4. A duplicial version. Given X, Y e RK°P, consider the maps

sT(X&lt;g&gt; Y) 4 sTX&lt;g)sTY and sTX®sTY ^ sT(X(g&gt; Y) e (dgR_, dgR+)

which, in dimensions &gt;0, are given by the formulas (5.2)

n

fixn®yn)= I (dl+1- ¦ ¦ dnXn)®(d0- ¦ ¦ dt_iyn)
1=0

Sav- ¦ ¦ Sa,yq)
(a,b)

and, in dimensions &lt;0, by (5.3)

X I (-l)€(a)(dn-bq- • • dn_blxn)®(dn_ap
p+q=n (a,b)

Then the compositions gf and fg are the identity in dimension 0 and there are
natural chain homotopies (D\ D, E) : gf ~ id and (D&apos;, D, É) :/g ~ id for which D&apos;x,

Di, Do, Do, the Ev and the Ëx are the zéro maps.
It remains to give a

5.5. Proof of 5.1. Using 3.4, 3.5, 4.2 and 4.5, Theorem 5.1 now follows
readily from 5.4 and the fact that sTX®sTY~s{TX®TY).

§6. The ring of natural self maps

As another application of the normalization of §3 we
(i) show that the ring End RK°P of the natural self maps of duplicial R-modules

is isomorphic to the ring ER of séquences (f0, fx, f2,...) of polynomials in one
variable with coefficients in the center of R and with the same constant coefficient
(in which the multiplication is termwise multiplication of the polynomials),
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(ii) compute the élément of ER which corresponds to the natural self map
induced by the curious natural transformation of 2.2, and

(iii) use this to characterize the full subcategory of R(d, 8) which (under the
normalization functor) is équivalent to the category of the cyclic R-modules of
Connes [2].

First we observe that Theorem 3.5 immediately implies

6.1. PROPOSITION. The normalization functor N : RK°P -* R(d, 8) induces an
isomorphism between the ring End RK°P of the natural self maps of duplicial
R-modules and the ring End R(d, 8) of the natural self maps of duchain complexes
over R.

Next we consider

6.2. The ring ER. It is convenient to consider EJR as the ring of séquences

(/_i, /o, /i, • •.) of polynomials in one variable z with coefficients in the center of
R such that

(i) the ft (i &gt; — i) hâve the same constant term, and
(ii) /_! consists of the constant term only.
A simple calculation now yields that, given an élément f=(f-l,f0,f1,...)e

ER, one can construct an élément cp/eEndR(d, 8) which, to an object Ue
R(d, 8), assigns the self map &lt;pf: U -&gt; l/eR(d, 8) given by the formula

(&lt;P/)* fn(d8)x + (/n-! &quot; f-1)(d8)x X 6 Un, M &gt; 0.

Moreover

6.3. THEOREM. The function &lt;p :ER -*EndR(d, 8) is an isomorphism of
rings.

Proof. Let e e End R(d, 8) hâve components en (n &gt; 0). By checking the action
of e on the free duchain complex with one generator in dimension n, one sees that

for some uniquely determined polynomials fn and gn with coefficients in the

center of jR and with gn having zéro constant term. It then follows easily from the
fact that end den+1 and en+18 8en (n &gt;0) that

(i) the fn (n &gt; 0) hâve the same constant term which we dénote by /_1? and

(ii) gn /n-
Le. e
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Furthermore

6.4. THEOREM. Let f (f-l9fo,fl9...)eER and let l/eR(â,8). Then the

map &lt;pf:U-+ UeR(d,8) is naturally duchain homotopic (4.6) to &quot;multiplication

by /_/&apos;.

Proof. For every integer n &gt;0, let /n be defined by zfn /„ -/_i. The desired
duchain homotopy (D\ D, E) then is given by D&apos;n+l dfn(8d) fn(d8)d and Dn
fn(8d)Ô 8fn(dô) for n &gt;0, £0 E 0 and Ex fo(8d).

Next we prove

6.5. PROPOSITION. LetXeRK°P and let u :X^XeRK°P be the natural self

map given by (see 2.3)

ux (dosn+1)n+1x xeXn, n&gt;0.

Then Nu &lt;p{f_l9 /0, fl9 ...):NX^&gt;NXe R(d, Ô), where

In view of 2.4 and 3.5 this implies

6.6. COROLLARY. The normalization functor of 3.3 induces an équivalence
between the category of cyclic R-modules (i.e. functors Aop—»R (2.4) and natural
transformations between them) and the full subcategory of R(d, 8) spanned by the

objects UeR(d,8) such that, for every integer n&gt;0,

where fn is as in 6.5, or equivalently

(1 + (-l)ndô)n+1(l + (-îr^ôdr id : Un -&gt; Un € R

Proof of 6.5. If x € NnX, i.e. dtx 0 for i &gt; 0 and d0* àx9 then (3.3) sn+1x
8x + snx---&apos; + (-l)nsox and hence dosn+1x d8x + sn-Xdx-- • - + (-l)nx, i.e.

d0Sn+i^ (^ + (~l)n)^ modulo terms involving dx. This, together with 6.3, now
readily implies that, for ail n^-1

(- Dnz)nz)n+1
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We end with

6.7. REMARK. If X is a cyclic R-module, then [6,11.2] the normalized
version of the commuting differentials b and B of Connes is (up to a possible sign)
given by

b=d:Nn+1X-&gt;NnX and B ôfn(d8) :NnX-^ Nn+1X,

where the polynomial /n(n&gt;0) is determined by
Moreover, one can show [5] that the resulting functorfrom &quot;cyclic R-modules&quot; to
&quot;duchain complexes over R with commuting differentials&quot; is an équivalence of
homotopy théories.

§7. Appendix on homotopy théories

In this appendix we hope to make clear (by reformulating some of the results
of [4])

(i) what we mean by the homotopy theory of a category C with respect to an
admissible subeategory W (the maps of which are usualty called weak équivalences),

(ii) when two such homotopy théories will be called équivalent, and

(iii) when we say that a functor induces an équivalence of homotopy théories.

7.1. Simplicial catégories. By a simplicial category we will mean something
slightly différent from usual. We assume, as is often done, that a simplicial
category hâve the same objects in each dimension. However, we do not require
that the &quot;simplicial hom-sets&quot; be small, but only that they be homotopically smaïl
in the sensé explained below (7.2). A simplicial category for which the simplicial
hom-sets are discrète then is just an ordinary category.

7.2. Homotopically small simplicial sets. A (not necessarily small) simplicial
set X will be called homotopically small if 7rn(X; v) is small, for every vertex veX
and every integer n&gt;0. This is clearly équivalent to requiring that X contain a

small simplicial set U with the property that, for every small simplicial set VcX
containing U, there is a small simplicial set W&lt;=X containing V, such that the
inclusion [/-» W is a weak homotopy équivalence. Clearly the homotopy type of
such a U is unique and it thus makes sensé to talk of the homotopy type of a

homotopically small simplicial set and of weak homotopy équivalences between

homotopically small simplicial sets. One can therefore define as follows
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7.3. Weak équivalences between simplicial catégories. A weak équivalence
S : C —» D between two simplicial catégories is a functor which

(i) induces an équivalence ttoC — ttoD between the &quot;catégories of compo-
nents&quot;, and

(ii) induces, for every two objects X, YgC, a weak homotopy équivalence
C(X, Y)«D(SX, SY) between the simplicial hom-sets.

Similarly two simplicial catégories will be called weakly équivalent if they can
be connected by a finite string of simplicial catégories and weak équivalences
between them (in alternating directions).

Next we consider the key construction of

7.4. The simplicial localization of a category with respect to an admissible
subcategory. Let C be a category, let WcCbe a subcategory and consider, for
every two objects X, YeC, the (not necessarily small) simplicial set of the reduced
hammocks between X and Y, which has as fc-simplices the commutative diagrams
in C of the form

in which
(i) n, the length of the hammock, is any integer &gt;0,

(ii) ail vertical maps are in W,
(iii) in each column (of horizontal maps) ail maps go in the same direction; if

they go to the left, then they are in W,
(iv) the maps in adjacent columns go in différent directions, and
(v) no column contains only identity maps,

and in which the faces and degeneracies are defined in the obvious manner, i.e.
the i-face is obtained by omitting the i-row and the i-degeneracy by repeating the

i-row; if the resulting hammock is not reduced (i.e. does not satisfy (iv) and (v)),
then it can easily be made so by repeatedly
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(iv)&apos; composing two adjacent columns whenever their maps go in the same

direction, and
(v)&apos; omitting any column which contains only identity maps.
One then calls W an admissible subcategory of C if W contains ail the objects

of C and if, for every two objects X, YeC, the simplicial set of the reduced
hammocks between X and Y is homotopically small. Moreover, in this case, one
defines the simplicial localization of C with respect to W as the simplicial category
L(C, W) (or short LC) which has the same objects as C and in which, for every
two objects X, YeC, the simplicial hom-set LC(X, Y) is the (homotopically
small) simplicial set oï the reduced hammocks between X and Y, with the obvious
(see above) composition.

Note that, for every two objects, X, YeC, the components of LC(X, Y) are in
1-1 correspondence with the maps X—&gt; YeC[W-1], Le. tt0LC C[W~1], where
C[W-1] dénotes the (ordinary) localization of C with respect to W (i.e. the

category obtained from C by &quot;formally inverting&quot; the maps of W).

7.5. EXAMPLE. Let Cx and C2 be catégories, let W^d and W2c=C2 be

subcategories containing ail the objects and call the maps of Wx and W2 weak
équivalences. Furthermore let S:Ci~&gt; C2 and T:C2—»Cx be functors such that

(i) S and T préserve weak équivalences, and

(ii) the compositions TS and ST are naturally weakly équivalent to the

identity functors of Cx and C2 respectively.
Then it is easy to see that Wx is admissible iff W2 is so and that, in that case,

the functors S and T induce weak équivalences LS\LC1-&gt;LQ2 and LT:LC2—»

7.6. EXAMPLES. Let C be a closed model category in the sensé of Quillen
[3, §3]. Then one readily vérifies that

(i) the subcategory WcCo/ the weak équivalences is admissible, and

(ii) if C c C is a full subcategory such that every weak équivalence is either in C
or has neither its domain nor its range in C, then WDC is an admissible

subcategory of C.

Now we are ready for our définition of

7.7. HOMOTOPY THEORIES. By the homotopy theory of a category C with

respect to an admissible subcategory W, we just mean the simplicial localization
LC. The maps of W are then called weak équivalences. The category of components

7T0LC C[W~1] is usually referred to as the homotopy category of C with
respect to W and maps in C are called homotopic if they hâve the same image in
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this homotopy category. (The results of [4] show that, in the model category case,
this notion of homotopy theory is a natural enrichment of Quillen&apos;s original
notion).

7.8. Equivalent homotopy théories. Let Wx &lt;= Cx and W2 &lt;= C2 be admissible

subcategories. Then we call the resulting homotopy théories LCi and LC2
équivalent if they are weakly équivalent (7.3) as simplicial catégories, and we say
that a functor S:C1-*C2 induces an équivalence of homotopy théories if

(i) S préserves weak équivalences, and

(ii) the induced functor LQ1 —» LC2 is a weak équivalence.

7.9. REMARK. It is sometimes useful to extend définition 7.7 somewhat and

to define &quot;a&quot; homotopy theory of a category C with respect to an admissible
subcategory W as any simplicial category which is weakly équivalent to LC.
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