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Normalizing the cyclic modules of Connes*

W. G. DwyYER and D. M. KaN

§1. Introduction

1.1. Summary. This paper deals with simplicial modules X which, in each
dimension n =0, have an extra degeneracy map s,,;: X, = X, (satisfying the
usual identities, except that, in general, dgs, ., # s.do: X, — X,,). We call them
duplicial modules, because omission of the initial face maps dy: X, .1 — X, (n=0)
leaves a cosimplicial module (with the degeneracy maps as coface maps and the
remaining face maps as codegeneracy maps). Our key observation (in §3) then is,
that one can normalize duplicial modules, just like simplicial and cosimplicial
ones, and that the resulting normalization functor is an equivalence between the
category of duplicial modules and the category of ‘“duchain complexes”, i.e.
diagrams of modules of the form

Uo

S
Ui2U;

Q’ﬂ, o
mu* o

in which *°=0 and 6%=0, but in which the o’s and the &’s are otherwise
independent.

1.2. Motivation and application. In our investigations of the cyclic objects of
Connes [2] we noted that a cyclic module X is just a duplicial module which
satisfies the cyclic identities (dys, )" =id : X, — X, (n=0). This suggests that a
study of duplicial modules could be of use for a better understanding of cyclic
modules. Indeed, the normalization result mentioned above (1.1) immediately
implies that the category of cyclic modules is equivalent to a full subcategory of
duchain complexes, and our results (in §6) on the natural self maps of duplicial
modules yield a rather simple characterization of this subcategory in terms of
polynomial identities in 36 and 84.

* This research was in part supported by the National Science Foundation.
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1.3. Main results and organization of the paper

(i) The duplicial indexing category K°°. This is a small category with the
property: if R is a ring with 1 # 0 and R denotes the category of (left). R-modules,
then a duplicial R-module is just a factor K°® — R. In §2 we first define K°°
directly, as an extension of the simplicial indexing category A4 °® and then show, that
K°? can be constructed as an amalgamation of the simplicial indexing category A°®
and the cosimplicial indexing category A, by identifying, in each dimension, the
degeneracy operators (in A°?) with all but one of the coface operators (in 4) and
the codegeneracy operators (in A) with all but one of the face operators (in 4°P).
We also note that the cyclic indexing category A°P of Connes [2] can be obtained
from K°° by the addition of certain “cyclic’’ relations.

(it) The normalization. Next (in §3) we observe that one can normalize
duplicial modules, just like simplicial and cosimplicial ones, and that this normali-
zation induces an equivalence between the category R*™” of duplicial R-modules
and the category R(9, 8) of (see 1.1) duchain complexes over R.

(iii) Homotopy theories of duplicial modules and duchain complexes. If one
defines weak equivalences between duplicial modules as maps which induce
isomorphisms on the homotopy groups of the underlying (see 1.1) simplicial
modules as well as on the cohomotopy groups of the underlying (see 1.1)
cosimplicial modules, then (§4) the resulting homotopy theory is equivalent to a
more familiar homotopy theory of the maps A' — A of differential graded modules,
for which A' has trivial homology in positive dimensions and A has trivial
homology in negative dimensions. Of course (ii), a similar result holds for duchain
complexes.

(iv) An Eilenberg—Zilber theorem. An application (in §5) is an Eilenberg-Zilber
theorem for duplicial modules: the normalization of the (dimensionwise) tensor
product of two duplicial modules is, as a duchain complex, naturally weakly
equivalent to the tensor product of their normalizations.

(v) The ring of natural self maps. The normalization (ii) induces an isomorph-
ism between the ring End R¥™ of the natural self maps of duplicial R-modules
and the ring End R(9, 8) of the natural self maps of duchain complexes over R. In
§6 we show that these rings are isomorphic to the ring ER of sequences of
polynomials in one variable with coefficients in the center of R and with the same
constant term, and we then use this result to give (as promised in 1.2) a simple
characterization of the full subcategory of R(9d, 8) which (under the normalization
functor) is equivalent to the category of cyclic R-modules.

(vi) Homotopy theories. In the appendix (§7) we make clear what exactly we
mean by the homotopy theory of a category with respect to a subcategory (of weak
equivalences), and when two such homotopy theories will be called equivalent.
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§2. The duplicial indexing category K°".

After defining the duplicial indexing category K°° as an extension of the
simplicial indexing category 4 °®, we show that K°® admits the self dual presenta-
tion in terms of A°® and A mentioned in 1.3(i). We also note that the cyclic
indexing category A°® of Connes [2] can be obtained from K°P by the addition of
certain ‘“‘cyclic” relations, which are closely related to a curious natural transfor-
mation from the identity functor of K to itself.

Recall that the simplicial indexing category A°P is the category with objects
0,1,2,... and generating maps

d:n—n-1 O<i=<n, n>0
s;:n—>n+1 O<i=n

subject to the usual relations [7,p. 1], and that dually the cosimplicial indexing
category A is the category with objects 0,1,2,... and generating maps

d:n—-1-n O<i=<n, n>0
si':n+1—n O<i<n

subject to the dual relations. Then one can define as follows:

2.1. The duplicial indexing category K°°. This is the category with objects
0,1,2,... and generating maps

di:n—n-1 O<i<n

s;:n—>n+1 O=si=n+1

subject to the relations

did]' = d]’-—ldi and S;S; = 8;8;—1 O<]—_ 1

dsj=s;_1d;:n—>n 0<j—1=n
=id -1=j-i=<0
=8id; 1 j—i=<~1

Note that dgs, ., # s,do:n— n.
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Clearly the obvious functor j:A°® — K is 1-1 and so is dually the functor
k:A — K given by

(d-n—1-n)—(s,_,:n—1—n)
(s:n—>n-1)—>(d,_;:n—>n-1)
There is also an isomorphism m :K°®*~K (the opposite of K°°) given by
(d;:m—->n-1)—(s,_;:n—1—->n)
(s;:m=1->n)—>(d,_;:n—>n-1)

which has the property that mj = k°® and mk = j°°.

2.2. Remark. One often identifies the category A with the category of the
weakly monotone functions between the finite ordered sets of integers (0, ..., n).
In a similar manner the category K can be identified with a category P of weakly
monotone and ‘‘periodic”’ functions between copies of the ordered set of the
non-negative integers N=(0,1,2,...). More precisely:

Let P be the category whose objects consist of one copy p,, of N for each
integer n =0 and which has as maps p, — p,.  the weakly monotone functions f
which are periodic, i.e. f(j+n+1)=f({)+n'+1 for all je N. One then readily
verifies that P is indeed isomorphic to K (the opposite of K°?); the opposite of the
map d; :n— n—1¢€ K corresponds to the function p,,_; — p, given by j — j for
j<i and j—j+1 for j=i, and the opposite of the map s;:m—1—->necK®
corresponds to the function p, — p,._; given by j—j for j<i and j > j—1 for
j>i. This implies that the opposite of the map dys,..,:n— n corresponds to the
function p, — p, given by j— j+1 for all j.

It is also not difficult to see that the copy of A (resp. A°®) contained in K
corresponds to the subcategory of P which consists of the functions f:p, — p,.
such that f(n)=<n’' (resp. f(0)=0).

An immediate consequence of this remark is the existence of

2.3. A curious natural transformation. The functor v which assigns to every
object ne€ K°° the map

vn=(dyS,.1)""':n—>neK®

is a natural transformation from the identity of K" to itself.
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Moreover one has

2.4. PROPOSITION. The cyclic indexing category A°® [6] can be obtained
from K° by adding the “cyclic” relations

on=(doSp.)""'=id:n—>n n=0

Proof. This is a straightforward calculation in which one takes t,.,=
(doSn+1)" =(doSp+1) ':m—m, or equivalently s, =t,},50:n—1—n.

§3. The normalization

Let R be the category of (left) modules over a ring R with 1#0, let R¥”
denote the category of duplicial R-modules (the objects are the functors K°®* - R
and the maps are the natural transformations between them) and let R(3, §) be
the category of duchain complexes over R (1.1). The key result of this paper then
is that (3.3) one can normalize duplicial R-modules, just like simplicial and
cosimplicial ones, and that (3.5) the resulting functor N:R¥" —R(9, 8) is an
equivalence of categories.

We start with a brief review of the relevant facts in the simplicial and
cosimplicial cases [7, §22].

3.1. The simplicial case. Let R(3) denote the category of chain complexes
over R, i.e. diagrams in R

U06—6‘U1<—6'U2('3"' With 62':0

and consider, for every simplicial R-modules X, its total complex TX € R(d) given
by T, X =X, (n=0) and

ax = Z (—1)'dix xeX,

i=0

as well as two subcomplex of TX, the normalized complex NX and the bulk
complex BX, given by

N, X=X, Nkerd,N---Nkerd, n=0

BnX=Xnﬁ(imS0U"'Uil‘nsn~1) n=0.
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Conversely, for U eR(9), its denormalization N'U is the simplicial R-module
which, in dimension n, consists of the direct sum

NQU: Un®(z S; %" Si]Un—k)
I

where each s; - -+ s; U,_, denotes a copy of U,_, and the direct sum is taken
over the set I of all non-empty sequences of integers (i,...,i;) such that
n>i > --- >i;=0; the degeneracy operators are the obvious ones and the face
operators are determined by the requirement that dgx =dx and dix =0 (0<i=<n)
for all xe U, < N/ U. Then,
(1) BX has trivial homology in all dimensions,

(il) TX =BX®NX, and

(iii) the functor N:R*” — R(9) is an equivalence of categories with as inverse
the functor N':R(3) - R*”, i.e. the compositions N'N and NN’ are naturally
equivalent to the identity functors of R*” and R(d) respectively.

Dually one has

3.2. The cosimplicial case. Let R(6) denote the category of cochain com-
plexes over R, i.e. diagrams in R

8 3

Uy U, > U,> -+ with 82=0

and consider, for every cosimplicial R-module X, its total complex TX € R(8)
given by T, X = X,, (n=0) and
n+1 o
dx= ), (-1)dx xeX,,
i=0
as well as two subcomplexes of TX, the normalized complex NX and the bulk
complex BX, given by
N.X=X,Nkers’N --- Nkers"™' n=0

B, X=X,N({imd'N -+ Nimd") n=0.

Conversely, for U eR(8), its denormalization N'U is the cosimplicial R-module
which, in dimension n, consists of the direct sum

N'U= UnEB(Z dh- - d"‘Un_k)

J
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where each d’- - - d"U,_, denotes a copy of U,_, and the direct sum is taken
over the set J of all non-empty sequences of integers (ji,...,j;) such that
n=j,>-+->j>0; the coface operators d’ (i>0) are the obvious ones and d°
and the codegeneracy operators are determined by the requirement that, for all
xeU,<=N'U, one has s'’x=0 (0<i=<n) and

n+1
d°x =8x— ), (-1)d'.
i=1
Then again:
(i) BX has trivial cohomology in all dimensions,
(i) TX = BX® NX, and
(iii) the functor N :R* — R(8) is an equivalence of categories with as inverse the
functor N':R(8) — R4,
Combining 3.1 and 3.2 one finally gets

3.3. The duplicial case. For a duplicial R-module X, one can consider its total
complex TX e R(9, 8) (1.2(ii)) given by T, X =X, (n=0) and

n+1

ax=Y, (-Didx and 8x= Y, (=1)s, 1 xeX,

i=0 i=0

as well as two subcomplexes of TX, the normalized complex NX and the bulk
complex BX, given by

N, X=X,Nkerd,N --- Nkerd, n=0
B, X=X,N(@{ms,U :--- Uims,_,) n=0.

Conversely, for U eR(9, §), its denormalization N'U is the duplicial R-module
which, in dimension n, consists of the direct sum

N:,Uz U,-,@(z S 0 si,Un-—k)
I

where each s; - - -5, U,_, denotes a copy of U,_, and I is as in 3.1; all but the
last degeneracy operator are the obvious ones, while the last degeneracy operator
and the face operators are determined by the requirement that, for all xe U, <
N'U, dox =0x, dix =0 (0<i=<n) and

n+1 )
Sp+1X = Ox — Z (—1)'s 11X,
i=1

1=
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A lengthy but straightforward calculation now yields:

3.4. THEOREM. Let X € R*™. Then
(i) H,(BX)=H*(BX)=0, and
(i) TX = BX®NX.

3.5. THEOREM. The functor N:R¥"—>R(3,8) is an equivalence of
categories with as inverse the functor N’ :R(9, §) - R¥™.

3.6. Remark. Another way to verify 3.5 is to note that there is a push out
diagram of categories

ANA® —> A

L

A — K”

where 4 NA°P denotes the subcategory of K° generated by the maps d;:n —
n—-1(l<i=<n)and s;:n—>n+1 (0<i=<n). The appropriate normalization func-
tor then yields an equivalence of categories R*™*” — (graded R-modules) and
therefore, to give an object of R¥” amounts, after normalization, to giving a chain
complex A over R and a cochain complex B over R such that A and B agree as
graded R-modules.

§4. Homotopy theories of duplicial modules and duchain complexes

We show that the homotopy theory of duplicial modules, which takes into
account both the underlying simplicial and cosimplicial structures, is equivalent to
the homotopy theory of certain maps of differential graded modules (1.3(iii)). Of
course a similar result holds for duchain complexes. What we mean by ‘““homotopy
theories” and when two such homotopy theories will be called “‘equivalent” will
be made precise in the appendix (§7).

We start with some preliminaries (4.1 and 4.2).

4.1. Differential graded modules

(i) We denote by dgR the category of differential graded (left) R-modules (in
which the differentials are of degree —1) and by dgR_ and dgR, = dgR the full
subcategories spanned by the objects with trivial homology in positive and
negative dimensions respectively.
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(i) A map A — BedgR is called a weak equivalence if it induces isomorph-
isms H;A =~ H;B on the homology groups. The category dgR then admits a closed
model category structure in the sense of Quillen [3, §3] with these weak equival-
ences and with as fibrations the maps which are onto.

(iii) Two maps f, g: A — B edgR are called chain homotopic if there exists a
chain homotopy D :f~ g, i.e. a sequence of maps D,;:A; — B;,;€R such that
oD+ D;_,0=f;,—g; for all i. Clearly chain homotopic maps are homotopic, i.e.
(7.7), they have the same image in the localization of dgR with respect to the
weak equivalences.

4.2. Maps of differential graded modules
(i) We denote by (dgR, dgR) the category of maps in dgR, (i.e. the category
which has as objects the maps a:A’'— A edgR and as maps (a:A'—> A)—
(b : B'— B) the pairs of maps f': A’— B’, f: A — B edgR such that bf' = fa) and
by (dgR_, dgR,) < (dgR, dgR) the full subcategory spanned by the maps A’ —
A edgR with A'edgR_ and A edgR..

(i) A map (f',f):(a:A’"—> A)— (b:B'— B)e(dgR, dgR) will be called a
weak equivalence if f': A'— B’ and f: A — B are weak equivalences in dgR. The
category (dgR, dgR) then admits a closed model category structure with these weak
equivalences and with as fibrations the maps (f’, f) for which both f' and f are
fibrations in dgR.

(iii) Two maps (f,f), (g’,g):(a:A'—> A)— (b:B'— B) in (dgR, dgR) are
called chain homotopic if there exists a chain homotopy (D', D, E):(f', )~ (g, g),
i.e. sequences of maps D!:A{— B{,, D;:A;— B;,, and E;: A — B;,,€R such
that oD!+ D]_,0=fi—gi, oD;+D;_0=f;—g and 0E;,—E;_,0=b;,,D;— D;a; for
all i. Again one readily verifies that chain homotopic maps in (dgR, dgR) are
homotopic (7.7).

We also have to define

4.3. Weak equivalences in R*” and in R(9, §). A map X — Y ¢ R*” will be
called a weak equivalence if it induces isomorphisms 7;j*X = mj*Y (i>0) on the
homotopy groups of the underlying simplicial modules as well as isomorphisms
7'k*X=n'k*Y (i=0) on the cohomotopy groups [1, Ch. X, §7] of the underly-
ing cosimplicial modules. Similarly a map U — V eR(9, 8) will be called a weak
equivalence if it induces isomorphisms H;U = H,V and H'U=H'V (i =0) on the
homology and cohomology groups.

Theorems 3.4 and 3.5 now immediately imply

4.4. THEOREM. The functors T, N:R¥"—R(9,8) of 3.3 preserve weak
equivalences and induce equivalences between the homotopy theory of R*” and the
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homotopy theory of R(9,8) (with respect to the weak equivalence of 4.3, of
course).

The main result of this section now relates those homotopy theories to that of
(dgR_,dgR,). If s:R(9,6)— (dgR_, dgR.) denotes the splitting functor which
sends an object Ue€R(9, 8) to the map K'— KedgR with K’ , =K, = U, for
n=0 and K’ ,= K, =0 for n <0, then one has

4.5. THEOREM. The splitting functor s:R(3, 8)— (dgR_, dgR,) preserves
weak equivalences and induces an equivalence between the homotopy theories of
R(9, 8) and (dgR_, dgR,) (with respect to the weak equivalences of 4.3 and 4.2
respectively).

As a map U — VeR(9, 8) is a weak equivalence iff the induced map sU —
sVe(dgR_,dgR,) is so, an immediate consequence is the following result on

4.6. Duchain homotopies. Call two maps f,g:U — VeR(9,8) duchain
homotopic if there exists a duchain homotopy (D', D, E):f~ g, i.e. maps D!: U, —
Vi_1(i>0), D;:U;—> V., (i=0) and E;:U;,—> V,_;(0=i=<2) in R such that
6D+ D, ;6 =0D;+D;_0=f;—g; for i>0, D!6=0, 0D,=0, dE,—~ E,8 = D} and
d0E,— E.8 =0. Then duchain homotopic maps are homotopic (7.7).

Another consequence of 4.4 and 4.5, which can also easily be obtained
directly is the

4.7. COROLLARY ON ONE-SIDED HOMOTOPY THEORIES. The
homotopy theory of R¥™ with respect to the maps which induce isomorphisms on the
homotopy (resp. cohomotopy) groups of the underlying simplicial (resp. cosimpli-
cial) modules is equivalent to the homotopy theory of the category dgR, (resp.
dgR ) (with weak equivalences as in 4.1).

Proof of 4.5. Let C<(dgR_,dgR,) be the full subcategory spanned by the
maps K'— K edgR such that K{;— K is 1-1 and K{=K_;=0 for i>0. The
restriction s’':R(3, 8) — C of s then has a left adjoint r:C— R(9, §) with the
property that, for every object (K' — K) e C, H,r(K' — K) is naturally isomorphic
to H,K, while H*r(K’' — K) is naturally isomorphic to H,K'. As r preserves push
outs and K’' — K fits into a push out diagram

(O—>M) — (0O—K)

l l

(K'=> M) — (K'— K)
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where 0 denotes the trivial object and M is given by M,= K{ and M, =0 for i# 0,
one only has to verify this property for the other three corners, which is
straightforward. Using this property one now readily shows that r and s’ both
preserve weak equivalences and that both adjunction maps are weak equival-
ences.

On the other hand, given an object (A'— A)e (dgR_, dgR,), one can, in a

functorial manner, construct a commutative diagram in dgR

A,_‘)"C’PE,:G"‘-)K’

Lol

A>S C«—E « G—K

in which

(i) the horizontal maps are weak equivalences,

(i1) the maps A — C and G' — E' are isomorphisms,

(iii) the map C'— C is onto,

(iv) the second square is a pull back and E; =0 for i <0,

(v) G;=0 for i<0 and the map G{— G; is 1-1 for i=0, and

(vi) K§{=0 for i>0,
and hence (K'— K)eC.

The theorem now follows by combining the above results with 4.2, 7.5 and
7.6.

We end with the construction of

4.8. A closed model category structure for R(9, 8). The category R(9,8)
admits a closed model category structure in which the weak equivalences are as in
4.3 and in which a map is a fibration iff it is onto in dimensions >0.

4.9. Remark. The normalization functor N (3.3) of course induces a corres-
ponding closed model category structure on R¥™ with weak equivalences as in 4.3.

Proof of 4.8. Let 0 denote the trivial object and, for every integer n =0, let D"
stand for the (free) object with one generator x,, the dimension n, and let S} (resp.
S3) be the object with one generator y,, (resp. y’) in dimension n and one relation
3y, =0 (resp. 8y, = 0). Then one readily verifies that a map in R(9, 8) is a fibration
(resp. a trivial fibration) iff it has the right lifting property with respect to the maps
0 — D" with n>0 (resp. the maps S5 !'— D" given by y,_; — dx, (n>0), the
maps Si*!'— D" given by y’,,; — 8x, (n=0) and the map 0 — S) = D?). The rest
of the proof then is as in [3, 3.1].
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§5. An Eilenberg-Zilber theorem

An application is the following Eilenberg-Zilber theorem for duplicial mod-
ules.

5.1. THEOREM. Let X, Y e R¥". Then the duchain complexes N(X® Y) and
NXQ®NY (where N is as in 3.3 and ® denotes the dimensionwise tensor product
in R¥” and the obvious graded tensor product in R(9, 8)) are naturally weakly
equivalent (in the sense of 4.3).

To prove this we first recall simplicial and cosimplicial versions of the
Eilenberg-Zilber theorem [7, p. 129].

5.2. The simplicial case. Given two simplicial R-modules X and Y, let X® Y
be their dimensionwise tensor product (which is often denoted by X X Y) and
consider the maps

TX®Y)L TX®TY and TXRTY S T(X® Y)eR()

given by the formulas

n

fa®Ya)= L (dis1*** dux)®(do " * ~ di-1Y) X €X  Yn€Ya

i=0
g, ®Y)= 2 (1)*@(sp, 55, %)@ (Sa** * SaYa) X% €Xp  YVa€ Yo
(a,b)

where e(a)=3"_,(a;+1—i) and the sum ), is taken over all (p, q)-shuffies
(a, b). Then the compositions gf and fg are the identity in dimension 0 and there are
natural chain homotopies D : gf ~id and D :fg~id for which D, and D, are the
zero maps.

Dually one has

5.3. The cosimplicial case. Given two cosimplicial R-modules X and Y, let
XQ®Y denote their dimensionwise tensor product and consider the maps

TX®Y)L TX®TY and TXQRTY S T(X®Y)eR(S)

given by the formulas (see 5.2)

f(x, ®v,)= Z Z (_1)e(a)(sb. N squn)®(sag ce e g%y,)

p+q=n (a,b)

g(x,®y,)=(d" - -+ d° 'x,)®(d" ' - - - d%,).
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Then the compositions gf and fg are the identity in dimension 0 and there are

natural cochain homotopies D' : gf ~ id and D': fg ~ id for which D, and D}, are the
zero maps.

In view of 4.2 and 4.5, combination of 5.2 and 5.3 yields

5.4. A duplicial version. Given X, Y e R¥” consider the maps
sT(IXQ®Y) ER sTX®sTY and sTXQ®sTY 5 sT(XQ®Y)e (dgR_, dgR,)

which, in dimensions =0, are given by the formulas (5.2)

n

fon®yn) = X (divr dux)®(do - - di_1yn)

i=0

g, ®y)= 2 (=1 sy 55, %,)® (S0 * * Sa,Va)

(a.b)

and, in dimensions =<0, by (5.3)

fEa®y)= L L (D dnp, Ay Xn) @(d s, -

T dn—a,Yn)
p+a=n (a,b)

gx, ®yy)=(54-1""" S0X,) (S, * * * Sq+1Yq)-

Then the compositions gf and fg are the identity in dimension 0 and there are.

natural chain homotopies (D', D, E): gf ~id and (D', D, E): fg ~ id for which D",
D4, Do, Do, the E; and the E; are the zero maps.
It remains to give a

5.5. Proof of 5.1. Using 3.4, 3.5, 4.2 and 4.5, Theorem 5.1 now follows
readily from 5.4 and the fact that sSTXQsTY =s(TXXTY).

§6. The ring of natural self maps

As another application of the normalization of §3 we

(i) show that the ring End R¥” of the natural self maps of duplicial R-modules
is isomorphic to the ring ER of sequences (fo, f1,f2, ...) of polynomials in one
variable with coefficients in the center of R and with the same constant coefficient
(in which the multiplication is termwise multiplication of the polynomials),
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(ii) compute the element of ER which corresponds to the natural self map
induced by the curious natural transformation of 2.2, and

(iii) use this to characterize the full subcategory of R(9,8) which (under the
normalization functor) is equivalent to the category of the cyclic R-modules of
Connes [2].

First we observe that Theorem 3.5 immediately implies

6.1. PROPOSITION. The normalization functor N : R¥” — R(9, 8) induces an
isomorphism between the ring End R*” of the natural self maps of duplicial
R-modules and the ring End R(0, 8) of the natural self maps of duchain complexes
over R.

Next we consider

6.2. The ring ER. It is convenient to consider ER as the ring of sequences

(f-1, fo, f1, . . .) of polynomials in one variable z with coefficients in the center of
R such that
(i) the f; (i=—1) have the same constant term, and
(ii) f_, consists of the constant term only.
A simple calculation now yields that, given an element f=(f_,, fo,f1,...) €
ER, one can construct an element ¢f € End R(9,8) which, to an object Ue
R(9, 8), assigns the self map ¢f: U — U eR(9, §) given by the formula

(f)x =f,(@8)x + (fo_1—f-)@8)x  xeU,  n=0.

Moreover

6.3. THEOREM. The function ¢ : ER — End R(9, 8) is an isomorphism of
rings.

Proof. Let e € End R(9, 8) have components e, (n=0). By checking the action
of e on the free duchain complex with one generator in dimension n, one sees that

€, = f(88) +g,(89)

for some uniquely determined polynomials f, and g, with coefficients in the
center of R and with g, having zero constant term. It then follows easily from the
fact that e,0=de,., and e, .18 = 8¢, (n =0) that
(i) the f, (n=0) have the same constant term which we denote by f_,, and
(i) g.=f.—f-1(n=0),
ie.e=@o(f_1,fo f1r---)-
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Furthermore

6.4. THEOREM. Let f=(f_1,fo,f1,.--)€E ER and let UecR(9,8). Then the
map ¢f : U — U eR(9, 8) is naturally duchain homotopic (4.6) to ‘“‘multiplication
by f_1”.

Proof. For every integer n =0, let f, be defined by zf, =f,—f_,. The desired
duchain homotopy (D’, D, E) then is given by D/, , = 8f.(89) = f,(88)0 and D, =
f.(89)8 = 8f,(88) for n=0, E,=E =0 and E, = f,(89).

Next we prove

6.5. PROPOSITION. Let X cR*™ and let u: X — X e R¥™ be the natural self
map given by (see 2.3)

ux =(dosSp+)" " 'x xeX,, n=0.
Then Nu=¢(f_1, fo, f1,-..): NX —> NX eR(9, §), where

fa=Q+E=D"2)" forall n=-1.
In view of 2.4 and 3.5 this implies

6.6. COROLLARY. The normalization functor of 3.3 induces an equivalence
between the category of cyclic R-modules (i.e. functors A°® — R (2.4) and natural
transformations between them) and the full subcategory of R(9, 8) spanned by the
objects U e R(9, 8) such that, for every integer n =0,

fa(@8)+ (fr1—f-1)(89)=id:U,— U,eR
where f, is as in 6.5, or equivalently

1+EDred) '+ (=) '8)*=id: U, —> U, eR

Proof of 6.5. If xeN, X, i.e. dx =0 for i>0 and dyx = 0x, then (3.3) s,,1Xx=
Sx+s,x—:+-+(—1)"sox and hence dyS,,1x=080x+s,_19x—---+(—=1)"x, i.e.

doSn+1X = (88 +(—=1)")x modulo terms involving dx. This, together with 6.3, now
readily implies that, for all n=-1

fa=(EZ+EDY = A+ (1))
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We end with

6.7. REMARK. If X is a cyclic R-module, then [6,11.2] the normalized
version of the commuting differentials b and B of Connes is (up to a possible sign)
given by

b=0:N,..X—>N,X and B=8f,(38):NX—> N, X,

where the polynomial f, (n=0) is determined by 1+zf, =(1+(=1)"z)"*.
Moreover, one can show [5] that the resulting functor from “‘cyclic R-modules” to
“duchain complexes over R with commuting differentials” is an equivalence of
homotopy theories.

§7. Appendix on homotopy theories

In this appendix we hope to make clear (by reformulating some of the results
of [4])

(i) what we mean by the homotopy theory of a category C with respect to an
admissible subcategory W (the maps of which are usualty called weak equival-
ences),

(i) when two such homotopy theories will be called equivalent, and

(iii) when we say that a functor induces an equivalence of homotopy theories.

7.1. Simplicial categories. By a simplicial category we will mean something
slightly different from usual. We assume, as is often done, that a simplicial
category have the same objects in each dimension. However, we do not require
that the ‘“‘simplicial hom-sets” be small, but only that they be homotopically small
in the sense explained below (7.2). A simplicial category for which the simplicial
hom-sets are discrete then is just an ordinary category.

7.2. Homotopically small simplicial sets. A (not necessarily small) simplicial
set X will be called homotopically small if m,(X; v) is small, for every vertex v e X
and every integer n =0. This is clearly equivalent to requiring that X contain a
small simplicial set U with the property that, for every small simplicial set V< X
containing U, there is a small simplicial set W < X containing V, such that the
inclusion U — W is a weak homotopy equivalence. Clearly the homotopy type of
such a U is unique and it thus makes sense to talk of the homotopy type of a
homotopically small simplicial set and of weak homotopy equivalences between
homotopically small simplicial sets. One can therefore define as follows
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7.3. Weak equivalences between simplicial categories. A weak equivalence
S:C— D between two simplicial categories is a functor which

(i) induces an equivalence m,C=~ m,D between the ‘‘categories of compo-
nents’”’, and

(ii) induces, for every two objects X, YeC, a weak homotopy equivalence
C(X, Y)=D(SX, SY) between the simplicial hom-sets.

Similarly two simplicial categories will be called weakly equivalent if they can
be connected by a finite string of simplicial categories and weak equivalences
between them (in alternating directions).

Next we consider the key construction of

7.4. The simplicial localization of a category with respect to an admissible
subcategory. Let C be a category, let W< C be a subcategory and consider, for
every two objects X, Y € C, the (not necessarily small) simplicial set of the reduced
hammocks between X and Y, which has as k-simplices the commutative diagrams
in C of the form

C(),1—“C0,2‘ e —““Co,n~1

Cl,l““'cl,z—' . "—Cl,n—l
y / \Y

v v \L‘
. . .

\ 4 v v

Ck.l _'—Ck,2— T —Ck,n-1

in which

(i) n, the length of the hammock, is any integer =0,

(i1) all vertical maps are in W,

(iii) in each column (of horizontal maps) all maps go in the same direction; if
they go to the left, then they are in W,

(iv) the maps in adjacent columns go in different directions, and

(v) no column contains only identity maps,
and in which the faces and degeneracies are defined in the obvious manner, i.e.
the i-face is obtained by omitting the i-row and the i-degeneracy by repeating the
i-row; if the resulting hammock is not reduced (i.e. does not satisfy (iv) and (v)),
then it can easily be made so by repeatedly
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(iv)" composing two adjacent columns whenever their maps go in the same
direction, and

(v)" omitting any column which contains only identity maps.

One then calls W an admissible subcategory of C if W contains all the objects
of C and if, for every two objects X, Y e€C, the simplicial set of the reduced
hammocks between X and Y is homotopically small. Moreover, in this case, one
defines the simplicial localization of C with respect to W as the simplicial category
L(C, W) (or short LC) which has the same objects as C and in which, for every
two objects X, YeC, the simplicial hom-set LC(X, Y) is the (homotopically
small) simplicial set of the reduced hammocks between X and Y, with the obvious
(see above) composition.

Note that, for every two objects, X, Y € C, the components of LC(X, Y) are in
1-1 correspondence with the maps X — YeC[W™!], i.e. m,LC=C[W™'], where
C[W™!] denotes the (ordinary) localization of C with respect to W (i.e. the
category obtained from C by “formally inverting” the maps of W).

7.5. EXAMPLE. Let C, and C, be categories, let W, < C; and W,<C, be
subcategories containing all the objects and call the maps of W; and W, weak
equivalences. Furthermore let S:C, — C, and T:C, — C; be functors such that

(i) S and T preserve weak equivalences, and

(ii) the compositions TS and ST are naturally weakly equivalent to the
identity functors of C, and C, respectively.

Then it is easy to see that W, is admissible iff W, is so and that, in that case,
the functors S and T induce weak equivalences LS:L.C,— LC, and LT:LC,—
LC,.

7.6. EXAMPLES. Let C be a closed model category in the sense of Quillen
[3, §3]. Then one readily verifies that

(i) the subcategory W < C of the weak equivalences is admissible, and

(ii) if C' <= C is a full subcategory such that every weak equivalence is either in C'
or has neither its domain nor its range in C', then WNC' is an admissible
subcategory of C'.

Now we are ready for our definition of

7.7. HOMOTOPY THEORIES. By the homotopy theory of a category C with

respect to an admissible subcategory W, we just mean the simplicial localization

LC. The maps of W are then called weak equivalences. The category of compo-
nents w,LC=C[W™'] is usually referred to as the homotopy category of C with

respect to W and maps in C are called homotopic if they have the same image in
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this homotopy category. (The results of [4] show that, in the model category case,
this notion of homotopy theory is a natural enrichment of Quillen’s original
notion).

7.8. Equivalent homotopy theories. L.et W, < C, and W, < C, be admissible
subcategories. Then we call the resulting homotopy theories LC; and LC,
equivalent if they are weakly equivalent (7.3) as simplicial categories, and we say
that a functor S :C, — C, induces an equivalence of homotopy theories if

(i) S preserves weak equivalences, and

(i1) the induced functor LC; — LC, is a weak equivalence.

7.9. REMARK. It is sometimes useful to extend definition 7.7 somewhat and
to define “a” homotopy theory of a category C with respect to an admissible
subcategory W as any simplicial category which is weakly equivalent to LC.
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