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On the evolution of harmonic mappings
of Riemannian surfaces

MICHAEL STRUWE'V

1

Let (M, v) be a Riemann surface with metric tensor y = (v,g)1<aps=<2> and (¥, g) an
n-manifold with metric tensor g = (g;;)1<j<n. For differentiable mappings u : # —
N an energy density e(u) is defined, which in local coordinates x =(x', x?),

u=(u',...,u") on M, N is given by (with (y*?)=(y,5)"")
(1) = 1™ (x)gy (1) - ' = . (1.1)
x> axP

Here and in the sequel we adopt the usual summation convention. The energy
E(u) of u then equals the integral

E(u)= I e(u) dM. (1.2)

M

By definition harmonic mappings from # onto N are the (regular) stationary
points of E. They necessarily satisfy the Euler-Lagrange equations

1 9 d . d .0 .
N (\/; vP g (u) . u') =27 (u) e u' oy u', I=sk=n, (1.3
v dx

where y =det (y*?) and g, = (8/0u*)g; as usual. If we carry out the differentia-
tion in the first term and denote

1 9o d
Ay=—F— (‘/—’;'Yaa_‘)
Vyox® 9x™

! This research was supported by the Forschungsinstitut fiir Mathematik at the ETH Ziirich
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On the evolution of harmonic mappings 559
the Laplace-Beltrami operator we obtain after multiplying by g'*(u):

d d
Au'=3y*Beg™ (u) g () — u' — u’
A 27" g ( )g],k( )ax“ 9xP

af Lk i ]
—Y U)i —-uUuU —x u.
g ( )gk,)a o P B8

Using the symmetry of y*® = y®* and the definition of the Christoffel symbols of
the metric g:

r:j = %glk(gik,i — ik T 8i.i)

the right hand side simplifies and we obtain the well-known equation for har-
monic maps

o 0 i 0 1
"‘AMMl =y BFQf(u) ;-;Z u E)}E u'. (1.4)

In the following we will use the short-hand notation

—Au=T(Ww)(Vu, Vu) . (1.5)

Note that formally for any function ¢ on #

d
J — Ayt @ —T(W)(Vu, Vu) 4 d# = . E(u* +eg"(w)e")l.—o
M

- j (dE(u) g (u)e") dAL, (1.6)
M

i.e. the expression (1.5) is the L>-gradient of the functional E with respect to the
scalar product induced by the metric (g*(u)).

In this way the solutions of the evolution problem associated with (1.4) or
(1.5)

ou—Au=TWw)(Vu,Vu)y; u(-,0)=ug (1.7)

may be naturally interpreted as the trajectories of a gradient-like vector field
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related to the functional E. The study of these solution curves ‘“‘in the large”
hence will provide a complete description of the set of harmonic mappings from
M to N as in Morse theory.

Indeed, the first existence results for harmonic mappings of manifolds by Eells
and Sampson [2] were obtained from asymptotic estimates on the solutions of
(1.7). Eells and Sampson however had to assume that the sectional curvature of
the target manifold & was non-positive. Similar results later were given in [5],
[10] under the assumption that the range of u, was small in terms of a bound for
the sectional curvature of N. These methods were not able to produce e.g.
non-constant minimal immersions of the sphere $? into another manifold. The
existence of such mappings was established in 1981 by Sacks and Uhlenbeck [8]
using Ljusternik—Schnirelman theory for a suitable sequence of functionals ap-
proximating E. The approximation was necessary because the functional E does
not satisfy the Palais—-Smale condition (globally).

In this paper our aim is twofold. First we establish the existence of a unique
global solution to (1.7) for finite initial energy E(u,) <o, which is regular with
exception of at most finitely many singular points where non-constant harmonic
mappings of S?=R? into N separate (Theorems 4.2, 4.3). No restriction on the
range of u, is needed. For small initial energies the solutions to (1.7) are globally
regular and asymptotically converge to constant mappings as t — <. Hence the
flow (1.7) induces a retraction of the space of mappings u:# — N with small
energy onto the space of constant mappings.

Although the evolution problem (1.7) is our main point of interest we also
present a local Palais—-Smale type compactness result (Proposition 5.1) for the
functional E which permits a direct proof of the Sacks—Uhlenbeck results. It may
be interesting to note that instead of working in the ‘“‘natural” H'*(M, N)-
topology for this compactness result it is essential to consider E on the dense
subspace H>*(#M, X)) and evaluate its L?>-gradient (cp. the next section for nota-
tions).

For technical reasons in the following we assume that # and N are compact
and that & is isometrically embedded in R™ for some N eN. (If & is compact this
can always be achieved by the Nash embedding theorem.)

It seems that the Dirichlet problem for (1.7) on a manifold with boundary and
prescribed (regular) boundary data may be handled in the same way, using e.g.
the estimates of LadyZenskaya-Solonnikov-Ural’ceva [7, IV. Theorem 9.1, p.
341f] for the Cauchy-Dirichlet problem. Moreover, our methods carry over to
evolution problems for general second order differential equations on plane
domains with a variational structure. For such problems a result similar to our
Theorem 4.1 has independently been obtained by Wieser [11]. For further
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references on harmonic mappings of manifolds we refer to the survey papers by
Eells-Lemaire [1], Hildebrandt [4], and Jost [6].

2. Notation

LP, H™?, C™*, etc. denote the usual Lebesgue—, Sobolev-, and Hélder spaces.
Domain and range may be specified like L?(£2;R"). For manifolds #, ¥ cRN e.g.
the space H™? (M, N') may be introduced as the space of functions u : #{ — N such
that u|, € H™?(2;R") for any coordinate chart 2 on .

Finally

VT N = {u : M X[, T1— &' | u measurable,

ess supL Vu(-, t)|* dat + J;T L |V2ul®+ |o,ul® d# dt <oo}.

T<t=T

Let |-|, denote geodesic distance on ., and for R <i,, a global lower bound for
the injectivity radius of the exponential map on #, let

Br(x)={ye M ||x—y|q <R}

For brevity BR(x)=Bgk(x) = Bg(x), Bgr(0)=Bg. Also denote Ugx(2 =
Uxea Br(x). For a domain 2 and —e<s<t<o let Q=02 X|[s,t]. If s or t=0,
05=0° Q9= Q,. In addition to the notation

E(u)= I e(u) dM

M

introduced earlier we also define local energies

Eqlu: x)=j o(u) dt,

B (x)

E(u;M’)=I

M

e(u) dAM.

Occasionally, a superscript will indicate the space of departure like E*,
The letter ¢ will designate a generic constant possibly depending on A, ., and
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other data but independent of a particular solution of (1.7) unless specified
explicitly like c(E(u,)), etc. For clarity individual constants may be numbered.

3. Estimates

The right class of functions in which to consider system (1.7) turns out to be
the space V(#MT; N). To motivate this choice we drive a-priori estimates and
uniqueness for solutions belonging to this class.

First we need an estimate of the L*-norm of the spatial gradient of a function
ue V(M™; ) in terms of its norm in V which is based upon a Sobolev inequality
taken from [7; II. Theorem 2.2 and Remark 2.1, p. 63f].

LEMMA 3.1. There exist constants ¢, R,> 0 such that for any ue VIMT; X),
any R €10, R,] there holds the estimate

J |Vul*d# dt<c - ess supI \Vu(-, )|*> d -
MT B¥(x)

(x,t)eMT

. (J |V2ul? dJudt+R“2j‘ |Vul* dut dt).
AT M

This lemma will be a consequence of a more refined local result:

LEMMA 3.2. There exist constants ¢, R,>0 such that for any ue V(#™; X),
any Rel0, Ry], any xe M, any function ¢ € L (B#¥(x)) depending only on the
distance from x:¢(y)= @(ly—x|4) and non-increasing as a function of this dis-
tance there holds the estimate

J Vul* o d# dt<c - ess supj Vu(-, t)> dH -
MT B#(x)

O=t=T

- (I V2uf o dil dt+R—2j VuP o dtt dt).
M M

Proof of Lemma 3.2: i) Suppose ¢ =const=1, and let Vu(t) = (meas B(x))".
SB#c, Vu(-, t) d# be the mean value of Vu. By [7, II. Theorem 2.2, Remark 2.1,
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p. 63f, and (3.2), p. 74]

T T T
jj |Vu14awdt5cjj \Vu—vard.amcj j Val* dat dt
0 ‘B(x) 0 ‘B¥(x) 0 ‘Bi(x)

<cess supj IVu(-, t) = Vu()|? da -
Bf(x)

O=t<T

T

T
j J‘ \V2ul|? d# dt + CJ (meas (B¥(x))) 3 -
B(x)

0 0

4
dt

. J Vu(-,t)du
B(x)

with a constant ¢ independent of T, R, and u. Since q=ﬂ(-,t) minimizes
SBaco [Vu(:, t)—q|> d#t we have for a.e. te[0, T]

[ wut0-Vaoran={  wuc,or du
B (x) B

)

Moreover, by Holder’s inequality

"< (meas (B[

Bg(x)

Lf:(x) val.1) al IVu(, 1)? d./tt)z

O=t=<T

< (meas (B#¥(x)))* ess supj Vu(-, t)*> d -
B¥(x)
J Vu(, n}? d#,
BR(x)

which concludes the proof in case ¢ = const.

ii) By linearity and i) the assertion remains true for step functions ¢ which are
non-increasing in the radial distance. Finally, the general case follows by density
of step functions in L”(B#(x)) in measure. q.e.d.

Lemma 3.1 may now be derived from Lemma 3.2 via the following covering
argument.

LEMMA 3.3. There exist constants K, Ry,>0 depending only on M such that
for any R €10, R,] there exists a cover of M by balls B¥,(x;) with the property that
at any point x € # at most K of the balls Bx(x;) meet.



564 MICHAEL STRUWE

Proof. We may assume that # < R is isometrically embedded. There exists a
neighborhood U;(#) in R™ such that any xe Ug(#) has a unique nearest
neighbor x € M satisfying |x —x|=inf{{x —y|| y e #}. Choose R,=min {8, i ,/2}
and such that for R <R, any (Euclidean) ball By(x,) N/# with center at x,€ #
satisfies

B&,(x0) © (BR(xo) N M)  Bfa(xo).

Now for any R >0 there is a cover of R™ by balls Bg,(x;) with at most K = K(M)
of the balls Bgr(x;) intersecting at any given point. Suppose 0 <R <R,, and let
{x;}1<i=1 be those points belonging to the cover corresponding to R that lie within
Ugrys(M). Projecting x; to # we obtain the cover {BX(x;)},<i<; of # that we seek.
Indeed,

I I I
M < U Biia(x) N M = U BRjo(x) N = U BR(x),
i=1 i=1 i=1

while for any x e #
x € B3r(x) = BiR(%:) < Bgr(x:)
for at most K indices i. q.e.d.

Proof of Lemma 3.1. Choose a cover {Ba(x;)} of # with the properties in
Lemma 3.3. Apply Lemma 3.2 with ¢ =1 on each B#(x;) and add, using the finite
intersection property of the cover. q.e.d.

We may now state the following simple a-priori estimate:

LEMMA 3.4. There exists a constant ¢ = c(N) such that for any solution
ue VUT; ) of (1.7) there holds the estimate

J |0,u|* d# dt =< cE(uy).
M ’

Moreover, E(u(:, t)) is absolutely continuous on [0, T'] and non-increasing.

Proof. By Lemma 3.1 we may multiply (1.7) by g;(u) d,u’ and integrate. On



On the evolution of harmonic mappings 565

account of (1.6) this gives for any s, te[0, T]:

)

and the claim follows. q.e.d.

g (u) du’ du’ da dt+ I %E(u(', t)) dt =0,

t
3

Remark 3.5. Combining Lemmata 3.1, 3.4 we obtain the estimate

LT \Vul*d# dt<c- sup Eg(u(,t);x)- (LT |V2u|* dHt dt+£~;- E(u0)>

(x, )eMT

for any solution ue V(#T; N) of (1.7) and any Re]0, R,]. This makes it
important to control energy locally.

LEMMA 3.6. There exists a constant c, = c,(#M, N') such that for any solution
ue V(UT; X) of (1.7), any R€]0, R,), and any (x, t) € M™ there holds the estimate

t

Eg(u(:, t); x) < Esg(u(-,0), x)+ ¢, R®

E(ug).

Proof. Let ¢ € Cy(B%4(x)) satisfy 0=¢ <1, ¢ =1 on BX(x), |Ve|=c/R. Multi-
ply equation (1.7) by g;(u) du’¢? and use Young’s inequality to obtain

L d
I gi]'(u) atul atul(Pz dM dt + J E; (e(u)(Pz) dAM dt
M(

t

<c[ 1vul loal Vel @ dtt dt

= J' gij(u) a:ui atui(P2 dM dt + CR—ZJ’ |Vu|2 dM dt.

M

Hence by Lemma 3.4

e(uo)@? dM + cR“zj tE(u(-, t)) dt

0

e(uC, )¢ dt < |

M

Er(u(-, t); x)SJ

M

t
< E,r(ug, x)+c¢ Rz E(u,) q.e.d.
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For a solution ue V(#™; X) of (1.7) and R0, R,] let

e(R)=e(R;u, T)= sup Eg(u(,t);x).

(x, t)eT

In the sequel we give a-priori bounds for the V-norm and Holder norms of u in
terms of initial energy E(u,), T, and the number

R=sup{R>0|e(R;u, T)<e¢g,}
measuring distribution of energy along the flow. Here &,>0 is a parameter
depending only on # and & which will be determined in Lemmata 3.7, 3.7', 3.10,

3.10". (We agree to let £, equal the smallest of the numbers &, occurring in these
lemmata.)

LEMMA 3.7. There exists a constant €,>0 such that for any solution ue
V(MT; N) of (1.7) and any number R € 10, R,] there holds the estimate

J |V2ul|? d#t dt < cE(uy)(1+ TR™?),
MT
provided e(R)<g¢,.

Proof. Multiply (1.7) by A,u and integrate over T to obtain

lj (Vu,Vu)Mdet+j |A ul* dM dt
214 "

d

r dt
SCI Al [Vul? dit de

T

slj |AMu|2d/%dt+cJ Vul* dat dt,
ZMT MT

by Young’s inequality. Here, of course (Vu, Vu), = v*® d,u’ dgu’. By Remark 3.5
and definition of £(R) we may estimate

j \Vul|* di dt < ce(R)(L |V2ul? dut dt+% E(u0)>.
” .
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Moreover, integration by parts yields the estimate
j |AMu|2detZI \Vzulzd./ttdt—cJ’ \Vul* d# dt, (3.1)
M M M

the second term on the right resulting from differentiating the coefficients of the
metric ‘.

Therefore, if e(R)=<g, for some £, =¢g,(#; N)>0 we obtain that
J IV2u|? d#t dt < cE(uy)(1+ TR ?)
MT

as claimed. q.e.d.

In order to be able to state pointwise a-priori estimates we now derive uniform
local estimates for {|Vu|* d# dt in terms of the data.

LEMMA 3.8. For any numbers €, 7, E;,>0, R, € ]0, R,] there exists a number
>0 such that for any solution ue V(M™; N') of (1.7) and any I<[r, T] with
measure |I| <& there holds the estimate

L (L Vul m) di<e.

provided e(R,)=<¢,, E(uy) <E,.

Proof. For any solution ue V(#T; ¥) by Lemma 3.1 |Vu|e L*(#T) and
§( « \Vul* d#t) dt is absolutely continuous.

To show uniformity let u,, € V(#™; A") be solutions of (1.7) satisfying the
conditions of the lemma. By Lemmata 3.4, 3.7 we have

I |atuvn‘2+ lvzum‘z d‘/“ dt = C(EO, Rly T)?
uT

provided £(R;; u,,, T) =< &,, Vm eN. Moreover
E(u,, (-, t))<E,, Vte([0, T], Vm eN.

Hence there exists a subsequence {u,,} (relabelled) such that u,, — u a.e., o,u,, —
du, V*u,, — V?u weakly in L*(#™) and Vu,, — Vu strongly in L*(#T). This
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permits passing to the limit m — o in (1.7) and we find that also ue V(#™; X) is
a solution to the equation (1.7). The results of Lemma 3.4 therefore apply to u. In
particular, Vu(-, t) is continuous in te[0, T] with respect to the L*-norm. By
compactness of [0, T] for any given £ >0 we can thus find a number R =R(g)>0
such that

e2R;u, T)<e.
Moreover, we may assume that Vu,,(-, t) = Vu(-, t) in L*(#) for a.e. te[0, T].

Hence we may determine numbers 0<t,<7<t,<---<t;, =T=:4 ., having
distance

¢=1,...,L,

ltes1—te] =

c1Eo ’

and an index my,= my(e, 7) such that for m=m,
j Vi, G, t)=Vu(, t)?d <e, €=1,...,L (3.2)
.MT

Here, c, is the constant of Lemma 3.6. By Lemma 3.6 then we may estimate

t_tg

Er (U, (-, t); x) = Eop (U, (-, te), x) + ¢4 —R—;Eo
SE2R(“(‘7 tt’)s x)+28 S3£a

uniformly for (x, t)e M), m =m,, where t, =max {; | {; <t}. Finally, Remark 3.5
gives the estimate

Vu,|*d#dt=c e |V2um|2d./ttdt+|il2E0 =c*e
) (L. -

with a constant c*=c*(#, N, Ey, R,, T), for any I<|[r, T], provided |I|<R?,
m = mg. This proves uniformity and the lemma. q.e.d.

Remark 3.9. The preceding proof also shows compactness in V(#T; N) of
solutions u,, € V(#T; X) to equation (1.7) issuing from a set of initial data which
is compact in HY>(M#, N), u,,(0)—> u, (m — ), provided £(R;u,, T)<g, for
some R € ]0, R,]. Indeed, in this case we may choose t; =0 in (3.2). The proof of
Lemma 3.8 then shows that [(f , [Vu,,|* d#) dt is uniformly absolutely continuous



On the evolution of harmonic mappings 569

on [0, T]. We may suppose u,, = u a.e., and du,, — du, V>u,, — Vu weakly in
L*(M™), Vu,, — Vu strongly in L2(#MT). Let v, :=u,, —u; [VU,|:=|Vu,|+|Vul.
Then

1060, = AuOm| = (0] VU + V0, | [VULD.

Hence, multiplying by 4 ,v,, and integrating gives

1 d
Ej E(va’ va)Mdet+j |A v, |* dM dt
t J‘(T

MT ur

Rearranging, and using (3.1)

sup j Vo, (.. t)|2M+J V20, 2 dMt dt
M

0=t=T MT

< j Vo,.(- 0)2 dt +cj (on P (VUL [+ Vo, B [VULL[2) da dt
M MT
-0 (m — ),

by Vitali’s theorem and since Vv, (-, 0) — 0 in L*(#). Similarly,

[ PP dsdisc] (AunP+io, R IVULI+V0 P IVULP) datdr
M MT

-0 (m — x),

i.e. u,, — u strongly in V(#UT; X).

LEMMA 3.10. Let ue V(MT; N) oo CHMT; N) be a regular solution to
(1.7). Then for any v >0 the Holder norms of u and its derivatives may be estimated
uniformly on M by quantities involving only E(ug), 7, T and R, provided
e(R)<¢e,.

Remark. Replacing ou by difference quotients our proof below may be

modified to establish interior regularity of V(#T; A)—solutions to (1.7).
Proof. First note that (1.7) implies

j IA,“u(-,t)lzd./aSCI Vute, O+ -, o) dAt (3.3)
AL M
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at a.e. time t€[0, T]. To bound the right hand side differentiate (1.7) with respect
to t, multiply with d,u, and integrate over M, r<s<t=<T, to obtain

1
= J’ 3, |9,u|* dH dt + J |V o,ul® dAt dt
2 Jy; M

= cj (0.ul? Vul>+0.u| [Vu| |V o,ul) d# dt

M
slj IVoul? dit dt +c j ol [Vul® dat dt (3.4)
2 ut A

Estimate like Lemma 3.1 for |t—s|=1:

12
J- loul? [Vul> dM dt = (j |oul* dut dtj \Vul* dat dt)
M, My M

1/2
= c(j |Vul|* d# dt) . (ess sup.[ |0, (u(-, 0))> d#t
M M

s=0=t
+ j
M

By Lemma 3.8, if t —s <& is sufficiently small, the right-hand-side of (3.4) may be
absorbed in the left, yielding

IV ol dt dt)

j o u(-, )?d#M <c inf I |8u(-, s)* du
L« L

t—8=s=t
O=s

with a constant ¢ depending only on the modulus of continuity of
§0ulVul*dM) dt, ie. on E(uy), 7, T, R, providing e(R)=<g,. Estimating the
infimum by the mean value now gives

ess sup j lou(, O d# =c(1+ 7‘1)J' |o,ul* dat dt

2r=t=T Jy M

<c(1+7YE(uy) (3.5)

with another such constant. In order to bound §, |Vu(:, t)|* d# apply Lemma 3.1
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to the constant function v =Vu(:, t) to obtain the estimate

J Vu(, )|*d#t <c - ess supj Vu(-, t)> du - (J IV2u(-, t)]* dst
M Ba(x) M

xeM

+R’2L VU, P m)

=c - esssup Ex(u(-, s), x)([ \V2u(-, t)|* dat
M

(x,s)eM’

+ R“ZE(uO)) ) (3.6)

Hence, if e(R)=g, is sufficiently small (3.1), (3.3), (3.5) and (3.6) yield the
uniform estimate for te[r, T]:

J \V2u(-, 0)|* d#t <cE(ug)(1+7 '+ R7?) (3.7)
M

with a constant depending only on #, N, E(u,), 7, T, and R, provided e(R)=<¢,.
By the embedding H*?*(#t) — H** (M) for any p < (3.7) now yields a bound for
|0,u — A 4qule LP(MT) of the same type. Using [7, IV. Theorem 9.1, p. 341f, and II.
Lemma 3.3, p. 80] we thus obtain Holder estimates for u in terms of the
quantities listed in the assertion of the lemma. Higher regularity is
standard. q.e.d.

Remark 3.11. If u, is regular we may improve estimate (3.5) using Lemma
3.1 and Remark 3.9 to obtain with a constant ¢ depending on u,, T, and R, where
£ (R) = &q:

ess supL lou(, > dt < cE(uO)(l + L IV2u,)? d./tt) (3.5)

O0=t=<T

Hence for regular u, we obtain global a-priori bounds of Hélder norms of u and
its derivatives on T in terms of the data and any number R € ]0, R,] such that
e(R)<g,.

We also need local versions of the preceding results. For any #'< M, R € ]0,
Ry], any ue V(U (M")T; N) let

e(R;MN)=eR; M ;u, T)= sup Eg(u(,t),x).
GLt)e( Ut
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LEMMA 3.7'. There exists a constant £,> 0 such that for any R € |0, R,], any
M' < M, and any solution ue V(Ur(MUNT; N) Np<r V(MT; X) there holds the
estimate

j |V2u|? d#t dt < cE(uy)(1+ TR™?),
oy

provided (R, #')<¢,.
Proof. Let {B%&,(x;)} be a cover of # as constructed in Lemma 3.3 and for
each i let ¢ € C5(Bf(x;)) satisfying 0=¢ <1, ¢ =1 on B¥%,(x,), [V¢|=cR ' be a

non-increasing function of the distance from x;. For each i we now multiply (1.7)
by A,ue? and integrate. Note that e.g.

1
—J a,u~A,“u<p2dAtdt2—j i[Wu,Vu)Jucpz]d./ttdt
ﬂT 2 J“T dt
—c- [ loal Vul Vol o ddtds,
./“T

and the latter may be estimated

LT 0| (V| (Vo @ dtt dt < LT ol o2 di dt

+ cR"zj |Vul* dH dt.
MT Nsupp @
Also
c- J |Aﬂu|2cp2d./ttdt2j |V2u|2<p2d./ttdt—cR'zj \Vu|® du dt
AT MT AT Nsupp ¢

while §,|Vu|* ¢ d# dt may be estimated using Lemma 3.2 instead of Lemma
3.1.
As in the proof of Lemma 3.7 we then obtain

j |V2i4l2<p2dﬂdt$cj |Vu0|2¢2am+cj ol 02 dtt dt
MT M M

+ cR’ZI |Vul? d#t dt

AT Nsupp ¢
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provided £(R; x;)=<¢g, is sufficiently small. Summing over those indices i with
B, (x)NM'# O the claim follows. q.e.d.

LEMMA 3.8'. For any ¢, 1, E;>0, R€]0, R,] there exists a number >0
such that for any M' < M and any solution uc V(Ug(MNT; ) Nprer VMT, N)
of (1.7) on any I <|[t, T] with measure |I| <8 there holds the estimate

L(L Vul* am) dt<s,

provided e(R)=<¢,, E(u,) <E,.

Proof. To show the contended uniformity again let {u,,} be a sequence of
solutions of (1.7) satisfying the hypotheses of Lemma 3.8'. By the estimates

J‘B,um‘zdﬂdtSc; j V2u? dit dt <c
MT (

Ug (N

that are implied by Lemmata 3.4, 3.7 we may assume that u, —>u a.e.,
d Uy, — du, Vu,, — V?u weakly and Vu,, — Vu strongly in L? on (Ug,»(#"))T as
m — o, Hence u solves (1.7) on (Ug(#M')T. Moreover, by weak lower semi-
continuity and Lemma 3.4

E(u(-, t))<lim inf E(u,,(-, t)) <E,

for a.e. te[0, T]. Now let ¢ € C3(Ugp(M") satisfy O0=¢=<1, ¢=1 on M,
IVe|=c/R. Upon ““testing” the equation (1.7) for u by the function g;(u) d,u’e> as
in Lemma 3.6 there results

J i[e(u(-, t))<p2]d./udt$cR“zj \Vu|® dH dt.
v dt T

Hence Vu(-, t) is continuous in L*(#’) as a function of t. The remainder of the

proof now proceeds exactly as in Lemma 3.8, using Lemma 3.2 and a partition
{B#.(x;)} covering M'. q.e.d.

Remark 3.9". If u, € V(Ur(MT; N) Nrer V(MT; N) are solutions to (1.7)
for initial data u,,o— u, in H"*(#; X), and if e(R; M'; u,,, T) <&, uniformly for
some R €]0, R,], then u,, = u in V((#")T; N) as m — .
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LEMMA 3.10". Let ue V(UrM)"; N)N.so CH((Ur(M))T, N)Nr<r
V(MT'; N) be a (locally) regular solution to (1.7). Then for any >0 the Holder
norms of u and its derivatives may be estimated uniformly on (M')] by quantities
involving only E(u,), 7, T, and R, provided e(R; M') < &,.

Proof. The proof may be carried out exactly as in the case of Lemma 3.10,
localizing the estimates on balls B(x;) of a suitable partition and using functions
like duep?” as testing functions, where 0=¢ <1, |Vo|=c/R, ¢ =1 on B#,(x;) and
¢ depends only on the distance from x;, and applying Lemma 3.2. q.e.d.

Remark 3.11'. If u, is regular on Ug (') we obtain a-priori bounds of Holder
norms of u and its derivatives on (#')T in terms of u,, T, and R, provided
e(R; M)=<¢,.

We conclude this section by showing uniqueness of solutions to (1.7) in
the class V(MT; N).

LEMMA 3.12. Suppose u,, u,€ V(#™; ') are solutions to (1.7) with u,(-,0) =
u,(-,0)=ug. Then u;=u, in M".

Proof. Let v =u,—u, and denote |VU|:=|Vu,|+|Vu,|. From (1.7) we obtain
o0 — A gv|=c(|v| VU +|Vo| [VU]),

whence if we multiply by v and integrate there results

%L lo(-, t)|* dM + j , (Vo, Vo), dM dt
<c[ (0P IVUP+ol Vol IVU) ddt
s%] (V0 Vo) i di+ Csz o VUP dt dt, (3.8)
by Young’s inequality. Now

L" PFIvUFdddi= (L lot* d dtLﬂ VI dudr)

and like Lemma 3.1 we obtain from [7, II. Theorem 2.2, Remark 2.1, p. 63f and
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(3.2), p. 74] that for t=min {1, T}

O=s=t

_[“T |v|* d#t dt <c sup L lo(, )| dt - (L \vlzd‘/ttdt+J:w IVvlzd/adt)

sc3[ sup L lo(-, s)|>dtt + L (Vu,Vv)Mdet]z.

O=s=t

In this last estimate we have again used Young’s inequality. By Lemma 3.1 there
exists S € ]0, T] such that

C3J |[VU|* d#t dt < (2¢,) 2.
MS

Now, let t€[0, S] satisfy

0=s=S

sup j o, $)|* dMt = I lo(, t)]> dM.
M M
(3.8) then implies that
j \v(-,t)lzd./tt+j Vo> d# dt=0,
M L«

and v=0 on 5. Iterating we obtain the lemma. q.e.d.

4. Results

The estimates of the preceding section imply the following local existence
result.

THEOREM 4.1. For any initial value uge H*(M; ) there exists a number
T = T(u,)>0 and a solution uc(\r<r VU ; N) of (1.7) with u(-, 0) = u,. T(ug)
is characterized by the condition

limsup e(R, T)>¢€, forall Rel0; Rl

T'—-T

The solution u is unique and regular on M X 0, T] with exception of finitely many
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points (x¢, T), 1=<¢€=L, characterized by the condition

limsup Egx(u(-, T"); x)>¢, forall Re]0,R,] (4.1)
T'—T

If ug is regular (on M' = M) u is regular at t =0 (on M' = M). Finally, E(u(-, t)) is
finite for t€[0, T] and non-increasing.

Proof. Approximate u, in H*(#; N) by regular (e.g. C>*—) initial data u,,,.
(Remark that density of smooth functions in H“*(#, A) has been shown by
Schoen and Uhlenbeck [9].) By local existence results (cf. e.g. [3, Theorem p.
122]) there exists a local regular solution u,, of (1.7) for which the estimates of
Lemmata 3.7, 3.7/, 3.10, 3.10’ are valid. Since u,,, — uo in H' there exists R >0
such that

Err(Upmo, X) = £,/2

for all x e M. By Lemma 3.6 this estimate (with ¢, instead of £,/2 is conserved on
balls of radius R for at least a time T, of order £,R?. Hence for large m we
obtain uniform estimates of u,, in V(M™; #') and uniform pointwise estimates of
u,, and its derivatives on any #, +>0. It follows from Remark 3.9 that u,, — u
in V(#™; X), and u solves (1.7) with initial value u,.

Also u,, — u uniformly on M1, for any >0, and u is regular. If u, is regular
(on M'< M) we may take u,,=1u, (on #,, exhausting #') to obtain (local)
regularity at t=0 from Remark 3.11, 3.11'. Uniqueness follows from Lemma
3.12.

To obtain the characterization of T = T(u,), the maximal time of existence of

u as a smooth solution to (1.7), we may argue indirectly. If for some R >0 and all
xeM

lim sup Eg(u(:, T'), x) < ¢,4,

T—-T

by the regularity estimates of Lemma 3.10 u may be continuously extended to the
closed interval [0, T'] and u(-, T) is smooth. Hence u may be continued to a larger
time interval, contradicting the maximality of T(u,).

Finiteness of the singular set follows from additivity of the energy, Lemma
3.4 and Lemma 3.6. Moreover, if #’' is compactly contained in #\{x’, ..., x*}
there exists R >0 such that Ug(M#M')< M\{x*, ..., x"} and

sup Eg(u(,t),x)<e;.
(x, )e(M)T
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By Lemma 3.10" u therefore is regular on (#')T for any 7> 0. Finally, the energy
estimate follows from Lemma 3.4 and since

Vu(-, T")—Vu(-, T) weakly in L* (T'—> T). q.ed.

By iteration we obtain global solutions to (1.7) for any initial value uge
H2(M; N).

THEOREM 4.2. For any initial value uye H**(M; N) there exists a unique
solution u of (1.7) on M X [0, [ which is regular on M X )0, <[ with exception of at
most finitely many points (x¢, T®), 1 =€ <L, characterized by the condition that

limsup Egx(u(-, T), x¢)>¢, forall Re]0, R,
T—-T¢
T<T¢

Proof. By Theorem 4.1 for any uy,e H“*(#, ) there exists a unique local
solution on some #™" which is regular on 4 x ]0, T'] with exception of at most
finitely many points (x¢, T'), 1=€=<L,. Let u, = u(-, T") e H"**(#, X). Note that

E(uy, M) <lim inf E(u(-, T"), M)
T’—*T]
T<T!

Ll
<lim inf E(u(-, T"))~ 3, Eg(u(-, T"), x%)
T—T! €=1
T<T!

= E(uo)_Llel
for any Re 0, Ry}, M' = M\ %L, B¥(x?). Passing to the limit R — 0, M’ — M:
E(u1)SE(u0)—L181. (4.2)

By Theorem 4.1 we may continue u to some larger interval [0, T?] by solving
(1.7) with initial value u(-, T")= u, on [T*, T?] and piecing together the solutions
at T. Since an isolated point (x¢, T*) has (H"“*(#)—) capacity zero, u will be a
distribution solution to (1.7) on all of .# ™. Iterating, we obtain a global solution u
of (1.7) which is regular with exception of points (x¢, T*);—; <k 1=¢=1,. Finiteness
of the singular set follows from (4.2) and since E(uy) <. q.e.d.

A more detailed description of the behaviour of our solution u near a singular
point can be given as follows. Suppose xo€ M, t,€R, and let u be a solution to
(1.7) on M;. Representing a neighborhood of x, by a coordinate chart 2 R? we
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may introduce the rescaled functions for R >0;
Ur (X, t) = Ug (x,.1)(X, t) = u(Rx + x,, Rt + ty).

Note that as R — 0 the domain of ui will exhaust all of R*X [0, «[. Moreover, ug
will solve an equation similar to (1.7) on its domain with coefficients locally
tending to the coefficients that correspond to the standard metric on R? as R — 0.
We may now state:

THEOREM 4.3. Let u be the solution to (1.7) constructed in Theorem 4.2, and
suppose (xo, T), T=<o, is a point where

lim sup Eg(u(:, t), xo) > €, VR €0, Ry]
t—T
t<T

Then there exist sequences x,, —> X, t,, <T, t,, > T, R, €10, Ry], R,, > 0 and a
regular harmonic mapping uy: R*>— N such that as m — o

UR xi('s 0) = U locally in H*2(R?; X).
uo has finite energy and extends to a smooth harmonic map S — N.

Proof. Let x',...,x" enumerate all singular points of u at time T, charac-
terized by the condition (4.1), and let p € ]0, Ry/2] be chosen such that B¥(x*)N
BX*(x%) = for all ¢+ k. By Theorem 4.2 there exists T, <T such that ue
V(./u% ; &) for all T,<T. Therefore, for any ¢ there exist sequences x,, — x°,
t.—T,t,.<T, R, —0, R, €]0, Ry}, such that

81=ER,“(u(" tm)’ xm)= sup ER,“(u('a t), x)-
Ti=t=t,,
xeB#*(x¢)

Note that by Lemma 3.6 this implies that for some constant ¢, = and any

.
2¢,E(uy)
te [tm -C4Rr2na tm]

E2Rm(u).’ t), xm)-—>— 81/2.
Moreover, by Lemma 3.7

|V2u|? d#t dt < cE(uy).

T
P2
J“‘m “caRy
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Hence after scaling the family u,, = ug_(, . satisfies the estimates on & (u,,) =
{(x,1)| Rx+x,, € BXx); RAt+1,, =0}:

EZ(um(.’ t), 0)281/2, VtE['—C‘;, 0]

Sup El(um(‘s t)’ x) = €4,
(x,t)eD (u,,)

—Caq=t =0

o

2 2
D) Vu,, |? dx dt=c,
—ca=t=0

sy WP dxdt=| puPddi—0  (m—o),

t
2
c —ca=t=0 M"r‘v:764 Ry,

by absolute continuity of §|du|> d# dt. In particular, for some number T, €
[—c4, 0] we can achieve that as m — ©

2 2 . 2
J@(um)lv um‘ deC, J‘@(um)latum‘ dx — 05

t=n,
m t=m,,

while

J.Bz(o)Wum\z dx=c>0

=T

uniformly in m. (Rescaling t,, — t,, — 7,,R2, we may assume 7,, =0.) Hence there
is a sequence m — o such that u,(-,0) converges weakly” to some function
uoe HZ2[R'; X) and strongly in H“*(€2; ) for any £ < —[R?. Passing to the limit
m —  in the equation (1.7) it follows that U, is harmonic map from R* onto .
Moreover, since

E™(ug) <lim sup E*(u(-, t,.)) < E*(u,)

m—>oC

u,, has finite energy. Thus by conformal equivalence R>=S?\{p} and [8, Theorem
3.6] u, extends to a smooth harmonic map of S$* into #. q.e.d.

Remark 4.4. Let ¢(¥)=inf {E(u)| u:S*— A is a non-constant, regular har-
monic map}>0. By Theorem 4.3 for any initial value u,e H"*(#, N') with

! Even strongly locally in H?2(R?, A)
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E(up) < e(X) our solution u of (1.7) will be globally regular on A X ]0, [, and at
t = in the sense that

hm sup ER(“(.a t)’ X)-<— €y,

t—>c0

for some R € ]0, R,] and all x € #. Using the estimate o,u € L*(#"), the proof of
Theorem 4.3 shows that for some sequence t,, — o« u(-, t,,) converges weakly in
H?? (and hence strongly in H"?) to a harmonic mapping u. from # into .
Likewise, for arbitrary initial data we may conclude that u(-, ¢,,) — u,, weakly in
HY“*(M; N) for some sequence t,, — ®, where u., is a harmonic map from # into
N with E(u.)= E(uy) and regular on # with exception of at most finitely many
points. By [8, Theorem 3.6] therefore u. extends to a smooth harmonic map
M — N. The proof proceeds as that of Theorem 4.3 in conjunction with our local
estimates Lemma 3.7’ and can be omitted.

For reference we note the following corollary of our results in the stationary

case. The proof is analogous to that of Theorem 4.3 and hence can be left to the
reader.

PROPOSITION 5.1. Suppose {u,,} is a sequence in H*>*(M, N') satisfying the
conditions

E(u,)=c, dE(u,,) — 0 in L*(M)(m — ).

Then either the sequence {u,,} is relatively weakly compact® in H>*(#(; N) and a
subsequence converges weakly to a harmonic map u: M — N in H*?, or there exist

(at most finitely many) points x',...,x" such that {u,} is relatively weakly
compact® in HE2(M\{x", ..., x*}; N) and accumulates at a smooth harmonic
map uq: M — N, while for €=1, ..., L there exist sequences xt, — x¢, RS, — 0 and

smooth harmonic mappings u, :R*>— A such that
Up (R + x5) — up weakly® in HZ2(R2?, N)

as m — ., Moreover,

L
E*(up)+ ), E®(it;)<lim inf E*(u,, ).

€=1

Le. a local Palais-Smale condition is satisfied for E and its L*-gradient.

2 Again, one can easily show strong H?2-compactness (locally).
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