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More Denjoy minimal sets for area preserving diffeomorphisms

JoHN N. MATHER!

Abstract. For an area preserving, monotone twist diffeomorphism and an irrational number w, we
prove that if there is no invariant circle of angular rotation number w, then there are uncountably
many Denjoy minimal sets of angular rotation number w. For each pair of positive integers n and R
we prove that the space (with the vague topology) of Denjoy minimal sets of angular rotation number
o and intrinsic rotation number (w + R)/n (mod. 1) contains a disk of dimension n —1.
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§1. Introduction

This paper continues the study of monotone twist area preserving
diffeomorphisms of the annulus which we have pursued in [16-20]. In [16], we
proved the existence of quasi-periodic orbits of all irrational frequencies w (cf.
§5). This result was obtained independently by Aubry and Le Daeron [4] and had
been found numerically and non-rigorously earlier by Aubry [cf. 3]. The quasi-
periodic orbits of frequency w in [16] or [4] lie on a Denjoy minimal set (or a
circle), of angular rotation number w, when w is irrational.

In the case that there is an invariant circle of angular rotation number w,
where w is irrational, its unique minimal set 3 is either the whole circle or a
Denjoy minimal set of angular rotation number w. Moreover, in this case, it is
easy to see that there are no other Denjoy minimal sets of angular rotation
number w (cf. §4). It is natural to ask whether this uniqueness result holds in
other cases, i.e. whether the minimal set of angular rotation number w, con-
structed in [16], is unique. In [19], we gave examples where this uniqueness result
does not hold, but we left open the question as to whether there exist examples
with no invariant circle of rotation number w (with @ irrational), but uniqueness
for the Denjoy minimal set of rotation number .

In this paper, we will answer this question by showing that when w is irrational
and there is no circle of angular rotation number , there are uncountably many
distinct Denjoy minimal sets of angular rotation number w.

More precisely, under these conditions the set of Denjoy minimal sets of

angular rotation number w contains a topological disk of arbitrary high dimen-
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sion, if it is provided with an appropriate topology. The appropriate topology is
what we call the vague topology on Denjoy minimal sets. This is defined as
follows. Each Denjoy minimal set carries a unique invariant measure and is the
support of that measure. The vague topology on measures, i.e. the weak topology
defined by continuous functions of compact support, induces a topology on
Denjoy minimal sets, which we continue to call the vague topology. In §3, we
define the angular and intrinsic rotation numbers of a Denjoy minimal set of a
monotone twist diffeomorphism. Our principal result is stated in §15 and is
proved in §817-25. It has the consequence (Theorem 29 and the remarks
following it) and if @ is an irrational number, n is a positive integer, and R is any
integer, then the space of Denjoy minimal sets of angular rotation number @ and
intrinsic rotation number (w + R)/n (mod. 1) contains a disk of dimension n — 1.

I announced this result in talks I gave at the Institute for Advanced Study and
City University of New York in May, 1984 and at the Berkeley Math. Sciences
Research Institute and ETH, Ziirich (Forschungsinstitut fiir Mathematik) in June,
1984.

The method of proof in this paper combines elements of both the method of
[16] and the method of [4]. We recall the method of [16]. We defined a functional
F,, (called Percival’s Lagrangian) on a space Y of mappings of R into itself. In a
suitable topology, Y is compact and F, is continuous; therefore F, takes a
maximum value. Let ¢, be a point of Y where F,, takes its maximum value. In
the case w is rational, we showed how to construct a periodic orbit, using ¢,. The
existence of such a periodic orbit follows from a famous theorem of Birkhoff [6].
However, our proof also showed that this periodic orbit was ordered, which
apparently was not known prior to the work of Aubry and the author. In the case
w is irrational, we showed how to associate a Denjoy minimal set 3, of rotation
number w to @,.

Percival introduced his Lagrangian in [22] and [23]. However, the domain of
definition of this Lagrangian was not specified by Percival, and the proof in [16]
depended crucially on choosing the right domain of definition for F,,.

In this paper, we will use the opposite sign convention from that in [16], in
order to agree with the sign convention used by the physicists (e.g. in [22], [23],
and [4]). Thus, we replace F,, with —F, and seek a ¢, which minimizes Percival’s
Langrangian.

In §86-12, we tie up some loose ends from previous papers on this subject and
show that certain results of [16] are equivalent to the corresponding results of [4].
That this is the case is not at all surprising, but requires proof. The principal result
here, Theorem 6, is that ¢, is a minimum not only over Y, but also over a larger
space Y%, where no order condition is imposed on the elements of the space.
Theorem 6 is stated in §6 and proved in §§7-10. We prove Theorem 6 because
the method of proof is used in the proof of the principal result, Theorem 15, of
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this paper. The proof of Theorem 6 is based on the ideas of Aubry and Le
Daeron [4].

The existence of new Denjoy minimal sets (Proposition 16 and the discussion
following it) follows easily from Theorem 15, which in turn depends on a result
which was discovered independently by Katok and the author, on the one hand
(cf. [18]), and by Aubry, Le Daeron, and André, on the other (cf. [5]). In the
terminology of [18], there is an invariant, homotopically non-trivial circle of
rotation number w if and only if AW, =0. Under the hypothesis of Theorem 15
that there is no such invariant circle, we therefore have AW_>0.

In the suggestive terminology of Aubry, the condition that AW_>0 means that
there is a barrier, called Peierl’s energy barrier, which prevents a minimal energy
configurations from sliding freely along the line. Minimal energy configurations
are defined and discussed in §811-13 and Peierls’s energy barrier is defined in
§14.

Using the positivity of Peierls’s energy barrier, one can find ¢ € Y¥ which
minimizes Percival’s Lagrangian subject to constraints defined in terms of Peierls’s
energy barrier. One considers configurations where some of the atoms are
constrained to lie on the opposite side of the barrier from where they would be if
the configuration were a minimal energy configuration. The existence of such
relative local minima is the content of Theorem 15. See also §24, where we
interpret Theorem 15 in terms of configurations.

The method of constructing new Denjoy minimal sets in this paper is related
to the method that we used in [16]. There, as here, Denjoy minimal sets were
constructed by minimizing Percival’s Lagrangian subject to constraints. In order
to obtain invariant set in this way, one must show that the minimizing element
satisfies Percival’s Euler-Lagrange equation (in the terminology of [16]).

The main difficulty consists of showing that the minimizing element does not
bump up against the constraints. In this paper, the relevant constraints are
inequalities 2) and 3) of §15; the fact that the minimizing element does not bump
up against the constraints means that these inequalities are strict for the minimiz-
ing element, i.e. the inequalities 2') and 3’) of Theorem 15 hold.

The method of [16] does not appear to be well adapted to proving that the
minimizing element does not bump up against the constraints, under the hypoth-
eses considered in this paper. Instead, I use a method which relies heavily on
ideas from the paper of Aubry and Le Daeron [4], in order to prove this.

§2. Monotone twist diffeomorphisms (Definitions)

This paper is the study of certain properties of area preserving, monotone
twist diffeomorphisms of an infinite cylinder (R/Z) X R. We will consider one such
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diffeomorphism f which will be fixed throughout this paper. For notational
reasons, it is more convenient to pass to the universal cover R? of the cylinder and
discuss an appropriate lift f of the given twist diffeomorphism.

The conditions which we impose of f in this paper are the following: First, we
require that f be the lift to R? of a C' diffeomorphism of the infinite cylinder, so
fT = Tf, where T is the unit horizontal translation, i.e. T(x, y)=(x+ 1, y). Second,
we require that the form y'dx’'—ydx on (R/Z)XR be exact, where f(x,y)=
(x’, y"). In particular, dy’Adx'=dy Adx, so f is area preserving and orientation
preserving, and the flux |y’ dx’—y dx vanishes, where the integral is taken over
any curve going around the cylinder. Third, we require that f preserve each end of
the cylinder. Fourth, we require that f satisfy a positive monotone twist condition,
i.e. 9x'/dy >0, everywhere. Fifth, we require that f twist the cylinder infinitely at
either end. This means that for fixed x, we have x' — +o as y — +o and x' — —x
as y —> —oo,

The exact hypotheses which we have just imposed on f are chosen for reasons
of technical convenience. It seems very likely that the results we prove here can
be generalized slightly. Thus, it seems to be enough to assume that f is a positively
tited homeomorphism rather than a monotone twist diffeomorphism. The
hypothesis that f twists infinitely at both ends seems unnecessary, as does our
assumption that the domain (and range) of f is an infinite cylinder rather than an
arbitrary annulus. A method for removing the last two hypotheses has been found
by R. Douady [10, Chapt. 2, II1.2]: one compactifies the domain B of the
generating function h (defined below) and extends h to a semi-continuous
function on B. One then has involved discussions concerning semi-continuous
functions. In our case, B =R? and no extension is necessary. Not only does this
avoid a rather technical discussion of semi-continuous functions, but it also avoids
the necessity of always having to specify the domains where the functions are
defined. In the Fall semester of 1983, I explained the Aubry-Le Daeron theory in
my class under the more general hypotheses which I have described above; it
seems plausible that the theory of this paper should also work under these more
general hypotheses, but J. Bellisard has pointed out some difficulties which I have
been unable to overcome.

The Generating Function. The above hypotheses imply that there exists a C?
function h:R>— R such that for (x, y, x, y') eR*, we have f(x, y)=(x’, y’) if and
only if y=—h,(x, x") and y'= h,(x, x'), where h, and h, denote the first partial
derivatives with respect to x and x’. The periodicity condition fT = Tf implies
h(x+1,x'+1)—h(x, x') is a constant; the hypothesis that the flux vanishes implies
that h(x+1, x'+1)= h(x, x").

In classical mechanics, h is known as the generating function for f. Its
construction is a special case of classical work of various nineteenth century



More Denjoy minimal sets 513

mathematicians, such as Lagrange, Hamilton and Jacobi. (Cf. Arnold and Avez
[2] or Abraham and Marsden [1].) In the special situation we consider here, its
construction is carried out in [16]. The point is that graph f <R*=({x, y, x’, y')}
projects diffeomorphically onto the (x, x) plane; the restriction of y’ dx'— y dx to
graph f is exact by hypothesis; hence, y' dx'—y dx = dh, where h = h(x, x') is the
generating function.

Note that in defining the generating function, we have adopted the opposite
sign convention from that of our previous papers [16-19]. The sign convention
used here agrees with that in [4], [22], and [23].

§3. Denjoy minimal sets

In topological dynamics, a minimal set is a pair (X, ¢), where X is a compact
topological space and ¢ is a homeomorphism of X whose every orbit is dense. A
minimal set is called a Denjoy minimal set if it admits an embedding into, but not
onto, the circle such that ¢ extends to an orientation preserving homeomorphism
of the circle with irrational rotation number. If g is an orientation preserving
homeomorphism of the circle R/Z and g is a lifting of g to R, then the rotation
number of g is defined to be lim,,_, .. (g"(x)—x)/n (mod. 1). Note that this limit
always exists and is independent of x. (See, e.g., Herman [12, I1.2.3].) If (X, ) is
a Denjoy minimal set, then X is a Cantor set. If X is a Cantor set, then necessary
and sufficient conditions for (X, ¢) to be a Denjoy minimal set are that X admit a
cyclic order which the homeomorphism ¢ preserves and ¢ has no periodic points.
In this case, X admits only one other cyclic order preserved by ¢, namely, the
reverse cyclic order. For any cyclic order preserving embedding of X in the circle,
¢ extends to a homeomorphism of the circle. The resulting rotation number is
independent of the embedding or the extension; we will call it the intrinsic rotation
number of the pair (X, ¢).

Note, however, that this intrinsic rotation number depends on the cyclic order.
If « is the rotation number for one cyclic order, then 1—a is the rotation number
for the reverse cyclic order. Moreover, it is defined only modulo 1.

A subset 3 of (R/Z)xR will be said to be a Denjoy minimal set for the
monotone twist diffeomorphism f if it is invariant for f, i.e. {3 =23, and (3, f| 2) is
a Denjoy minimal set. The main purpose of this paper is to construct examples of
such sets, but in this section, we wish to discuss properties of Denjoy minimal sets
for f.

Let pr, be the projection of R/ZXR on its first factor. Let 3 be a Denjoy
minimal set for f, let ¥ € 3, and let x e R? be an element which projects to ¥ under
the covering mapping R?— (R/Z) xR. Then lim,_,... (prif"(x)—pry(x))/n exists
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and is independent for x. This may be seen as follows: Let u(x) = pr,f(x)— pr,(x),
for x € 3. Then pr,f"(x)— pr,(x) = ¥"-5 u(f'x). Since X is a Denjoy minimal set, it
is uniquely ergodic. (See, e.g., Herman [12, II.8.5].) Consequently,
lim, ... Yr o u(fx)/n exists and is independent of x, as claimed. (See, e.g.,
Herman [12, 11.8.4].)

The number lim,_, .. (pr.f"(x)—pri(x))/n will be called the angular rotation
number of X. Unlike the intrinsic rotation number, it does not depend on the
choice of cyclic ordering of 3. However, it does depend on the choice of the lift f
of f. If f is replaced by fT", then the angular rotation number is increased by r. If
the angular rotation number were defined only modulo 1, then it would be
independent of this lift. However, we wish to consider it as a real number. Since
we have made the convention that f is fixed throughout this paper, it is a well
defined real number for any Denjoy minimal set 3 for f.

§4. The case when an invariant circle exists

For an f invariant circle in the cylinder (R/Z) XR, the two rotation numbers
can be defined, just as for a Denjoy minimal set. In this case, however, the
situation is very simple. If the circle is null homotopic in the cylinder, then the
angular rotation number is an integer. If, on the other hand, the invariant circle
goes around the cylinder, then the intrinsic rotation number is congruent (mod. 1)
to the angular rotation number, if the invariant circle is assigned the cyclic order
which makes its projection on R/Z a degree 1 (rather than —1) mapping.

Suppose that I' is an f-invariant circle which goes around the annulus.
According to a theorem of G. D. Birkhoff [6, §3], [13, Chapter I and appendix by
Fathi], there is a Lipschitz function u:R/Z — R such that I" = graph u.

PROPOSITION 4. Let 3 be a Denjoy #inimal set for f, whose angular rotation
number w is the same as that of I'. If w is irrational, then 3 < T.

Proof. Since 3 is a minimal set, it is contained in a closed invariant set if it
meets that set. Applying this remark to I, to the part of (R/Z) X R which lies on or
above I', and to the part of (R/Z) xR which lies on or below I', we obtain that 3
lies entirely above I, lies in I', or lies entirely below I

Suppose 3 lies entirely above I'. Consider a point in ¥ and express it in
coordinates as (X, y) where X €R/Z, yeR. Let x be a point in R which projects
onto X € R/Z. By the monotone twist condition, pr,f(x, y)— pr.f(x, u(x))>0, since
y > u(x), in view of the fact that X lies entirely above I'. Since X is compact, there
exists € >0 such that pr,f(x, y) > pr.f(x, u(x))+ ¢, for any (%, y)e 3 and any xeR
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which projects onto x. From this inequality, it follows by a known argument (see,
e.g. Herman [12, IIT 4.1]) that the angular rotation number of X is greater than
that of I'. (For this argument to work, we need that the angular rotation number
of I' is irrational.) But this contradicts the hypothesis that 3 and I" have the same
rotation number. This contradiction shows that 3 cannot lie above I.

Since the argument of [12, III 4.1] does not apply directly to our situation, we
give a version of it applicable in our situation: Let g:R—R be defined by
g(t)=pr.f(t, u(t)), for teR and f its image in R/Z. We have g(t+1)=g(t)+1 and
the rotation number of g = the rotation number of I' = w. Let g:R/Z — R/Z be the
induced homeomorphism of the circle. Since w is irrational, g has a unique
minimal set II, which is either a Cantor set or the whole circle.

Choose t€R whose projection ¢ in R/Z is in II, but is not the endpoint of a
complementary interval of II. Since II is a minimal set for g, there exist integers p,
q, with q positive, such that t+p—¢e/2<gi(t)<t+p.

Consider the interval (¢, t + €/2) <R/Z. Since t € II and is not the endpoint of a
complementary interval of II, there is an open subinterval U < (¢, t + ¢/2), both of
whose endpoints lie in II, and U=h"'h(U), where h:R/Z—R/Z is a semi-
conjugacy of g with the rotation R, of R/Z, i.e. hg = R h. (See [12, I1.7.1], for the
existence of such a semi-conjugacy; note that is is necessarily weakly cyclic order
preserving.) Since w is irrational, there exists N>0 such that UL, R,'(h(U)) =
R/Z; then UN., g 'U=R/Z. In other words, for every X e€R/Z, there exists a
positive integer n <N such that g"(x)e(f, t +¢/2). This implies that for every
x R, there exists a positive integer n =n(x)<N and an integer m = m(x) such
that t+m<g"(x)<t+m+¢g/2.

Consider (x, y)e Y and x eR whose projection on R/Z is X. We have shown
above that pr,f(x, y) > pr,f(x, u(x))+e = g(x) + €. Since g is order preserving, we
get, by induction on n, that prif™(x, y)> g(pr.if" '(x, y) + e >g(g" '(x)+ &) +e>
g"(x)+e. Let n,=n(x), m,=m(x). By definition of n(x) and m(x), we have
t+m,<g™(x)<t+m,+e/2. Moreover, p and q were chosen so that t+p—¢/2<
g(t)<t+p; hence

prif ™ (x, y) > g (x) +e>gl () +m te
>t+p+my+e/2>gm(x)+p.

Let n,=n(pr,f"*%(x, y)). Repeating the argument just given, we get

prif™ Tt 2(x, y) > g™ (prf MY x, y)) +p=gm(gM (x)+p)+p
= g™ "(x)+ 2p.

Continuing in this way, we define, by induction, n,_., = n(pr.f myetmetka(y y)) and
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obtain, by the same argument,
profmttetka(x y) > gt (x) 4 kp.
Then
prof ™Ry Yy — x> gt T (x) —x + kp> (ny+ -+ ) — 1+ kp,

since the rotation number of g is w. Since p/q>w and 0=<n; <N, we obtain

prof M Y mx Netpok T
ny+---+n.+kq N+q

for k large enough, where & is a small positive number which depends only on N,

w, p, and q.

Since (x,y)e X, we thus obtain a contradiction to the hypothesis that the
angular rotation number of 3 is w. This shows that 3 cannot be entirely above I
A similar argument shows that if 3 is entirely below I', then its angular rotation
number is less than w, so we obtain a contradiction in this case, too. We have
previously shown that the only remaining possibility is 3 <. [

§5. Percival’s Lagrangian (definition)

Slightly modifying the notation of [16], we let Y denote the set of all weakly
ordering preserving mappings ¢ :R— R such that ¢(t+1)=¢(t)+1 and ¢ is
continuous from the left. For ¢ € Y and w €R, we set

F@)=|" h@0, ¢+ w) d

This is what we have called Percival’s Lagrangian in [16] and elsewhere. Note
that because of our change in sign convention, F, has the opposite sign from the
corresponding function in [16-19]. The function F,, is independent of a, because
h(x+1,x'+1)=h(x, x'), cf. [16,3.2].

In [16], we considered a mapping of a bounded annulus; here, an infinite
cylinder. Consequently, we must make certain slight modifications to apply the
results of [16] to our present situation. Next, we explain how to modify [16].

As in [16], we define, for ¢ €Y, ¢(t-)=lim, ¢(s), d(t+)=1lim,, d(s),
graph ¢ ={(t, x) e R*: p(t—) < x < $(t+)}. We provide Y with the metric coming
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from the Hausdorff metric on graphs, i.e. for ¢, Y e Y, we set
d(¢, 9) = max {sup inf £ —n, sup inf ¢ ~ |}
£€ m m 13

where ¢ ranges over graph ¢, m ranges over graph ¢, and | | denotes the
Euclidean norm on R2.

For a eR, we let T,(t)=t+ a. From the formula h(x+1, x'+ 1) = h(x, x'), the
definition of F,, and ¢(t+1)=d¢(t)+1, it follows easily that F, is translation
invariant, i.e. F (¢T,)=F,_(¢), for all a eR.

Let R act on Y by (a, ¢) — ¢T,, and let X=Y/R denote the set of orbits of
this action. For ¢ € Y, we let [¢]€ X denote the orbit ¢; we set d'([¢], [¢] =
inf, . d(d, ¢T,). It is easily seen that d’ is a metric on X, because ¢ — ¢ T, is an
isometry of Y, for each a€R. Since F, is translation invariant, it induces a
function on X which we continue to denote by the same symbol.

The function F,_: Y — R is continuous with respect to the metric d. This may
be shown by a slight modification of the proof in [16, §6]. The only necessary
change is in the definition of M. Note that in [16], B was the domain of h; here R?
is the domain of h. If we replace B by R? in the definition of M (using g = —dh/dx
and g’ =adh/ox"), we get M =, which won’t do. Instead, we set

M= sup max {1, |h,(x, x")|, |ho(x, x)|},

Ix—x'|=<2

which is finite, since h(x+1,x'+1)=h(x, x') and h is C'. We still have
1
IFw¢—Fm¢‘$MJ (o) =y @)|+|Y(t+ o) - d(t+w))) dt,
0

when d(¢, ¥) <8, where 8 is defined as in [16, §6], since d(¢d, ¢) <8 implies that
o (t)— ()| <2, for all teR, as we showed in [16, §6]. The rest of the proof in
[16, 86] works without change. We obtain that F,: Y — R is continuous, with
respect to the metric d.

The topology on X associated to the metric d’ is clearly the quotient topology
of the topology on Y associated to the metric d. Consequently, F,: X —>R is
continuous with respect to the metric d'.

The space (X, d’) is compact. For, let Yo={¢ €Y :¢(t)=0if t=0 and ¢(t)<0
if t<0}. The argument of [16, §5] shows that Y, is compact. For, the mapping
¢ — graph ¢ N[0, 1] embeds (Y, d) isometrically as a closed subset in the space of
closed subsets of [0, 1]* with the Hausdorff metric. Since it is well known, and
easy to prove, that the latter space is compact, it follows that (Y, d) is compact.
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But the projection Y,— X is continuous and surjective, so it follows that (X, d’)
is compact.

Since F, is a continuous function on the compact space X, it takes a minimum
value. Consequently, F,: Y — R also takes a minimum value. From now on, we
will let ¢, € Y be an element where F, takes its minimum value. We choose one
such element once and for all. It will be fixed throughout the discussion. From the
fact that F,, takes its minimum value at ¢,, it may be shown that ¢, satisfies the
corresponding Euler-Lagrange equation, which may be written formally as
S (2T h(d(t), p(t+w))dt=0, or

ho(b(t—w), ¢ (D) +hi(d (1), (1 +w))=0,

for all teR. The reasoning of [16, §10] (with Y, replaced by Y) shows that this
equation is satisfied for ¢ = ¢,. (The sign we are using here is opposite that in
[16].)

Because we require the elements of Y to be order preserving, it is not an
immediate consequence of the fact that ¢, minimizes F, over Y that the
Euler-Lagrange equation is satisfied; indeed, the Euler-Lagrange equation is not
satisfied at a point ¢ of Y where F,, takes its maximum value. On the other hand,
it is an immediate consequence of Theorem 6 of the next section that the
Euler-Lagrange equation is satisfied by ¢, since no order condition is imposed
on elements of Y%, and consequently there is no difficulty seeing that there are
enough test curves. Thus, Theorem 6 provides an alternative proof of the
Euler-Lagrange equation for ¢,. Note that F,, does not take a maximum value on
Y%,

Set 1, (t) = —h(d,(t), ¢,(t +w)). From the definition of the generating func-
tion, it follows that f(d, (1), n, (1)) = (¢, (t + w), n,(t+ ®w)). We set

M, ={(¢.(1), n, (1) : t R}

According to what we have just proved, M, is invariant for f. In the case w is
irrational, the projection of M, on the cylinder is the Denjoy minimal set X,
whose existence we proved in [16].

§6. Application of the Aubry-Le Daeron method: statement of the theorem

Let n be a positive integer. Let Y* denote the set of measurable and locally
bounded mappings ¢ :R — R such that ¢(t+n)=¢(t)+n. For ¢ €Y, and w eR,
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we set

a+

F(¢)= n"lj h(6 (1), d(t+w)) dt.

a

This independent of the choice of acR. We continue to call F, Percival’s
Lagrangian. Clearly, Y < Y7} and we have extended the previously defined F,,.
We continue to let ¢, denote an element of Y which minimizes F, over Y. In
§§7-10, we will prove:

THEOREM 6. ¢, minimizes F,, over Y, for every positive integer n. Moreover,
if w is irrational and ¢ is any element of Y* which minimizes F,, over Y*, then
there exists a € R such that ¢ = ¢, T,, almost everywhere, where T,(t) =t + a.

The proof depends on ideas which are due to Aubry and Le Daeron [4]. There
are three main steps in the proof that ¢, minimizes F,, over Y%.

First, we will show in §7 that if F, takes a minimum value over Y%, it takes its
minimum value at ¢, (Lemma 7.3). Second, we will show that in §8 that F, takes
a minimum value over Y* when w is rational, say w = p/q in lowest terms. The
trick is to replace the original problem of minimizing F,, over Y} with an
equivalent problem of minimizing another function W over a finite dimensional
space &,q,/T, which has the property that for any a €R, {W=a} is compact.
(Lemma 8.1). This is possible because w is rational. In view of the result of §7, it
will follow that F,, takes its minimum value over Y}, at ¢,, Thus, the first
statement of Theorem 6 will be proved in §8 for the case when w is rational.

Third, we consider in §9 the possibility that F,, does not take a minimum value
in Y*. In this case, for any ¢ € Y%, there exists ¢'€ Y7 such that F (¢")< F ().
By the result of §8, F,,(¢,4)< F,4(¢'). By suitable approximation lemmas, we
show in §9 that |F,(¢")—F.(®")| and |F,(¢,4) — F.(d,,)| are arbitrarily small
when p/q is close enough to w. Thus F, (¢,,) < F.($), if p/q is close enough to w.
Since ¢,,, € Y and ¢, minimizes F, over Y, we then obtain F(¢,,) <F,(¢), so ¢,
minimizes F,, over Y¥, proving the first statement in Theorem 6.

The last statement of Theorem 6 will be proved in §10.

§7. Application of the Aubry-Le Daeron method: the existence of a minimizing
element implies ¢, minimizes

We need an inequality which (in slightly different form) is due to Aubry and
Le Daeron [4]. Given ¢, ¢’ € YT, we define the latatice operations, as usual, by

éVve'(t)=max (¢(t), d'(t)), ¢ Ad'(t)=min ((t), d'(1)).
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It is easily seen that if ¢, ¢’'€ YF, then so are ¢ v’ and ¢ Ad’. The following
result is a slight variant of earlier results of [4]. Its proof follows the method of
[4]. Bangert has pointed out a remarkable connection of this method with the
ideas of Morse [21] and Hedlund [11]. Here is our formulation of the Aubry-Le
Daeron result:

LEMMA 7.1. If ¢, ¢'€ Y}, then F(dvd)+F (dAd)<F ($)+F,(P".

Proof. Write h,(x, x") for the mixed second partial derivative 8%h(x, x’)/dx dx’.
Clearly,

h(x /\xl, x"/\x"')+ h(x Vxl, xnvxm)__ h(x, xn)_- h(xr, xm)

- [T ahute ),

N AX

when either of the conditions 1) x <x’ and x">x" or 2) x>x' and x"<x" is
satisfied. Otherwise, the left side of this equation vanishes. Consequently,

Fbv )+ E(678) - E@) - Ea@)=n | dt [ hate x) axay.
E

D()

where E={te[0,n]:(d()— ') P(t+w)—d'(t+w))<0} and D(t)={(x,x)e
RZ:p(Wnd')<x<d(t)ved'(t)and dp(t+tw)rd' (t+w)<x'<P(t+w)Vvd'(t+w)}.
Since h;, <0, we obtain the desired inequality. [

LEMMA 7.2. Let ¢ € Y and suppose ¢ minimizes F,, over Y. Let y(t) =
ess. inf,, ¢ (s). Then F (¢)=F, ().

Proof. From the translation invariance of F,,, we have F_(¢T,) = F,(¢), for any
a €R. From Lemma 7.1 and the assumption that ¢ minimizes F,, over Y%, we
then obtain

F (¢ AdT) = F (¢ VvéT)=F,(¢)=F(dT,).

Let a(1),...a(m),...be an enumeration of the positive rational numbers. Re-
peating the argument we have just given m times, we obtain F_({,) = F, (¢),
where Y, =P AdyA * * * Adam)- Since @ is locally bounded and ¢(t+n)=
¢ (t)+ n, we have that ¢,,(t) is bounded below by inf {¢(s):t<s=<t+n}, for all m.
We have ¢=y,=---=¢,=--- and there is, for each finite interval [a, b], a
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number C, such that ,, |[a, b]= C for all m, namely C =inf {¢(s):a <s<a +n}.
Consequently, ¢.(t) =lim,,_,. ,,(t) exists, for all teR.

Moreover, {|h(¢,.(t), ¥,.(t + ®))|: m is a positive integer, t [0, n]} is bounded,
so F (¢.)=lim,, .. F(¢,,)=F,(¢) by the dominated convergence theorem.

In order to complete the proof, it will be enough to show that ¢ = .., almost
everywhere. First, we have that ¢ <., almost everywhere. Let t,€R, a >0. Let
e =a/2. By definition of the essential infinum, ¢(t+a)=ess.inf{P(s):t,+
a—e<s<ty+a-+e}, for almost all te(t,—e, to+¢). For any such t, we have
é(t+a)=y(1). Since t, is arbitrary, we have ¢(t+a)=¢(t), for almost all teR.
Since Y. (t)=inf {¢p(t+a):a is a positive rational number}, it follows that
P..(1) = Y(t), for almost all teR.

In order to show that .. < ¢, almost everywhere, we first show that . is order
preserving except on a set of zero measure. For a positive rational number a, we
have ¢.T,=¢,, by definition of .. Since Y.€ L (R), i.e. is measurable and
bounded on bounded sets, we have that ¢..T, — ¢. T, in L. (R) as a — b, i.e.
§i 1T, —¢.. T,| — O as a — b, for any finite interval I. Since ¢..T,=.., for positive
rationals, it follows that if b>0, then ¢.T,=¢., almost everywhere, by this
convergence result. In other words, for each b>0, the set of teR for which
P(t) > Y (t+ b) has zero measure; it follows by Fubini’s theorem that the set of
(t, b)eR?, b>0 such that ¢..(t)> ¢.(t+b) has zero planar measure. This implies
that {(t, s) eR?: (t — s)(¥..(t) — ¥.(s)) <0} has zero measure. By Fubini’s theorem,
there is a set E<R of zero measure, such that if t¢ E, then {seR:(t—s) X
(P(t) — P(s)) <0} has zero measure. Suppose t, s¢ E, t <s. Then, for almost all u
satisfying t <u <s we have .(t) <{.(u) and Y.(u) <y.(s). Consequently y.(t) <
U(s). We have proved that if s, t¢ E, s <t, then ¢..(s) <¢.(1).

For t¢ E, we therefore have u.(t)<ess.inf ., ¢.(s)=<ess.inf,. P (s)=y(t).
Since E has zero measure, we have proved that ¢, =<y almost everywhere.

Since .. = ¢, almost everywhere, we have F,(¢..) = F,(¢)=F,(¢). O

LEMMA 7.3. If E, takes a minimum value over Y7, then it takes its minimum
value at ¢,,.

Proof. Suppose F, takes its minimum value at ¢eY;. Let ¢(t)=
ess. inf,~, ¢(s). Then F, (¢)=F,(¢), by Lemma 7.2. We have that ¢ is ordered
and Y(t+n)=y(t)+n, so YAYT A --- AYT,_, €Y. Since ¢ minimizes F,, over
Y* Lemma 7.1 and the translation invariance of F, imply F, (¢ AYT) = F,(¢). By
induction, F_ (YAYTiA - AYT,_)=F,(¢). Since ¢YA--- AYT,_,€Y and
minimizes F,, over Y%, and since ¢, minimizes F, over Y, we obtain that ¢,
minimizes F,, over Y7.
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§8. Application of the Aubry-Le Daeron method: rational rotation number

We follow the Aubry-Le Daeron terminology [4] and call any bi-infinite
sequence x =(..., X;,...) of real numbers a configuration. Given ¢ € Y*, w €R,
and teR, we let x = x,,,, denote the configuration defined by x; = ¢ (t + wi).

Suppose w is rational. Let o = p/q in lowest terms, with q> 0. The configura-
tion x = x4, obviously satisfies x;.,., =x;+pn/r. Let Z,,, denote the set of all

configurations which satisfy this condition. Given x € &,,,, we define

nr-ig—1

Wx)=m™ ¥ hx %),

where r is the gratest common divisor of n and p.

As i runs from 0 to nr—'q— 1, the congruence class of wi (mod. n) takes each
value in q~'rZ/nZ exactly once. For, multiplication by qr~' defines an isomorph-
ism q 'rZ/nZ~Z/qr 'nZ and qr ‘o =pr ' is an invertible element in this ring.
Consequently,

nr-lg—1

W( X)) =rn " 2 h(¢(t+q tir), (t+q '(ir +p)),

for ¢ € Y¥ and teR. This implies

a+rg?

F, (¢)= r”lj W(xg4.,) dt.

a

Given x € %, there exists a unique ¢ € Y% such that x,,,, = x, forast<a-+rq~".

It follows that if x minimizes W over %,,,, then ¢ minimizes F, over Y3,
where ¢ is the unique element in Y% such that x=x,,, for ast<a+rg™ .
Therefore, in order to prove that there exists ¢ € Y3 which minimizes F, over Y%,
it is enough to prove that there exists x € &, which minimizes W over Z,,,. We
may prove the existence of such an x by means of the following simple topological
argument.

A point x=(...,x;,...) in %, is determined by (x4, . . ., Xg,)- Thus, we may
identify &, with R*". We use this identification to topologize .. We let
T : Zpqn —> Xpqn be defined by (Tx); =x;+1. Clearly WI'=W, so W induces a

function, which we continue to denote by W, on the quotient space Z,,./T.

LEMMA 8.1. W:Z,,/T—R is proper; in fact, for any a R, {W=a} is
compact.
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Proof. Set f(x, y)=(x',y'). Since f commutes with (x, y)—> (x+ 1, y), we have
that |x —x'| is defined on the quotient space (R/Z)xR. Since (R/Z)+[-1,1] is
compact, it follows that |x—x'| is bounded on {|y|<1}. Likewise, |x —x'| is
bounded on {|y’|<1}. Let C be the maximum of |x —x'| over {|y|<1}U{y’|<1}.
Then [y|=1 and |y'|=1 on {|x — x'| = C}. Since f satisfies a positive twist condition,
we have y=1and y'=1 when x'—x=C and y<-1, y'<-1, when x'—x<—-C.
Since y =—h,(x, x"), y' = h,(x, x'), we obtain

hiyx,x)<-1, hy(x,x)=1, if x'—x=C,

hi(x, x"Y=1, hy(x,x)<-1, if x'—x<-C.

Since h(x+1, x"+1)=h(x, x') and h is continuous, there exists a constant A
such that h(x, x")= A on |x'— x|< C. Combining this with the inequalities above,
we obtain

hix,x)=A—-C+|x—x/|,

everywhere. Hence

ngr—'—1
Wx)=qA-C)+ Y, m ™ |x—x4l,

i=0

for x=(..,x..)eZ,, and it follows immediately that W is proper on
Zoad T. O

It follows immediately from Lemma 8.1 that W takes its minimum value on
Xpan- Let x € Z,,, minimize W. Let ¢ be the unique element of Y?¥ such that
X = X4 fOr 0<t<rq~'. By the remarks preceding Lemma 8.1, we see that ¢
minimizes F,, over Y%. By Lemma 7.3, we obtain that ¢, minimizes F, over Y*.
Recalling that @ was an arbitrary rational number throughout this section, we
obtain:

LEMMA 8.2. When o is rational, ¢, minimizes F,, over Y:. O

§9. Approximation by rationals

Having established in Lemma 8.2 that ¢, minimizes F, over Y¥ when o is
rational, we will now prove it when w any real number, by means of an
approximation argument. This argument will depend on two facts: first, for



524 JOHN N. MATHER

¢ € Y¥, we have that w = F,_(¢) is continuous. Second, for ¢ € Y, this continuity
is uniform in ¢. These facts are stated and proved in the next two lemmas.

LEMMA 9.1. For any ¢ € Y¥, the mapping w — F,(¢) is continuous.

Proof. Let w €R and let £ >0. Let C=sup|¢||[0,n]U[w—1,0+n+1). We
have C <, since ¢ € Y*. Let B =sup |h||[-C, CJ’. Since ¢ is measurable, there
exists a compact set X<[w—1,w+n+1] such that the Lebesque measure of
[w—1,w+n+1]\X is less than ne/SB and ¢ | X is continuous. Let §,>0 be
such that if |x|, |x'|, |x"|<C and |x’'—x"|<8,, then |h(x, x")—h(x, x")|<e/5. Let
1>6>0 be such that if ¢, '€ X and |t—t'|<8, then |¢p(t) — P (t)|<8;.

Suppose w’'eR and |w'—w|<8. Let te[0,n]. If t+w and t+w' are both
members of X, we have |Pp(t+w)—d(t+w’')|<8; and consequently,
|h(&(1), d(t+w))—h(d (1), d(t+w"))|<el5.

Let E be the set of t€[0, n] such that at least one of t+w or t+ ' is not in X.
Clearly, the Lebesque measure of E is less than 2ne/5B, and |h(d(t), d(t+w))—
h(d(1), d(t+ o )<|h(d (), d(t+ o)) +|h(d (), d(t+0")|<2B, for all te[0,n].
Consequently, setting E' =[0, n]\E, we have

|Fud—Fd| <[L + L' ] |h(d (D), d(t+w))—h(d(D), b(t+0)|dt

<[(2ne/5B)(2B)+ne/5]=¢. O

LEMMA 9.2. For any compact set K of real numbers, there exists a constant C
such that if € Y and o, '€ K, then |F (¢)— F (¢)<Clo'—-wl.

Proof. Let N be an integer such that |w|<N and |o'|<N, if w, ®' € K. Since
¢cY, we have |¢p(t)—¢(t+w)|<N and |¢p(t)—d(t+w)|<N, if 0,0’ €eK. Let
C =sup {|ho(x, x")|:|x'—x|<N}. We have C<o, since h is C' and
h(x+1,x"+1)=h(x, x'). Then

|F.(¢)— F(d)| = ” (h(d (1), d(t+w))—h(d(0), (t+ ")) dt

< CJ lp(t+w)—(t+w)| dt=C |o—w|,
0

if w, w'e K. The inequality is a consequence of the mean value theorem, the
definition of C, and the fact that |¢(t)— d(t+ )| and |p(t)— ¢ (t + w')| are both
less than N.
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From the periodicity ¢(t+1)=¢(t)+ 1, we get

1 ow+1 [0]+1 il
_[ d(t+w)dt= (1) dt-—-j 0 dHl &(f) dt
0 o o o]+l
(1 o—{w] 1
=1 ](¢(t)+[w])dt+j (¢(t)+[w]+1)dtzj & (1) dt+ w.

Since ¢ is weakly order preserving, the sign of ¢(t+w)— ¢ (t+ ') never changes,
and we obtain the last equation. [

Proof that ¢, minimizes F,, over Y. In §5, we showed (by a slight modification
of the argument in [16]) that there exists an element ¢, in Y which minimizes F,,
over Y. Now we will finish the proof that ¢, minimizes F, over the larger space
Y*, which is the first assertion in Theorem 6.

Let ¢ € Y%. We wish to prove that F,(¢,)<F,(¢). It is enough to prove that
there exists ¢* € Y such that F _(¢™*)<F,(¢), since ¢, minimizes F, over Y.

By Lemma 7.3, if ¢ minimizes F,, over Y7, then F, (¢)=F,(¢,) and we are
done. Therefore, we may assume that ¢ does not minimize F, over Y%. Then
there exists ¢'e Y such that F, (¢')<F,_(d). Let e =F,(¢)—F,(¢"). Let K be a
compact subset of R which contains w in its interior. Let C be the constant given
by Lemma 9.2. Let p/q be a rational number in K such that C |w —p/q|<¢/2 and
|F(¢")— F,(¢")|<&/2. Such a number exists by Lemma 9.1. By Lemma 8.2,
F,/o(®pa) <F,o(¢"). By Lemma 9.2, |F,(d,/q) — Fpa(dpa)| < C lo — p/a| < &/2, since,
by definition, ¢,, € Y. Hence,

Fo(dprq) < Fyo(bpiq) + /2< Fpya(d') + e/2<F,(¢') + & = F. ().

We may therefore take ¢*=¢,, O

§10. Uniqueness up to translation of the minimizing element

In §9, we finished the proof of the first assertion in Theorem 6. In this section,
we will prove the remaining assertion in Theorem 6.

Let A denote the set of a €eR such that {teR:¢(t)> ¢, T,(t)} has positive
measure. Let B denote the set of acR such that {teR:d(t)<d,T,(t)} has
positive measure. If a eR\(A UB), then ¢ = ¢,T,, almost everywhere. Conse-
quently, to prove the last assertion in Theorem 6, it is enough to show that
A UB#R. We will suppose that AU B =R and obtain a contradiction.

By the order preserving property of ¢,, we have that if b <a and a€ A then
be A, and that if b<a and beB then aecB. Moreover, since ¢, is order
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preserving, it is continuous at all but at most countably many points. Conse-
quently, A and B are open. Therefore, the hypothesis that A U B =R implies that
A N B is an open interval.

Let E,={te[0,n]:(¢(t) -, T, ()P (t+w)— ¢, T,(t+w)) <0}. Taking ¢'=
¢, T,, we have that E, is the set E which appears in the proof of Lemma 7.1. It is
clear from the proof of Lemma 7.1 that the inequality in Lemma 7.1 is strict if
and only if E has positive measure. By hypothesis, ¢ minimizes F,, over Y*. By
the first assertion in Theorem 6 and the translation invariance of F,, ¢'=¢,T,
minimizes F,, over Y7. Since both ¢ and ¢’ minimize F, over Y%, the inequality
in Lemma 7.1 cannot be strict. Consequently, E, = E has zero measure, whatever
the real number a is.

Let F,={te[0,n]:¢(t)= ¢, T, (1)}, F={(t,a):te F,}. Clearly, F is a measura-
ble subset of R®. The mapping ¢, is strictly order preserving according to
Addendum 2 to the Theorem in [16]. (Strictly speaking, we cannot apply the
results of [16], since the conditions we have imposed on f in this paper are slightly
different from the conditions which we have imposed in [16], as we have pointed
out in §5. However, the proof of Addendum 2 in [16, §12] applies in the context
of this paper, without change.) Since ¢, is strictly increasing, for each teR there
is at most one a €R such that ¢(t) = ¢,T,(t). By Fubini’s theorem, it follows that
F has vanishing planar measure; a second application of Fubini’s theorem shows
that F, has zero linear measure, for almost all a eR.

Since A N B is an open interval, it follows that we may choose a € A N B such
that F, has zero measure. Let G, ={t:d(t)> ¢, T,(t)}, H, ={t:d(t) <P, T,(1)}.
The translation ¢t~ t+w maps G,\E, into G,UF, and H,\E, into H, UF,.
Moreover, the image of G, UF, under this translation contains G,\E, and the
image of H, U F, contains H,\E,. Since E, and F, have zero measure, it follows
that G, and H, are invariant (mod. sets of zero measure) under t— t+ w. By the
periodicity property ¢(t+n)=¢(t)+n of elements of Y¥, G, and H, are
invariant under t+—t+n.

Since w is irrational and n is an integer, the group of translations generated by
o and n is ergodic, i.e. every set invariant (mod. sets of zero measure) under both
these translations has zero measure or full measure. But this contradicts the facts
that G, and H, both have positive measure (since a € A N B), both are invariant
(mod. sets of zero measure) under both these translations, and G, "H, = & (by
definition). [

§11. The Aubry-Le Daeron notion of ground-state configurations

When o is irrational, the set M, which we defined near the end of §5 (and in
[16]) corresponds to the set of ground-state configurations of mean atomic
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distance o, in the terminology of Aubry and Le Daeron [16]. The purpose of this
section is threefold: first, to explain the Aubry-Le Daeron notion of stationary
configurations and of ground state configurations of mean atomic distance w;
second, to explain how stationary configurations correspond to orbits; and third,
to show that a stationary configuration corresponds to an orbit in M, if and only
if it is a ground-state configuration of mean atomic distance w.

These results should be obvious for anyone who has mastered the theory of
Aubry and Le Daeron [16]. We have included them for the convenience of the
reader and for the sake of completeness. The third point above does not seem to
follow easily from the theory developed by the author in [16]; for this, the theory
of Aubry and Le Daeron seems superior. In this section, we will deduce this third
point from Theorem 6 and results of Aubry and Le Daeron [16].

In the Aubry-Le Daeron terminology, a bi-infinite sequence x=(..., x;, ...)
of real numbers is a configuration of atoms, the x;’s representing the atoms. Given
a configuration x=(...,x;...) and integers m<n, we set W, (x)=
Yro) h(x;, x;,,). Following the Aubry-Le Daeron terminology, we say that a
configuration is a minimal energy configuration if for any pair of integers m <n
and any configuration x’' such that x,=x, and x,=x, we have W, (x)<
W,..(x"). It is an immediate consequence of the Fundamental Lemma of [4] that if
x is a minimal energy configuration and x' is any other configuration with x,, = x,,,
and x| = x,, then we actually have strict inequality; W, .(x) < W, (x"). A minimal
energy configuration is clearly a stationary configuration, in the sense that
hy(x;_ 1, x;) + h(x;, x;,.,) =0, where h, and h, denote the first partial derivations
of h, with respect to the first and second variables, respectively. If we set y; =
—h(x;, X;.1), then f(x;, y;) =(X;i11, Vir1), if x is a stationary configuration; in this
way, we obtain a one-one correspondence between stationary configurations and
orbits of f. Thus, the minimal energy configurations correspond to a class of orbits,
which we call minimal energy orbits.

PROPOSITION 11.1. Let w be irrational. Every orbit in M, is a minimal
energy orbit.

Proof. Given ¢ €Y and teR, we define configurations xg.. and x4, by
(Xgors)i =P (t+0i+), Xy = d(t+wi—), for ieZ. In view of the definition of M,
(end of §5), the order preserving property of ¢,, and the left-continuity of ¢,, an
orbit of f is in M,, if and only if there exists t€R such that the corresponding
stationary configuration is €ither x 4+ OF X g, With ¢ = &,,. Thus, it is enough to
prove that these configurations are minimal energy configurations.

Suppose, for example, that X4, (where ¢ =¢,) is not a minimal energy
configuration, so there exists a configuration x’ and integers m <n such that
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X = (X pott)ms Xn= (Xger+)ns and W, (x") < W, (X grs)- Let 8 >0 and set

d'(s)=xi, fms<isn, t+wissst+wi+s},
¢'(s+1)=¢'(s), for all s, and

o'(t) = o¢,(t), whenever ¢'(t) is not defined by the previous two conditions.

For >0 small enough, there is no contradiction between the first two
conditions, since w is irrational. Consequently, ¢’ is defined. Clearly, ¢'€ Y7.
Moreover,

Fo ()~ F.(6") = j (A(s)+ B(s)+ C(s) ds,
where

A(S) = Wmn(xcbmS) - Wmn(x')
B(s)=h(¢,(s + o(m —1)), ¢,(s + wom))— h(P, (s + o(m—1), ¢, (t + om+)))
C(s)=h(¢, (s +wn),d (s+w(n+1)—h(d, (t+wn+), ¢, (s +w(n+1)))).

Clearly, A(s) = W, (Xgwr+) = Win (x') >0, B(s) — 0, and C(s) — 0, as s|t. Con-
sequently, F,(¢,)—F,(¢")>0, for 8 >0 small enough. But this contradicts the
fact that ¢, minimizes F, over Y* (Theorem 6).

This contradiction shows that x,... is a minimal energy configuration. The
proof that x,.,. is a minimal energy configuration is similar.

Aubry and Le Daeron have shown [4, Theorem 3] thatif x=(...,x;...)is a
minimal energy configuration, then

= lim Y
li—il—see |1 = ]|

exists. In their terminology, | is called the mean atomic distance of the configura-
tion x. It is the same as the angular rotation number of the corresponding orbit.
(The conditions that Aubry and Le Daeron impose on f are slightly different from
the conditions which we impose, but their proof works without essential change
under our hypothesis. This comment applies also to the other results of Aubry
and Le Daeron which we quote in this and the next section.)

Aubry and Le Daeron have also shown [4, Theorem 4] that if w is irrational,
then the set of minimal energy configurations of mean atomic distance w is totally
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ordered, viz. if x and x' are minimal energy configurations of mean atomic
distance w, then one of the following holds: x; <x!, for all ieZ; x; = x!, for all
ieZ;or x;>x;, for all ieZ.

Let Min,, =R’ be the union of all minimal energy orbits of angular rotation
number w. The statement that the set of all minimal energy configurations of
mean atomic distance w is ordered is equivalent to the statement that Min, is
f-monotone in the sense of [18], i.e. if pr, denotes the projection of R? on its first
factor, then pr,:Min, — R is injective and f preserves the order on Min,, induced
from the order on R.

From the definition of minimal energy orbit, it follows easily that the union of
all minimal energy orbits is a closed subset of R% If w is irrational, the fact that
Min,, is f-monotone is easily seen to imply that Min,, is closed. Moreover, Min,, is
bounded in the vertical direction, i.e. there exist constants A <B such that
Min, cR X[A, B].

For, if we write f(x, y)=(x', y'), we have that x' — £, as y — +x, for fixed x,
by the fifth condition imposed on f in §2. It is an easy consequence of the positive
monotone twist condition dx'/dy >0 (i.e., the fourth condition in §2) and the
periodicity condition fT = Tf (i.e. the first condition in §2) that this convergence is
uniform in the sense that x'—x — 4+ as y — +o, uniformly in x. Consequently,
we may choose A such that x'<x+[w] when y<A and B such that x'>
x+[w]+1 when y= B, where [w] denotes the greatest integer <w. Taking into
account the hypothesis that w is irrational and therefore is not an integer, the fact
that Min,, if f monotone, the fact that fT = Tf, and the fact that every orbit in
Min, has angular rotation number w, we obtain that [w]<x'—x<[w]+1 if
(x, y)eMin, and (x',y') = f(x, y). Consequently, Min, cRX[A, B}, as asserted.

Since Min, is closed, bounded in the vertical direction, and T-invariant, it
follows that Min_ /T < (R/Z)XR is compact. Let pr; denote the projection of
(R/Z)XR on its first factor. Since Min, is f-monotone, it follows that
pry:Min,/T — R/Z is injective and f preserves the cyclic order on Min,/T induced
from that on R/Z. The rotation number of f:Minm/T—>Minm/T defined with
respect to this cyclic order is obviously w.

In summary, f:Min,/T — Min/T is a homeomorphism of a cyclically or-
dered, compact metric space, of rotation number w. Because w is irrational, it
follows that the set of recurrent orbits in Min, /T is the unique minimal set of
Min_/T. The proof of this is the same as in the case of an orientation preserving
homeomorphism of the circle with irrational rotation number. See, for example,
Herman [12, I1.7].

By Proposition 11.1, M,, < Min,,. Because 3, =M,/T <Min,/T is a Denjoy
minimal set, it is the unique minimal set of Min,/T, which, as we have seen, is the
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set of recurrent points of Min,/T. We have proved:
PROPOSITION 11.2. 3, is the set of f-recurrent points in Min/T. O

Our purpose in going through this lengthy but elementary discussion is to
show the relation between the Aubry-Le Daeron theory [4] and our theory [16].
(See also Chenciner [9].) Aubry and Le Daeron call a minimal energy configura-
tion a ground-state configuration if the corresponding orbit in (R/Z) XR is recur-
rent. We may restate Proposition 11.2 in the Aubry-Le Daeron terminology, as
follows:

PROPOSITION 11.3. An f-orbit is in M,, if and only if the corresponding
stationary configuration is a ground-state configuration of atomic mean distance w.
O

§12. The Aubry-Le Daeron notion of minimal energy configurations

Throughout this section, we suppose that « is irrational. We recall the
definition of M/, from [18] and show that an f-orbit is in M, if and only if the
corresponding stationary configuration is a minimal energy configuration in the
sense defined in the previous sedtion.

We continue to let ¢, be an element of Y where F, takes its minimum value.
For teR, we let Z, denote the set of states x=(...,x,...) such that
b, (t+wi-)sx;<¢, (t+wit+). Thus X, =]l -wld, (t+wi-), ¢, (t+wit)]. We
provide Z,, with the product topology. When t is a point of continuity of ¢, we
have that Z,, is one point; otherwise, Z,, is the Hilbert cube. For x € Z,,,, we set

Gul®)= X h(x %) —h(x7, xi00),

i=—occ

where x; = d¢,(t+wit). We have Y~ . x7—x; <1, since the intervals (x;, x;)
are distinct holes in the Cantor set pr,3, <R/Z (where pr, denotes the projection
of R/ZXR on its first factor; cf. [18, §13]). Consequently, the sum above is
absolutely convergent and G, is a continuous function on Z,_,. According to [18,
Lemma 6.2], G, (x7)=G_(x")=0 and G,,=0, everywhere on %Z,,,.. (Note that
the sign convention in [18] is opposite that which we are using in this paper. What
we called G, there is G,,, x° is x~, and x' is x*.)

As in [18, §9], we define M, to be the set of all (x;, y;), where x ranges over
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G,/ (0), i ranges over all integers, and y, = —h,(x, x;,,). We let
M(:,\ = Mm U U (M(:)!),

where t ranges over R. This is the definition given in [18, §9]. This is related to
the Aubry-De Daeron notion of minimal energy configurations by:

PROPOSITION 12. If w is irrational, then Min, = M.

In other words, an f-orbit is in M, if and only if the corresponding stationary
configuration is a minimal energy configuration of atomic mean distance w. Note
that M, is f-invariant by [18, Proposition 9.1].

Proof. First, consider an orbit in M/, and let x=(...,x;...) be the corres-
ponding stationary configuration. If the orbit is in M,, then the corresponding
stationary configuration is a minimal energy configuration of atomic mean dis-
tance w, by Proposition 11.3. Otherwise, by definition of M/, there is a point ¢ of
discontinuity of ¢/, such that xe%,, and G, (x)=0.

It follows that x is a minimal energy configuration. For, otherwise, there is a
second configuration x’ and integers m and n with x;=x; for i<m or i=n and
W,,..(x"Y< W, (x). Consider integers m'<m and n'>n. Let x; = ¢, (t + wi—). Let
x¥=x;, for i<=m’ and i=n’, and x* =x!, for m'<i<n'. Then

Wi (67 = W) = ¥ (R(xr, x100) — (%, x500)

i =-—oc

=—-G,(x)+ _ i (h(x;, x;41) — h(x?, xﬂi‘+1))

i=-—oc

=A+B+C+D,
where

A="3 + T (hx %00~ hlxi, xi),

B= h(xm', xrn'+l)—‘ h‘(xr:lﬁ xm'+1)9
C= h(xn'_l, xn')— h(xn'-—l, x;’)a
D =W, (x)—W,,.(x).

The second equality above follows from the definition of G,,(x). The third follows
from the fact that G,,(x)=0, the definition of x*, and the fact that x; = x}, for
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i<m or i=n. We have D>0 by the choice of x'. We may arrange for |A|, |Bl|,
and |C| to be as small as we like by taking —m’' and n’ large enough. For,
Yo o (xi—x7)=<1, as we showed in §11, and x; =<x; <x/, since x € Z,,. The fact
that |A|, |B|, and |C| may be taken to be arbitrarily small therefore follows from
the mean value theorem, since h is C', h(x+1,x'+1)=h(x,x'), and [w]=<
X1~ X <x;{1—x; <[w]+1. Since |A|, |B|, and |C| may be taken as small as we
like and D >0, we therefore obtain W, ...(x7)— W,...(x*)>0, when —m’ and n’
are large enough. But x~ is a minimal energy configuration by Proposition 11.3,
since it corresponds to an orbit in M,. But W, ...(x7)— W,..(x*)> 0 contradicts
this fact. This contradiction shows that x is a minimal energy configuration. Since
x~ and x* have atomic mean distance w, so does x.

We have shown that every orbit in M/ corresponds to a minimal energy
configuration of atomic mean distance w, i.e. M/, < Min,,. It remains only to prove
that this inclusion is an equality.

As we have pointed out in §11, the Aubry-Le Daeron theory implies that
Min, is f-monotone. Therefore, if x is a configuration in corresponding to an
orbit in Min_, but not in M, then there exists a point t of discontinuity of ¢, such
that x e Z,,. It remains only to prove that G_,(x)=0.

Suppose, to the contrary, that G_,(x)>0. Let x;" = ¢(t+ wix). Choose m <n
and let x;=x;, for i=<m or i=n and x;=x; for m <i<n. We have

W,.(x)— W, .(x)=GCG,(x)+A+B+C,

where

A= T + (s, xi)— h( %)

B =h(xn, Xm+1) = h(Xpms Ximait)

C= h(x;—l’ x_r;) - h(xn——l’ x;)'

Just as before, we many show that |A|, |B|, and |C| may be taken to be arbitrarily
small, by taking —m and n to be sufficiently large. Since G, (x)>0, we then
obtain a contradiction to the hypothesis that x is a minimal energy configuration.

This contradiction shows that G_,(x) =0 and the orbit corresponding to x is in
M!,. Thus, Min, =M. 0O

§13. The theory of Aubry and Le Daeron for rational

In this section, we state without proof some results of Aubry and Le Daeron,
in order to complete the discussion of the relation of their results to our results.
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We refer to their paper for proofs. We will not need the results of this section
later in this paper.

Let w = p/q be a rational number expressed in lowest terms, g >0. Let x be a
minimal energy configuration of atomic mean distance p/q. Then one of the
following three possibilities holds: a) x;,, = x; +p, for all i€Z, b) x;,,> x; +p, for
all ieZ, or ¢) x;,,<x;+p, for all ieZ. Assuming that one of these three
possibilities holds, then the necessary and sufficient condition for x to be a
ground-state configuration is that a) holds. Slightly modifying the terminology of
Aubry and Le Daeron, we will call x an advancing minimal energy configuration
when b) holds and a retreating minimal energy configuration when c) holds.

The statement that one of a), b), or ¢) holds is a restatement of part of [4,
Theorem 5]. To see this, we introduce the notion of a translate of a configuration.
If x and x’ are configurations, one will be said to be the translate of the other if
there exist integers j and k such that x;= x;,; + k, for all integers i. It is clear that
if x is a minimal energy configuration of atomic mean distance w, then the set of
its translates is totally ordered (in the sense of §11) if and only if one of a), b), or
¢) hold. According to [4, Theorem 5], a minimal energy configuration of mean
atomic distance p/q is either a ground-state configuration, an ‘““advanced elemen-
tary discommensuration” (in the terminology of [4]), or a “delayed elementary
discommensuration” (cf. [4, formula (41)]). It follows from the definitions given in
[4] that the translate of a minimal energy configuration of any one of these types
is one of the same. Moreover, according to [4, Theorem 5] the set of all minimal
energy configurations of mean atomic distance p/q and of one of these three types
is totally ordered. In particular, the set of all translates of a given minimal energy
configuration of mean atomic distance p/q is totally ordered, so one of a), b) or c)
must hold.

It follows from the definitions given in [4] that, of these three possibilities,
only a) can hold when x is a ground-state configuration; only b) can hold when x
is an “advanced elementary discommensuration”, and only c) can hold when x is
a “delayed elementary discommensuration.” Thus, what Aubry and Le Daeron
call an “advanced (resp. delayed) elementary discommensuration of atomic mean
distance p/q” is what we call an ‘“advancing (resp. retreating) minimal energy
configuration of atomic mean distance p/q.”

Other results in [4, Theorem 5] are: First, the set of all minimal energy
configurations of atomic mean distance p/q satisfying a) or b) is totally ordered, as
is the set of all minimal energy configurations of atomic mean distance p/q
satisfying a) or c). Second, for any minimal energy configuration x of atomic mean
distance p/q satisfying b) (resp. c)), there are ground-state configurations x~, x* of
atomic mean distance p/q satisfying x; <x;<x;, for all ieZ, x;i—x;—0 as
i — +oo, (resp. as i— —) and x;—x; —> 0, as i —> — (resp. as i — +). Third,
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there always are ground-state configurations of atomic mean distance p/q and
their union is a closed subset of R. Fourth, suppose that x ™ and x* are successive
ground-state configurations of atomic mean distance p/q in the sense that x <x™
and there are no ground-state configurations x of atomic mean distance p/q
satisfying x”<x <x". Then there are both advancing and retreating minimal
energy configurations x of atomic mean distance p/q such that x" <x<x". For
the former (resp. latter), we have x;"—x; — 0 as i —i — +o (resp. as i — —) and
X;—X; as i — —oo (resp. as i — +x). A closely related result as proved by Katok
[14].

§14. Peierls’s energy barrier

Let w be irrational. We define a non-negative real-valued function P, on R, as
follows. Let & e R. There exists a unique t € R such that ¢, (t—)< <o, (t+) since
&, is strictly order preserving, according to Addendum 2 to the Theorem in [16]
(cf. §10). We set

P (&) =min{G_,(x):xe %, and x,= &}

Since %, is compact and G, : X, — R is continuous, this minimum value is
actually achieved (cf. §12.)

Let pr,:R*— R be the projection of R* on its first factor. When ¢ is a point of
continuity of ¢, we have that Z, is reduced to the one point x ™, and G_,(x ") =0,
xo = &€ Therefore, P, (&) =0, for &= ¢,(1).

More generally, we have P (&) =0, if £ € pryM.,. For, if £ € pr M., then £ = x,,
where (..., (x; y;)...) is an orbit in M/,. By definition of M/, we have G_,(x) =
0, where x=(...,x,...) Therefore, P (&) =0, as asserted.

Conversely, we have P, (£)> 0 if £¢ pryM_,. For, let t be such that ¢_(t—)<¢<
¢, (t+). Since G, =0, we have P (¢£)=0. If P,(£) =0, then by definition of P,(£),
there exists x=(..., x;...)eZ,, such that G_,(x)=0 and &= x,. Then (x,, yo) €
M! where yo=—hq(x,, x1), by definition of M’. So, &£ = x,€ pr;M.,, contrary to
our own assumption. This contradiction shows that P_(¢£)>0. We have thus
shown:

PROPOSfTION 14.1. P (&)=0, for all £eR, and P(&)=0 if and only if
tepriM,. O

This result was obtained independently by Aubry, Le Daeron, and André on
the one hand and by Katok and the author on the other hand. It was announced
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in [5] and a closely related result was proved in [18]. The proof in [18] was based
on joint research of Katok and the author.

The following result is a slight variant of Lemma 20.1 in [18].

PROPOSITION 14.2. There exists an f-invariant circle S,, of angular rotation

number w if and only if priM., =R. If such a circle exists, then M', is the inverse
image of S, under the projection R*> — (R/Z) XR.

Proof. If priM! =R, then, clearly, the image of M/, in (R/Z)XR under the
projection of R? on (R/Z)XR is an f-invariant circle.

Conversely, suppose an f-invariant circle S, of angular rotation number
exists. Lemma 20.1 of [18] says that M’ is the inverse image of S, under the
projection R*— (R/Z) XR. (The hypothesis which we have imposed on f in [18]
are slightly different from those which we have imposed on f in this paper. But,
that makes no difference in the proof of Lemma 20.1). It follows immediately that
if there is an invariant circle, then pryM, =R. [

COROLLARY 14. There exists an f-invariant circle of angular rotation number
w if and only if P, vanishes everywhere. []

The result was announced, but not proved in [5]. Theorem 5.2 of [18] is
closely related; it states that there exists an f-invariant circle of angular rotation
number w if and only if AW, =0. We refer to [18] for the definition of AW,,. We
have P_(§)<AW,. A discussion of the relation between the two results is
contained in [18, §25].

The quantity P, (&) appears to be what Aubry, Le Daeron, and André call
Peierls’s energy barrier in [5].

§15. The main theorem

Throughout the rest of this paper, we let @ and § be fixed real numbers,
and n a fixed positive integer. In this section, we let A be a function of Z to R of
period n.

DEFINITION. We denote by &, the set of all measurable mappings
¢ :R — R with the following three properties:

) ¢(t+n)=0o(t)+n,

2) d()<E+j, if t<j+A()), and

3) ¢(O=&+], if t>j+A0),
for all jeZ.
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DEFINITION. We denote by 3,4 the subset of ., consisting of those ¢
which are weakly order preserving and continuous from the left.

In other words, if ¢ € A,,.4, then it is in B, if and only if s<t implies
&d(s)<do¢(t) and, for all teR, we have ¢(t)=¢(t—). (Recall, from §5, that
¢ (t—) =lim,,, & (s) and ¢ (t+) =lim,, $(s).)

The condition of continuity from the left is imposed only for reasons of
technical convenience; we could just as well require continuity from the right.

It is easy to see that the necessary and sufficient condition for &, to be
non-empty is that j+A(j)<j+1+A(j+1), for all jeZ. This is also the condition
for 3,., to be non-empty.

We set ||A]|=max; ;.7 14()— A

THEOREM 15. If A, is non-empty, then there exists ¢ nea€ B,ea Which
minimizes F,, over o, ;.

If w is irrational, P(£)>0, and ||A|| is sufficiently small, then the inequalities 2)
and 3) are strict for ¢ = ¢ nea. More precisely, we have that if ¢eBy = RB,ea
minimizes F,, over B,, then

2") p(t=) <&+, if t<j+A(f), and

3) ¢(H)>&+], if t=j+A(),
forall jeZ.

Moreover, we have the following form of uniqueness: Suppose there exists
bas € By which minimizes F,, over A =9, and which satisfies 2') and 3').
Suppose, in addition, that w is irrational. Then any member of s, which minimizes
F,, over s, differs from ¢, at most on a set of zero measure.

We may summarize Theorem 15, as follows: When o is irrational, P(&¢) >0,
and ||A|| is sufficiently small, then F, takes its minimum value at a unique point in
.4 and that point is in B, and satisfies 2) and 3').

How small |A|| has to be in order for 2') and 3’) to hold depends on the
Diophantine properties of w, on how large P,(£¢) is, and on the size of the first
derivative of the generating function h. An explicit estimate can be given in terms
of the following quantities: We let

C(h, w, n) =sup {|h(x, x)|+|ho(x, x)|: n[w/n] —1<x'—x<n[w/n]+n+1},
where [w/n] denotes the greatest integer <w/n, and h, and h, denote the first

partial derivatives of h with respect to the first and second variables, resp. Note
that C(h, w, n) <o, since h(x+1,x’+1)=h(x,x') and h is C'.
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For a positive number P, we let N(h, w,n, P) be the least integer>
4C(h, w, n)/P. We let

8(h, o, n, P)=min {liw +j|:i,jeZ and 0<i<N(h, »,n, P)}.

Obviously, the size of 8(h, w, n, P) depends on the Diophantine properties of w, as
well as on P and the size of the first derivative of h. When w is irrational and
P>0, we have §(h, w, n, P)>0.

ADDENDUM 1. If o is irrational and P,(£)>0, then A, ea is non-empty and
2') and 3') hold when ||A||<8(h, w, n, P,(£)).

The next two addenda are analogous to Addenda 1 and 2 of [16]:

ADDENDUM 2. Suppose ¢4 satisfies 2') and 3'). If t is a point of continuity
Of @ wnea, then so are t+w and t— .

ADDENDUM 3. If w is irrational and ¢ .4 satisfies 2') and 3'), then ¢ pea is
not constant on any interval.

In what follows, we will often use the abbreviations &4, B,, and ¢, for A4,
RBrear and Gy pea-

We will begin the proof of Theorem 15 in §17, where we will show that there
exists ¢, € B, which minimizes F,, over %B,, provided that B, is not empty. This
follows the method of [16], as outlined and modified in §5 of this paper. Then we
will prove (§818-20) a relative version of the first assertion in Theorem 6: ¢,
minimizes F, over &/,. The proof of this is a slight modification of the argument in
§§7-9. At this point we will have the proof of existence, i.e. the first assertion of
Theorem 15. Uniqueness will be proved in §22, by a slight modification of the
argument in §10. The inequalities 2') and 3') and Addendum 1 will be proved in
§25. Addendum 2 will be proved in §26 and Addendum 3 in §21.

Before beginning the proof of Theorem 15 we discuss several applications of it
in §16. Proposition 16 leads to the result announced in the abstract of this paper.
See the discussion following Proposition 16, where we describe an n —1 dimen-
sional disk which has the properties announced in the abstract of this paper. We
will not actually prove that it is a topological (n —1)-disk until §29. See Theorem
29 and the discussion following it.
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§16. Application of the main theorem: existence of many Denjoy minimal sets of
angular rotation number « and intrinsic rotation number (v + R)/n

In this section, we will assume that w is irrational and that there is no invariant
circle of angular rotation number w for f. We let R be an integer. We will show
that Theorem 15 implies the existence of many Denjoy minimal sets of angular
rotation number @ and intrinsic rotation number (w + R)/n for f.

By Proposition 14.1, P,=0. By our assumption that there is no invariant circle
of angular rotation number w for f and Corollary 14, it follows that P, doesn’t
vanish identically. We will assume throughout this section that P_(£)>0; we may
suppose this without loss of generality since £ is an arbitrary real number.

We let & = 9,,,.. denote the set of all mappings A :Z — R of period n for which
there exists ¢ € B, which minimizes F,, over &, and which satisfies inequalities
2") and 3') in Theorem 15. By Theorem 15 and Addendum 1, A€ 9 if |All<
8(h, w, n, P (£)). Note that 8(h, w,n, P (£))>0 by our assumptions that o is
irrational and P_(§)>0.

If Ac%, we will define, in this section, a Denjoy minimal set 3, whose
angular rotation number is @ and whose intrinsic rotation number is w/k (mod. 1),
where k is the (minimum) period of A. Moreover, we will show that if A, A’ € 9,
then 3, =3, if and only if A’—A:Z — R is constant. This will have the conse-
quence that {3,} is an n—1 parameter family.

The definition and properties of 3, depend on the existence of ¢, and the
inequalities 2') and 3') of Theorem 15.

LEMMA 16.1. Suppose A € 9. Then ¢ = ¢, satisfies the Euler—Lagrange equ-
ation

hy(¢(t— o), & (1) + hy(d (1), $(t+w)) = 0.

Proof. Of course, we use the usual method of computing dF,(¢,)/d7|,-, along
suitable test curves ¢,.. The test curves which we consider are of the form
&.(t) = ¢ (1) + 7 (1), where ¢ is an arbitrary measurable bounded function satisfy-
ing ¢ (t+n)=d(1). To apply the usual method, we have to verify that ¢, € o, if
|7| is sufficiently small. It is obvious that ¢, is measurable and satisfies equation 1)
in the definition of of, =, (§15). The fact that inequalities 2) and 3) are
satisfied for |7| small enough follows from the fact that there exists 8 > 0 such that

d(t-)<&+j—8, if t<j+A()), and
d(+H)>¢E+j+8, if t=j+A().
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This, in turn, is a consequence of the fact that 2’) and 3') in Theorem 15 hold, the

fact that ¢ = ¢, is weakly order preserving (since it is in %, by Theorem 15), and
the fact that ¢(t+n)=¢(t)+n.

Since ¢ minimizes F, over #, and ¢,e4, for |7| sufficiently small,
de(¢1')/dT‘1’:(): (), or

”J [hy( (1), (1 +w)) + hy(b (t—w), (1) 1 ()dt = 0.

Since ¢ is an arbitrary bounded measurable function of period n and ¢ is left
continuous, the Euler-Lagrange equation follows. [

LEMMA 16.2. Suppose A, A’ € 9D and a €R. We have ¢, = o, T, if and only if
A-A'=a.

Recall that T, (t)=t+a.

Proof. Since ¢, satisfies 2') and 3') of Theorem 15, we have that ¢, T,€A,
if and only if A—A"=a. Since ¢, € H,., this shows that if ¢ =P,T,, then
A—A'=a.

Conversely, if A—A'=a, then ¢ — ¢T, maps &, bijectively onto ,.. Since
F, is translation invariant, it follows from the uniqueness of the minimizing
element in Theorem 15 that ¢, =P, T,. [

Consider Ae@. Let nu(t) = —h(d,(1), Pda(t+@)) = hy(da(t— ), Pa(1)). Let

M, ={(da(t), na(1)): teR}.

From the Euler-Lagrange equation (Lemma 16.1), and the fact that h is a
generating function for f, it follows that M, is f-invariant, if ¢ €%. Since
da(t+n) =@, (1) +n, it follows that M, is T" invariant, where T(x, y) =(x+1, y).

LEMMA 16.3. Suppose A, A'€ 9. Then My =M, if and only if A=A is
constant.

Proof. First suppose that A—A' is a constant, a. By Lemma 16.3, ¢a = ¢sTo.
The equality M, = M, then follows immediately from the definition of M.

Conversely, suppose M, = M,.. By Theorem 15, ¢4 € B,. It follows from this
and Addendum 3 to Theorem 15 that ¢, is strictly order preserving and
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continuous from the left. From this, and the definition of M,, it follows that a
point (x, y)e M, has the form (¢4(t), na(t)) if and only if x is not the right
endpoint of a complementary interval to pr,M, if R (where pr, denotes the
projection of R? on its first factor). The same remarks applies with A’ in the place
of A.

Choose a point (x, y)e M, such that x is not the right endpoint of a
complementary interval to pr;M, in R. Then (x, y) = (¢, (ty), na(ty)), for some
to€R. Since M, = M,.,, we also have (x, y)=(Ps(to—a), na(t,—a)), for some
acR.

From the fact that ¢, and ¢, satisfy the Euler-Lagrange equation (Lemma
16.1), the fact that h is a generating function for f, and the fact that ¢, and ¢,
satisfy the periodicity condition ¢(t+n)=¢(t)+n, it follows that

Tf(x, y) = (da(to+ jo + kn), na(to+ jew + kn))

= (@Paltotjw +kn—a), na(ty+ jo +kn —a)),

for all integers j and k. Since w is irrational and n is an integer, {t,+jo + kn:j, k €
Z} is dense in R.

Thus, we have shown that ¢, (t) = ¢,.(t —a), for a dense set of t€R. Since ¢,
and ¢,- are continuous from the left, it follows that we have this equation for all
teR. In other words, ¢, = ¢, T,. It then follows from Lemma 16.2 that A—A'=
a. O

letjeZ, A, A'e 9. Suppose A'(i) = A(i+j), for all i e Z. It follows immediately
from the definitions and the uniqueness assertion in Theorem 15 that ¢,.(t)+]=
¢4 (t+j) and, consequently, T'M, = M,, where T is the Deck transformation
T(x,y)=(x+1,y). We therefore obtain from Lemma 16.3:

LEMMA 16.4. Suppose A,A'€ 9. Then T'M, =M, if and only if
A(i+j)—A'(i) is independent of i. [

When Ae@, we define 34 =M,/ T* =R?*/T*=(R/kZ) xR and define 3, =
3. We let f® denote the homeomorphism of R?/T* induced by f.

In order to define the angular rotation number of 3% with respect to f*, it
will be convenient to identify R*/T* with R?*/T by the homeomorphism (x, y) —>
(x/k, y), and then use the previous definition. The resulting number is k! times
the angular rotation number of 3, with respect to f.

Suppose 4 €9. Since every element of & is periodic of period n, the
(minimum) period k of A divides n. From the uniqueness property of ¢, in
Theorem 15 and the translation invarince of F,, it follows that ¢, commutes with
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t—>t+k. It follows that M, is invariant under T*, where T is the Deck
transformation T(x,y)=(x+1,y). Because ¢, is order preserving, 3% is a
Denjoy minimal set for the homeomorphism of R*/ T* induced by f, of angular
rotation number w/k and intrinsic rotation number congruent to w/k (mod. 1).

We continue to denote by T the homeomorphism of R*T* induced by T.
Suppose A, A’€®. By Lemma 16.4, we have that T'I{ =34 if and only if
A,,;— A} is independent of i. If T'3{# 3¢, then these two sets must be disjoint,
since they are both minimal sets for the homeomorphism f.

Taking A =A" of period k, we obtain that the sets T3 are disjoint for
j=0,...,k—1. Consequently, the projection 3% — 3, (the restriction of
R*T* —R? T) is a homeomorphism. It follows that the intrinsic rotation number
of 3, with respect to f is the same as that of 3%’ for the homeomorphism of R/ T*
induced by f, namely w/k.

Summarizing, we have shown that Theorem 15 implies:

PROPOSITION 16. If A€ 9, then 3, is a Denjoy minimal set for f, whose
angular rotation number is w, and whose intrinsic rotation number is congruent
(mod. 1) to w/k, where k is the (minimum) period of A.

Moreover, if A’ is a second member of &, then 3, =3, if and only if A'—A is
constant. If A'— A is not constant, then 3, is disjoint from 3,.. [

The set of periodic mappings Z — R of period n may be identified with R". We
provide R" with its standard topology. Thinking of & as a subset of R", we
provide it with the induced topology. By Theorem 15, & contains a neighborhood
of the origin. On the other hand, among all A:Z — R of period n, those whose
minimum period is n form an open dense subset with respect to the standard
topology on R". Thus, Proposition 16 provides us with an (n — 1) parameter family
of Denjoy minimal sets of angular rotation number  and intrinsic rotation
number w/n.

Applying Proposition 16 to fTF in place of f, we obtain Denjoy minimal sets
which have angular rotation number o + R, with respect to fT®, and intrinsic
rotation number (mod. 1) (w+ R)/n. Recall that the intrinsic rotation number
doesn’t depend on the lift (f or fT®) of f. On the other hand, the angular rotation
number (defined as a real number) depends on the lift of f; since it is  + R for
fTR, it is w for f.

Thus, we have found an n—1 parameter family of Denjoy minimal sets for
f of angular rotation number w and intrinsic rotation number congruent to
(w+R)/n (mod.1). In §29, we will show that this family is a disk in the
vague topology.
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§17. Existence of an ordered relatively minimizing element

Throughout §§17-26, we let A:Z— R be a fixed function of period n. We
suppose %, is non-empty, or, equivalently (as we have remarked just before
Theorem 15) that &/, is non-empty. We will begin the proof of Theorem 15 by
showing in this section that there exists ¢, = ¢ ,nea € B, Which minimizes F, over
%A ,. In other words, ¢, minimizes F,, relative to the constraints and the condition
of f being ordered.

Let Y, denote the set of weakly order preserving, left continuous mappings
¢ :R— R which satisfy ¢(t+n)= ¢(t)+ n. Obviously,

%A :%n@c YnCYTw

and Y =Y,. We define a metric d on Y, by the formula in §5 which was already
used to define d on Y. The function F_: Y, —R is continuous with respect to the
metric d: the proof in §5 applies with no essential change.

Moreover, %8B, is compact with respect to d. For, let K be a large integer, and
set Ry =[-K+A(—K), K+ AK)|x[-K+ & K+ £&]. If K is large enough, then the
mapping ¢ — (graph ¢) N Ry is an isometry of %, onto a closed subset of the
space of closed subsets of R with the Hausdorff metric. It is well known that the
space of closed subsets of a compact metric space with the Hausdorff metric is
compact; consequently %, is compact, as asserted.

Since %4, is compact and non-empty and F,, is continuous, it follows that there
exists ¢, € B, which minimizes F,, over %,.

§18. The existence of a relatively minimizing element implies ¢, minimizes
relative to the constraints

Recall that 8, «, and we have proved in 8§17 that there exists ¢, € B,
which minimizes F, over %,. In this section, we will show that if there is an
element in &, which minimizes F,, over /4, then ¢, is such an element.

This is a relativized version of Lemma 7.3. The proof follows the reasoning in
§7 closely and we will only show how to modify the argument given there in order
to apply it to our present circumstances. The result we want follows directly from
the following analogue of Lemma 7.2:

LEMMA 18. Let ¢ € 4, and suppose ¢ minimizes F, over sf,. Let y(t)=
ess. inf,—, ¢(s). Then F_(¢)=F(d).
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Proof. Let a>0. It follows from the definition of &f, that ¢ A$pT, €, and
(dVvOT )T o =dT svdesd, Thus, F (dAdT,)=F,(dp) and F (dVveT,)=
F,(¢T_,vd)=F,(¢$) by the translation invariance of F, and the hypothesis that
¢ minimizes F, over &{,. By Lemma 7.1 and the translation invariance of F,, we
then have

F (b AdT,)=F, (¢ VvdT,)=F.(d)=F,(¢T,).

Having established these equations, we can finish the proof of Lemma 18 by
repeating word for word the part of the proof of Lemma 7.2 which follows these
equations. [

Obviously, ¢ is weakly order preserving. Let _(t) = ¢(t—). It is easy to see
that ¢_e %B,. Since ¢ minimizes F, over o, and F,(¢_)=F_(¢)=F,(¢), and ¢,
minimizes F,, over %A,, it follows that ¢, minimizes F_ over ,.

§19. Existence of a relatively minimizing element on the case that » is rational

In this section, we will show that F,, takes a minimum value over &/, when w is
rational. This is a relativized version of Lemma 8.2. The proof follows the method

of §8 with only slight changes. Throughout this section we suppose w is rational.
We let w = p/q in lowest terms, with g> 0.

Given ¢ € Y*, w eR, and teR, we define x = x,,, as in §8, i.e. x; = d(w; +1).
Note that o, < Y*. If ¢ € 4,, then x = x,,,, satisfies x;, 40, = X; + pn/r, where r is
the greatest common divisor of n and p, and x also satisfies

x, <&+, if t+ei<jt+A()

x; =&+, if t+ei>j+AQ).

We let & unac denote the set of all configurations which satisfy these conditions.
Since w is rational and 4 is periodic, there exists t; €R, t; <4, §; > o as i — £
such that if t_,<s<t<t then & gnas= Xpgma- For simplicity, we denote this
space by & pgnai- In other words, & pgnai = Zpanac fOr -1 <t=<t. At the beginning of
§15, we remarked that the necessary and sufficient condition for #,# O is
j+A()<j+1+A(j+1) for all j. This is also the necessary and sufficient condition
that & g0 # O, for all ieZ.

Choose a €R and j, k €Z such that t;=<a and a +rq~'<t. Suppose that for
each i satisfying j <i<k an x' € X pgnai is given. Then it follows immediately from
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the definitions that there exists a unique ¢ € 4, such that x4, =x' when both
a<t<a+rq 'and t_,<t=<t, are satisfied.

It follows from the formula F (é)=r""'§2""" W(x,,)dt of §8 that if x'
minimizes W over &pgna; for j<i<k, then ¢ minimizes F,, over s{,. Note that
Z pana, © Zpan» SO that the function W which was defined on %, in §8 is defined on
X panai-

Consequently, in order to prove that there exists ¢ € &{, which minimizes F,
over $,, it is enough to prove that there exists x' € ¥ g Which minimizes W
over Z panai for each i €Z. It is clear that the projection mapping &y, — &pgn/ T 18
one-one on & mai- Moreover, the image of & i In X,/ T is closed. Conse-
quently, Lemma 8.1 implies that for any a €R, {W=a}NZ ,,.a; is compact. Since
W is obviously continuous on Z,,,, we obtain that the desired x' exists.

This shows that F, takes a minimum value on &f,. By the result of §18, it takes
the minimum value in %,.

§20. Existence of a relatively minimizing element in general

In this section, we will show that F,, takes a minimum value over &f,, for any
we€R. In §19, we proved this result when o is rational. The deduction of this
result for irrational w from the case of rational w follows the method of §9
closely.

Suppose o is irrational and let ¢, be an element of %, which minimizes F,
over B,. We have proved the existence of such an element in §17. In this section,
we will prove that ¢, minimizes F, over the larger space ,.

Let ¢ € 4,. In §18, we have proved that if ¢ minimizes F,, over &,, then ¢,
minimizes F, over &{,. Consequently, we may suppose that ¢ does not minimize;
then, there exists ¢’'e o, such that F (¢')<F_(P).

Let e = F (¢)—F_(¢'). Let K be a compact subset of R which contains w in its
interior. Note that Lemma 9.2 is still true if Y is replaced by Y, in its statement,
where Y,, is defined as in §17; the proof requires only slight modification. Let C
be the constant given by this modified form of Lemma 9.2 (with Y replaced by
Y,). Let p/q be a rational number in K such that C|w—p/q|<e/2 and
|F.[(¢") — F,q(¢")| <€/2. Such a number exists by Lemma 9.1, since ¢'e &, = Y*.
In §19, we have proved that F,,, has a minimum value over &/, and that it takes
its minimum value at a point in %,. Since, by definition (§17), ¢ ,/qnea Minimizes
F,,, over B,, it follows that F,, takes its minimum value (over &,) at ¢ ,/qnea-
Therefore F,/ (@ /qnea) < Fpia(@'). Since @ pgnea € Ba < Y, it follows from Lemma
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9.2 (with Y replaced by Y,) that |F, (& ,/qne4) = Fy/a(® p/qnea)| < £/2. Hence,

F(® pjanea) < Fpa(@prg.ena) + E12< F, (") + /2
<F,(¢")+e=F,(d).

Since &bpqnea € Ba, We have F, (dunen) =F,(dpqnea), by the definition (§17) of
Ponga-

Therefore, F, (¢ nen) <F,(¢), and we have shown that ®unea minimizes F,
over #,. This completes the proof of existence in Theorem 15.

§21. Proof of Addendum 3 to Theorem 15

We give the proof now because we will need it in the proof that ¢, = b nea is
the unique element of ¥, = A, which minimizes F, over &, (next section). The
proof is essentially the same as the proof of Addendum 2 of the Theorem in [16],
which was given in [16, §12]. For the convenience of the reader, we repeat it here.

As in [16], we set

V(s, 1) =§ [h(%, x)+h(x, X)),

evaluated at

X=¢(t—-w), x=¢@), x'=¢(t+to).

Suppose ¢ is weakly order preserving. If, in addition, ¢ is constant in an interval
(a, B), then V(¢, t) is non-increasing in that interval and is constant there if and
only if ¢ is constant in each of (@ —w,B—w) and (a tw,B +w). This is an
immediate consequence of the fact that h,,<<0. (Note that it is non-increasing,
rather than non-decreasing as in [16], because of the change of sign convention.)
If ¢ = nea and 2') and 3') of Theorem 15 are satisfied, then ¢ satisfies the
Euler-Lagrange equation V(¢, t) =0 and, consequently, if ¢ is constant on (e, 8),
it is constant also in (@ —w, B —w) and (a+, B +w) by the discussion in the
previous paragraph. Using the periodicity condition ¢(t+n)=¢(t)+n and induc-
tion we then obtain that ¢ is constant on each interval (a + ko +In, B + ko + In),
k,le€Z. Since the union of these intervals is R, it follows that ¢ is constant, a

contradiction to ¢(t+n)=d¢(t)+n.
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This contradiction shows that ¢ .4 is not constant on any interval, when o is
irrational, and 2') and 3') of Theorem 15 are satisfied.

§22. Uniqueness of the relatively minimizing element

In this section, we suppose that there exists ¢, = ¢ nea Which minimizes F,
over B, = RB,.a and also satisfies 2') and 3') of Theorem 15. In §20, we proved
that ¢, necessarily minimizes F,, over the larger space o, = «,.4. In this section,
we will show that if ¢ is any element of &/, which minimizes F, over &,, then
¢ = ¢, almost everywhere. This is the content of the last assertion in Theorem
15.

The proof is based on the following trick: If a eR, let A +a have its usual
meaning, viz. (A +a)(i):A(i)+a. Let A= A%= {Ha+q:a €R). We will show
that if ¢ € &/, minimizes F, over A/, then ¢ = ¢, T, almost everywhere for some
a €R. This will be enough because if ¢,T,e4,, then a =0, since ¢, satisfies 2)
and 3') of Theorem 15.

To show that ¢ = ¢, T, almost everywhere, we may use the proof in §10, word
for word, except for the following changes: ¢, in place of ¢, &/ in place of Y%,
and Addendum 3 to Theorem 15 in place of Addendum 2 to the Theorem in
[16]. O

§23. Locating a relatively minimizing element

As we have pointed out in §5, the argument of [16] shows the existence of
¢!,€ Y which minimizes F, over Y. By the translation invariance of F,, we have
that for any a €R, the element ¢, = ¢, T, of Y also minimizes F,, over Y. If we
choose a =sup {t: p.(t) <&}, then we have ¢, (1) <¢ for t<0 and ¢,(t)> ¢ for
t>0. Since ¢, (t+1)=¢,(t)+1, this implies

b, ()<E&+j, for t<j (23.1)
b, ()>E+], for t>]. (23.2)
Briefly put, the above argument shows that the element ¢, of Y which minimizes
F,, can always be normalized so that (23.1) and (23.2) are satisfied. In the case

that w is irrational, the normalized minimizing element is unique by the result
proved in §10, but there is no such uniqueness in the case that w is rational.
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In this section, we will prove:

PROPOSITION 23. Suppose ¢, is normalized so that (23.1) and (23.2) hold.
If Ay = A, en is non-empty, then there exists ¢ = ¢ ,n:a€ Ba = B,ea Which not only
minimizes F, over s, but also satisfies the following inequalities:

¢m(t‘A+)$d’A(t)$¢w(t_A——)a
for all teR, where A_=min{A(i):i€Z} and A, =max{A(i):ie7Z}.

These inequalities are a key step in proving 2') and 3') in Theorem 15.

Proof. In §20, we have finished the proof of existence in Theorem 15. This
asserts that there exists ¢ € B, which minimizes F, over s{,. For brevity, we
set @, (t)=d,(t—A4,) and ¢ (1)=¢,(t—4.). We set ¢y=(davod)nd_=
(pand_)v..Since ¢4, d.€ Y,, we have ¢, € Y,. Infact, @, € B,. The inequalities
2) and 3) of §15 follow from the fact that ¢/, B, and the following inequalities,
which are a consequence of (23.1) and (23.2):

o (H<&+j, if t<j+A,, and

d_()=€E+j, if t>j+A_

The same reasoning shows that ¢4 v ¢, € B,. Clearly, 1A d, € YE. Since ¢/,
minimizes F, over &, and ¢. minimizes F, over Y7, we may conclude from
Lemma 7.1 that

F (d4v d,)= Fw(d).’d), Fw(d)A NG = Fm(¢+)-

In particular, ¢4V ¢, minimizes F, over .. A similar argument, applied to
ds=(davdInd_€B, and (daved.)ve_€Y, shows that F,(da)=
F (p4ve.)=F,(¢d,). Consequently, ¢, minimizes F, over .

Finally, we have that ¢, satisfies the inequalities in Proposition 23, by its
definition. [

§24. Relatively minimal energy configurations
In this section, we prove the analogue of Proposition 11.1 for ¢ .. in place of

¢.. We will discuss configurations and not orbits as in Proposition 11.1, because
we do not wish to assume that 2’) and 3’) of Theorem 15 are satisfied. We will use
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the results of this section in our proof that 2’) and 3’) of Theorem 15 are satisfied.
Because we do not assume these condition, there is no reason why ¢ .4 should
satisfy the Euler-LLagrange equation, and consequently no reason why the config-
urations associated to ¢,,,.a should be equilibrium configurations.

Given ¢ € Y}, and teR, we define x = x4, as in §8, i.e. x; = ¢ (t + wi) and if
be€Y,, we define x=x,,,. as in §11, ie. ;=P (t+wit). If ¢ €A, .4 and x = x4,
then

x; <&+, if t+wis<j+A()),
x;,=z&+j), if t+wi>j+A()).

We let Z .4, denote the set of configurations x = (..., x;, . . .) which satisfy these
conditions. If ¢ € B,.4 and x = x4+, then

x; <&+, if t+wi<j+A()),

x;,z&+j), if t+wi=j+AQG).

We let .4+ denote the set of configurations x =(. .., x;, . . .) which satisfy these
conditions. Note that for ¢ € B4, We have Xgui— = Xpt € Lwnar—-

We will say that a configuration x €& ... has minimal energy relative to
& onacs if for any pair of integers m <n and any x' € .4, such that x/, = x,,, and
X! =x,, we have W, (x)< W, (x"), where W,,, is the function defined in §11.

We will call such an x a relatively minimal energy configuration for ... Its
definition differs from that of a minimal energy configuration (cf. §11) only in that
x' is constrained to be in Z,,.4,.. In this section, we will prove:

PROPOSITION 24. Suppose o is irrational. Let ¢ € B,.o and suppose ¢
minimizes F, over ... Let teR. Then X,.. is a relatively minimal energy
configuration for Z .. -

The hypothesis that @ is irrational is unnecessary, but we will not need the
more general result obtained by dropping this hypothesis, and the proof in the
case of rational w is slightly different from the proof we give now.

Proof. Suppose, for example, that x,,.. is not a relatively minimal energy
configuration for &4, 50 there exists x' € € .4+ and integers m <n such that
X = (X oot )m> Xh = (Xpwes)n and W, (x") < W, (X 4r+)- Let 8 >0 and define ¢’ in
the same way as in the proof of Proposition 11.1, replacing ¢, by ¢. Then
F,_(¢)>F_(¢') if 6> 0 is small enough by the argument in the end of the proof of
Proposition 11.1. A straightforward verification shows that if 6§ >0 is sufficiently
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small, then ¢'e oA, 4. Thus, we obtain a contradiction to the assumption that ¢
minimizes F, over ... This contradiction shows that x4, is a relatively
minimal energy conflguration for & ,4,..-

A similar argument shows that x,,,_ is a relatively minimal energy configura-
tion for ¥ ... O

Note that it is not necessarily the case that ¢’ € B,,.4. It is for this reason that
we went to all the bother of verifying that ¢, minimizes F, not only over %,. but
also over the larger space &,.

§25. Proof of the rest of Theorem 15 and Addendum 1

The only thing which remains to prove in Theorem 15 is the second assertion,
namely that 2) and 3’) hold under suitable hypotheses. Addendum 1 is a more
precise version of the assertion. We will prove Addendum 1 in this section,
thereby also completing the proof of Theorem 15. Throughout this section, we
suppose that o is irrational and P,(£)>0. We will also suppose that the
hypothesis of Addendum 1 is satisfied, namely, ||A||<8(h, w, n, P,(&)).

By its definition, §(h, w, n, P,(£¢))<3. Since ||A||<3, we have that s, and
RB..a are non-empty. By Proposition 23, there exists ¢, € By = B2 Which not
only minimizes F, over &, =4, but also satisfies ¢,(t—A4,)<d, (1)<
¢, (t—A_), if we assume (as we may) that ¢, is normalized so that (23.1) and
(23.2) hold.

Let N(h, w, n, P) be as defined in §15 (preceding the statement of Addendum
1). Let N=N(h, w, n, P(&)). In view of the hypothesis of Addendum 1 and the
definition of N(h, w, n, P), we have

A, —A_=|A||<min {Jiw +j*|:i, j*€Z and 0<i<N}.

Consequently, the intervals [t— A, +iw+j*, t—A_+iw +j*] for i,j*€Z and 0<
i <N are mutually disjoint.

We have pointed out in §10 that a slight modification of the proof of
Addendum 2 of the Theorem in [16] shows that ¢, is strictly order preserving.
Consequently, the intervals [¢, (t— A, +iw +j*—), ¢, (t—A_+iw +j*+)] for i, j*
Z and 0<i=<N are also mutually disjoint. Since ¢, (t+1)= ¢, (t)+ 1, this implies
that the projections in R/Z of [¢,(t—A,+iw—), d,(t—A_+iw+)], i=0,...,N
are mutually disjoint. We may therefore choose an integer i, satisfying 1<i, <N
such that

¢, (t—A_+iwt)—d,t—A,ti,w—)<N. (25.1)
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A similar argument shows that there exists i_ satisfying —N <i_=<—1 such that
¢, t—A_+iwt)—¢,(t—A,+i_w—)<NL (25.2)

Now we will prove that ¢, satisfies inequality 3’) of Theorem 15 if t=j+ A(j).

We consider two cases: If t=j+A_, then we have ¢,(t+)=¢, (t— A, +)=E+],
since ¢, is chosen so that the conclusion of Proposition 23 holds and ¢, is
normalized so that (23.1) and (23.2) hold. Moreover, the last inequality is strict,
since P (&)>0, so &¢pr,M, =image ¢, and consequently £+ jéimage ¢,. Thus,
da(t+)> £+, in the first case.

The second case is less trivial: We suppose t<j+A,. We then have t—A4, <
j<t—A()<t—A_. Since ¢, is order preserving, it follows that

b, (t—A, +ivt)<¢,(j+ivt+)<d,(t—A_+in+),
for any i € Z. By Proposition 23,
b, t—A HiwH)sP,(t+iv+) <o, (t—A_+iw+t+),

for any i € Z. Combining these last two displayed formulas and (25.1) and (25.2),
we see that

lpat+iLw+)—o, (ti.o+)| <N (25.3)

Set ¢ = ¢, and let x = x4, in the notation of §24, i.e. x; = P, (t + wi+). Since
¢ € B,..a, We have x € Z .4+ In particular, since t=j+ A(j), we have x,= & +j, by
the definition of & ,.4.+. The inequality 3'), which we are proving, is equivalent to
Xxo> €+ j. We will suppose xo=&+j and obtain a contradiction, thereby proving
3.

Since ¢, is a member of &B,., and minimizes F, over ¥«,.,, it follows from
Proposition 24 that x = x4, is a relatively minimal energy configuration for
& nac+- Supposing x,=&+j, we will show that this is not the case, thereby
obtaining the desired contradiction.

Letxi=x=x;, fori<i_ori>i,.Letx;=x"=¢,(+wi+),fori=i_ori=i,.
Let xi=d¢,(j+wi+) and x| = x;, for i_<i<i,. These conditions specify configura-
tions x’ and x".

By (25.3), |x;,—xi|<N7!, for i=i_ or i=i,. By the fact that ¢, is weakly
order preserving and the fact that ¢,(t+n)= ¢, (t)+n, we have

nlo/n]<x —x;<nlo/n]+n,
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for all ieZ. It then follows from the mean value theorem and the definition of
C(h, w,n) (cf. §15) that

| Wi (x")— W,,(x)|<4C(h, o, n) N*

if l<i_and m>i,.
I-Et (x+)i =¢m(1+wl+)a (x—)i =¢m(]+wl_)° Let Yi z(x+)ia for lsl— or 12 i+,
yi=((xAx)vx),=((xvx_)ax,), for i_<i<i,. For [<i_and m=i,, we have

Win(y) = Winl(x1) = G, (y) = P (£ +]) = P, (&),

where the first equation is a consequence of the fact that yeX%,; and the
definitions, and the 1nequa11ty is a consequence of the fact that y,=x,=§&+].
Obviously, W, ; (x')= W, , (x,), since x;=(x,); = ¢, (j +wi+) for i_<i=<i,. Thus,

i 1+(y) i 1+(x,)/P (g)
The argument which proves Lemma 7.1 also shows
Wi, (x"Ax)+ W (x"vx,)s W (x")+ W (x).

In proving Proposition 11.1, we showed that x, is a minimal energy configuration.
(Note that x, i X4+ in the notation which was used in Proposition 11.1.) Since
(x"vx));=x7=(x,);, for i=i_ or i,, we have W ; (x"vx,)=W,, (x,). Conse-
quently, the above inequality implies W, ; (x"Ax,)< W, ; (x").

Note that y, =((x"Ax,)vx_), for i_<i<i,, so

W (W + W (X"Ax)Ax )< W, (x"Ax)+ W, (x0).

The proof of Proposition 11.1 also shows that x_ is a minimal energy configura-
tion. Since x7=(x,); for i=i_or i,, we have (xX"Ax, Ax_);=(x_); fori=i_or i,
and consequently W, ; (x"Ax,Ax_)=W,; (x_). Together with the above in-
equalities, this implies that

W (=W, x"Ax)sW_; (x").
Thus,
Win(%) = Wi (x') = W (x") — Win(X") — | Wipn(x") = Wi()|
W (x") = W, (x) = [ Wn(x") — Wi, (x)]

= Wi, (9) — Wi, () = | Win(x") = Win(x)|
=P, (&)~ 4C(h, 0, n)N~'>0,
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if I<i_ and m>i,. The last inequality is a consequence of the fact that
N = N(h, o, n, P (£¢))>4C(h, w, n)/P_(£), by the definition of N(h, w, n, P) (§15).
The equality is a consequence of the fact that x; =x for i<i_ and i=i,.

We have x'€ &, ac+, 1.€.

xisE+*, if t+ei<j*+AGY),

xi=E+j*, if t+wizj*+AGY),
|

where i and j* run over all the integers. For i<i_ or i>i,, this is obvious,
because x € X na+ and x;=x;. For i_<i=<i,, it is enough to show that t+wi<
J¥+A(G*) © j+wi<j* ie. that t+wizj*+A(*) © j+wi=j*, ie. that t+wi is
in the interval [j*+ A(j*), j*+ 1+ A(j*+1)) if and only if j+ wi is in the interval
[, i*+1).

We prove the last statement, as follows: First, note that A, <A_+1, since
lAll<1/2. In particular, j+ A, <j+1+A_<j+1+A(j+1). We have assumed at
the outset that j+ A(j)=<t, and we are considering the case that t <j+ A,. Thus,

HA<st<j+A.<j+1+A(G+1),

so the case i =0 holds. For the case i>0, we use the fact that the intervals
[t—A,+wi+j* t—A_+wi+j*] are mutually disjoint for i,j*€Z and 0<<i<N.
Since je[t—A,, t—A_], this implies that none of the intervals [t— A, +wi, t—A_+
wi],i=1,...,i,<N contains an integer; moreover, each of these contains j + wi.
Consequently, if j+wie[j*, j*+1), then [t— A, +wi, t— A_+wi]<= (*, j*+1), and
so, t+iw is in the interval (j*+A4,,j*+1+A_), which is a subinterval of (j*+
AG*), j*+ 1+ A(j*+1)). For the case i <0, we use an argument similar to that for
i>0.

Thus, x'€e X .4.+. We have previously proved that W, (x)— W,,.(x")>0. Still
earlier, we had proved that x is a relatively minimal energy configuration for
& nac+, SO We have obtained a contradiction. This contradiction was obtained
under the assumption that x, = £+, i.e. that inequality 3') in Theorem 15 was not
satisfied.

Thus, we have proved that the inequality 3') of Theorem 15 holds if t=j+ A(j).
The proof that 2') holds if t<j+A(j) is similar. O

§26. Proof of Addendum 2

Set

Vo(t) = hy(d(t— ), ¢(1)) + hy(d (1), d(t+ w)).
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If ¢ is continuous at ¢, then V (t—)= V,(t+), because h,,<0. Moreover, we have
equality if and only if ¢ is continuous at both t—w and t+w. In the case that
¢ =d.nea and 2') and 3') of Theorem 15 are satisfied, the Euler-Lagrange
equation holds, i.e. V(t—)= V,(t+)=0. Since we have equality in this case, the
continuity of ¢ at ¢t implies the continuity of ¢ at t—w and at t+w. O

§27. Continuous dependence of the relatively minimizing element on the
constraints

As in §16, we let @ denote the set of all mappings A :Z — R of period n for
which &/, is non-empty and inequalities 2’) and 3') in Theorem 15 hold for ¢,. In
§17, we defined a set Y, and a metric d on it. In this section, we will show:

PROPOSITION 27. The mapping A — ¢, is a continuous mapping of & into
the metric space (Y,, d).

Here, we provide 9 with the induced topology associated to the inclusion
DR : ¢~ (d(1),...,d(n)).

Proof. As we remarked in §17, %, is a compact subset of Y,. Moreover, it is
easily seen that A+ %, is a continuous mapping of & into the space of
compact subsets of Y,, where the latter is provided with the Hausdorff metric on
compact subsets of (Y,,d). The continuity of 4 — ¢, then follows from the
uniqueness assertion in Theorem 15. [

§28. The vague topology on Denjoy minimal sets (definitions)

In this section, we give a detailed definition of the vague topology on the set of
Denjoy minimal sets for f in (R/Z) XxR. We have already briefly described this
topology in the introduction.

First, we need the notion of the vague topology on the set of Radon measures
on (R/Z) XR. This is a special case of a notion which may be found in Bourbaki [8,
Chapt. III §1.9]. We recall the Bourbaki notion: Let X be a locally compact,
Hausdorff space. We let ¥(X) denote the real vector space of real-valued
continuous functions on X of compact support. If K is a compact subset of X, we
let X(X, K) denote the vector subspace of ¥ (X) consisting of all real-valued
continuous functions on X having support in K. We provide #(X, K) with the
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topology of uniform convergence. The space #(X) is the union of the subsets
X (X, K), where K runs over all compact subsets of X. We provide #(X) with the
inductive limit (i.e. direct limit) topology of the topologies on #(X, K). By
definition, a Radon measure on X is a real-valued continuous linear functional on
H(X). The real vector space of Radon measures on X is denoted #M(X). The
vague topology on M (X) is the topology which is variously called the topology of
simple convergence on ¥ (X) (Bourbaki), the topology of pointwise convergence
on #(X) (Kelley [15, Chapt. 7, p. 217]) or the ¥(X)-weak topology (by
functional analysts; see, e.g., Reed and Simon [24, IV.5, bottom of p. 119].)

Second, we need the fact that any Denjoy minimal set supports a unique
invariant probability measure. We recall that a Radon measure p is said to be
positive if for every fe€ X (X) such that f=0, we have u(f)=0; it is said to be a
probability measure if ||| =1, where, following Bourbaki [8, Chapt. III §1.8], we
define

lill = sup {lu (I : fe H(X), lIfll <1},

and ||f||=sup{|f(x)]:x € X}. A proof that a Denjoy minimal set has a unique
invariant probability measure is given, for example, in [12, II, 8.5]; a Denjoy
minimal set is said to be uniquely ergodic because it has this property. (See, e.g.,
[12, 11, 8].)

Since every Denjoy minimal set is uniquely ergodic, we have an inclusion

{Denjoy minimal sets for f} < {f-invariant probability measures},

obtained by associating to a Denjoy minimal set the unique invariant probability
measure which it supports. We define the vague topology on the set of Denjoy
minimal sets to be the topology induced from the vague topology on Radon
measures.

§29. Continuous dependence of the Denjoy minimal set 3, on the constraint A

For A € 9, we defined the Denjoy minimal set 3, < (R/Z) XR of f after Lemma
16.4.

THEOREM 29. The mapping A — 3, of @ into the space of Denjoy minimal
sets of f, provided with the vague topology, is continuous.

Proof. Consider a compactly supported function & on (R/Z) XR. For A € 9, let
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I, denote the integral of & with respect to the unique f-invariant probability
measure on X,. In view of the definition of the vague topology, it is enough to
prove that A — I, is a continuous mapping from 2 to R.

Let u be the composition of the projection R* — (R/Z) XR and the function ii.
Clearly,

I, = n“J u(@a(t), na(t)) dt,

where 7, is as defined in §16 (preceding Lemma 16.3). Let § >0 be a positive
number. The argument given in [16, §6] shows that there exists §,> 0 such that if
A, A'e D and d(da, da) <8y, then |, (t) — Pa(t)| < fails to hold for te[0, n] at
most on a set of measure 8. Since M, (t) = —h,(P,(t), Po(t+w)) and there is a
uniform bound on |p,(t+w)— ()| for AcD and teR, the same statement
holds for n, in place of ¢,.

The continuity of I, as a function of A follows immediately.

It follows from Theorem 29 that the (n—1) parameter family of Denjoy
minimal sets for f of angular rotation number w and intrinsic rotation number
congruent to (w + R)/n (mod. 1) which was described at the end of §16 is in fact a
topological (n — 1) disk with respect to the vague topology. Thus, we have proved
the result announced in the abstract of this paper.
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