Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 60 (1985)

Artikel: Homomorphisms of Fuchsian groups to PSL (2, ...).
Autor: Jankins, Mark / Neumann, Walter

DOl: https://doi.org/10.5169/seals-46328

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-46328
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helvetici 60 (1985) 480-495 0010-2571/85/030480-16$01.50 + 0.20/0
© 1985 Birkhauser Verlag, Basel

Homomorphisms of Fuchsian groups to PSL (2, R)

MARK JANKINS and WALTER NEUMANN("

Introduction
Let '=I'(g:a,,...,a,) be a cocompact Fuchsian group of genus g with
branch indices a;, ..., a,. In this paper we determine the set of components of

Hom (I', PSL (2, R)). This was done by the first author in [J] for g>0 so we only
prove the genus zero case.
The main results are in terms of an euler class

e :Hom (I', PSL (2, R)) » H*(T"; 2)

defined as follows: e(f)={f*(c) where f*:H*BPSL(2,R),Z)— H*BI';Z)=
H?(I'; Z) is the map induced by f and ¢ € H*(B PSL (2,R), Z)=Z is a generator. In
[IN] it is shown that H*(I',Z) is the abelian group:

H*I';7)=ab{xy, ..., x, |ax;=x0;i=1,...,n),

(this can easily be seen by constructing an explicit BI': replace each of n discs in a

surface of genus g by a B(Z/w;)). Thus any x € H*(I', Z) has a unique representa-
tion

X =bxo+B1x1+ * ++ +BuXy, 0=8<a;
called the normal form representation.

THEOREM 1. The above x equals e(f) for some f if and only if the following is
true:
(1) If g>0 then 2—-2g—n=<b=<2g-2;
(i1) If g =0 then either
(@) 2—n=b=-2

! Research partially supported by the NSF.
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or
(b) b=-1 and Y., (B/a;)=1
or
(c) b=1-nand Y, (BJa;))=n—-1.

THEOREM 2. The fibers of e are the components of Hom (I, PSL (2, R)).

If T(I') = Hom (I', PSL(2, R))/PSL (2, R), where the action is conjugation, then
our results apply also to T(I'). One component of T(I') is Teichmiiller space; W.
Goldman, in his 1981 Berkeley thesis, showed that this component is charac-
terized by its euler class. The general case g>0 of Theorem 1 was proved in
[EHN] in the context of transverse foliations of Seifert fibrations (this means that
it was assumed that each pair («;, B8;) is coprime; this was however not needed in
the proof). Both theorems are proved for g >0 in [J]. For I" a surface group (that
is n =0) Goldman [G] has an independent proof of Theorem 2 and Theorem 1
was proved earlier by Milnor [M].

In [JN2] we apply these results and other methods to discuss the question of
which Seifert circle bundles over S? admit a transverse foliation. For Seifert circle
bundles over higher genus surfaces this was answered in [EHN]. The genus O case
turns out to be much more subtle —in particular we show in the final section of
this paper that the answer conjectured in [EHN] and claimed in [Ga] is false.

§1. Fundamentals

~

In the following we shall denote PSL (2,R) by G and its universal cover by G.
G acts by projective automorphisms on RP'=S" and this action lifts to an action
of G on (S')™ =R. Following [EHN] we let & denote the group of homeomorph-
isms f:R— R which are lifts of homeomorphisms of the circle S'=R/Z. Con-
tained in 9, as a subgroup of index 2, is the group

9" ={g:R—R| g monotone and g(r+1)=g(r)+1 for all reR}.

Therefore we can consider G as a subgroup of &. For each~real number y we
define sh (y) € G by sh (y):r—r+vy for reR. The center of G is

Z(G)={sh(n)|nez}=7

and G/Z(G)=G. .
Since SL (2,R) is a connected 2-fold cover of G =PSL (2,R), G is also the
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——— i ——
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’

universal cover of SL(2,R). For A € G we define tr (A) to be the trace of the
image of A in SL (2,R). We say A¢ Z(G) is elliptic, parabolic, or hyperbolic
according as |tr (A)| <2, |tr (A)| =2, |tr (A)|>2 respectively. G is homeomorphic
to RxD? and is subdivided according to trace as in Fig. la (an explicit
diffeomorphism is given in an appendix to this paper). We label the components
of the elliptic and hyperbolic regions as in Fig. 1b. The cones 7 which separate
the elliptic from the hyperbolic regions consist of parabolic elements and the cone
points are the central elements. A convenient way of distinguishing all these
regions is by the following invariants of A e G (see [EHN].):

mA =min{A(r)—r|rer},
mA =max{A(r)—r|reR}
Namely,

AedS[mA mAlc(i,i+ 1),
Ae¥, ©ie(mA, mA),
AePIOmA=i<mA,
AeP  &mA<i=mA.

Any element of SL (2, R) has a unique lift into the region

P={AecG|-1=ma<l,-1=mA <2}
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We call this lift the principal lift and we call ? the principal region (Fig. 2). We
denote the principal lift of A by A™.

PROPOSITION 1.1. Elements A, Be G—Z(G) are conjugate if and only if
tr A =tr B and A and B lie in the same region (8, #;,, P; or P;).

This is immediate from the corresponding fact for conjugacy classes in SL (2, R)
plus the easy observation that inner automorphisms of G preserve regions.

For a hyperbolic element A € SL (2,R), the region (¥, or ;) in which its
principal lift lies is determined by tr A. For elliptic and parabolic elements trace is
insufficient and we need the following lemma.

b

LEMMA 1.2. Given A = (: d)eSL (2,R)—{x I} with |tr A|=<2, the princi-

pal lift A~ satisfies
A~ €€ o c—-b<0.
A €, c—b>0.

Proof. We first consider the case |tr A|<2. Since the set of B € SL (2,R) with
tr B=tr A has two components, we only need show that these components are

b ) .
subject to the constraints

a
distinguished by sgn (¢ —b). Thus we consider (C d

a+d=t (t|<?2)

1
ad —bc=1. ()

Letting a=x+y, d=x—y, b=z—w, ¢ =z+w, equations (1) combine to give

2

t
wz_y2_z2___1____4_ (2)
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and ¢ — b is 2w. Equation (2) describes a hyperboloid of two sheets with the sheets
distinguished by the sign of w. This proves the case |tr A| <2 of the lemma and
the general case follows by continuity.

COROLLARY 1.3. The conjugacy class of Ae€SL (2,R)—{+I} (and hence
of its principal lift A™) is determined by tr A if |tr A|>2 and by tr A together
with sgn (c — b) if |tr A|=<2.

§2. Products of conjugates

The proofs of Theorems 1 and 2 depend on understanding what elements of G
can occur as products of conjugates of given elements. The general answer easily
follows from Lemma 2.1 and Proposition 2.2 below; we describe only the case we
need, which is the most subtle case, in Corollary 2.3.

For A, Be G write A~ B for “A is conjugate to B.” For fixed A,,..., A, €
G define

S(Al,"',An)z{Bl' : 'BnlAi~Bi’i=1’---’n}-
In particular, S(A) is the conjugacy class of A.

LEMMA 2.1.
(1) S(Ab ves An) = S(A]l’ sy Ak)S(Ak+15 s ey An)
(2) S(A4,...,A)=S(Acy -5 A for any permutation o of {1,...,n}.
(3) S(Sh(kl)Al, ow ooy Sh (kn)An) =sh (Z?=1 ki)S(Al, ooy An) for kl’ o ey kn el.

Proof. (1) and (3) are trivial. Statement (2) follows for n =2 from the identity
A;A,=A,(A>'A;A,) and then follows for general n by induction using state-
ment (1).

In view of this lemma, the following Proposition gives all possible S(A;, A,)
up to integral shifts.

PROPOSITION 2.2. The following regions in G are S(A,, A,) for the indi-
cated A, and A,. Here

Y de (09 1)’
P, A€ (09 Oo)

In the pictures we just draw a slice through the picture of Fig. 1; dotted lines indicate
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open boundary and sh (k) is in S(A,, A,) for k €Z only if explicitly indicated by a
dot

(@) A,=sh(y) A,=sh ()
(1) O<y+dé<1

s(sh(r+8)

® O A= A=( )
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l

© A= A=(0 D)

o 0a-( ) ae( Y

(i) A, = (3 1) A,= (1 +1)~: mirror image of (d)(i).

0_,)~: mirror image of (e)(i).

e

0

(%) sh(o)eS(A),A2)&> 1=
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Proof. The general technique in each case is that an elementary computation
using m and m gives a rough bound on S(A;, A,) and then the exact S(A;, A,) is
found by computing the possible values of a+d (and, if necessary c¢—b) for

b
(j d) a product of conjugates of the images of A, and A, in SL (2,R). We do

the first case, (i), which is typical. In this case a trivial computation with m and m
shows S(A;, A,) is contained in the following region

Thus we see it suffices to calculate the possible traces.
A general element A € S(A,, A,) is conjugate to the principal lift of

(a b> (cos @ —sin 0) with (a b) _ (cos ¢ —sin dl)
¢ d/\sin@® cos#@ c d singy cos ¢
and ¢ = my, 6 = wd. In particular a+d =2cos ¢ and ¢—b>0. Thus

tr A=tr ((a b) (Cf)s 6 —sm O)) =2 cos Y cos 8 —(c—b)sin 6.
¢ d/\sin® cos@

By equation (2) in the proof of Lemma 1.2 we see that ¢ —b (=2w in the notation
of that proof) lies in the interval [2./(1—t%/4), ») with t =2 cos . It is easy to see
that ¢ —b takes on all these values. Therefore, since /(1—t*/4) =2 sin ¢, we see
that tr A takes on all values in the interval (=, 2 cos (6 + ¢)]. This completes the
proof of case a(i); the other cases are similar calculations.

COROLLARY 2.3. The following regions are S =S(sh(vy,),...,sh(y,)) for
the indicated v; with 0<+vy,; <1 and n>1.

(@ 0< ) vy, <1.
i=1

13
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n

®) 1<) v=<n-1

i=1

sh(DeSe Y v,=1
i=1

sh(n—-1)eSe ) v=n-1
i=1

n
S(sh(Z 7))
i=1

The proof is an easy induction using Lemma 2.2.

Remark. Since a commutator [A, B]is in S(A, A™"), Lemma 2.2 easily gives a
result proven in [EHN], namely that the set of commutators in G is given by

§3. Proofs of Theorems 1 and 2

We use the notation of the introduction. The case g>0 is done in [EHN] (it
also follows easily with our present approach); we thus assume now g =0.

Ir=r;ay,...,a,) has presentation

<q1a°°'aq't‘q?i=1’ql'.'qn=1>'
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Given a homomorphism f:I' — G =PSL (2,R), an equivalent way to define the
euler class e(f) is as follows. Take the pull-back central extension from

r
lf

05Z->G—>G—1.
This gives a diagram

0>2Z—->T->TI—>1
1 lF (1)
0-Z—-G—->G—>1

where I has a presentation (by lifting g, € I" to an element, which we also call g,
in ")

G- quvz|qs=2%q,- - q.=2"" z central)

with 0 <B; <a;. In the notation of the introduction we then have
e(f)=bxy+Bx,+- - -+ B.X,.

This is shown for instance in [JN] (see also [J]; it is essentially the statement that
H*(I';Z)=Ext (I'; Z) which is the group of central extensions of I' by Z). Thus
bxo+ B1x1+ -+ B.x, is e(f) for some f if and only if diagram (1) above exists.
This is so if and only if f -I'— G exists with f(z) =sh (1). Equivalently, there must
exist Qy, ..., Q,€G with Q*=sh(B;) and Q, - - - Q, =sh (—b). But Q*=sh (B)
if and only if Q ~sh(B/a) so case (ii) of Theorem 1 reduces to showing that

s(sh (fi) ...sh (E—))

a; Ay,
contains sh (—b) if and only if (a), (b), or (c) of Theorem 1 holds. This is immediate
from Corollary 2.3.

For Theorem 2 we again assume g =0, since the case g>0 is proved in [J].
We introduce the following notation for Qe G and 1=k =n:

_ai
B
X(Q)={(Qy,..., Q)| Qi~sh(y), Q- Q% =Q}
Y(Q)={(Qy, ..., Q)| Qi~sh (), Qs+~ Qc~ Q}.

Yi
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By the previous discussion, e '(bxg+ B1x,+" * - + B.X,) < Hom (I, G) is a continu-
ous image of X, (sh(—b)) (it is actually homeomorphic to X, (sh (—=b)). Thus it
suffices to show X, (sh(—b)) is connected. Notice that, since sh (—b) is central,
X, (sh (—b)) = Y, (sh (—b)). We shall show the more general result that X, (Q) and
Y,.(Q) are connected for any Q.

LEMMA 3.1. X,,(Q) is connected if and only if Y, (Q) is connected.

Proof. For A€ G and Qe G define Q* = A’Q(A")™! where A’ is a lift of A
to G. Denote Z;(Q)={A € G| Q* = Q}. The map ¢ :G x X,,(Q) — Y,.(Q) given
by ¢(A, Q,,...,Q,)=(Q%, ..., QY has fibers isomorphic to Z5(Q) which is
connected. Since ¢ is onto, the lemma follows.

We prove the connectivity of Y,(Q) by induction. It is trivial for n=1.
Consider the map

!l’:Yk(Q)*é
¥(Q,, ..., Qk)= Q- Q1.

The image of ¢ is

Im)={PcG|P=Q, - Q_,;PQ.~Q;Q ~sh(y)i=1,...,k}
= S(sh (’Y1), NP | (Yk—1))ms(o, sh (“’Yk))-

This is an intersection of two regions of the type described in Proposition 2.2 and
Corollary 2.3 and is thus connected. The proof is complete once we show ¢ '(P)

is connected. The mapping (Qy,..., Q.)—(Qy, ..., Q,_,) maps ¢ *(P) onto
X _1(P) with fiber

W={Q l Qi ~sh (), PQ, ~ Q}.

Since X, _,(P) is connected by induction hypothesis and Lemma 3.1, we must just

show that W is connected. Since W is contained in the principal region, we may

work in SL (2,R) instead of G. If the image of P in SL(2,R) is +1 then W is

trivially connected, so we may assume, by conjugating P if necessary, that
01 0

P= (_ 1 s) (for |s|=2 we should also consider P = ( 1

similar). Thus we consider, with 6 = 7y, and T=tr Q,

, _(cos @ ——sinﬂ) (( 0 1) )_ }
W {R‘R (sino cos 0 T \\-1 sR_T'

); the argument is
S
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If |T|>2 then W'= W, otherwise W' consists of two disjoint (possibly empty)

. b
pieces of which one equals W. We show W' is connected. Write R = (: d)’ SO
the conditions on a,b,c,d are a+d=2cosf, c—b>0, ad—bc=1 and
c¢—b+sd =T. With the change of coordinates used in the proof of 1.2 these
become:

2

t
w2—y2——22=1—-‘1—, (t=2cos 0)

w>0
2w+s(t—2y)=T.

The first two conditions determine one sheet of a hyperboloid of two sheets. The
third equation describes a plane which thus intersects this sheet in a connected
set.

§4. Transverse foliations in Seifert fibrations

Let M be a Seifert fibered 3-manifold with normal form Seifert invariant
(g;b; (g, By, - - ., (an, Bn)). In [EHN] it was suggested that the numerical condi-
tions of Theorem 1 might be necessary and sufficient for M to admit a codimen-
sion 1 foliation transverse to its fibers; this was proved for g>0 but only
sufficiency of the conditions was proved for g =0. Here we give an example to
show that the conditions are not necessary for g =0.

Recall that

@*={g:R—R| g monotonic and g(r+1)=g(r)+ 1 for all reRY}.

Let I'=0(g;b;(ay,By),...,(a,B,)) be the central extension of I'=
I'g; ay,...,a,) defined in Section 3 with center generated by z. In [EHN] it is
shown that M has a transverse foliation if and only if there exists a homomorph-
ism f:'—@* with f(z)=sh(1). (This is equivalent to the existence of a
homomorphism f:I' — Homeo™ (S') with euler class e(f)=bxy+8.x,+ -+
B.X,.)

By our results we can find R, R,, R,€ G with R,~sh (%) for i=1,2,3 and
R;R,R;=sh (2). Let Q,=P;'R,P, for i=1,2,3 where P,:R—R is map P,(r)=
2r. Clearly, Q;e 2™ and Q,~sh (%) for each i. Moreover Q,;Q,Qs=sh (1). This
gives a homomorphism f:I'(0;—1;(5,2), (5,2),(5,2)— D" with f(z)=sh(1),



492 MARK JANKINS AND WALTER NEUMANN

showing the existence of a transverse foliation on M(0; —1; (5, 2), (5, 2), (5, 2)).
This is the claimed counterexample.

Analogous constructions using P,, :R — R, P,,(r) = mr give many more exam-
ples. We have strong evidence that if M(0; b; (a;, By), ..., (a,, B,)) admits a
transverse foliation, then a transverse foliation can be constructed by this method;
details will appear elsewhere (see [JN2]).

Appendix. A homeomorphism for Fig. 1

In the above paper we need only such topological information related to Fig. 1
as is easily available by inspection, so we did not give an explicit homeomorphism.
This appendix supplies such a homeomorphism, with a sketch proof.

PROPOSITION. Let D denote the open disk of radius 5 and parametrize R X D

as RxD ={(z,r,8)| ze R, 0=r<%} using polar coordinates. For Q € G let t(Q) eR
be any stable fixed point of sh (—3(mQ +mQ))Q. Define

D:G—->RXD

@ : Q— (3(mQ +mQ), 3(Q — mQ), 2mt(Q))
and

V:RXD—G

V:(z,r,0)—>sh(z)-sh(6/2w)

. (sec (7rr) +tan (wr) 0
0 sec (7rr) —tan (7r)

)~ -sh (—6/27).

Then ® and ¥ are mutually inverse analytic diffeomorphisms which exhibit the
structure of Fig. 1.

Remark. The projection of ¥(z, r, 8) into SL (2,R) is

cos(mz+0) sin(mwz+0) cos (wz) —sin (mw2)
tan (m)(sin (mz+60) —cos(mz+ 0)) Faec (ar) (sin (mz) cos ('n-z))'

Thus the trace of ¥(z,r,0) is 2cos (wz)/cos (wr). In particular the cones of
parabolic elements in Fig. 1 are given by the equations cos (wz)/cos (nr) = £1, i.e.
z=n=xr for neZ, while other surfaces of constant trace are given by smooth
surfaces 2 cos (wz) =t cos (7rr) with t# +2.
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Proof. The action of any q € SL (2,R) on R? can be written in polar coordi-
nates in the form

(r, 0)—(rq:(6), q2(6)). (1)

The action 6+ q,(0) on S' is the double cover of the action of G = PSL (2,R) on
RP’=S" of §1. The action of SL (2, R) on R? is area preserving. A map given as in
(1) above is area preserving if and only if

a9, _ o

so this holds in the present situation. We deduce:

LEMMA. Let Qe G be a lift of qeSL (2,R) and, for teR, let e(t) denote
exp (wit)e C=R> Then one of mQ and mQ is attained at tcR if and only if
lq - e(l=1.

Indeed, Q(x)—x has derivative 0 at x =t if and only if Q'(t) =1, or equival-
ently, q5(6) =1 with 0 = wt. By (2) this means q,(6) =1 and by (1) this means
lg - e(t)|=1. We must show that such a point ¢t represents an extremum of
Q(x)—x and not just an inflection point. But q~* takes the unit circle in R* to an
ellipse of area . Unless q is a strict rotation, this ellipse will intersect the unit
circle in just two points e(t) with 0 <t <1, so these points must be where the two
extrema of Q(x)—x are attained.

Returning to the proof of the proposition, we first show that @ o ¥ =id.
Suppose D(Q) = (z,, 1y, 8,). Then clearly @(sh(z)-sh(6/2w) - Q -sh (—0/2w)=
(zo+ 2, 1o, 6o+ 0). It thus suffices to show for

0= (sec (7rr) +tan (7r) 0 )N

0 sec (7r) —tan (mr)

that ®(Q)=(0, r,0) with r=1(mQ —mQ). In other words, we must show that
mQ =r and mQ =—r and Q(0)=0. The latter is trivial; for the former we apply
the lemma. Now

(sec (7r)+tan (7r) 0 )(cos (0)) “

0 sec (7rr)—tan (7rr/ \sin (0)

= o0 (1+sin? (r) + 2 sin (7r) cos (26)),



494 MARK JANKINS AND WALTER NEUMANN

which equals 1 if and only if 2 sin (7r) cos (20) = —2 sin? (arr). This holds if and
only if §/7 = + (3r+ 1) modulo 1. Symmetry properties of the graph of Q (or direct
computation) now show that QGr+3)=2ir+3—r and Q(-ir-H=-Ir—3i+r,
showing that mQ =r and mQ = -r.

To complete the proof that & and ¥ are inverse homeomorphisms it is
enough to show surjectivity of W. This follows easily from the following two
observations, each of which is a simple application of the intermediate value
theorem:

. a Ccos mZ —Sin 7wz
(i) For ( d
c

cos wz —sinmwz\ fa b\ . :
) is symmetric.
sin Tz  cOS 7z c d

a b) . (cos 6 —sin@
LQ2,R
b d e SL (2,R) there exists <in 0 o5 0

(cos @ —sin 9)‘1(a b)(cos 0 —sin 6) s diagonal
sin@ cos @ ¢ d/\sin® cosé@ g )

b
)eSL (2,R) there exists a ( ) such that

sin mz  coOS 7z

(i) For symmetric ( ) such that

We next show analyticity of the maps @ and ¥. Away from r =0 this is clear.
To see it at r=0 we write ¥ in the form

cos 6 sin @

(z,r,0)—>sh(z)- <tan (m)(sin 0 —cos 0) +sec (m)((l) ?))N

But

rcos 6 rsin 6
tan (7rr)/r, sec (wr), and ( ) )
rsin -—rcos@
are analytic, so ¥ is analytic. Using this description, the jacobian of ¥ at any point
with r=0 is also easily seen to be nonsingular, so analyticity of @ follows by the
inverse function theorem.
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