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Semisimple group actions on the three dimensional
affine space are linear

Hanspeter Kraft and Vladimir L. Popov

Introduction

It is an interesting question in the theory of algebraic transformation groups
over a field of characteristic zéro whether an action of a reductive group on the
affine space Ân is équivalent to a linear représentation. In his paper [Ka]
Kambayashi conjectures that this is always the case. (His conjecture more
generally concerns actions of linearly reductive groups on An in any characteristic.)

In the case of the affine plane A2 we hâve a fairly complète picture (cf. [Ka]
§4). In particular every action of a reductive group on A2 is linearizable, but in
gênerai even the weaker problem of existence of fixed points is unsettled (cf.

[Kr2] for some results in this direction). The best results so far known hâve been

obtained for tori (cf. [BB]): Hère there are always fixed points, and an effective
action of an n -dimensional or an (n - 1)-dimensional torus on An is équivalent to
a linear one.

Another gênerai resuit is a conséquence of Luna&apos;s slice theorem (cf. [Lu]): If
any G-invariant function on An is a constant (e.g. if G has a dense orbit in An)
then the action is équivalent to a linear one (cf. Proposition 5.1).

Our main goal hère will be to settle the case of a semisimple group acting on
A3 (Theorem 5.2):

THEOREM. Let G be a connected semisimple group over a field of characteristic

zéro. Then any regular action of G on A3 is équivalent to a linear one.

It is known that the group Aut An has the structure of a infinité dimensional

algebraic group ([Sh], [Ka]). One can interpret our resuit as an analogue of the
classical Levi-Maltzev theorem, i.e. any two maximal connected semisimple (finite
dimensional) subgroups of Aut A3 are conjugate.

Our main tools corne from géométrie invariant theory and représentation
theory of algebraic groups, in particular of SL^C). At several places we use some
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Euler characteristic arguments in the case of algebraic varieties; in an appendix
we develop the required results.*

It is obvious how to generalize some of our results, but we hâve not attempted
to give the most gênerai statements, since we wanted to keep the arguments as

simple as possible.

Remark. Using similar methods D. I. Panyushev [Pa] has recently extended
our resuit to the 4-dimensional affine space.

1. Some notations and gênerai tacts

1.1. We always work in the category of algebraic varieties over the field C of
complex numbers. Of course we could replace C by any other algebraically closed
field of characteristic zéro.

For any variety X we dénote by 6(X) the algebra of (global) regular functions
on X.

1.2. Given an algebraic group G and a regular action of G on an affine variety
X (shortly an affine G-variety) a morphism 7r:X-»Y is called an algebraic
quotient if Y is affine and tt induces an isomorphism of €{Y) with the algebra
€(X)G of G-invariant functions on X:

For a reductive group G such a quotient exists and is unique up to isomorphism:
In this case 6(X)G is finitely generated and we can take Y X/G : spec&lt;9(X)G

the maximal spectrum of C(X)G. In addition it is surjective and each fibre of tt
contains exactly one closed orbit. Moreover the image of a closed G-stable subset of
X is closed in XI G.

If X is a linear représentation of G the fibre tt^&apos;tKO)) is a cône and is usually
called zéro fibre or nilpotent cône (since in case of the adjoint représentation on
Lie G it is exactly the set of nilpotent éléments). For thèse results and other
gênerai properties of algebraic quotients we refer to the literature ([Kr], [MF]).

An important resuit from the theory of algebraic transformation groups which
plays a central rôle in our analysis is the slice theorem of Luna, analog to the well
known slice theorem in the theory of compact transformation groups ([Lu], cf.

* We thank the référée for his suggestions concerning this appendix.
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[Lu2]). One conséquence is the existence of a finite stratification of the quotient
XIG of a smooth variety X into locally closed smooth subvarieties (X/G)x such

that tt~1(X/G)x) -» (X/G)x is a G-fibration (in the étale topology). As usual the

strata (X/G)x are determined by the slice représentation associated to the closed

orbit in the fibre.

1.3. The group SL2 is of spécial interest for us. Let us fix the following
notations for some subgroups of SL2.

N: Norm^ T T U JT the normalizer of T,

for ni &apos;i

&apos;

J

It is well known that any closed subgroup H &lt;= SL^ is finite or conjugate to T, B, N
or some Un. In particular a one dimensional orbit under SL2 is of the forai
SL2/B —P1 and can therefore not appear in an affine SL^-variety.

1.4. The représentation theory for SL2 is rather simple: For any integer i
there is up to isomorphism exactly one simple SL2-module V, of dimension i +1,
e.g. the binary forms of degree i with the usual action of SL2 by substitution of
variables. In particular V2 is isomorphic to the adjoint représentation on the Lie
algebra sl2.

Given an affine SL2-variety X the induced représentation of SL2 on the

coordinate ring 6(X) is locally finite, and we may consider the décomposition into
isotypic components:

O(X) èc(X)l, 0(X\:= I W.
1-0 W&lt;=0(X)

W^Vt

Each isotypic component ^(X), is a finitely generated module over the ring
C(X)SL2 Û(X)0 of invariants. In particular if C(X)S^ C the isotypic components

€(X\ are finite dimensional and the multiplicities m,(X) of V, in 6(X) are
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given by

dimO(X),

1.5. LEMMA. Consider an SL2-action on A3 and a two dimensional orbit
OcA3.

(a) // O is closed then O is isomorphic to Sl^/T or to SLJN.
(b) If O is not closed then Ô OU{z} with a fixed point z, and either (i)

O -=? SL^/L^ and Ô -^ Vxor (ii) O -h&gt; SL^l/;, and Ô -^ C, where C is the nilpotent
cône in V2=sl2.

((a) foliows from the fact that an orbit O of a point x in an affine G-variety
can be closed only if the stabilizer Gx is reductive, and it is closed if the stabilizer
Gx contains a maximal torus (cf. [Kr] III.4.1 Lemma 3). (b) is an easy conséquence

of Luna&apos;s slice theorem, since the tangent représentation in a fixed point is

isomorphic to V2 or Vo© Vt.)

Remark. For the multiplicities in the différent cases of the lemma one finds:

for i even,
0 for i odd;

or i- mo

0 otherwise;

m,(V1)=l for ail i.

1.6. We repeatedly use the following resuit due to R. W. Richardson (cf. [Kr]
II.3.4 Lemma).

LEMMA. Let cp : X -&gt; Y be a birational morphism between irreducible affine
varieties. Assume that Y is normal and that codimY (Y-&lt;p(X))^2. Then &lt;p is an
isomorphism.

As a conséquence we see that for any affine variety X a non empty affine open
subset U=fiX has a complément of codimension 1, and this complément is even a

hypersurface if X is factorial. (In fact the union of the irreducible components of
X- U of codimension 1 is the zéro set of a function f on X. Hence U is open in
the affine variety Xf : {xeX|/(x)^0} with a complément of codimension ^2,
and so 17
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1.7. In some arguments we will use the Euler-Poincaré characteristic of an

algebraic variety, calculated in ordinary cohomology (with respect to the C-
topology) or what amounts to the same thing in cohomology with compact
support. The following facts seem to be well known, but we couldn&apos;t find a suitable
référence. In the appendix we outline the proofs of thèse results.

(a) If YaX is a locally closed subvariety then *(X) *(X- Y) + X(Y)
(b) If &lt;p:X —&gt; Y is a fibration of algebraic varieties (in the étale topology) with

fibre F then X(X) x(Y)&apos;x(F).

As a conséquence one easily gets the following: If G is a connected reductive

group, G^{e}, Te G a maximal torus and Be:G a Borel subgroup then
X(G) 0 and xiQIT) xiQIB) is the order | W| of the Weyl group W of G. (Use
the fibrations G -» GIT and GIT —» G/B, and the Bruhat décomposition of
G/B.) In particular *(SL2/T) 2 and

2. Actions with one dimensional quotient and multipiicities

2.1. LEMMA. Consider a non trivial action of SL2 on A3. Then A3/SL2 A1

and the quotient map is flat with reduced and irreducible fibres. In addition the orbits
in A3 are two dimensional or fixed points.

Proof. We first remark that A3 does not contain a 3-dimensional orbit O. Such

an orbit would be affine, since O SL2/finite. Hence O A3 or A3-O is a

hypersurface (1.6). The first case contradicts the fact that *(A3) 1 and *(O) 0

(1.7). In the second case the hypersurface A3-O is the zéro variety of an
SL^-invariant function (since every character Sl^ —&gt; C* is trivial). But any
invariant function is a constant because O is a dense orbit in A3.

So we see that ail orbits in A3 are 2-dimensional or fixed points (cf. 1.3), and
in particular dim A3/SL2^ 1. Since the closure of a 2-dimensional orbit is the zéro
variety of an invariant function we hâve dim A3/SL2= 1. It follows that A3/SL2 is

a unirational normal curve which clearly implies A3/SL2 A\ Hence there is an
invariant function / e C(A3) generating the ring of invariants and thus the quotient
map is flat. By a degree argument we see that for ail À eC the polynomial f-k is

irreducible which proves the remaining claims. Q.E.D.

2.2. Remark. AU fibres of the quotient map tt : A3 -&gt; A3/SL2 hâve the same

multipiicities. In fact the isotypic component Rt of the coordinate ring R:= ©(A3)
is a finitely generated torsion free module over the polynomial ring R0 RS1^2

(1.4), hence a free module of finite rank. This rank is the multiplicity m^F) of any
fibre, since F is reduced. Using Remark 1.5 we see that we are in one of the
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following cases:

(1) AU fibres are isomorphic to SL2/T or to C;
(2) AU fibres are isomorphic to Vx;
(3) AU fibres are isomorphic to SL2/N.

It will turn out that the last case cannot occur (Lemma 2.1).

2.3. Remark. The lemma above can be generalized in two ways:
(a) For any non trivial action of SL2 on an affine variety Z with *(Z) ^ 0 there

exists a 2-dimensional orbit. (We hâve seen above that a 3-dimensional orbit
under SL2 is affine. It has to be closed since otherwise it contains a 2-dimensional
orbit (cf. 1.6 and 1.3.) It follows that the fibres of the quotient map tt : Z —&gt;

Z/SL2 are precisely the orbits (1.2), hence hâve Euler-characteristic x(F) 0.
This implies (Z) 0 (cf. 1.7) in contrast to the assumption.)

(b) Let G be a connected semisimple group acting on An. Assume that there
exists a (n - l)-dimensional orbit. Then /\n/G A1 and the quotient map tt : An —&gt;

A7G is flat with irreducible and reduced fibres.

3. Existence of fixed points

3.1. LEMMA. Any action of SL2 on A3 has fixed points. If the action is non
trivial then dim (A3)SL2^ 1.

Proof. If there are no fixed points then by Lemma 2.1 ail orbits are closed and
of dimension 2. Hence ail fibres of the quotient map ir:A3 —&gt; A3/SL2 AX are
isomorphic (Remark 2.2). Therefore there is only one stratum in the Luna-
stratification (1.2) and so tt is a fibration with fibre isomorphic to SL^/T or SL2/N.
The first case is not possible since x(SL2/T) 2 which would imply x(&amp;3) 2 (cf.
1.7). In the second case we get an isomorphism SL2/N x (A3)N -h&gt; A3 induced by
(g&gt; *) »-&gt; gx. This is also a contradiction since SL2/N is not simply connected. For
the last assertion we remark that any fibre of tt contains at most one fixed point
(1.2) and so tt restricted to the fixed point set (A3)SL* is injective. Q.E.D.

3.2. The following généralisation of 3.1 due to Panyushev ([Pa] 3.2 Theorem
7) has been indicated to us by A. Borel (cf. [B] Chap XIV).

LEMMA. An action of SL2 on the affine space An without 3-dimensional
orbits has fixed points.

Proof. If there are no fixed points every orbit is closed and of the form SL2/T
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or SLJN (1.5). But then there is a unique SL^-equivariant map &lt;p : An -» SL^/N;
it is given by &lt;p(x) gN, where g € SL2 is such that gx e (An)T. (It follows from the
slice theorem that &lt;p is a morphism.) Since x(SL2/T) 2 not ail orbits are of the
form SL2/T, hence &lt;p has a section. Therefore we get an inclusion
&lt;p:¥:H*(SL2IN)&lt;L^ H*(A3) in singular cohomology, which contradicts the well
known fact that H^SL^N) + {0}. Q.E.D.

4. Linéarisation of SL2-actions on A3

4.1. LEMMA. Consider an SL2-acfion on A3. Then the coordinate ring
A:=C(A3) is a free module over the invariant ring ASLz, and there is a SL2-sub-
module M c= A such that the canonical map

ASL2&lt;8&gt;M -? A, /® m &gt;-* /m,

is an isomorphism.

Proof. Each isotypic component A, of A is a finitely generated torsionfree
module over the polynomial ring ASL* (1.4), hence a free module. We claim that
for ail i there is a finite dimensional SL^-submodule M, c A, such that the
canonical map ASL^®Ml-^ Ax is an isomorphism. In fact consider the subspace
A^1 of ail Ux-invariants (i.e. the set of the highest weight vectors) which is also a

free ASL2-module of finite rank, and let fl9 /2,..., /m be a basis over ASLz. Then
each £ générâtes an irreducible submodule (SL2 •/,)&lt;= A, isomorphic to V, and the
sum Ml X,nli(SL2# /,) is direct, since the /j are linearly independent highest
weight vectors. Furthermore the SL2-homomorphism A^^M, -* A, is an

isomorphism because it becomes an isomorphism if we restrict it to the Uy
invariants. Now the claim follows with M: ®tMv Q.E.D.

4.2. If VczC(A3) is any finite dimensional submodule, we hâve a canonical
SL^-equivariant morphism

&lt;p:A3--» V*

given by (&lt;p(x))(a):=a(x) for x€A3, a€VcÇ(A3). As a conséquence of the
lemma above we get the following useful resuit:

LEMMA. I/Mcp(A3) is as in Lemma 4.1 and Va M a finite dimensional
SLi-submodule, the canonical map &lt;p:A3-» V* is SL^-equivariant and non-
constant on the fibres of the quotient map ir : A3 -* A3/SL2.
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Proof. In fact for any fibre F oî tt the restriction map A —» 6(F) induces an
isomorphism M^&gt; 0(F) of SL^-modules, and so V cannot be in the kernel of the
restriction map. Q.E.D.

4.3. We now consider the case where the fixed point set (A3)SLz is of
dimension 1.

PROPOSITION. Consider an SL^-action on A3 with one dimensional ftxed
point set. Then this action is équivalent to the linear action of SL2 on Vo© V\ (1.4).

Proof. We hâve already seen that the restriction of tt : A3 -* A3/SL2 to the
fixed point set X:= (A3)SL2 is injective (proof of Lemma 3.1). Hence by assump-
tion tt(X) A3/SL2. But ir(X) is closed, since X is closed and SL^-stable (1.2) and
so tt induces an isomorphism

Now it follows from the slice theorem that the tangent représentation in any fixed
point is isomorphic to Vo© Vi and that any fibre of tt is isomorphic to Vx.

Let fe A:= &lt;?(A3) be a generator for the invariant ring ASL* (Lemma 2.1) and
let z be the fixed point in the fibre F: /~1(0), i.e. femz where mz dénotes the
maximal idéal in A corresponding to z. Now

and so f^va\. Since for the submodule M&lt;= A of Lemma 4.1 the canonical map
M-2» A/fA is an SL2-isomorphism, there is a submodule V&lt;=M isomorphic to
Vl9 such that m2 (C/© V)(Bml. It follows that the induced SL^-equivariant map

&lt;p:A3-»(C/©V)* V0©Vi

is étale at z and non constant on the fibres of tt (4.2). This implies that &lt;p maps
each fibre isomorphically onto its image, since a non constant SL^-equivariant
maP Vx -&gt; Vx is an isomorphism. It is easy to check from the définition of &lt;p that
the following diagram commutes:
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(p is defined by p(a) := a(/)). Since / and p are quotient maps it follows from the
above that &lt;p is bijective and hence an isomorphism (1.6). Q.E.D.

4.4. PROPOSITION. Any SL2-action on A3 with finitely many fixed points is

équivalent to the linear action on V2. In particular there is exactly one fixed point.

Proof. The slice theorem shows that the tangent représentation in any isolated
fixed point of A3 is isomorphic to V2. In particular the fibre of it : A3 —* A3/SL2

through any fixed point is isomorphic to C, the nilpotent cône in V2, and

by remark 2.2 the other fibres are isomorphic to SL2/T. We first show that
there is exactly one fixed point. Put &lt;7r((A3)SL2) {y1, y2,..., ys} and
Y&apos;:= A3/SL2-{yi, y2,. •., ys}. Since the induced map 7r~1(Yf) -* Y&apos; is a fibration
(in the étale topology; 1.2) the Euler characteristic is given by

x(tt-\Y&apos;)) x(Y) &apos; XHSLJT) (1 - s) • 2

(cf. 1.6). Furthermore 7T~1(yl) C is contractible, hence x(ir~1(yi))= 1- It follows

which implies the claim. By lemma 2.1 we hâve ASL2 C[/], A:= (9(A3). We may
assume that f(z) 0 for the unique fixed point 2 € A3. We hâve already seen that
mz/ntz T2(A3)= V2 as SL2-modules, and so feml. With the notations of lemma
4.1 this implies f&apos;C[/]&apos;Mctn^ hence xxil+M A. Therefore there is a
submodule VcM isomorphic to V2 such that mz V@m\. The induced map

&lt;p:A3-&gt; V*

is SL2-equivariant, étale in 2 and non constant on the fibres of the quotient map
ir : A3 -* A3/SL2 (cf. 4.2). Again this implies that &lt;p maps each fibre of tt
isomorphically onto its image, and in particular (p~1(0) {2}. In fact this is clear
for the fibres of the form SL^T. Furthermore any non constant map i/r : C -» C is

bijective on the dense orbit and maps the fixed point onto itself, hence it is an

isomorphism since C is normal (1.6). By construction &lt;p is étale in 2 and so the
induced map &lt;p : A3/SL2 -» V*/SL2 is étale in tt(z) ([Lu2] 1.3 lemme fondamental).

Furthermore 9~1(7r(0)) {&apos;7r(2)} since ç~\0) {z}. But this implies that &lt;p is

an isomorphism because A3/SL2 and V*/SL2 are both isomorphic to A1. As a

conséquence (p is bijective hence an isomorphism (1.6). Q.E.D.
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4.5. Remark. We want to give a variant of the proof above which has been
used by Panyushev [Pa]. The map &lt;p : A3 —» V* constructed as above induces a

commutative diagram:

a3 : &gt;v*

A3/SL2 V*/SL2

Since &lt;p maps each fibre of tt isomorphically onto its image (see above) it is

enough to prove that &lt;p is an isomorphism. We can identify A3/SL2 and V7SL2
with C and V* with C3 in such a way that it&apos; is given by (x, y, z) •-? x2 + y2 + z2

and &lt;p by a polynomial h(t). Now consider the fibre product

It is easy to see that &lt;p induces a bijection &lt;p:A3—» Z. Since Z is normal (by
Serre&apos;s criterion; cf. [Kr] AI.6.2) &lt;p is an isomorphism (1.6); in particular h(t) has

no multiple roots. Now we can apply [Ko] to our situation and obtain
2 - deg h. Since Z A3 we get deg h 1 which finishes the proof.

5. The gênerai case

5.1. For the proof of our main theorem we need the foliowing resuit.

PROPOSITION. Let G be a reductive group operating on An. If every G-
invariant function on A&quot; is a constant then the action is équivalent to a linear one.

Proof. We hâve only to show that there is a fixed point in An, since in this case
the claim is a conséquence of the slice theorem ([Lu] III, corollaire 2). By
assumption we hâve a unique closed orbit Gx with reductive stabilizer H:=GX,
and hence again by the slide theorem (loc. cit.) we hâve a G-isomorphism

where U is the slice représentation of H in x and G *H U is a vector-bundle over
G/H. In particular G/H is connected and simply connected and x(GIH) x(An)
1. So we may assume that G is connected (replace G by G0). Then H has to be

connected too. If T is a maximal torus of H we get
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Considering the fibration GIT —» GIT, where T^&gt; T is a maximal torus of G, it
foliows that T= T and that the two groups hâve the same Weyl group (cf. 1.7).
Since both are connected this is possible only for H= G. Q.E.D.

The foliowing corollary has been pointed out to us by the référée.

COROLLARY. For n&gt;0 the affine space An cannot be a homogeneous space
under a reductive group.

5.2. THEOREM. Any action of a connected semisimple group G on A3 is

équivalent to a linear action.

Proof. The case rk G 1 has been settled in section 4. In view of the

proposition above it is enough to show that any effective action of a semisimple
group G of rank H on A3 has a dense orbit. This is a conséquence of the results
in [P] (§3, theorem 5). Q.E.D.

Remark. It is possible to avoid the use of [P] in the proof above by the

following argument due to the référée: Assume rkG^2 and choose a simple
subgroup H ci G of rank 1. By the first part of the proof A3 is H-isomorphic to V2

or to Vi© Vo. If Tx cz G is a one dimensional torus stabilizing H we see that in the
first case Tt acts by homotheties on V2. Hence G has a dense orbit which implies
the claim by 5.1. In the second case we consider the H-stable subspace V1^
Vj© Vo. If it is not stable under G then G has a dense orbit and we are done by
5.1. If it is stable under G then G acts linearly on Vx (5.1), and the slice

représentation in the fixed point shows that G is isomorphic to a subgroup of GL2
contradicting the assumption rk G ^ 2.

Appendix. On the Euler-Poincaré characteristic of complex algebraic varieties

For the convenience of the reader we sketch the proofs of some results on the
Euler-Poincaré characteristic of complex algebraic varieties used in this paper. In
the sequel cohomology is Alexander-Spanier cohomology with respect to a fixed
field.

Al. We recall that if X is a locally compact space and YcXa closed

subspace, then there is a long exact séquence

&gt; Hlc(X- Y) -* H&amp;X) -* Hlc(Y) -» •¦ • (i€N). (1)

This implies that if two of the cohomology space H&apos;C(Z), Z X, Y or X- Y, are
finitely generated, then so is the third and

Y). (2)
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By an easy induction this implies the following: IfX \Jt -X,ïS a finite stratification
of X (i.e. the X% are locally closed and disjoint and X, is the union of some X/s)
and if ail Hmc(Xv) are finitely generated, then H&apos;C(X) is finitely generated and

A2. We now recall some well known properties of complex algebraic vari-
eties.

PROPOSITION ([Gi] §5, Satz 4, Folgerung 1). LetXbea complex algebraic
variety and Y c X a closed subvariety. Then there is a triangulation of X such that
Y is a subcomplex.

This has a number of important conséquences for an algebraic variety X:
(i) X is locally contractible, hence HCL. In particular H&apos;(X) is also the singular

cohomology and it vanishes above 2 • dimc X.
(ii) X has a finite open covering X \JieI Ut such that for any non-empty J c I

the open subset Uj&apos;.= f]jeJ U} is contractible. In particular X has the homotopy type
of a finite CW-complex, i.e. of the nerve of this cover.

In fact using a Nagata compactification Z =&gt; X by a compact algebraic variety
Z [Na] and applying the proposition above to Z and Y:= Z-X, we see that X is

the union of the interiors of finitely many simplices from which the claim follows
easily.

(iii) H&apos;(X) and H&apos;C(X) are finitely generated and vanish above 2 • dimcX.
For H&apos;(X) this follows from (ii) and (i). From this one can deduce it for Hè(X)

using again a Nagata compactification [Na] and the long exact séquence (1) in Al.
(iv) For any finite open covering X (Jiei Ut we hâve

X(X) - Z (-l)mx(Uj) and *C(X) - Z (-l)lJ|*c(£/,),
j#o

where / runs through ail non-empty subsets of I, Uj:=f]jejUj and \J\ is the

cardinality of J. (For x this follows from the exact Mayer-Vietoris cohomology

séquence, and for xc it is a conséquence of Al(2).)
A3. Next we describe the behaviour of the Euler-Poincaré characteristic for a

fibration of algebraic varieties (in the étale topology).

PROPOSITION. If cp : X -» Y is a fibration of algebraic varieties with fibre F
then

and *C(X)
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For x this follows from A2 (iv) using a finite covering of Y with contractible Ux as
in A2 (ii) and applying the Kùnneth formula to &lt;p~l(Uj)= UjXF. For *c, using
induction on dimc X and Al (2), we may assume that Y and F are both smooth,
hence *C(X) x(X) *(Y) • *(F) *c(Y) • *C(F) by Poincaré duality.

A4. The last resuit complètes the picture; it is not really needed in the paper,
since we could work with xc instead of x-

PROPOSITION. For an algebraic variety X we hâve *(X) *c(X).

Clearly this holds for smooth X by Poincaré duality. Let YcXbe the singular
locus. By induction on dimension we may assume that x(Y) xc(Y), and since

X-Y is smooth we also hâve x(X- Y) *C(X- Y). Therefore by Al (2) it is

sufficient to show that x(X) ^(Y) + x(X~ Y). If 17 is an open neighbourhood of
Y of which Y is a strong déformation retract this is équivalent to showing

x(U- Y) 0 (use A2 (iv)). Consider a resolution of singularises r\ :X —&gt; X and

an open neighbourhood Û of Y:=t)~1(Y) of which Y is a strong déformation
retract. (The existence of such a Û follows again from proposition A2.) Since X is

smooth we hâve x(X) xc(X) *C(Y) + *C(X- Y) *(Y) + *(X- Y), hence

x(Û-Y) 0. But U:=7](Û) is an open neighbourhood of Y of which Y is a

strong déformation retract and r\ induces a homeomorphism Û-Y^&gt; U—Y,
hence x(U- Y) 0 and the claim follows.

Remark. There is another proof of the proposition above suggested by the
référée which avoids the resolution of singularities. It uses a theorem of Sullivan
asserting that for a Whitney-stratified space with only odd dimensional strata the
Euler characteristic vanishes. For an i-adic version see [L].
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Note added in proof. We want to make some remarks on non-linearizable
actions in positive characteristic.

EXAMPLE. Let k be a field of characteristic 2. Consider the following action

of SL2 on Ak:

_ la b\ lx\ ^ /a2x + b2y + ab\
g~\c d):\y)^ \c2x + d2y + cd)&apos;

Then (/\t)s^=0.

More gênerai one has the following resuit.

PROPOSITION. Let G be a connected reductive group over a field k of
characteristic p&gt;0. Assume that G is not a torus. Then for sufficiently large n there

is an action of G on A£ without fixed points.

Proof. There exists a linear représentation G -» GL(V) which is reducible but

not completely reducible (Nagata). Let WcVbea G-stable linear subspace which

has no G-stable complément in V. Consider the G-module L:=Hom(V/W, V)
and choose an élément peL such that the composition with the projection

y _* V/W is the identity map on VIW. Define M&lt;=L to be the linear span of

{gp | g g G} and NaM the linear span of {gp-p | geG}. Then N and M are

G-stable and dim M dim N+ 1. It follows from the construction that P(M)G &lt;=

P(N). Hence the action of G on the affine space P(M)-P(N) has no fixed points

and the claim follows. qed.


	Semisimple group actions on the three dimensional affine space are linear.

