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On the embedding of 1-convex manifolds
with 1-dimensional exceptional set

MMIHNEA CoLTOoIu

Introduction

Let X be a 1-convex manifold and S< X its exceptional set. X is called
embeddable if there exists a holomorphic embedding of X into C*xP' for
suitable k, [ eN. When X has dimension 2 a result of C. Bianici [1], proved also
by Vo Van Tan [13c], asserts that X is embeddable (in fact in this case we may
allow X to have singularities).

The purpose of the present paper is to generalize this result to higher
dimensions. We consider a 1-convex manifold X such that its exceptional set S is
an irreducible curve. Under the assumption that S is not rational (i.e. its
normalization is not P') we prove that X is embeddable. A similar result holds if
we assume that S=P! and dim X# 3 (see Theorem 5).

The technique of proof enables us to obtain also the following result:

If X is a complex manifold (not necessarily 1-convex) and S<X is an
irreducible exceptional curve with the above properties then the fundamental
class of S in X does not vanish (see Theorem 6).

1. Preliminaries

Throughout this paper we shall not distinguish between holomorphic line
bundles and invertible sheaves.

If X is a complex manifold and L is a holomorphic line bundle on X given by
transition functions {g,;} corresponding to an open covering {U,} of X, a hermi-
tian metric on L is a system {h,} of C* functions hg: U, — (0, %) such that
hh = |gu|* on U, N U,

L is said to be Nakano semipositive if there exists a hermitian metric h = (hy)
on L such that —log h, is plurisubharmonic on U, for any k.

Let now X be a 1-convex manifold and S < X its exceptional set. X is said to
be embeddable if it can be realized as a closed analytic submanifold of some
Ck x P,
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1-convex manifolds 459

The following theorem of M. Schneider [12], proved also by Vo Van Tan

[13a], gives sufficient and necessary conditions for a 1-convex manifold to be
embeddable.

THEOREM 1. Let X be a 1-convex manifold and S < X its exceptional set.

Then X is embeddable iff there exists a holomorphic line bundle L on X such that
L|s is ample.

If X is a complex manifold we denote by K = K the canonical line bundle on
X. In order to prove our results we shall need also the following ‘‘precise
vanishing theorems”:

THEOREM 2 [10] [13b]. Let X be a 1-convex manifold with exceptional set S
and let L be a holomorphic line bundle on X such that L|g is ample. Then
HY(X,KQL)=0 for q=1.

THEOREM 3 [5]. Let X be a Kdihlerian manifold and L a Nakano semiposi-
tive line bundle on X. If D< X is a relatively compact strongly pseudoconvex
domain with smooth boundary then H*(D, KQL)=0 for q=1.

2. Main results

DEFINITION. Let S be an irreducible curve and 7 :S — S its normalization.
S is called a rational curve iff S =P.

The following theorem explains us the behaviour of the canonical bundle in
the neighbourhood of an exceptional irreducible curve.

THEOREM 4. Let X be a 1-convex manifold and assume that its exceptional
set S is an irreducible curve. Suppose that:

a) S is not a rational curve or

b) S=P! and dim X=4
Then K| is ample.

The proof of Theorem 4 is based on several lemmas.

LEMMA 1. Let X be a 1-convex manifold, S< X its exceptional set and
k =dim S. Then for every ¥ € Coh (X) it follows that HY(X, ¥)=0 for q> k.

Proof. By a theorem of Narasimhan [9] H*(X, %)= H%(S, %|s) for any q>0.
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Here #|s denotes the topological restriction of % to S, hence %|s is not a
coherent sheaf on S. However, by a result of Reiffen [11 Satz 2] the cohomology
groups H%(S, #|s) vanish for g> k and the lemma is proved.

LEMMA 2. Let X be a 1-convex manifold such that its exceptional set S is
1-dimensional. Then S has a Kdhlerian neighbourhood.

A proof of this lemma can be found in [10 p. 165]. In fact it is shown that S
has an embeddable neighbourhood.

If S is an irreducible curve we denote by 7 :S — S its normalization. There is
an injective morphism of sheaves Og <> 7,05 where m40s is the 0-direct image
of Os (i.e. the sheaf of weakly holomorphic functions on S). Let Rg be the sheaf
on S of locally constant real valued functions and similarly define Rs on S. If
Rs <> O is the natural inclusion map then k =i o j is an injective morphism of
sheaves. Let k*:H(S,Rs) > H'(S, m40s) denote the induced map on
cohomology.

LEMMA 3. The map k™ is surjective.

Proof. Consider first the commutative diagram

H(S, Rs) —> H'(S, 0s)

VI SI
B8
HY(S, meRs) — H(S, 740s)

Remark that:
the map & is bijective since Rry(05) =0 for >0 (= is a finite morphism).
the map v is bijective since R%ry(Rg)=0 for g>0
(if Uc S is contractible it follows easily that H* (7w *(U),Rs) =0 for q>0; since
any point in S has a fundamental system of contractible open neighbourhoods we
deduce that R (Rs)=0 for q>0).
the map a is bijective since S is Kihlerian.
It follows from the the commutativity of this diagram that 8 is bijective.
Consider now the commutative diagram:

HY(S, myRs) ——> H(S, m40s)

=

H'(S, Rs) "l,,—> Hl(s, Os)
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The map v is surjective because supp (m4Rs/Rs) is a finite set. Hence k* is
surjective and Lemma 3 is proved.

LEMMA 4. Let S be an irreducible curve and w:S — S its normalization. Let
L be a holomorphic line bundle on S which is topologically trivial. Then there exists
a holomorphic line bundle L' on S which can be given by constant transition
functions {gi;} with |g|=1 and such that w*(L®L’) is the trivial line bundle on S.

Proof. Let A ={U,} be a finite open covering of S such that L|y, is trivial and
all intersections U, N---NU, are connected and contractible. Let hye
0*(U, N U,) denote the transition functions for L. Since L is topologically trivial
and the covering A is topologically acyclic we can find holomorphic functions
A € O(U, N UY) such that exp (2midy) = hyy and A + A +Aq =0 0on U, NU N U,
for any k, I, s. Hence {A,} defines a cocycle in Z'(%, Og). Set: U =="'(U,),
G ={U} and A=Ay © m-{Ay} is a cocycle in Z'(A, m4x0s). Consider now the
commutative diagram:

H'(, Rg) — H (A, 740s)

L

HI(S, RS) -—J—)HI(S, W*Og)

Note that:

the map k* is surjective by Lemma 3

the map m is bijective because A is topologically acyclic

the map n is injective
It follows that p is surjective. This implies that one can find a cocycle {c}e
Z'(U,Rs) and holomorphic functions f, € 0(U,) such that Aa—fi+fi=cu on
U.n U, for any k, L.

If L’ is the holomorphic line bundle on S with transition functions g =
exp (—2ricy;) it follows from our construction that {exp (2if,)} defines a nonvan-
ishing section in #*(L®L’), hence #*(L®L’) is the trivial line bundle and
Lemma 4 is completely proved.

LEMMA 5. Let S be an irreducible curve and w:S — S its normalization.
Suppose that there exists a holomophic line bundle L on S such that H YS,L)=0
and w*L is the trivial line bundle on S. Then S is a rational curve.

Proof. There is a canonical morphism of sheaves L -% memwTL. If we set
F,=ker ¢ and ¥, = Im ¢ we get an exact sequence

0%, ->L->%,—>0
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Since H'(S, L) =0 by hypothesis and H*(S, %,) =0 because dim S =1 it follows
from the long exact sequence of cohomology that H'(S, %,) =0.
Consider now the exact sequence

mym*L

-0

0> %, > men*L —
2

Since supp (wym*L/%,) is a finite set it follows that H'(S, mem*L/%,) =0, hence
H(S, mym*L)=0. But H'(S, myn*L)=H(S, w*L) because = is a finite morph-
ism. We deduce that H'(S, 05) =0 and consequently S=P', i.e. S is a rational
curve. Lemma 5 is completely proved.

We are now in a position to prove Theorem 4.

a) Suppose first that S is an irreducible curve which is not rational. We prove
that K|g is ample.

It is easy to verify that H*(S,Z)=H 2(S, Z)=Z for any irreducible curve and if
F is a holomorphic line bundle on S then F is ample iff c(F) (the Chern class of F)
corresponds under the above isomorphisms to a strictly positive integer. Conse-
quently we have to prove that c(K|s)> 0.

We remark first that ¢(K|s)=0. Indeed, if ¢(K|s) <0 then K~! (the dual of K)
is ample when restricted to S. By Theorem 2 we obtain H'(X, KQK 1) =0,
hence H'(X, Ox)=0. If 7 denotes the ideal sheaf of S there is an exact sequence
of sheaves on X:

0>T 505> 04T -0

Since HY(X, 0x)=0 and H*(X, 9)=0 (by Lemma 1) we deduce from the long
exact sequence of cohomology that H'(S, 05) =0 which implies S=P'. This
contradicts our assumption that S is not a rational curve. So we must have
c(Kls)=0.

In order to prove Theorem 4 in case a) we have only to verify that c(K|s) # 0.

Suppose that c¢(K|s) =0, hence L:=K]|s is topologically trivial. If m:S—S
denotes the normalization of S from Lemma 4 there exists a holomorphic line
bundle L' on S which can be given by constant transition functions {g,} with
|gul=1 and such that #*(L®L’) is the trivial line bundle on S.

By Lemma 2 S has an open neighbourhood U which is Kéahlerian and
shrinking U if necessary we may assume that there exists a continuous retract
p:U — S. Let Sc U'€@U be a strongly pseudoconvex neighbourhood of S with
smooth boundary and let V' ={V}} be an open covering of S such that L' is given
on V, NV, by the constants g, with |g|=1.Set V,:=p (V,)c U andon V, NV,
consider the transition functions g,;:= g;. Since g, are constants it follows that
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the cocycle {g,} defines a holomorphic line bundle L' on U and L'|s=L"
Moreover L’ is Nakano semipositive because || =1 for any k, l. From Theorem
3 of Grauert and Riemenschneider we get H'(U’, KQL")=0.

Now consider the exact sequence on U':
(*) 0>9F >0, >0,/ =0

where 7 is the ideal sheaf of S. From (*) we get the exact sequence on U’:
(x*%) 0 > KQL'®F — KQL' - KQL'Q0/T — 0.

By Lemma 1 H*(U', KQL'®J)=0. Since L'|s =L’ the long exact sequence of
cohomology implies that HX(S, K|s®L')=0. But 7n*(K|s®L') is the trivial line
bundle on S and from Lemma 5 it follows that S is a rational curve which
contradicts our hypothesis. Consequently a) is proved.

b) Assume that S=P' and n =dim X =4. We shall prove that K|s is ample.

Let Ng|x denote the normal bundle of S in X and K the canonical line bundle
of S. If we use the adjunction formula K|s=Ks®det(N%x) we obtain the
following formula for the Chern class of K|s:

c(K]s) = c(Ks) — c(det (Ng|x))

Since S=P"' we have c(Kg)=—2. On the other hand a result of Laufer [6] gives
the following estimation: c(det (Ngx))<—n+ 1. Hence we obtain c(K|s)=n—-3>
0 and Theorem 4 is completely proved.

Remark. If dim X =3 and S=P' it may happen that K is trivial in the
neighbourhood of S. If Ngjx = 0(c,)®0(c,), ¢;=c,, is the decomposition of Ngx
into line bundles and K is trivial in the neighbourhood of S then (c¢q,c,)€
{(=1,-1), (-2,0), (-3, 1)} (see Laufer [6]). Hence Theorem 4 does not hold if
dim X =3 and S=P!. If dim X=2 and S=P"' easy examples show us that K|
may even be negative.

THEOREM 5. Let X be a 1-convex manifold such that its exceptional set S is
an irreducible curve. Assume that:
a) S is not a rational curve
or
b) S=P! and dim X+ 3.
Then X is embeddable.

Proof. In case a) it follows from Theorem 4 that K|s is ample. By Theorem 1
X is embeddable. A similar argument shows us that X is embeddable if S=P"
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and dim X =4. If X has dimension 2 then S is a divisor and if we denote by [S]
the corresponding line bundle it follows that [S]™" (the dual of [S]) is ample when
restricted to S. Again by Theorem 1 we deduce that X is embeddable.

Remark. It seems very likely that Theorem 5 should hold for any curve S.

Let now X be a complex manifold, S < X an irreducible, compact curve and
m:S — S its normalization. The image of the fundamental class of S in H,(X,Z)
is called the fundamental class of S in X. A straightforward consequence of
Theorem 4 is the following topological result:

THEOREM 6. Let X be a complex manifold and S = X an irreducible excep-
tional curve such that:
a) S is not a rational curve
or
b) S=P! and dim X#3
Then the fundamental class of S in X does not vanish.

Remarks. i) In [13b] Vo Van Tan has proved that any 1-convex manifold with
1-dimensional exceptional set is Kdhlerian. Unfortunately, as we shall see, there is
a gap in a main step of his proof.

According to his notations let 7 : X — Y be the Remmert reduction of X. We
assume also that the exceptional set S is a smooth curve and let T be any point of
S and set Z:=X\T, S:= S\T. If Eis a holomorphic line bundle on Y we set
E:= w*(ﬁ) and L:= E|,. The author asserts that if E is positive then there exists
a metric {h;} on L such that:

—a0log hy(x)>0 on Ts,
(*) { —ddlog h;(x)=0 on Ng,
~ddlog hi(z)>0 on T, if ze Z\S=X\S

where Tg, is the tangent space to S at x and Ns, is the complement space of T,
in Tz,.

We shall show that (*) does not hold. We take E to be the trivial line bundle
on Y which is positive since Y is Stein. It follows that L is also the trivial line
bundle on Z and (*) implies the existence of a C* function h:Z — (0, «) such
that —log h is strongly plurisubharmonic on Z\S and —~log h|s is strongly
plurisubharmonic. Since —logh is strongly plurisubharmonic on Z\S$ it
follows from the continuity of second derivatives that —log h is plurisubharmonic
on Z. By a well known result concerning the extension of plurisubharmonic
functions (see Grauert-Remmert [4]) there exists a plurisubharmonic function p
on X such that p|=-logh. The maximum principle for plurisubharmonic
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functions implies that p|s = constant, hence —log h|s = constant. This contradicts
the fact that —log h|s is strongly plurisubharmonic.

The gap in the proof of Vo Van Tan is the following: since S:=S\T is Stein
the metric {h;} can be suntably modified such that L|s is Nakano positive [8] but
this can be done only on S and there is no control outside S.

ii) Under the assumptions of Lemma 5 it follows that S is a rational curve
with dime H'(S, 0s)<1. This can easily be deduced from Riemann-Roch
theorem for singular curves. Consequently all our theorems hold if we assume
that S is a rational curve with dimc H'(S, O5)=2.
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