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On the embedding of 1-convex manifolds
with 1-dimensional exceptional set

MlHNEA COLTOIU

Introduction

Let X be a 1-convex manifold and S &lt;= X its exceptional set. X is called
embeddable if there exists a holomorphic embedding of X into t^xP1 for
suitable k, leN. When X has dimension 2 a resuit of C. Bânicâ [1], proved also

by Vo Van Tan [13c], asserts that X is embeddable (in fact in this case we may
allow X to hâve singularities).

The purpose of the présent paper is to generalize this resuit to higher
dimensions. We consider a 1-convex manifold X such that its exceptional set S is

an irreducible curve. Under the assumption that S is not rational (i.e. its
normalization is not P1) we prove that X is embeddable. A similar resuit holds if
we assume that S P* and dimX^3 (see Theorem 5).

The technique of proof enables us to obtain also the foliowing resuit:
If X is a complex manifold (not necessarily 1-convex) and S&lt;=X is an

irreducible exceptional curve with the above properties then the fundamental
class of S in X does not vanish (see Theorem 6).

1. Preliminaries

Throughout this paper we shall not distinguish between holomorphic Une

bundles and invertible sheaves.

If X is a complex manifold and L is a holomorphic Une bundle on X given by
transition functions {gkl} corresponding to an open covering {Uk} of X, a hermi-
tian metric on L is a System {hk} of C°° functions hk : Uk -» (0, ») such that
hJh |gkl|2 on l/kni/,

L is said to be Nakano semipositive if there exists a hermitian metric h (hk)
on L such that -log hk is plurisubharmonic on Uk for any fc.

Let now X be a 1-convex manifold and S c X its exceptional set. X is said to
be embeddable if it can be realized as a closed analytic submanifold of some
CkxPI.
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The following theorem of M. Schneider [12], proved also by Vo Van Tan
[13a], gives sufficient and necessary conditions for a 1-convex manifold to be
embeddable.

THEOREM 1. Let X be a l-convex manifold and S&lt;=X its exceptional set.
Then X is embeddable iff there exists a holomorphic Une bundle L on X such thaï
L\s is ample.

If X is a complex manifold we dénote by K Kx the canonical Une bundle on
X. In order to prove our results we shall need also the following &quot;précise

vanishing theorems&quot;:

THEOREM 2 [10] [13b]. LetXbea 1-convex manifold with exceptional set S

and let L be a holomorphic Une bundle on X such that L\s is ample. Then
0 forq^l.

THEOREM 3 [5]. Let X be a Kàhlerian manifold and L a Nakano semiposi-
tive Une bundle on X. If D &lt;= X is a relatively compact strongly pseudoconvex
domain with smooth boundary then HQ(D, K®L) 0 for q^l.

2. Main results

DEFINITION. Let S be an irreducible curve and tt:S-+ S its normalization.
S is called a rational curve iff S P1.

The following theorem explains us the behaviour of the canonical bundle in
the neighbourhood of an exceptional irreducible curve.

THEOREM 4. Let X be a 1-convex manifold and assume that its exceptional
set S is an irreducible curve. Suppose that:

a) S is not a rational curve or
b) S^P1 and dimX^M

Then K\s is ample.

The proof of Theorem 4 is based on several lemmas.

LEMMA 1. Let X be a 1-convex manifold, S&lt;=X ifs exceptional set and
k dim S. Then for every &amp; g Coh (X) if follows that Hq(X, ^) 0 for q &gt; k.

Proof. By a theorem of Narasimhan [9] Hq(X, &amp;) Hq(S, &amp;\s) for any q&gt;0.
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Hère 3F\S dénotes the topological restriction of 9 to S, hence 3^\s is not a

cohérent sheaf on S. However, by a resuit of Reiffen [11 Satz 2] the cohomology

groups Hq(S, SF\S) vanish for q&gt;k and the lemma is proved.

LEMMA 2. Let X be a 1-convex manifold such that its exceptional set S is

1-dimensional. Then S has a Kàhlerian neighbourhood.

A proof of this lemma can be found in [10 p. 165]. In fact it is shown that S

has an embeddable neighbourhood.
If S is an irreducible curve we dénote by ir : S -* S its normalization. There is

an injective morphism of sheaves 6S ci» Tr*6§ where tt*Os is the 0-direct image
of 6s (i.e. the sheaf of weakly holomorphic functions on S). Let Us be the sheaf

on S of locally constant real valued functions and similarly define R§ on S. If
Rs d&gt; Os is the natural inclusion map then k i ° j is an injective morphism of
sheaves. Let fc* : H\S9 Rs) -^ H1^ ir+0&amp;) dénote the induced map on
cohomology.

LEMMA 3. The map fc* is surjective.

Proof. Consider first the commutative diagram

Remark that:
the map 8 is bijective since JRq7r*((?s)= 0 for q&gt;0 (tt is a finite morphism).
the map 7 is bijective since £*%#(!?§)= 0 for q &gt; 0

(if L/en S is contractible it follows easily that Hq(ir~1(l/),{Rs) 0 for q&gt;0; since

any point in S has a fundamental System of contractible open neighbourhoods we
deduce that RQir*(H&amp;) 0 for q&gt;0).

the map a is bijective since S is Kàhlerian.
It follows from the the commutativity of this diagram that ($ is bijective.

Consider now the commutative diagram:

H\S, 7r
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The map v is surjective because supp (irsjjRs/IRs) is a finite set. Hence fc* is

surjective and Lemma 3 is proved.

LEMMA 4. Let S be an irreducible curve and tt : S -» S its normalization. Let
Lbe a holomorphic Une bundle on S which is topologically trivial Then there existe

a holomorphic Une bundle V on S which can be given by constant transition
functions {gkl} with \gkl\ 1 and such that tt*(L®L&apos;) is the trivial Une bundle on S.

Proof. Let % ={£/,} be a finite open covering of S such that L\Ux is trivial and
ail intersections U^D- • • H U^ are connected and contractible. Let hki£
6*(UknUl) dénote the transition functions for L. Since L is topologically trivial
and the covering % is topologically acyclic we can find holomorphic functions
kkl eC(UkD Ut) such that exp (2irikkl) hkl and \kl + Ak + Ask 0 on l/k n 17, n Us

for any k, J, s. Hence {ÀkI} defines a cocycle in Z\% €s). Set: Ût ir&quot;^!/,),

^ {Ûi\ and Âkl kkt ° tt - {Akl} is a cocycle in Zx(% tt^Os). Consider now the
commutative diagram:

1 1

Note that:
the map k* is surjective by Lemma 3

the map m is bijective because °U is topologically acyclic
the map n is injective

It follows that p is surjective. This implies that one can find a cocycle {ckl}e
Z\%US) and holomorphic functions fke6(Ûk) such that Au-/k + /i cw on
Ûk H Ût for any fc, t.

If V is the holomorphic Une bundle on S with transition functions gkI

exp (-2iricki) it follows from our construction that {exp (2irifk)} defines a nonvan-
ishing section in 7r*(L(g)L&apos;), hence tt*(L&lt;8&gt;L&apos;) is the trivial Une bundle and

Lemma 4 is completely proved.

LEMMA 5. Let S be an irreducible curve and tt:S -&gt; S its normalization.

Suppose that there exists a holomophic Une bundle L on S such that H\S, L) 0

and tt*L is the trivial Une bundle on S. Then S is a rational curve.

Proof. There is a canonical morphism of sheaves L -^ tt^tt*L. If we set

^i ker &lt;f&gt; and &amp;2 Im &lt;p we get an exact séquence
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Since H\S, L) 0 by hypothesis and H2(S, 9t) 0 because dim S 1 it follows
from the long exact séquence of cohomology that HX(S, &amp;2)-0-

Consider now the exact séquence

Since supp (tt^tt*L/^2) is a finite set it follows that H1(S, tt^tt*^^) 0&gt; hence

H\S, tt*it*L) 0. But H\S, irHe7T*L) H1(S, ?r*L) because ir is a finite morph-
ism. We deduce that H1(S, Cs) 0 and consequently S=P\ i.e. S is a rational
curve. Lexnma 5 is completely proved.

We are now in a position to prove Theorem 4.

a) Suppose first that S is an irreducible curve which is not rational. We prove
that K|s is ample.

It is easy to verify that H2(S, Z) H2(S, 1) 1 for any irreducible curve and if
F is a holomorphic line bundle on S then F is ample iff c(F) (the Chern class of F)
corresponds under the above isomorphisms to a strictly positive integer.
Consequently we hâve to prove that c(K|s)&gt;0.

We remark first that c(K|s)^0. Indeed, if c(K|s)&lt;0 then K~X (the dual of K)
is ample when restricted to S. By Theorem 2 we obtain H\X9 K&lt;g)K~1) 0,
hence H1(X, 6X) 0. If 2T dénotes the idéal sheaf of S there is an exact séquence
of sheaves on X:

0 -» ST -* Ox -&gt; Ox/P -* 0

Since H\X, Ûx) 0 and H2(X, 5&quot;) 0 (by Lemma 1) we deduce from the long
exact séquence of cohomology that H1(S,Os) 0 which implies S P\ This
contradicts our assumption that S is not a rational curve. So we must hâve

In order to prove Theorem 4 in case a) we hâve only to verify that c(K\s) j= 0.

Suppose that c(K\s) 0, hence L:= K\S is topologically trivial. If tt:S —&gt; S

dénotes the normalization of S from Lemma 4 there exists a holomorphic line
bundle V on S which can be given by constant transition functions {gkI} with
|g«|= 1 and such that ir*(L®I/) is the trivial line bundle on S.

By Lemma 2 S has an open neighbourhood U which is Kâhlerian and

shrinking U if necessary we may assume that there exists a continuous retract

p:U -* S. Let Sc[/&apos;i[/bea strongly pseudoconvex neighbourhood of S with
smooth boundary and let F {VJ be an open covering of S such that V is given
on VkH Vi by the constants gkl with |gM| 1. Set Vk:= p~\Vk)c U and on Vk n Vt
consider the transition functions gM:=&amp;d- Since gkl are constants it follows that
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the cocycle {gkI} defines a holomorphic Une bundle V on U and L&apos;\s V.
Jvloreover V is Nakano semipositive because \gki\ 1 for any fc, l. From Theorem
3 of Grauert and Riemenschneider we get H\Uf, K&lt;8&gt;L&apos;) 0.

Now consider the exact séquence on V:
(*) 0 -» 3T -* Ca, -* OuV^ -? 0

where 9&quot; is the idéal sheaf of S. From (*) we get the exact séquence on U&apos;:

(* *) 0 -» K®V®3- -&gt; K(g)L&apos; -&gt; K®L&apos;®€IST -&gt; 0.

By Lemma 1 H2(Uf, K&lt;g&gt;L&apos;&lt;8&gt;9~) 0. Since L&apos;|S L&apos; the long exact séquence of
cohomology implies that H1(S,K\s®Lf) 0. But ir*(K|s®L&apos;) is the trivial Une

bundle on S and from Lemma 5 it follows that S is a rational curve which
contradicts our hypothesis. Consequently a) is proved.

b) Assume that S^P1 and n =dimX^4. We shall prove that K|s is ample.
Let Ns\x dénote the normal bundle of S in X and Ks the canonical line bundle

of S. If we use the adjunction formula K|s Ks®det (N*|X) we obtain the

following formula for the Chern class of K|s:

c(K\s) c(Ks)-c(dct(Nslx))

Since S =PX we hâve c(Ks) -2. On the other hand a resuit of Laufer [6] gives
the following estimation: c(det (NS|X))^-n + l. Hence we obtain c(K\s)^n-3&gt;
0 and Theorem 4 is completely proved.

Remark. If dimX=3 and S=PX it may happen that K is trivial in the

neighbourhood of S. If Nsjx (?(c1)®&lt;?(c2), c1&lt;c2, is the décomposition of Nslx
into line bundles and K is trivial in the neighbourhood of S then (a, c2)€
{(-1,-1), (-2,0), (-3,1)} (see Laufer [6]). Hence Theorem 4 does not hold if
dimX 3 and S=Pa. If dimX 2 and S=PX easy examples show us that K|s
may even be négative.

THEOREM 5. Let X be a l-convex manifold such that its exceptional set S is

an irreducible curve. Assume that:
a) S is not a rational curve

or
b) S=PX and dimX^3.

Then X is embeddable.

Proof. In case a) it follows from Theorem 4 that K\s is ample. By Theorem 1

X is embeddable. A similar argument shows us that X is embeddable if S=PX
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and dim XsM. If X has dimension 2 then S is a divisor and if we dénote by [S]
the corresponding line bundle it follows that [S]&quot;1 (the dual of [S]) is ample wheç
restricted to S. Again by Theorem 1 we deduce that X is embeddable.

Remark. It seems very likely that Theorem 5 should hold for any curve S.

Let now X be a complex manifold, ScXan irreducible, compact curve and

7r : S —» S its normalization. The image of the fundamental class of S in H2(X, Z)
is called the fundamental class of S in X. A straightforward conséquence of
Theorem 4 is the foliowing topological resuit:

THEOREM 6. Let X be a complex manifold and S &lt;= X an irreducible excep-
tional curve such that:

a) S is not a rational curve
or

b) S=PX and dimX^3
Then the fundamental class of S in X does not vanish.

Remarks, i) In [13b] Vo Van Tan has proved that any 1-convex manifold with
1-dimensional exceptional set is Kàhlerian. Unfortunately, as we shall see, there is

a gap in a main step of his proof.
According to his notations let ir : X —» Y be the Remmert réduction of X. We

assume also that the exceptional set S is a smooth curve and let T be any point of
S and set Z: X\T9 S:=S\T. If Ê is a holomorphic line bundle on Y we set

E:= 7r*(Ê) and L: E\z. The author asserts that if Ê is positive then there exists

a metric {ht} on L such that:

(*)

-dd log h,(x) &gt; 0 on

-dd log hx(x) ^ 0 on N^x

-dd log h,(z) &gt; 0 on Tz&gt;2 if z € Z\S X\S

where T^x is the tangent space to S at x and N^x is the complément space of T&amp;x

in Tz,x.
We shall show that (*) does not hold. We take Ê to be the trivial line bundle

on Y which is positive since Y is Stein. It follows that L is also the trivial line
bundle on Z and (*) implies the existence of a C°° function h:Z—»(0,°°) such

that -logfi is strongly plurisubharmonic on Z\S and ~logh|s is strongly
plurisubharmonic. Since -logfi is strongly plurisubharmonic on Z\É it
follows from the continuity of second derivatives that -log h is plurisubharmonic
on Z. By a well known resuit concerning the extension of plurisubharmonic
functions (see Grauert-Remmert [4]) there exists a plurisubharmonic function p
on X such that p\z -log h. The maximum principle for plurisubharmonic
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functions implies that p|s constant, hence -log h\$ constant. This contradicts
the fact that -log ft|$ is strongly plurisubharmonic.

The gap in the proof of Vo Van Tan is the following: since S := S\T is Stein
the metric {hj can be suitably modifiée such that L\$ is Nakano positive [8] but
this can be done only on S and there is no control outside S.

ii) Under the assumptions of Lemma 5 it follows that S is a rational curve
with dimc Hl(S, 6S)^1. This can easily be deduced from Riemann-Roch
theorem for singular curves. Consequently ail our theorems hold if we assume
that S is a rational curve with dimcH1(S,

REFERENCES

[1] Banica, C, Sur les fibres infinitésimales d&apos;un morphisme propre d&apos;espaces complexes. Séminaire
F. Norguet. Fonctions de plusieurs variables complexes. IV Springer-Verlag Lee. Notes in Math.
807 (1980).

[2] Coltoiu, M. and Mihalache, N., Strongly plurisubharmonic exhaustion functions on 1-convex

spaces. To appear in Math. Ann.
[3] Grauert, H., Ùber Modifikationen und exzeptionelle analytische Mengen. Math. Ann. 146

(1962) p. 331-368.
[4] Grauert, H. and Remmert, R., Plurisubharmonische Funktionen in komplexen Raumen. Math.

Z. 65 (1956) p. 175-194.
[5] Grauert, H. and Riemenschneider, O., Kâhlersche Mannigfaltigkeiten mit hyper-q-konvexen

Rand. Problems in Analysis (Lectures at the Sympos. in honor of Solomon Bochner, Princeton
Univ., Princeton, N.J., 1969), Princeton Univ. Press, Princeton, N.J., 1970, p. 61-79.

[6] Laufer, H., On CPX as exceptional set. Récent developments in S.C.V. Ann. Math. Studies,
Princeton, N.J. (1981) p. 261-275.

[7] Lojasiewicz, S., Triangulation of semi-analytic sets. Ann. Scuola Norm. Sup. Pisa 18 (1964)
449-474.

[8] Nakano, S., Vanishing theorems for weakly 1-complete manifolds. II, Publ. Res. Inst. Math. Sci.,

Kyoto Univ. 10 (1974) p. 101-110.
[9] Narasimhan, R., The Levi problem forcomplex spaces. II, Math. Ann. 146 (1962) p. 195-216.

[10] Peternell, T., On strongly pseudo-convex Kàhler manifolds. Invent. Math. 70 (1982) p.
157-168.

[11] Reiffen, H. J., Riemannsche Hebbarkeitssàtze fur Cohomologieklassen mit kompakten Trâger.
Math. Ann. 164 (1966) 272-279.

[12] Schneider, M., Familien negativer Vektorbùndel und 1-convexe Abbildungen. Abh. Math. Sem.

Univ. Hamburg 47 (1978) p. 150-170.
[13] Vo Van Tan, (a) On the embedding problem for l-convex spaces. Trans. AMS 256 (1979) p.

185-197; (b) Vanishing theorems and Kàhlerity for strongly pseudoconvex manifolds. Trans. AMS
261 (1980) p. 297-302; (c) Embedding theorems and Kàhlerity for 1-convex spaces. Commen.
Mathe. Helve. 57 (1982) p. 196-201.

National Institute for Scientific
and Technical Création Dept. of Mathematics
Bd. Pâcii 220
77538 Bucharest Romania

Received January 3, 1985


	On the embedding of 1-convex manifolds with 1-dimensional exceptional sets.

