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Ein Fortsetzungssatz fir quasikonforme Deformationen

CHR. A. MEYER"V

I. Einleitung

Eine stetige Funktion f:R" —R" ist eine quasikonforme Deformation, falls

Iflo=sup (a, f(x+a)—f(x)) (b, flx+b)—f(x))

a,b,xeR" 'a‘z Ib|2
lal=|bl#0

endlich ist. Solche Funktionen sind von Bedeutung fiir die Theorie der quasikon-
formen Abbildungen, da sie einen quasikonformen Fluss erzeugen: Die Losungen
h(x, t) der Differenzialgleichung

d
=1

mit Anfangsbedingung h(x, 0) = x bilden eine Einparametergruppe von quasikon-
formen Abbildungen (siehe [2], [5]).

In dieser Arbeit wird gezeigt, dass sich die quasikonformen Deformationen
durch eine Approximationseigenschaft charakterisieren lassen (Satz 1). Fiir n =2
lasst sich dieses Resultat in komplexer Notation folgendermassen formulieren:
f:C — C ist eine quasikonforme Deformation, falls fiir alle z,€C und p >0 eine
komplex-affine Funktion p(z)= az + b existiert, so dass

sup |f(z)—p(2)|<ap.

lz—2zo|=p

Die nur von f abhingige reelle Konstante a steht in direkter Relation zu ||f||o. Fiir
n =3 treten die Elemente der Lie-Algebra der Gruppe der linearen Aehnlichkeits-
transformationen an die Stelle der komplex-linearen Funktionen.

'Der Autor wurde wihrend seines Forschungsaufenthaltes in West-Berlin 1983/84 vom
Schweizerischen Nationalfonds unterstiitzt.
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446 CHR. A. MEYER

Im zweiten Teil der Arbeit wird das Problem der Fortsetzbarkeit von Funk-
tionen f untersucht, welche auf geeigneten Teilmengen M <R" definiert sind und
eine Approximationseigenschaft haben: Lasst sich f auf M durch affine Funk-
tionen der Form

p(x)=Tx+Ax+a (T"=-T,AeR, acR")

approximieren, so kann f zu einer quasikonformen Deformation auf R" fort-
gesetzt werden (Satz 2).

Die zusitzliche Voraussetzung, die an M gestellt werden muss, driickt aus,
dass M geniigend Punkte in gleichmissiger Verteilung aufweist (Definition 4).
Wie ein Beispiel belegt, kann auf diese Voraussetzung nicht verzichtet werden.

II. Eine Charakterisierung der quasikonformen Deformationen

DEFINITION 1. Fiir Funktionen f:R" —R" setzen wir

If(x +y)+f(x —y)—2f(x)|

Il = f%%n ™
B (a, f(x+a)—f(x)) (b, f(x+b)—f(x))
”f"Q = Ssup l lz - Ib‘z .
oo ¢

((x, y) ist das euklidische Skalarprodukt von x und y.) f ist eine quasikonforme
Deformation, falls f stetig ist und ||fllqo <o gilt.

HILFSSATZ 1. Fiir stetige Funktionen f:R"—R" gilt

a) |Ifllz<4|fllo
(a, f(x+a)—f(x)) (b, f(x+b)—f(x))

& ol oF
= é _L_ lﬂ n
\|[f|{o(2+2ln2 lnlal> (@b xeR" a%0+b).

Fiir die Beweise siehe [5], p. 251 und p. 255-257.

HILFSSATZ 2. Fiir stetige Funktionen f:R"—R" mit |flz<~ und
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beschrinkte Mengen M cR" gilt

sup |f(x)| =sup [f()+2(n + 1) [flz diam (M).

x econv (M)
(conv (M) ist die konvexe Hiille der Menge M.)

Beweis. Nach dem Satz von Carathéodory iiber konvexe Mengen nehmen wir
ohne Einschriankung der Allgemeinheit M ={a, :k=1,...,n+1}and (siehe [3], p.
15).

Wir setzen fiir i eN U{0}

fl2 Z i

n+1
:jl’ .. 9jn+1€N U{O}a Z ]k:Z'}
o=

1

O'iZSUp{
EsseiieN, ji,...,j.+1€NU{0} und
n+1

Y =2\

k=1
Wir bestimmen Zahlen €,,...,¢,,;, SO dass
& € {_1’ Oa 1}’

Ju + & ist gerade (k=1,...,n+1),
n+1

Er =0.
k=1

In der Ungleichung

FOI<3(fx+ DI+ =D +2lfllz Iyl (x,yeR™)
wird

x=2"Y jia und y=27Y ga
k=1 k=1

eingesetzt. Es folgt

lf) <o,y +27 ' (n+1)||f||z diam (M).
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Insgesamt haben wir das Ungleichungssystem

oo=<sup |f(x)|,

0, <0, +27 (n+1) ||f|lz diam (M) (ieN).
Es folgt

o; <sup [f(x)| +3(n+1) |Ifl diam (M)  (ieNU{0}).

xeM

Die Behauptung ist bewiesen, da f stetig ist.

Im folgenden Satz werden die quasikonformen Deformationen durch eine
Approximationseigenschaft charakterisiert. Die approximierenden Funktionen
p € A sind diejenigen quasikonformen Deformationen p:R"—R" mit ||p|lo =0.
Nach [1] (p. 241) sind dies spezielle affine Transformationen.

DEFINITION 2. A ist die Klasse aller affinen Transformationen p:R" — R",
welche folgende Bedingung erfiillen: Es existieren A €R, a € R" und eine schiefsym-
metrische Matrix T, so dass

p(x)=Tx+Ax+a (x eR"™).

Bemerkung. Fir n =2 enthdlt A genau die komplexen Polynome hdchstens
ersten Grades.

DEFINITION 3. Fiir 3 #McR" und a eR*U{0} definieren wir die Klasse

A, n der Funktionen f: M —R" durch folgende Bedingung: Fiir alle x,e M und
alle p eR" existiert ein p€ A, so dass

sup {|f(x) = p(x)|: x € M, |x — xo| < p} < ap.

Wir setzen fiir f:M —R"
Ifllan=inf{a eRTU{0}: f € A, M}

Wir kiirzen ab: |f||ar-=|flla.- R" ist die Menge der positiven reellen Zahlen.)
In Hinblick auf Satz 2 bemerken wir folgendes.

Bemerkung. Aus [fllam<o folgt, dass f sich stetig auf die abgeschlossene
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Hiille cl(M) von M fortsetzen lisst und fiir die stetige Fortsetzung f gilt

“f “A,cl o= "f "A,M-

Fiir stetige Funktionen f:R"—R" sind die Halbnormen | |lo und | |4
aequivalent:

SATZ 1. Es existieren nur von der Dimension n abhdngige Konstanten vy,, y,€
R*, so dass '

Yiliflla <lflle <2 lIflla

fiir alle stetigen Funktionen f:R"—R".

Beweis. 1) Nachweis von ||fllo<7v.|fla: Fir a, b, xoeR" und |a|=|b|#0
existiert ein p e A, so dass

sup [f(x)=p()I<lal[fla.

Ix—xol=la

Aus der Schwarz’schen Ungleichung folgt mit der Abkiirzung g=f—p wegen
lpllo =0

(a, f(xo+a)—f(xo)) (b, f(xo+b)—f(x0))

|al* |bJ*
_ |€a, g(xo+a)— g(xo)) (b, g(x0+b)—g(x0))
laf® |b?
<4/|[flla-

Es ist somit ||f]|q <4 ||fl|A.

2) Nachweis von v, ||flla <|lfllo:{ew ..., e.} sei die Standardbasis in R". Fiir
xo€R" und peR"* definieren wir mit der Abkiirzung e =);_, ¢; die Hilfsfunk-
tionen f, g2:R"—R" folgendermassen: f(x)= f2npx + xo— pe) — f(xo— pe),

gx)=Ff(x)—(es, fle))-x  (xeR™).

Es ist

lglla =2np lifllo, g(0)=0, (s, g(ex))=0.
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Die affine Abbildung y=2npx+x,—pe bildet die Kugel K=
{xeR":|x—(2n)'e|<(2n)"'} auf die Kugel {yeR":|y —xo/<p} ab und es ist
Kcconv({0,e,,...,e,}). Wir approximieren daher g in conv({0,e,,...,e,})
durch Funktionen aus A. Im folgenden bezeichnen wir mit 84, ..., 8, nur von der
Dimension n abhingige Konstanten aus R*. Wir wenden Hilfssatz 1b) an und
finden unter Beriicksichtigung von g(0) =0

KKes, g(e )] = e, gle))—(es, gle)<llgllo,
(2e;, g(2¢;)) (ey, gley))
(e =2 —
Keu g( el))l ‘2&‘2 |ell2
(e — e g(e) —g(e)) (e, g(2€;) —g(e:))
| le—el le:f?

<Bilgle  (i=1,...,n),

|<Ballgle  Gi=1,....miti)

Es folgt
Ke, g(e))+ (e, gleM=<Bslgle  Gj=1,...,n).

Wir definieren die lineare Funktion T:R" — R" durch

(e, T(g))=3(e, gle))— (e, gle)))  (G,j=1,...,n).

Es ist Te A und

|g(e) = T(e)|<n" max 3Ke; g(¢))+<(e; g(e))

s%nllzBs “g”Q (i=1,...,n).

Nach Hilfssatz 1a) gilt

lg =Tz =ligllz <4 ligllo-

Wir wenden Hilfssatz 2 an und finden

sug |g(x)— T(x)|<sup{g(x)— T(x)|:x econv ({0, ey, ..., e.})}
<3n'?B;gllo + 2n+2) lIglla2"? = Ballglle = Bs2n [Iflq p.

Wir setzen die Definition von g ein und es folgt

Iflla < Ba2n |fllo-
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Bemerkung. Der Beweis zeigt, dass in Satz 1

vi=(n@4-2"2(n+1)+1-43 - n2)? und

v2.=4

gewdhlt werden konnen.

III. Der Fortsetzungssatz

HILFSSATZ 3. Es sei {x;:i=1,...,n—1}<R" (n=2) linear unabhdingig,
p€ A und p(0)=0. Dann gilt

2(n=1) max_ |p(x)| (i={r}_§i§_1 lxal) "
(det ((x;, x]'))i,i=l

lIp(x)|=< x|  (xeR™).

.....

.....

W= max |x], v=_max |p(x)|.

i=1,...,n—1 i=1,..., n—1

Aus y=Y""! a;x; (o; €R) folgt

| <872u" 2y (i=1,...,n-1),
lp(WI<(n—-1)86""?pu"2|y| (siehe [6], p. 10, p.23-24).

Fir x eR" geben wir die folgenden orthogonalen Zerlegungen an:

x=}’1+z1,

p(z1) = y2+z,.

y: und y, liegen in der linearen Hillle L von {x,,...,x,_q}, z; und z, im
orthogonalen Komplement von L. Wegen pe A gilt

|Y2|2 =(y2, P(z1))= (21, p(y2))<(n— 1)5_1/2"#"“2 lzll |Y2|,

lyal<(n—=1)8""2uu"72|zy).
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Auf ahnliche Weise finden wir

|zol < (n—1)8 2y 2|z,
Insgesamt folgt

PG <Pyl + (lyaf+121%)
<2(n- 1)8——1/2141,"_2 |xl (x eR™).

DEFINITION 4. Wir setzen n =2 voraus. Eine nicht-leere Teilmenge M cR"
ist ein Element von M, (yeR, 0<y=<1), wenn sie folgende Eigenschaft besitzt:
Fiir alle xoe M und fir alle p eR mit 0 <p <diam (M) existieren x,, . .., x,_1€ M,
so dass |x;—xo|<p (i=1,...,n—1) und

(det(({x; — X0, X; — XD j=1...n-1)) 2= (yp)" L.

Beispiele. Die folgenden Mengen sind in Ug<, <1 I,

1) Halbrdume und Kugeln in R".

2) Hyperebenen und Sphéren in R".

3) Fiir n =2 jede nicht-leere und zusammenhiangende Menge in R".

SATZ 2. Wir setzen n=2 voraus. Es sei F €I, und cl(F) = F. Die Funktionen
f:F—>R" mit |fllar<x lassen sich zu stetigen Funktionen g:R" — R" fortsetzen,
derart dass die Ungleichung

"g"Q <Boy " "f"A,F

mit einer nur von der Dimension n abhdngigen Konstanten B, (B, €R™) erfiillt ist.

Beweis. Fur F=R" geniigt Satz 1 und fiir einelementiges F ist Satz 2 trivial.
Wir setzen daher voraus, dass F mindestens zwei Elemente enthalt und F#R" ist.
Im folgenden bezeichnen wir mit B,,..., B€R" und m,;, m,eN nur von der
Dimension n abhédngige Konstanten. Wir setzen G =R" \ F und fiihren fiir G eine
Familie von achsenparallelen und abgeschlossenen Wiirfeln (Q,);n und eine
Teilung der Eins (¢;); €in, so dass folgendes gilt:

Ua=g M
int (Q;) Nint (Qi)= %) (171:])’ (2)

B1' diam (Q) =<dist (F, Q)< B, diam (Q,), (3)
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B3' diam (Q) <diam (Q,)<B,diam (Q)) (Q,NQ;# D), 4)
$,:G—->{xeR:x=0}, (5)
Y d(x)=1 (xeG), (6)
i=1

FirQNQ=< und xeQ; ist ¢;(x)=0, (7)
|¢i(x) - d’:()’)‘ < B4(diam (Qi))_l |x —-y| (%, y€ G). (8)

(Qi)ien ist eine Whitneyzerlegung von G (siehe [7], p. 166-170). Fiir a, € F sei
dist (a;, Q;) =dist (F, Q,) (i eN). Wir setzen

p; = dist (F, Q,),
K, ={xeR":|x—a|=<p} (ieN),
Al = llflla.F-

Wir fiihren eine Folge (p,);cn €in, so dass p; € A,
sup {|f(x) — p:(x)|: x e FN K;}<|f|| diam (F N K) 9)

und definieren die Fortsetzung g durch

f(x) xeF

0= &
s ‘Zl &; (x)pi(x) xeG.

Wir schitzen ||g||, ab. Fiir x,€R" und p€ R™ setzen wir

K={xeR":|x—x¢|<p},
6 =dist (F, K).
Fiir aeF sei & =dist (a, K). Wir definieren:
U={ieN:QNQ#T} (ieN),
iey

Q=UQ (ieN),
U:

U U.

Q,NK#*JD
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Nach (3) und (4) ist
diam (Q;) < B,83(6 +2p) (ieU). (10)

Es folgt nach (3)

P < B1B2B3(8 +2p), (11)
la—a;|<Bs(d8+p) (i U). (12)
Wir setzen

K={xeR":|x—a|=<(2B1B,8:+ Bs)(8 +p)}.

Nach (11) und (12) gilt

Ku(u K‘-)EIZ. (13)

ieU
Wir fiihren ein pe A ein, so dass
sup {|f(x) — p(x)|: x e FN K}<l||f|| diam (F N K). (14)

Es sei ie U.
Ist p; >diam (F), so folgt nach (13)

diam (FN K,) = diam (FN K).

Ist p; <diam (F), so existieren wegen FeIX, y,, ..., y,-1 € FNK,, derart dass
n—1

(diam (FNK)" =[] |yc—ajl
k=1

= (ypi)n_l,
diam (FN K,)= vp, (siehe [6], p. 23-24).

In beiden Fillen folgt unter Verwendung von (11)
diam (FNK)<B¢(yp) (8 +p)diam (FNK,)  (ie U). (15)
Es sei ie U. Wir fﬁhren Xy, ..., X%,_1€ FNK, ein, so dass

(det ((x — @i, X1 — @)ici=1,.n—1)) > = Gy diam (FN K;))" . (16)

,,,,,
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Die Existenz folgt aus FeIR.,. Aus (9), (11), (14) und (15) schliessen wir

Ip:(a)) — p(a)l, |pi(xi) — ()| <|Ifll (diam (F N K;) + diam (F N K))
<B;fl (vo) '(8+p)diam (FNK;) (k=1,...,n-1).

Wir wenden Hilfssatz 3 an und benutzen (16). Es folgt

Ipi(x + a;)—p(x +a;) - pi(a;) + p(a;)|
<(mn—-12"""B;Ifl vy "pi '@ +p) x| (ieU, xeR"),
Ip:(x)—pX)|<Bslifl vy "B +p)1+pi'Ix—al) (ieU, xeR"). (17)

Nach (3) und (4) ist
lx —a;|<(1+ B, +B1B3)p: (ieN, xeéi)-
Durch Einsetzen in (17) finden wir

Ip:(x)—p)|<Boy ™" Ifl (B+p) (icU, xeQ). (18)

Es werden zwei Fille unterschieden.

1. FALL 8 =<p. Wir schitzen sup {|g(x)—p(x)|:x€ K} ab. Fiir xe FNK ist
nach (13) und (14)

|g(x)— p(x)| = |f(x) = p(x)| < B lIf]l o

Wegen (4) hat U, (i eN) hochstens m, Elemente. Wir wenden (6), (7) und (18) an
und finden fiir xe KNQ; (ieN)

lg(x)—px)|< Y &(x) |p;(x)-p(x)|

iey;

< Y |p(x)-px)<=mBoy " Ifl (5+p)

<2mBoy " |fll p.

Es ist sup {|g(x)— p(x)|:x e K}=<B,v " [fll p.

2. FALL &> p. Wir schitzen sup {|g(x)—Yi~; ¢:(xo)p:(x)|: x € K} ab. Durch
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Anwendung von (6), (7) und (8) finden wir

e0)- Y xp®)| = | T (%)~ b (x0)(p:x) - p(x))

i=1 ieU
<Bsp X (diam (Q)) ' Ip(x)—p(x)|  (x€K). (19)
ieU
Nach (3) und (4) ist
diam (Q,) = B,,6 > B1,p (ie U). (20)

Nach (12) ist
Ix —a;|<|x—al|+|a—a|<B.38 (ieU, xeK).

Aus (17) und (20) folgt somit
(diam (Qi))_l ‘Pi(x) - P(x)l <Buy " "f" (ie U, x e K).

Aus (20) folgt, dass U hochstens m, Elemente aufweist. Wir setzen in (19) ein und
finden

|

Die Behandlung des zweiten Falles ist abgeschlossen. Wir haben ||g||. <
Bisy " lIfl| < nachgewiesen. Wegen ||g|, < kann leicht gezeigt werden, dass g
stetig ist und nach Satz 1 gilt dann

oo

g(x)— 2, &i(xo)pi(x)

xeK}<BaomaBuay " Il = Bisy ™ Ifl o

lglle <Boy™ Iflak-

Dabei hangt B,€R"* nur von der Dimension n ab.

Beispiel. Die Voraussetzung FeIt, in Satz 2 ist wesentlich.
Wir setzen

F={0,0}u{2™ 0):neN}U{2™+3™ 0):neN}cR?

und definieren f:F — R? durch

f((0,0)=f((2™"+37",0)=(0,0)
f(R™0)=@2™0) (neN).
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Es gilt ||[f|la <> und eine Betrachtung des Stetigkeitsmoduls zeigt, dass sich f

nicht zu einer quasikonformen Deformation auf R? fortsetzen liisst (siche [4], p. 8
und [8], p. 44).
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