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Ein Fortsetzungssatz fur quasikonforme Deformationen

Chr. A. Meyer(1)

I. Einleitung

Eine stetige Funktion /:[Rn—»Rn ist eine quasikonforme Déformation, falls

(a,f(x + a)-f(x)) (b,f(x + b)-f(x))
Ho sup

abxeR \bf

endlich ist. Solche Funktionen sind von Bedeutung fur die Théorie der quasikon-
formen Abbildungen, da sie einen quasikonformen Fluss erzeugen: Die Losungen
h(x, t) der Difïerenzialgleichung

mit Anfangsbedingung h(x, 0) x bilden eine Einparametergruppe von quasikonformen

Abbildungen (siehe [2], [5]).
In dieser Arbeit wird gezeigt, dass sich die quasikonformen Deformationen

durch eine Approximationseigenschaft charakterisieren lassen (Satz 1). Fur n 2
lâsst sich dièses Résultat in komplexer Notation folgendermassen formulieren:
/:C—»C ist eine quasikonforme Déformation, falls fur aile zoeC und p&gt;0 eine
komplex-affine Funktion p(z) az + b existiert, so dass

sup |/(z)-p(z)|*sap.
|z-zo|«£p

Die nur von / abhângige réelle Konstante a steht in direkter Relation zu ||/||Q. Fur
n 55 3 treten die Elemente der Lie-Algebra der Gruppe der linearen Aehnlichkeits-
transformationen an die Stelle der komplex-linearen Funktionen.

1Der Autor wurde wahrend seines Forschungsaufenthaltes m West-Berhn 1983/84 vom
Schweizenschen Nationalfonds unterstutzt
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446 CHR A MEYER

Im zweiten Teil der Arbeit wird das Problem der Fortsetzbarkeit von Funk-
tionen / untersucht, welche auf geeigneten Teilmengen MçH&quot; definiert sind und
eine Approximationseigenschaft haben: Lâsst sich / auf M durch affine Funk-
tionen der Form

p(x) Tx 4- Àx + a (T* -T, A gR, a e Un)

approximieren, so kann / zu einer quasikonformen Déformation auf IRn fort-
gesetzt werden (Satz 2).

Die zusâtzliche Voraussetzung, die an M gestellt werden muss, drùckt aus,
dass M geniigend Punkte in gleichmâssiger Verteilung aufweist (Définition 4).
Wie ein Beispiel belegt, kann auf dièse Voraussetzung nicht verzichtet werden.

II. Eine Charakterisierang der quasikonformen Deformationen

DEFINITION 1. Fur Funktionen f:Rn^Rn setzen wir

Il/Hz sup
x,yelFr
y#0

a,b,xe(Rn \b\2

((x, y) ist das euklidische Skalarprodukt von x und y.) / ist eine quasikonforme
Déformation, falls f stetig ist und \\f\\Q &lt; °° gilt.

HILFSSATZ 1. Fur stetige Funktionen f :(Rn-&gt;Rn gilt

b)

1

2 In 2

Fur die Beweise siehe [5], p. 251 und p. 255-257.

HILFSSATZ 2. Fur stetige Funktionen f:Rn mit &lt;00 und
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beschrânkte Mengen M&lt;=Rn gilt

sup |/(x)| ^ sup \f(x)\ + \{n +1) ||/||z diam (M).
xeconv(M) xeM

(conv (M) ist die konvexe Huile der Menge M.)

Beweis. Nach dem Satz von Carathéodory ùber konvexe Mengen nehmen wir
ohne Einschrânkung der Allgemeinheit M {ak : k 1,..., n + 1} and (siehe [3], p.
15).

Wir setzen fur i eN U{0}

cr,=sup[j/(2-1 £ jkok)|:/1,...,/n+1€NU{0}, I /k

Es sei i e N, ju jn+1 g N U {0} und

Wir bestimmen Zahlen el5..., en+i, so dass

ek€{-1,0,1},

jk + ek ist gerade (k 1,..., n + 1),

In der Ungleichung

|y| (x,yeRn)

wird
n+l n+l

x 2~l X /k^k und y 2~l X
k=l k=l

eingesetzt. Es folgt

|/(x)| ^ o-.-x + 2-l~1(n +1) Il/Hz diam (M).
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Insgesamt haben wir das Ungleichungssystem

t + 2&quot;l&quot;1(n +1) ||/||z diam (M) (i € M).

Es folgt

a, ^ sup |/(x)| + \(n +1) H/Hz diam (M) (i e M U {0}).
xeM

Die Behauptung ist bewiesen, da / stetig ist.
Im folgenden Satz werden die quasikonformen Deformationen durch eine

Approximationseigenschaft charakterisiert. Die approximierenden Funktionen

peA sind diejenigen quasikonformen Deformationen p:Mn—&gt;Un mit ||p||q 0.

Nach [1] (p. 241) sind dies spezielle affine Transformationen.

DEFINITION 2. A ist die Klasse aller affinen Transformationen p:[Rn-*iRn,
welche folgende Bedingung erfùllen: Es existieren ÀeR, a eUn und eine schiefsym-
metrische Matrix T, so dass

p(x) Tx + Ax 4- a (x € (Rn).

Bemerkung. Fur n 2 enthàlt A genau die komplexen Polynôme hôchstens

ersten Grades.

DEFINITION 3. Kir 0=£M^Un und a€lR+U{0} definieren wir die Klasse

AaM der Funktionen f:M-*Mn durch folgende Bedingung: Fur aile xoeM und
aile peU+ existiert ein peA, so dass

sup {|/(x) - p(x)| : x € M, |x - xo| ^ p} ^ ap.

Wir setzen fur f:M-*Un

II/IUm inf{a g U+ U {0} : / e Aa,M}.

Wir kûrzen ab: ||/||A,iRn II/IIa- (^ ist die Menge der positiven reellen Zahlen)

In Hinblick auf Satz 2 bemerken wir folgendes.

Bemerkung. Aus ||/||a,m&lt;00 folgt, dass / sich stetig auf die abgeschlossene
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Hiille cl (M) von M fortsetzen lâsst und fur die stetige Fortsetzung / gilt

Fin* stetige Funktionen f:Mn-+Mn sind die Halbnormen || ||Q und || ||A

aequivalent:

SATZ 1. Es existieren nur von der Dimension n abhàngige Konstanten yl9
M+, so dass

fur aile stetigen Funktionen /:[ n-»|Rn

Beweis. 1) Nachweis von ||/||Q^y2||/||A&apos; Fur a, b, xoeUn und
existiert ein peA, so dass

sup

Aus der Schwarz&apos;schen Ungleichung folgt mit der Abkûrzung g f-p wegen
IIpI1q=o

(a, f(x0+a) - /(x0)) (b, f(x0 +b)-f(x0))
\a\2 \b\2

(a, g(xo+o) - g(xo)&gt; (b, g(xo+b)-g(xo))
a\2 \b\2

Es ist somit
2) Nachweis von yt ||/||A « ||/||o : {cj,..., en} sei die Standardbasis in IR&quot;. Fur

xoeR&quot; und pelR+ definieren wir mit der Abkûrzung e=Y!t=i^i ^ie Hilfsfunk-
tionen /, g:Rn^^IRn folgendermassen: f(x) f(2npx + xo-pe)-f(xo-pe),

x (xeR&quot;).

Es ist

||g||Q 2np H/llo, g(0) 0, &lt;elf gCd)) 0.
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Die affine Abbildung y 2npx + xo-pe bildet die Kugel K
{xeMn:\x-(2n)~1e\^(2n)~1} auf die Kugel {y eUn :|y-xo|^p} ab und es ist

K c conv ({0, et,..., en}). Wir approximieren daher g in conv ({0, el9..., en})

durch Funktionen aus A. Im folgenden bezeichnen wir mit f$l9..., 04 nur von der
Dimension n abhângige Konstanten aus IR4&quot;. Wir wenden Hilfssatz lb) an und
finden unter Berùcksichtigung von g(0) 0

|2e,|2

g(2e,)-g(e,)&gt;

kl2

Es folgt

\(et, g g(e.)&gt;|«/33||g||Q (i,/ 1,..., n).

Wir definieren die lineare Funktion T:iR&quot; -*R&quot; durch

(C, T(e,)&gt;=|«e,, g(eJ))-&lt;eI, g(e,)&gt;) (i, / 1,..., n).

Es ist TeA und

max ||&lt;e,, g(cJ))+(e],
1-1, ,n

Nach Hilfssatz la) gilt

Wir wenden Hilfssatz 2 an und finden

sup |g(x) - T(x)\ =ssup {|g(x)- T(x)| : x e conv ({0, ex,..., en})}
xeK

« In 1/2p3 \\g\\Q + (2n + 2) ||g||Q21&apos;2 04 ||g||Q

Wir setzen die Définition von g ein und es folgt
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Bemerkung. Der Beweis zeigt, dass in Satz 1

7l (n(4 • 21/2(n + l) + £ • 43 • n172))&quot;1 und

72 4

gewâhlt werden kônnen.

III. Der Fortsetzungssatz

HILFSSATZ 3. Es sei {xt :i 1,..., n-l}çlRn (n^2) linear unabhàngig,
peA und p(0) 0. Dann gilt

2(n-l) max |p(xj| max
i l, ,n —1 V l, ,n-l

Beweis. Wir setzen 8 det(((xl,x1))lJ==h ,n-i)&gt;

jx= max |x,|, v= max |p(x,)|.
i l, ,n —1 i l, ,n —1

Aus y Xr=i «A (a, €R) folgt

|a,|^fi-1/2/in-2|y| (î l,...,n-l),
|p(y)|^(n-l)ô-1/Vn~2|y| (siehe [6], p. 10, p.23-24).

Fur xeUn geben wir die folgenden orthogonalen Zerlegungen an:

yi und y2 liegen in der linearen Huile L von {x1?..., xn_!}, zx und z2 im
orthogonalen Komplement von L. Wegen peA gilt

lyd2 &lt;y2, p(zx)&gt; -&lt;zi, p(y2)&gt; ^ (n - l)ô&quot;1/2^n-2 |za| |y2|,
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Auf âhnliche Weise finden wir

Insgesamt folgt

|p(*)l ^ |p(y i)l+(Iy2|2+N2)1/2

^ 2(n - \)b~ll2vyin~2 \x\ (x eUn).

DEFINITION 4. Wir setzen n^2 voraus. Eine nicht-leere Teilmenge MçlRn
ist ein Elément von %fly (yeU, 0&lt;y^1), wenn sie folgende Eigenschaft besitzt:
Fur aile xoeM und fur aile peU mit 0 &lt; p ^ diam (M) existieren xl9...9 xn^1 g M,
so dass |x, - xo| ^ p (i 1,..., n — 1) und

(det(«x, - x0, x, - xo»M=1, ,n-i))1/2^ (7P)&quot;-1.

Beispiele. Die folgenden Mengen sind in Uo^ssiSJty*
1) Halbrâume und Kugeln in Rn.

2) Hyperebenen und Sphâren in Rn.

3) Fur n 2 jede nicht-leere und zusammenhàngende Menge in Rn.

SATZ 2. Wir setzen n^2 voraus. Es sei Feïïly und cl(F) F. Die Funktionen

f:F-*Mn mit ||/(Uf&lt;00 lassen sich zu stetigen Funktionen g:Un -&gt; IRn fortsetzen,
derart dass die Ungleichung

mit einer nur von der Dimension n abhângigen Konstanten j30 OoG^+) crfùllt ist.

Beweis. Fur F Un geniigt Satz 1 und fur einelementiges F ist Satz 2 trivial.
Wir setzen daher voraus, dass F mindestens zwei Elemente enthàlt und F^ IRn ist.

Im folgenden bezeichnen wir mit j3x,..., |316elR+ und ml5 m2^M nur von der
Dimension n abhàngige Konstanten. Wir setzen G IRn \F und fûhren fur G eine
Familie von achsenparallelen und abgeschlossenen Wurfeln (Q,)ie^ und eine

Teilung der Eins (&lt;fr,),eN ein, so dass folgendes gilt:

UQ G, (l)
1=1

int(Q)nint(Q)=0 (j+j), (2)

PI1 diam (Q) ^ dist (F, Q) « /32 diam (Q), (3)
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(Q,nQ,^0), (4)

(5)
oo

I*(x) l (xeG), (6)

FùrQ,nQ) 0 und xeQ, ist &lt;k(x) 0, (7)

/34(diam (Q))&quot;1 |x - y| (x, y e G). (8)

ist eine Whitneyzerlegung von G (siehe [7], p. 166-170). Fur a, e F sei
dist (a,, Q,) dist (F, Q,) (i eN). Wir setzen

p, dist(F, Q,),

K1={xe0r:|x-a1|*spI} (ieN),
11/11 II/IU.P.

Wir fiihren eine Folge (p,)l6N ein, so dass p, e A,

sup{|/(x)-p,(x)|:x€FnKI}«||/||diam(FnKl) (9)

und definieren die Fortsetzung g durch

/(x) xeF

xeG.

Wir schâtzen ||g||A ab. Fur xoelRn und peR+ setzen wir

K {xeUn:\x-x0\*£p},
8 dist (F, K).

Fur aeF sei 8 dist (a, K). Wir definieren:

l/,={/eN:Q,nQJ?t0}

Q,= U Q, (ielSI),

u= U i/..
QDK#0



454 CHR A MEYER

Nach (3) und (4) ist

(ieU). (10)

Es folgt nach (3)

(11)

UeU). (12)

Wir setzen

Nach (11) und (12) gilt

K. (13)

Wir fûhren ein peA ein, so dass

sup {\f(x) ~p(x)\:xeFnK}^ \\f\\ diam (FHK). (14)

Es sei i € U.

Ist a &gt; diam (F), so folgt nach (13)

diam (F n Kt) diam (FHK).

Ist p^diam(F), so existieren wegen FeWfly yl9..., yn_1eFniCl, derart dass

diam(FnKl)^7pl (siehe [6], p. 23-24).

In beiden Fâllen folgt unter Verwendung von (11)

(ie U). (15)

Es sei ie U. Wir fuhren xl9..., xn^1eFnKl ein, so dass

(det («^ - av xx - a,»^.!, ,n-x))1/2^ (h diam (FH K,))&quot;-1. (16)
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Die Existenz folgt aus FeTly. Aus (9), (11), (14) und (15) schliessen wir

|p,(a.) - p(a,)\,\p,(xk) - p(xk)\ *£ Il/H (diam (F n K,) + diam (F D K))

«0711/11 (mrHS + p) diam (FHK.) (k 1,..., n- 1).

Wir wenden Hilfssatz 3 an und benutzen (16). Es folgt

+ al)-p(x + a,)-pl(al) + p(a,)|

(n - 1)2&quot;+107 Il/H t^P^S + p) |x| (i e 17, x € R»),|R. (17)

Nach (3) und (4) ist

Ix-o.l^d + pi + iSi^p, (ieN.xeQ).

Durch Einsetzen in (17) finden wir

|p,(x)-p(x)|«îft,T-&quot;||/ll(8 + p) (iel/.xeQ,). (18)

Es werden zwei Fàlle unterschieden.

1. FALL S=sp. Wir schâtzen sup{|g(x)-p(x)|:xeK} ab. Fur xeFOK ist
nach (13) und (14)

Wegen (4) hat 17, (i gN) hôchstens mx Elemente. Wir wenden (6), (7) und (18) an
und finden fur x g K H Q, (i e N)

J€U,

Es ist

2. FALL ô &gt; p. Wir schâtzen sup {|g(x) ~ir=i ^(xo)p,(x)| : x 6 K} ab. Durch
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Anwendung von (6), (7) und (8) finden wir

ieU

=£ p4p I (diam (Q,))-1 |p,(x) - p(x)| (xeK). (19)
ieLT

Nach (3) und (4) ist

diam (Q) ^ j312ô &gt; |312p (i e U). (20)

Nach (12) ist

|x-ol|^|x-a| + |a-al|^p13Ô (ie U,xeK).

Aus (17) und (20) folgt somit

(diam (Q))&quot;1 \Pl(x) - p(x)| ^ /3147~n 11/11 (i eU,xe K).

Aus (20) folgt, dass U hôchstens m2 Elemente aufweist. Wir setzen in (19) ein und
finden

sup :x€

Die Behandlung des zweiten Falles ist abgeschlossen. Wir haben

$\ey~n Il/H &lt;°° nachgewiesen. Wegen ||g||A&lt;00 kann leicht gezeigt werden, dass g
stetig ist und nach Satz 1 gilt dann

Dabei hângt (30elR+ nur von der Dimension n ab.

Beispiel. Die Voraussetzung Fe3K7 in Satz 2 ist wesentlich.
Wir setzen

F {(0,0)} U {(2~n, 0) : n e N} U {(2&quot;n + 3&quot;n, 0):neN}gR2

und definieren f:F—»R2 durch
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Es gilt ||/||a,f&lt;0° und eine Betrachtung des Stetigkeitsmoduls zeigt, dass sich /
nicht zu einer quasikonformen Déformation auf !R2 fortsetzen làsst (siehe [4], p. 8

und [8], p. 44).
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