Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 60 (1985)

Artikel: Sur les feuilletages singuliers stables des variétés de dimension trois.
Autor: Bonatti, Christian

DOl: https://doi.org/10.5169/seals-46324

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-46324
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helvetici 60 (1985) 429-444 0010-2571/85/030429-16$01.50 + 0.20/0
© 1985 Birkhéuser Verlag, Basel

Sur les feuilletages singuliers stables des variétés de dimension trois

CHRISTIAN BONATTI

Introduction

Qu’un feuilletage soit stable signifie qu’il est, en un sens, semblable a tout
feuilletage voisin. Ainsi, un feuilletage F d’une variété compacte M est dit
C"-(structurellement) stable, si pour tout feuilletage F' C"-proche de F il existe
un homéomorphisme de M proche de I'indentité qui conjugue F et F'.

De tels feuilletages existent, et I’on connait des exemples, certains fort simples
(par exemple S' x S? feuilleté trivialement par {x}X S, ou par deux composantes
de Reeb d’holonomie hyperbolique), et d’autres beaucoup plus riches et com-
plexes, par.exemple les feuilletages d’ Anosov, qui ont toutes leurs feuilles denses.

Cependant, leur existence n’est pas assurée sur toute variété: Rosenberg et
Roussarie ont montré, dans (RR), qu’il n’existait pas de feuilletage de codimen-
sion un, C!-stable sur S3. Par contre, il existe des feuilletages a singularités de
Morse C'-stables sur S>: ceux définis par une fonction de Morse a valeurs
critiques distinctes, dont les surfaces de niveau sont simplement connexes; Rosen-
berg et Roussarie ont alors conjecturé que ce sont les seuls.

Cette conjecture est a ’origine de ce travail sur les 2-feuilletages C'-stables, a
singularités de Morse des variétés de dimension trois. (Un feuilletage F a
singularités de Morse est C'-stable au voisinage de ses singularités; dire qu’il est
stable signifie que tout feuilletage F’, coincidant avec F au voisinage des
singularités et C'-proche de F hors de ces voisinages, est conjugué a F par un
homeomorphisme proche de I’identité.)

La premiére partie est une étude du comportement des feuilles singulieres
issues d’une singularité conique d’un feuilletage stable. L’idée est d’examiner en
détail les conséquences de perturbations faites au voisinage de la singularité: si f;
et f, sont les feuilles singuliéres issues d’une singularité conique s, on montre que
f1 et f, sont différentes, de genre 0, sans holonomie, et que f1Uf, ne contient pas
de singularité autre que s; de plus I'une de ces feuilles est propre et admet un
voisinage feuilleté comme un produit; I'autre feuille ou bien posseéde les mémes
propriétés ou bien est localement dense. (Ces résultats sont rassemblés dans le
Lemme 1.)
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430 CHRISTIAN BONATTI

Dans la seconde partie on considere les feuilletages stables a feuilles toutes
propres (une feuille est dite propre si sa topologie de feuille coincide avec la
topologie induite par celle de la variété ambiante), et on démontre dans ce cadre
la conjecture de Rosenberg et Roussarie:

THEOREME. Les seuls feuilletages C™ a singularités de Morse, C'-stables, a
feuilles toutes propres, de S>, sont ceux définis par une fonction de Morse a valeurs
critques distinctes et a surfaces de niveau simplement connexes.

Ce résultat est encore vrai sur une variété orientable de 7, fini.

Voici les étapes de la démonstration: nous montrons successivement que dans
un tel feuilletage les feuilles compactes, puis les feuilles de hauteur finie, ont leur
groupe d’holonomie trivial ou cyclique de générateur hyperbolique; puis que, sous
les mémes hypothéses, toutes les feuilles sont de hauteur finie. Nous concluons
grice a un résultat de Haefliger, selon lequel sur une variété de m; fini, tout
feuilletage admettant une transversale fermée posséde une holonomie C™-plate
non triviale.

Dans ce texte, les variétés seront de dimension trois, C” et orientables, et les
feuilletages seront de codimension un, transversalement orientés, C~ a
singularités de Morse.

Dans toute la suite, nous désignerons par M, une variété compacte sans bord
de dimension trois, sur laquelle on aura fixé une métrique. On notera % un
feuilletage sur M a singularités de Morse, C'-stable. On appellera feuille de %
une feuille de ¥ restreint a ’ensemble des points non singuliers.

Soit X ’ensemble des singularités de %. Ces singularités sont de deux types:
—les singularités d’indice 0 ou 3 sont des centres, et les feuilles voisines sont des
spheres;

—les singularités d’indice 1 ou 2 sont dites coniques; si x,€ X est conique, il y a
deux bouts de feuilles qui convergent vers x,. Nous les appellerons bouts singuliers
issus de x,. Une feuille sera dite singuliére si elle contient un bout singulier.

Rappelons d’abord quelques faits connus qui seront par la suite fréquemment
utilisés:

Oa) D’apres [RR] et [M], si S est une feuille compacte d’un feuilletage %
C'-stable, et si m,(S)#{0}, Alors S admet au moins un germe d’holonomie
hyperbolique (c’est-a-dire a dérivée au point 0 différente de 1).

0Ob) Soit ¥ un feuilletage non singulier d’une variété compacte V. Alors
I’union des feuilles de & sans holonomie est un G; dense de V (voir [H]). Ce
résultat reste valable si  est a singularités de Morse.

Oc) Soit # un feuilletage C'-stable d’une variété compacte V. On vérifie
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facilement qu’une feuille f de genre g(f)=1 est 2 holonomie non triviale. En
particulier, I’'union des feuilles de genre nul est un G5 dense dans V.

Je remercie tres sincerement G. Levitt et H. Rosenberg qui m’ont guidé
durant ce travail.

1. Etude des feuilles singulieres

Nous allons maintenant étudier en détail une feuille singuliere d’un feuilletage
stable: On peut modifier légérement le feuilletage, d’'une fagon simple, au
voisinage d’une singularité conique; la stabilité nous donnera alors de nombreux
renseignements.

a) C'-perturbation de ¥, a support dans un voisinage d’une courbe fermée
simple, tangente a & et d’holonomie triviale.

Soit y une telle courbe. Alors, il existe un plongement F de S* %[0, 1]x[—1, 1]
dans M tel que F(S*x{(0,0)}) =y et que F" (%) ={S'x[0, 1]1x{t}};c(_1.1;- Fixons-
nous F un tel plongement.

Soit ¢ € Diff,, ((—1, 1]); ¢ définit un 2-feuilletage %, sur S*x[0, 1]x[—-1, 1]
égal & F (%) prés du bord et hors de S'x[0, 1]xsupp (¢), transverse a tous les
segments {(0, s)}x[—1,1] ((6,s)eS'x[0,1]) et tel que son holonomie de
{(6, D}x[—1, 1] dans {(6, 0)} X[—1, 1] envoie (0, 1, t) sur (0, 0, ¢(t)). Le feuilletage
%, est bien défini & conjugaison prés par un difféomorphisme de S'X[0, 1]x
[—1, 1] égal a ’identité prés du bord.

Notons %, le feuilletage sur M coincidant avec & hors de Im (F) et coincidant
avec F(?Z,) sur Im (F). Pour ¢ C'-proche de l'identité, ¥, peut étre choisi
C'-proche de %; %, est alors conjugué a ¥ par un homéomorphisme de M
proche de I'identité, car F est C'-stable.

b) C'-perturbation de ¥, a support dans un voisinage d’une singularité conique
de %.

Soit x, une telle singularité. Soit U un voisinage de x, tel que ¥ |U soit
conjugué au modele standard de Morse. Tous les ensembles que nous allons
décrire maintenant seront contenus dans U.

Soient vy,, v, deux courbes simples tangentes a &, découpant chacune un bout
singulier issu de x,. Il existe deux plongements a;, a, de [—1,1] dans U,
transverses a %, tels que q;(0)=1+;(0), que & induise par holonomie un
difféomorphisme de a,(]0,1]) sur a,(]0,1]) envoyant a,(t) sur a,(t) et que
I’holonomie le long de v; soit définie et égale a I'identité sur tout le segment
a;([—1, 1)) (voir figure 1).

On se fixe alors, de méme qu’au a), des plongements F; et F,, de S %[0, 1]x
[~1, 1] dans M tels que F,(S'x{(0, 0)})) = v;, que F;(0, 0, t) = a;(t) et que F; (¥)=
{S*x[0, 1]1x{t}}icf-1.13; on impose de plus que F,(S* x{1} x{0}) soit “plus pres” de
la singularité que 7.
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Figure 1. Quitte a changer 'orientation transverse de %, on supposera que les a; sont orientés dans le
sens positif.

Figure 2

On notera C,; le cercle F;(S* x{0}x{t}) (en particulier C,; = ;). On notera A
le voisinage de x,, bordé par Fy(S*x{0}x[—1, 1)UF,(S*x{0}x[~-1, 1]) et par
des morceaux de feuilles de %, et représenté a la figure suivante:

Figure 3

Décrivons a présent les perturbations de % qui nous serviront:

- Soit ¢ € Diff,, ([0, 1]), soit ¥, le feuilletage de S*x[0, 1]x[—1, 1] décrit au
a). On notera %, le feuilletage coincidant avec ¥ hors de Im (F,) et avec F;(%,)
sur Im (F).

- Soient ¢, ¢, € Diff;,, ([0, 1]); on notera ¥, le feuilletage coincidant avec ¥
hors de Im (F;) UIm (F,), et égal & F,(%,) sur Im (F).

- On voit facilement que, pour ¢ €Diffy, (0, 1]), ¥, ne dépend, & con-
jugaison pres, que de ¢(0); si t = ¢(0), on notera ¥, =&, ..

Le feuilletage & étant stable, pour ¢, ¢4, ¢, assez voisins de I'identité, pour t
petit, les feuilletages %, %, ., % seront conjugués a F par un
homéomorphisme proche de I'identité.
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Il est trés important pour la suite de bien comprendre les transformations
(F — #,) que nous allons maintenant étudier.

Nous dirons qu’un chemin I' tangent 2 % qui joint deux points x,, x, n’est pas
coupé par (¥ —%,) s’il existe un chemin I”, tangent & %, joignant x, & x, et
coincidant avec I' sur M\ A. Nous dirons qu’une feuille f n’est pas modifiée par
(F—F,) sl existe une feuille f' de %, qui soit conjuguée 3 F par un
homéomorphisme de M a support dans A.

- Pour 1,>0, la transformation (¥ — %, ) consiste & couper les feuilles passant
par a,(t), te[0, t, et a recoller un disque sur chaque bout, et a faire porter la
singularité par la feuille passant par a,(t,).

Figure 4. Le chemin joignant x, & x, a été coupé par la transformation (¥ — %, ).

* Une feuille qui ne coupe pas a;([0, t,]) n’est pas modifiée par (F—%,).

- Une feuille qui était propre (resp. semi-propre) reste propre (resp. semi-
propre) apres transformation: on n’a fait que la couper en éventuellement
plusieurs feuilles de %, qui seront donc chacune propres. De plus, soit I' un
chemin tangent & % joignant deux points de M\A. Si pour tout t€[0, to[, I" ne
rencontre pas G ;U G,,, alors I" n’est pas coupé par (¥ —%,) (si I' coupe C, ;, le
chemin I'" induit passera éventuellement par x).

Pour t,=0, la transformation (¥—%,) consiste a découper un disque sur
chaque feuille passant par a;(t), t € Jt,, 0], a recoller le bout ainsi créé passant par
a(t) avec celui passant par a,(t), et a faire porter la singularité par les feuilles
passant par a,(t,) ou ay(ty).

Une feuille ne coupant ni a,([ty, O]) ni a,([t,, O]) n’est pas modifiée par cette
transformation. Il est important de voir que pour deux points x;, x, de M\ A,
aucun chemin tangent a ¥ joignant x, a x, n’est coupé par (¥F—%,) (1,<0).
Ainsi, une feuille non propre (resp. localement dense) reste non propre (resp.
localement dense) par la transformation (¥ — F.).
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Remarque 1. Soient ¢,, ¢, Diff,,, (—1, 1]) tels que leurs inverses @7 ' et ¢35
coincident sur [0, 1], (¢7" ][0, 1]1=¢3"|[0, 1]).

*Si ¢,(0)>0, alors ¢,(0)=¢,(0) et les feuilletages F, .
conjugués par un difféomorphisme C” de M a support dans A.

- Si ¢1(0)<0, alors ¢,(0)<O0, et la transformation (¥ —>%,, ) Vérifie les
propriétés décrites ci-dessus de (¥ — %,) pout t<0: en particulier, elle ne coupe
aucun chemin I' tangent a3 & et joignant deux points de M\ A. De plus, si I' passait
par x,, le chemin tangent a & induit par I' ne passera pas par Xx,.

et ¥, sont

®1,¢2

Remarque 2. Soient ¢, ¢, € Diff,, ([—1, 1)) et x,, x,€ M\ A, unchemin I" tangent
a %, joignant x; a Xx,, ne rencontrant pas les cercles C,; pour te
(supp ¢ Usupp ¢,) N[0, 1], ne sera pas coupé par (¥ —&,) ni par (F—>F, ).

On utilisera par la suite les notations suivantes:

- Pout t>0, f, sera la feuille de & passant par a,(t) et a,(t).

- Pour t=0, f,; sera la feuille de & passant par a;(t).

- Pour t>t,, fio sera la feuille de &, passant par a,(t) et a,(t).
- Pour t=<t,, fis sera la feuille de %, passant par a;(t).

LEMME 1. Soit  un feuilletage C*-stable sur une variété compacte M>. Soit
Xo une singularité conique et soient f,, et f,, les feuilles singulieres contenant les
bouts singuliers issus de x,. Alors:

a) Pour tout i, f,; ne contient qu’un bout singulier (en particulier fo 1 # fo2)

b) Pour tout i, fo,i \fo; ne contient aucune autre singularité que x,.

c) Pour tout i, f,; est sans holonomie. En particulier, g(f,;) =0 (donc Vfe &, si f
est singuliére et si f U X est compact, alors il existe une singularité x telle que f U {x}
soit homéomorphe a une sphere).

d) Pour au moins un i de {1, 2}, f,; est propre, fo;\fo: ne contient aucun bout
singulier et il existe un plongement m de f,; X[—1, 1] dans M, tel que = (f,; x{0}) =
fo.r et tel que = (F) soit le feuilletage produit {f,; X{t}}icr_1.1}-

e) Soit j I’autre indice. Alors, soit f, ; vérifie également les propriétés énoncées en
d), soit fo; est localement dense.

f) Si fo.1 et fo» sont propres, alors pour tout i, pour toute feuille f différente de f, ;,
I’adhérence de f est disjointe de f ;.

Démonstration. On utilisera les notations introduites précédemment. Fixons
>0 tel que pour tout te[—mu, u], %, soit conjugué a %.

a) Démontrons ce point par I’absurde. Supposons que f,; ait deux bouts
singuliers. Soit x; I’autre singularité (éventuellement x, peut étre égal a x,). Soit y
un chemin tangent a f,, qui joint ces deux bouts. Par compacité de v, il existe
n >0, € >0 tels que tout chemin partant de x,, tangent a & et e-proche de y ne
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rencontre pas F;(S* %[0, 11X ([—mn, n]\{0})). On choisit alors un difféomorphisme
¢ de [—1, 1], a support dans [—m, n], tel que ¢(0) # 0, assez proche de Iidentité
pour que %, ; soit conjugué & ¥ par un homéomorphisme G e-proche de
I'identité. La transformation & — %,_; coupe le chemin y qui joignait x, a x,. Il
peut y avoir d’autres chemins tangents a %_, qui joignent x, 2 x,, mais on voit
facilement que ces chemins ne seront pas g-proches de vy: il y a contradiction,
G(vy) étant tangent a ¥_,, joignant x, a x, et étant e-proche de 4.

X4 La transformation a

Y “brisé” y. Le chemin
ne joint plus x, a x,

%-
// ’
, .

__ .
n \/~ 1
/*i’_ K
~9~. .')

o'/"i
" 1 D]

Figure 5

b) Supposons que la propriété 2b) soit fausse: par exemple, il existe une
singularité conique x, différente de x,, et g une feuille portant un bout singulier
issu de x, telles que xge€ g\ g. Nous allons construire un feuilletage %, conjugué a
F tel que x, et x, soient sur la méme feuille, ce qui sera une contradiction.

Il existe toe[—u, w] tel que a,(t,) ou a,(t,) appartienne a g (par exemple
ay(tp) € g). Soit y un chemin tangent & % joignant x, a a,;(t,). Soit ¢, =
min ({t e[—u, nl/vyN(C,; U C,) #8}). Alors, on a vu que y n’est pas coupé par la
transformation ¥ — &%, . Dong, il existe un chemin v, tangent a &, et joignant x, a
un point de C, ; UG, ,. Mais C, ; et C, , sont sur les bouts singuliers issus de x,
de &, .

Il'y a contradiction: x, et x; sont portés par la méme feuille singuliére de %, .

c) Il existe t€]0, w] tel que la feuille f, de & soit sans holonomie. La
transformation ¥ — %, ne fait que ‘“‘couper des feuilles”’ donc par cette transfor-
mation, une feuille sans holonomie reste sans holonomie. Donc, dans %, les
feuilles singulieres f;, et f;, sont sans holonomie. Mais %, est conjugué a %, donc
les feuilles singuliéres de %, f,, et f,,, sont sans holonomie.
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d, e et f). Montrons tout d’abord que (d et ¢)=>f. En effet, si f,, et f,, sont
propres, d’apres (d et e) on peut choisir un intervalle I et deux plongements ; de
foiXI dans M tels que m(fo;X{0D)=fo; et m(fo;x{th<f,. Soit A, le
voisinage de x, composé de x, et des feuilles de % | A qui rencontrent ,(a,(0) X
I) ou m,(a,(0)xI); on voit alors facilement que Im (7;) UIm (mw,) U A, est un
voisinage de x, saturé par #. Une feuille non singuliére contenant un point a;(t),
t € I, sera alors incluse dans ce voisinage et sera composée de, au plus, une feuille
de chacun des feuilletages & |Im (), % |Im (m,) et F| A, Ceci acheéve de
prouver que (d et e)=>f.

Montrons maintenant par ’absurde que f,; ou f,, n’est pas localement dense.
Supposons donc que f,; et f,, sont localement denses. En particulier, il existe
te]—u, 0 tel que f, ,=fo,, et il existe t, arbitrairement voisin de t, tel que
fi,2= fo2-

Soient ¢, et ¢, deux difféomorphismes appartenant a Diff,, ((—1, 1]) tels que
les restrictions ¢7'[[0, 1] et @3'|[0, 1] soient égales, et que ¢,(0)=t, et ¢,(0)=
t,. ¢, peut étre choisi C'-proche de ¢,, donc %,, . sera C'-proche de %, et sera
conjugué a %.

Soit I' un chemin tangent a %, passant par x,, joignant a,(t;) a a,(t,). La
transformation ¥ — &_ . ne coupe aucun chemin, et I' induit donc un chemin I'
tangent a ¥, ., qui joint a,(t;) a a,(t,) sans passer cette fois par xo. Or a,(t,) et
a,(t,) sont sur les bouts singuliers de %, issus de x,, donc les deux bouts sont
portés par la méme feuille, ce qui est impossible (voir figure). Donc, f, ou f,,
n’est pas localement dense.

~
€ oy

Z

Il
|
{
’ c
!
N

Figure 6. La transformation ¥ — %_ _ ne coupe pas I' et le chemin induit joint les deux bouts

singuliers de &, _ .
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Supposons donc que f,; n’est pas localement dense.

 Montrons d’abord que, pour t >0 assez petit, f, est différente de f,; (on dira
que fo, est semi-propre par valeur supérieure).

L’ensemble {t€ 0, u[/a,(t)¢fo,} est un ouvert non vide, car f,, est non
localement dense; soit ]t;, t,[] une de ses composantes connexes.

- Si t, est nul, la démonstration est terminée.

Si t;>0, par définition de t,, f, est dans 'adhérence de f,,, or fon me
rencontre pas a,(Jt;, t;[). Cela prouve que f, est semi-propre par valeur
supérieure.

La transformation & — &, ne fait que “couper des chemins”, donc par cette
transformation une feuille semi-propre reste semi-propre. Donc, la feuille f;
(feuille singuliére de %,) est semi-propre par valeur supérieure, et donc, %, étant
conjugué a F, f,, est semi-propre par valeur supérieure.

- Montrons maintenant par ’absurde que f,, est propre par valeur inférieure
(donc est propre). Supposons donc que f,, n’est pas propre. En particulier, il
existe to€ |—u, O[ tel que f, ;= fo;. Soit y un chemin tangent a & joignant a,(0) a
a,(t,). Alors, par holonomie le long de 1, il est clair qu’il existe t,€]0, [,
€ J-u, O tels que les feuilles f, et f, , soient égales.

La feuille f, ; n’est pas localement dense (sinon %,, aurait sa feuille singuliere
fiz1 localement dense), donc f, est non localement dense.

L’ensemble {t € ]0, t,]/t¢ f,} est donc un ouvert non vide; soit Jts, t,[ une de ses
composantes connexes. Alors f, est semi-propre par valeurs inférieures, car f,, est
dans I’adhérence de f,, et ne rencontre donc pas a,(]ts, t[).

Donc %, a sa feuille singuliere f;:, propre par valeurs inférieures, ce qui
contredit ’hypothése “‘f,; non propre par valeur inférieure’.

On vient de montrer que si f; n’est pas localement dense, elle est propre.

Nous allons maintenant montrer par ’absurde que si f,; est propre, alors son
adhérence f, , est disjointe de f,, (cela prouvera que fo,\fo, ne contient aucun
bout singulier).

Supposons donc que f,, est propre et que fo,< fo;. On voit facilement qu’il
existe n >0 tel que f, , ne rencontre pas a,(]0, n[); en effet, pour tout ¢t >0, a,(t)
et a,(t) sont sur la méme feuille. La propreté de f conclut alors ce point.

Par contre, il existe une suite (t,),.<n» 5 € ]— M, O], convergente vers 0, telle que
pour tout neN, a,(t,)€f,,. Pour n assez grand, on pourra donc trouver un
difféomorphisme ¢, de [—1, 1] & support dans ]-1, n], tel que ¢, (0) = t,, et que ¢,
soit assez proche de I'identité pour que %, , soit conjugué a #.

Un chemin tangent 3 %, et joignant a,(0) a a,(t,), ne rencontre pas F,(S*x
[0, 1]%[0, n]), donc “n’est pas coupé” par 14 transformation F—F,_ ,. Donc
a,(t) et ay(t,) sont sur la méme feuille de ¥, ,. Mais a(t,) et a,(t) sont chacun
sur un bout singulier de ,,_,, ce qui contredit le fait que ¥, , soit conjugué a F.
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Cette contradiction achéve de montrer que f; Nfo,= .

Il reste a construire le plongement 7 de f,,x[—1,1] dans M, ayant les
propriétés annoncées.

Soit y une courbe simple fermée tangente a F et coupant le bout singulier de
fo.1- Soit fo,l = fo.1 \ (Ie bout singulier). D’apres ce qui précede, il existe £ >0 tel
que toute singularité x € X soit a une distance supérieure a 2¢ de fo,l. Soit
0= U, ex f!(x, €) ou fS(x, €) est la boule ouverte centrée en x, de rayon &. Quitte
a restreindre A, on peut supposer A < (.

On va construire un plongement 7, de f, ; X[—a, 0] (e > 0) dans M\ 0, tel que
1o (F) ={fo,1 x{t}}, que | fo,l x {0} soit I’identité, et que my(y X {t}) découpe sur
f.1 un disque contenant a,(t). On voit facilement que d’un tel plongement on
peut déduire 7: en effet, Im (m,) ne rencontrant pas A, % |Im (m,) n’est pas
modifié par les transformations  — %,; en choisissant t,€ |—a, O[, on obtient un
plongement de fo,1 X[—a, 0] sur un voisinage de la feuille singuli€re f;°, privée de
son bout singulier. Il suffit alors de prolonger 7, sur un voisinage de ce bout
singulier pour avoir le plongement voulu.

Soit I' un plongement de S'Xx[—u, 0] dans M\ O tel que, pour tout 6 S,
I'{6} x[—u, 0]) soit un chemin orthogonal & %, tel que pour tout te[—pu, 0],
I'(S* x{t}) soit un lacet v, tangent 2 ¥ et découpant le bout singulier de la feuille
fi1 de %,; on supposera de plus que y,=y. Soit b le chemin orthogonal a ¥ défini
par b(t)=1v,(0) pour tout te[—pu,0]. Soint N le champ de vecteur unitaire
orthogonal 3 %, de méme orientation que b. Soit (¢,),r le flot de N.

Remarque préliminaire. Notons d la distance sur M et dg la distance sur
chaque feuille associ€e a la métrique induite par celle de M. Alors, par compacité
de M\O, il existe &, &5, £5€ ]0, [ qui vérifient la condition suivante:

Vx,ye M\0, d(x,y)<e,>3!'te]—e,, &, tel que ¢,(x) et y soient sur la
méme feuille et que dg(¢,(x), y)<es.

On notera ¢,(x) = P,(x).

On voit facilement que si x(t) est un chemin C~ et si y(t) est un chemin
continu restant sur une méme feuille de %, alors P, (x(t)) est un chemin C~
tangent a %.

Soit a€]0,u[ tel que Viel[a,0], %, soit conjugué a F par un
homéomorphisme G, ¢;-proche de I'identité. Pour tout ¢, G, (fo,l) ne rencontre pas
0, donc n’est pas modifié par la transformation ¥ —%,; G,(f,,) est donc inclus
dans la feuille f,; de &.

Pour tout te[—a, 0] et tout xefy,, G/(x)eM, 0 et d(x, G,(x))<e,. On peut
donc définir my(x, t) = P, )(x) appartenant a f, ;.

Pour tout t, G,(7yo) découpe le bout singulier de f;; donc (v, t) découpe le
bout singulier de f;;. On en déduit facilement que my(7yo, t) =1, et donc que
mo(b(0), t) =b(t).
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Alors, pour tout chemin I" tangent a f, ,, d’origine b(0), m(T, t) sera un relevé
de I' le long de N sur la feuille fi.1 et d’origine b(t). On montre alors facilement
que 7, est un difféomorphisme local de fo,l dans M\ 0. Il reste a montrer que 7,
est injectif: soient (x4, t), (x5, t,) € fo.1 X[~a, 0] ayant méme image par m,. Alors
mo(x1, [—a, 0]) et wo(x,, [~a, 0]) sont deux segments sur la méme orbite de N, qui
ont méme orientation, et ont un point commun. Alors, il existe i €{1, 2} tel que
mo(x;, 0) appartienne a l'autre segment. Par exemple wy(x,, 0)=mo(x,, ), te
[—a, 0], donc f,, =f, 1. Si t# 0, ceci est clairement en contradiction avec le fait que
fo,1 privé de son bout singulier ne rencontre pas A. Donc t est nul, c’est-a-dire
mol(X1, 0) = me(x,, 0), soit x; = x,.

Il reste a montrer que t,=t,; si t;7#t, et mwy(xy, t;)=m(x,, t5), ON VoIt
facilement qu’il existe t# 0 tel que w(x,, t) = mo(x;, 0), donc que fy;=f,4, et 'on
vient de voir que cela n’était pas possible.

On vient de voir que m, était un plongement. Ceci achéve la démonstration du
lemme 1.

I1. Etude des feuilletages stables a feuilles propres

1. Feuilles compactes d’un feuilletage stable a feuilles propres

Voici tout d’abord un lemme général (c’est-a-dire n’utilisant ni la stabilité du
feuilletage, ni la propreté de ses feuilles) sur I’existence d’une feuille propre au
voisinage d’une feuille compacte.

LEMME 2. Soit T un feuilletage d’une variété V> (pas forcément compacte).
Soit S une feuille de I de m, différent de {0}. On suppose que S admet un germe
d’ holonomie hyperbolique et qu’il existe une feuille propre f telle que S < f\ f. Alors,
i) Soit F:m,(S) = R I’homomorphisme d’holonomie linéaire. L’image F((S))
est un sous-groupe discret, donc cyclique de R*™.

ii) Si S est de genre g(S)>1, alors g(f)>0 (en fait, g(f) = +x).

On en déduit alors le corollaire suivant qui décrit les feuilles compactes d’un
feuilletage C'-stable a feuilles toutes propres:

COROLLAIRE. Soit  un feuilletage C'-stable a feuilles toutes propres d’une
variété compacte M>. Soit S une feuille compacte de %. Alors, soit S est une sphere,
soit S est un tore et son groupe d’holonomie est cyclique, de générateur hyperbolique.

Démonstration du corollaire. Si S n’est pas une sphére, alors 7,(S) # 0 et donc
d’apres 0a) S admet un germe d’holonomie hyperbolique. Toutes les feuilles de F
sont propres, et I’on va donc pouvoir appliquer le lemme 2 aux feuilles voisines de
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S: si g(S)>1, toute feuille voisine de S sera de genre «, ce qui est impossible
d’apres Oc). Donc g(S)=1 et S est un tore; le lemme 2 assure de plus que son
groupe d’holonomie linéaire est cyclique. Le lemme de N. Koppel (voir K) assure
que ¢—¢'(0) est un homomorphisme injectif du groupe d’holonomie de S
(commutatif) dans (R, -), ce qui conclut.

Démonstration du lemme 2. Soit ¢ un germe de difféomorphisme hyperbolique
représentant une holonomie de S, avec ¢'(0)=d €]0, 1[. Soit I lintervalle de
définition de ¢, identifi€é a un intervalle de R avec point-base zéro. On sait,
d’apres [S], que ¢ est C*-conjugué a (x— ax). On supposera donc que, pour tout
xel, Y(x)=ax.

Soit xoefNI et soit e>0 tel que fN[xo—¢, xo+e]={x,}. Notons a=
[xo— €&, xo+ €] et x, =" (x).
ler point. Soit ¢ un germe d’holonomie de S tel que ¢'(0) € J1—(g/x,), 1]. Alors,
INeN/Vn=N, ¢(x,) = x,. En particulier, ¢'(0) =1, et 'image de F est cyclique.

En effet, pour x>0 assez voisin de 0, |@(x)— x|/x €[0, &/x,[. Donc, pour n
assez grand, |e(x,)—x.l/x,€l[0, e/x,], soit |e(x,)—x,|€[0,a™e[, donc
¢o(x,)e ¢"(a); donc ¢(x,) = x, par définition de a.

Alors, si ¢ est un germe d’holonomie, Ap, g€Z, p# 0, ¢'(0)° = ¢'(0)%. De plus,
ANeN/Vr=N, ¢°(x,) =¢(x,) = Xp1q-
2e point. Si g(S)=2, alors on peut trouver I';, I', lacets sur S dans.le noyau de
I’holonomie linéaire, qui se coupent de fagon transverse, et en un seul point (on
peut de plus imposer que ce point soit le point-base de I).

Alors, d’apres le premier point: noeN, Vn =ng, @r,(xy) = ¢r,(x,) =X,, ol ¢r,
est I’holonomie suivant I;.

Alors, pour tout n=n,, I'; et I, se relévent sur f en deux courbes fermées
d’origine x, qui se coupent en un seul point. Cela suffit a prouver que f est de
genre g(f)=1. De plus, en changeant le point d’origine x,, on peut choisir ainsi
une famille infinie de couples (disjoints) de courbes se coupant en un seul point.
Ainsi, g(f) = .

Le lemme 2 est démontré.

2. Feuilles de hauteur finie d’un feuilletage stable a feuilles propres

Supposons désormais que ¥ est de plus a feuilles toutes propres. L’ensemble
des feuilles de % possede une relation d’ordre définie par: fsg&Sfcg
(Pantisymétrie de la relation provient de ce que les feuilles sont propres). (On
rappelle qu’une chaine d’un ensemble ordonné est une partie totalement
ordonnée.)
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Remarques. 1. 1l est clair que pour toute feuille f de %, on a:
(f minimal pour =)& (fU X est compact).

2. (%, =) est inductif: toute chaine a posséde un minorant; en effet ﬂfeaf est
un compact non vide et non inclus dans X. Il contient donc au moins une feuille,
qui est un minorant de a. Le théoreme de Zorn entraine donc: Vfe %, Jge F
minimale pour =, g=<f.

Pour toute feuille f de %, on notera h(f) eN U {cc} 1a hauteur de cette feuille.
(On rappelle que la hauteur des feuilles est définie par récurrence:
h(f) =0 < f minimale pour =.

Ve<f\f, h(g)=n

Vi=n, f n’est pas de hauteur i

h(f)=n+1<=>{

h(f)=+x¢ VneN, f n’est pas de hauteur n.)

LEMME 3. Soit ¥ un feuilletage a feuilles toutes propres, C'-stable, sur une
variété compacte M. Alors, Vk eN:

a) Les feuilles de hauteur k, non maximales, sont de genre 1, et leur groupe
d’ holonomie est un groupe cyclique, de générateur hyperbolique. De plus, elles sont
en nombre fini.

b) Les feuilles de hauteur k maximales sont de genre O et d’ holonomie triviale.

Démonstration. D’aprés le lemme 1, et sous les hypothéses ci-dessus, les
feuilles singulieres sont de genre 0, sont d’holonomie triviale, et sont maximales
pour = (il n’y a donc rien a montrer pour elles).

La démonstration se fera par récurrence: Soit S une feuille réguliere de
hauteur zéro. S est donc une surface compacte et d’apres le corollaire du lemme
1, S est une sphére (donc est maximale) ou S est un tore et son groupe
d’holonomie est monogene de générateur hyperbolique.

De plus, la famille des feuilles de & difféomorphes & T2 est finie: sinon, de
méme que dans [RR], il y aurait un tore limite d’une suite de feuilles tores (il faut
voir que la feuille limite ne peut pas étre singuliere). Ce tore aura donc son
holonomie plate, ce qui n’est pas possible dans un feuilletage stable.

Le lemme est donc montré dans le cas ol k=0.

Soit (T);cr, I={1,...,n}, la famille des feuilles de & qui sont des tores.
(Remarque: Vfe &, h(f)=1>f\f = (Uit T: U X).)
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Il existe un plongement 7:(U;; T;) X[—1,1] & M tel que = | T; X{0} = id;,
et tel que F soit a la fois transverse au facteur {x} x[—1, 1] et au facteur T; xX{t}
(t#0).

Découpons M suivant les tores T, x{1} et T,x{—1}. On obtient ainsi un
nombre fini de variétés compactes a bord, 1\711,1, .. .,1\7!1,,,,, dont le bord est
composé de tores; ces variétés sont munies de feuilletages ﬁl,i transverses au
bord, et induisant sur chaque composante du bord un 1-feuilletage par cercles. On
recolle alors sur chacun des tores, un tore plein D*x S* feuilleté par {D?*x{x}}, cs,
de fagon a faire coincider les deux 1-feuilletages induits sur le bord. On obtient
ainsi m variétés M, ,,..., M,,, munies de 2-feuilletages C™ a singularités de
Morse, F1 1, - - . » Frm- On voit facilement que les %, ; sont C'-stables a feuilles
toutes propres.

Cette construction fournit naturellement wune application bijective
P1:F\{T.}ici— U(F,,) qui préserve les ordres (=) de chacun des feuilletages
(p:(f) est définie par: f et p,(f) coincident sur |J; M,;). De plus, on voit
facilement que f et p;(f) ont méme genre et méme groupe d’holonomie, et que
h(p,(f)) =sup (0, h(f)—1). On en déduit immédiatement que, si le lemme est vrai
pour les feuilles de hauteur k, il est encore valable pour les feuilles de hauteur
k +1, ce qui acheéve la démonstration.

Nous aurons besoin d’un peu plus par la suite: En itérant le procédé décrit
ci-dessus, on construit pour tout ieN, des variétés compactes M, ;,..., M,,,
munies de feuilletages %;;, C'-stables, a feuilles propres, et une bijection
p: : %\ {feuilles non maximales de hauteur <i}— |J; %;; préservant les ordres
respectifs des feuilletages, préservant le genre des feuilles et leur groupe
d’holonomie, et vérifiant h(p,(f)) =sup (0, h(f)—i). De plus, f singuliere< p,(f)
singuli€re.

Cantwell et Conlon ont montré dans [CC] que si & est un feuilletage non
singulier sur une variété fermée, et si f est une feuille totalement propre de %
(cC’est-a-dire: Vg = f, g est propre), alors f est de hauteur finie. Il est probable que
ce résultat s’étend au cas ou ¥ est a singularités de Morse. Cependant, sous les
hypothéses du lemme 3, il y a une démonstration directe de ce résultat.

LEMME 4. Sous les hypotheses du lemme 3, toute feuille de & est de hauteur
finie.

Démonstration.

Remarque préliminaire. Pour toute feuille f de hauteur non nulle de %, f\ f est
un compact non vide, saturé pour %. D’aprés le lemme 2, si f est réguliere, alors
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(F\f)NX = ; si f est singuliere et porte une singularité x,, alors (f\ f) N X = x,;
X, est isolé dans f\f, et (f\f)\{xo}# &. Donc, pour toute feuille f de hauteur
h(f)>0, (f\f)\X est un compact non vide, saturé. On le note k. On a, de fagon
claire, f=g=>k; <k,

Démontrons le lemme par ’absurde. Soit fye F telle que h(f,) = +«. Soit A
I’ensemble des chaines de feuilles de % de hauteur infinie. L’ensemble A est
différent de {J} car {fo}€ A; il est ordonné par l'inclusion et (A, <) est inductif
donc posséde un élément maximal a (a est évidemment différent de ).

Posons Y, = )cqa ks C’est un compact, saturé pour %, non vide, et disjoint de
X.

Propriétés de Y.

a) Y, est composé de feuilles non maximales de hauteur finie. En effet, soit
f<Y,, alors f<a, donc f n’est pas maximale. De plus, si h(f) =<, {f}Ua serait
une chaine plus longue que a, ce qui est impossible. Donc h(f) <ce,

b) Pour tout entier i, Y, contient une feuille de hauteur i. En effet, regardons
pi(a)= U; %, Cest une chaine maximale de feuilles de hauteur infinie car p,
préserve les ordres des feuilletages (en particulier, 3j/p;,(a) < %;;). L’intersection
(fen K est alors un compact non vide, union de feuilles non maximales de %, ;.
Elle contient donc une feuille T difféomorphe au tore T2. Soit S la feuille de %
telle que p,(S)=T. alors, S Y, et h(S)=k.

Soit B I’ensemble des compacts non vides de M\ X composés de feuilles non
maximales de hauteur finie de %, et contenant au moins une feuille de hauteur i
pour tout i eN. Puisque Y,€ B, on a B# (J. Nous affirmons que B, ordonné par
I'inclusion, est inductif (toute chaine est minorée). En effet, soit (Y;);; une chaine
de B; alors, Y =(); Y; est un compact non vide de M\ X, composé de feuilles non
maximales de hauteur finie de %. Pour tout entier k, pout tout ie€l, soit y¥
I’ensemble des feuilles de hauteur k incluses dans Y;; cet ensemble est non vide,
et est fini d’apres le lemme 3. De plus, (y¥);.; forme une chaine pour I'inclusion.
Cette chaine est donc stationnaire; notons y*={";.;y¥, y* est donc non vide.
D’une fagon claire, y* est ’ensemble des feuilles de Y de hauteur k. On vient de
montrer que Y € B, et est donc un minorant de (Y;);c;. Ceci prouve que B est
inductif.

Nous pouvons donc choisir dans B un élément minimal Z. D’apres le lemme
3, ’ensemble des feuilles non maximales de hauteur finie est dénombrable, donc
Z est une réunion dénombrable de feuilles. Soit I' une transversale fermée
coupant Z. L'’intersection I'N Z est un compact dénombrable et possede donc un
point isolé x,. Soit f la feuille passant par x,. Alors, Z\f est compact, et I’on voit
facilement que Z\ fe B, ce qui contredit la minimalité de Z. Cette contradiction
acheve la démonstration du lemme 4.
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3. Conclusion

COROLLAIRE. Soit  un feuilletage C'-stable, a feuilles toutes propres sur
une variété fermée orientable. Soit y une courbe fermée tangente a F, et soit ¢ le
germe d’holonomie associé a vy. Alors, ¢ est hyperbolique ou ¢ est trival (clair
d’apres ce qui précede).

THEOREME. Soit M une variété fermée, orientable de m, fini. Les seuls
feuilletages, transversalement orientables, C~ a singularités de Morse, a feuilles
toutes propres, C*-stables sur M, sont ceux définis par une fonction de Morse a
valeurs critiques distinctes, et a surfaces de niveau simplement connexes.

Démonstration. D’aprés [Hae], proposition 4.2, un feuilletage sur une variété
de 7, fini vérifiant la propriété énoncée au corollaire ci-dessus ne posseéde aucune
transversale fermée. Soit #F vérifiant les hypotheses du lemme 3. ¥ n’admet
aucune transversale fermée. En particulier, toute feuille non singuliére est compacte.
Or, un ouvert feuilleté par des feuilles compactes n’est stable que si ces feuilles
sont des spheéres. La fin de la démonstration est alors claire.
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