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Sur les feuilletages singuliers stables des variétés de dimension trois

Christian Bonatti

Introduction

Qu&apos;un feuilletage soit stable signifie qu&apos;il est, en un sens, semblable à tout
feuilletage voisin. Ainsi, un feuilletage F d&apos;une variété compacte M est dit
Cr-(structurellement) stable, si pour tout feuilletage F&apos; Cr-proche de F il existe
un homéomorphisme de M proche de l&apos;indentité qui conjugue F et F&apos;.

De tels feuilletages existent, et l&apos;on connait des exemples, certains fort simples
(par exemple S1xS2 feuilleté trivialement par {x}x S2, ou par deux composantes
de Reeb d&apos;holonomie hyperbolique), et d&apos;autres beaucoup plus riches et
complexes, par.exemple les feuilletages d&apos;Anosov, qui ont toutes leurs feuilles denses.

Cependant, leur existence n&apos;est pas assurée sur toute variété: Rosenberg et
Roussarie ont montré, dans (RR), qu&apos;il n&apos;existait pas de feuilletage de codimen-
sion un, C1-stable sur S3. Par contre, il existe des feuilletages à singularités de
Morse C1-stables sur S3: ceux définis par une fonction de Morse à valeurs
critiques distinctes, dont les surfaces de niveau sont simplement connexes; Rosenberg

et Roussarie ont alors conjecturé que ce sont les seuls.

Cette conjecture est à l&apos;origine de ce travail sur les 2-feuilletages C1-stables, à

singularités de Morse des variétés de dimension trois. (Un feuilletage F à

singularités de Morse est C1-stable au voisinage de ses singularités; dire qu&apos;il est
stable signifie que tout feuilletage F&apos;, coïncidant avec F au voisinage des

singularités et C1-proche de F hors de ces voisinages, est conjugué à F par un
homéomorphisme proche de l&apos;identité.)

La première partie est une étude du comportement des feuilles singulières
issues d&apos;une singularité conique d&apos;un feuilletage stable. L&apos;idée est d&apos;examiner en
détail les conséquences de perturbations faites au voisinage de la singularité: si ft
et f2 sont les feuilles singulières issues d&apos;une singularité conique s, on montre que
fx et f2 sont différentes, de genre 0, sans holonomie, et que ft U f2 ne contient pas
de singularité autre que s; de plus l&apos;une de ces feuilles est propre et admet un
voisinage feuilleté comme un produit; l&apos;autre feuille ou bien possède les mêmes

propriétés ou bien est localement dense. (Ces résultats sont rassemblés dans le

Lemme 1.)
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430 CHRISTIAN BONATTI

Dans la seconde partie on considère les feuilletages stables à feuilles toutes

propres (une feuille est dite propre si sa topologie de feuille coïncide avec la

topologie induite par celle de la variété ambiante), et on démontre dans ce cadre
la conjecture de Rosenberg et Roussarie:

THEOREME. Les seuls feuilletages C* à singularités de Morse, Cx-stables, à

feuilles toutes propres, de S3, sont ceux définis par une fonction de Morse à valeurs

critques distinctes et à surfaces de niveau simplement connexes.

Ce résultat est encore vrai sur une variété orientable de irx fini.
Voici les étapes de la démonstration: nous montrons successivement que dans

un tel feuilletage les feuilles compactes, puis les feuilles de hauteur finie, ont leur

groupe d&apos;holonomie trivial ou cyclique de générateur hyperbolique; puis que, sous
les mêmes hypothèses, toutes les feuilles sont de hauteur finie. Nous concluons

grâce à un résultat de Haefliger, selon lequel sur une variété de irx fini, tout
feuilletage admettant une transversale fermée possède une holonomie C^-plate
non triviale.

Dans ce texte, les variétés seront de dimension trois, C* et orientables, et les

feuilletages seront de codimension un, transversalement orientés, C00 à

singularités de Morse.
Dans toute la suite, nous désignerons par M, une variété compacte sans bord

de dimension trois, sur laquelle on aura fixé une métrique. On notera 9 un
feuilletage sur M à singularités de Morse, C1-stable. On appellera feuille de 9
une feuille de 9 restreint à l&apos;ensemble des points non singuliers.

Soit X l&apos;ensemble des singularités de 9. Ces singularités sont de deux types:
- les singularités d&apos;indice 0 ou 3 sont des centres, et les feuilles voisines sont des

sphères;
-les singularités d&apos;indice 1 ou 2 sont dites coniques; si xoeX est conique, il y a

deux bouts de feuilles qui convergent vers x0. Nous les appellerons bouts singuliers
issus de x0. Une feuille sera dite singulière si elle contient un bout singulier.

Rappelons d&apos;abord quelques faits connus qui seront par la suite fréquemment
utilisés:

0a) D&apos;après [RR] et [M], si S est une feuille compacte d&apos;un feuilletage 9
C1-stable, et si iri(S)^{0}, Alors S admet au moins un germe d&apos;holonomie

hyperbolique (c&apos;est-à-dire à dérivée au point 0 différente de 1).

0b) Soit 9 un feuilletage non singulier d&apos;une variété compacte V. Alors
l&apos;union des feuilles de 9 sans holonomie est un Gô dense de V (voir [H]). Ce
résultat reste valable si 9 est à singularités de Morse.

Oc) Soit 9 un feuilletage C1-stable d&apos;une variété compacte V. On vérifie
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facilement qu&apos;une feuille / de genre g(/)&gt;l est à holonomie non triviale. En
particulier, l&apos;union des feuilles de genre nul est un Gô dense dans V.

Je remercie très sincèrement G. Levitt et H. Rosenberg qui m&apos;ont guidé
durant ce travail.

I. Etude des feuilles singulières

Nous allons maintenant étudier en détail une feuille singulière d&apos;un feuilletage
stable: On peut modifier légèrement le feuilletage, d&apos;une façon simple, au

voisinage d&apos;une singularité conique; la stabilité nous donnera alors de nombreux
renseignements.

a) ^-perturbation de 9, à support dans un voisinage d&apos;une courbe fermée

simple, tangente à 9 et d&apos;holonomie triviale.
Soit 7 une telle courbe. Alors, il existe un plongement F de S1 x [0,1] x [-1,1]

dans M tel que F{SX x{(0, 0)}) 7 et que F~\&amp;) {S1 x [0,1]x{r}}te[_1,1]. Fixons-

nous F un tel plongement.
Soit &lt;peDiffmt([-l, 1]); &lt;p définit un 2-feuilletage 99 sur S1x[09 l]x[-l, 1]

égal à F~\9) près du bord et hors de S1x[0, l]xsupp(&lt;p), transverse à tous les

segments {(0, s)}x[-l, 1] ((0, s)€S1x[0,1]) et tel que son holonomie de

{(0, l)}x[-l, 1] dans {(0,0)}x[-l, 1] envoie (0,1, i) sur (0, 0, &lt;p(t)). Le feuilletage
99 est bien défini à conjugaison près par un difféomorphisme de S1x[0, l]x
[-1,1] égal à l&apos;identité près du bord.

Notons 9V le feuilletage sur M coïncidant avec 9 hors de Im (F) et coïncidant

avec F(99) sur Im(F). Pour &lt;p C^proche de l&apos;identité, 99 peut être choisi

C1-proche de 9; 9V est alors conjugué à 9 par un homéomorphisme de M
proche de l&apos;identité, car 9 est C1-stable.

b) ^-perturbation de 9, à support dans un voisinage d&apos;une singularité conique
de 9.

Soit x0 une telle singularité. Soit U un voisinage de x0 tel que 9 \ U soit

conjugué au modèle standard de Morse. Tous les ensembles que nous allons

décrire maintenant seront contenus dans U.

Soient 7^ y2 deux courbes simples tangentes à 9, découpant chacune un bout
singulier issu de x0. Il existe deux plongements at, a2 de [-1,1] dans U,

transverses à 9, tels que o,(0) 7,(0), que 9 induise par holonomie un

difféomorphisme de at(]0,1]) sur a2(]0,1]) envoyant at(t) sur a2(t) et que
l&apos;holonomie le long de 7, soit définie et égale à l&apos;identité sur tout le segment

at([-l, 1]) (voir figure 1).

On se fixe alors, de même qu&apos;au a), des plongements Fx et F2, de Sxx[0, l]x
[-1,1] dans M tels que F^x {(0, 0)}) 7,, que F,(0, 0, t) at(t) et que F;\9)
{S1x[09 l]x{t}}te[_M]; on impose de plus que F^x{l}x{0}) soit &quot;plus près&quot; de

la singularité que 7,.



432 CHRISTIAN BONATO

Figure 1. Quitte à changer l&apos;orientation transverse de &lt;JF, on supposera que les a, sont orientés dans le

sens positif.

Figure 2

On notera Q, le cercle F1(S1x{O}x{f}) (en particulier Co,, 7,). On notera A
le voisinage de x0, bordé par F^x{0}x[-l, l])UF2(S1x{O}x[-l, 1]) et par
des morceaux de feuilles de 9, et représenté à la figure suivante:

A
Figure 3

Décrivons à présent les perturbations de 9 qui nous serviront:
• Soit &lt;peDiffmt([0,1]), soit 99 le feuilletage de S1x[0, l]x[-l,l] décrit au

a). On notera 9^ le feuilletage coïncidant avec 9 hors de Im (F,) et avec F,^^,)
sur Im (Ft).

• Soient &lt;pl9 &lt;p2e Diffmt ([0,1]); on notera ^r«Pl,&lt;P2 le feuilletage coïncidant avec 9
hors de Im (Ft) U Im (F^, et égal à F%(9^ sur Im (F,).

•On voit facilement que, pour (peDiflE^^O, 1]), &amp;*&amp; ne dépend, à

conjugaison près, que de (p(0); si &lt;p(0), on notera 3^t SF^,*-

Le feuilletage 9 étant stable, pour &lt;p, &lt;pl9 &lt;p2 assez voisins de l&apos;identité, pour t

petit, les feuilletages 9^, 9^^, 9t seront conjugués à 9 par un
homéomorphisme proche de l&apos;identité.
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H est très important pour la suite de bien comprendre les transformations
(9 —» 9t) que nous allons maintenant étudier.

Nous dirons qu&apos;un chemin F tangent à 9 qui joint deux points xl9 x2 n&apos;est pas
coupé par (9-*9t) s&apos;il existe un chemin F&apos;, tangent à 9» joignant xx à x2 et
coïncidant avec F sur M\A. Nous dirons qu&apos;une feuille / n&apos;est pas modifiée par
(9-&gt;9t) s&apos;il existe une feuille /&apos; de 9t qui soit conjuguée à 9 par un
homéomorphisme de M à support dans A.

• Pour fo&gt;0, la transformation (9-^9^) consiste à couper les feuilles passant
par aiit), f e[0, fj, et à recoller un disque sur chaque bout, et à faire porter la
singularité par la feuille passant par

Figure 4. Le chemin joignant x1 à x2 a été coupé par la transformation (9

• Une feuille qui ne coupe pas a,([0, r0]) n&apos;est pas modifiée par (&amp;-*&amp;u)-

• Une feuille qui était propre (resp. semi-propre) reste propre (resp. semi-
propre) après transformation: on n&apos;a fait que la couper en éventuellement
plusieurs feuilles de 9^ qui seront donc chacune propres. De plus, soit F un
chemin tangent à 9 joignant deux points de M\Â. Si pour tout f e[0, to[, F ne

rencontre pas CtA U Q2, alors F n&apos;est pas coupé par (9-*9t() (si F coupe Ct(hi9 le
chemin F&apos; induit passera éventuellement par x0).

Pour to^0, la transformation (9-^9^ consiste à découper un disque sur
chaque feuille passant par a,(0, t e ]t0,0], à recoller le bout ainsi créé passant par
a^t) avec celui passant par a2(t), et à faire porter la singularité par les feuilles
passant par a^io) ou a2(f0)-

Une feuille ne coupant ni a^Uo, 0]) ni a2([t0,0]) n&apos;est pas modifiée par cette
transformation. H est important de voir que pour deux points xl9 x2 de M\A,
aucun chemin tangent à 9 joignant xt à x2 n&apos;est coupé par (9-+9^ (to&lt;0).

Ainsi, une feuille non propre (resp. localement dense) reste non propre (resp.
localement dense) par la transformation (9 —? 9^.
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Remarque 1. Soient &lt;pl9 &lt;p2€Difïult([--l, 1]) tels que leurs inverses (pïl et ç2x
coïncident sur [0,1], (vï11 [0,1] &lt;p2x | [0,1]).

•Si &lt;P!(0)&gt;0, alors &lt;Px(O) cp2(O) et les feuilletages 9^^ et 9^m sont
conjugués par un difféomorphisme C°° de M à support dans A.

•Si &lt;Pi(0)&lt;0, alors &lt;p2(0)^0, et la transformation (9-*9&lt;,l,tP2) vérifie les

propriétés décrites ci-dessus de (9—&gt;9t) pout t&lt;0: en particulier, elle ne coupe
aucun chemin F tangent à 9 et joignant deux points de M\A. De plus, si F passait

par x0, le chemin tangent à 9&lt;Pu(P2 induit par F ne passera pas par x0.

Remarque 2. Soient &lt;p, &lt;pt e Difïmt ([-1,1]) et xl9 x2 e M\A, un chemin F tangent
à 99 joignant xt à x2, ne rencontrant pas les cercles Ctl pour te
(supp &lt;p Usupp &lt;px) H[0,1], ne sera pas coupé par (9-^9^) ni par (9-*9^).

On utilisera par la suite les notations suivantes:
• Pout f &gt;0, ft sera la feuille de 9 passant par ax(t) et a2(t).
• Pour t&lt;0, /M sera la feuille de 9 passant par at(t).
• Pour t&gt;t0, ft° sera la feuille de 9^ passant par a^t) et a2(t).
• Pour t&lt;t0, /Î3 sera la feuille de 9^ passant par at(t).

LEMME 1. Soit 9 un feuilletage Astable sur une variété compacte M3. Soit

x0 une singularité conique et soient /0,i et f02 les feuilles singulières contenant les

bouts singuliers issus de x0. Alors:
a) Pour tout i, /0&gt;l ne contient qu&apos;un bout singulier (en particulier /0,i 7^/0,2)

b) Pour tout i, /o,A/o,i ^^ contient aucune autre singularité que x0.
c) Pour tout i, fOl est sans holonomie. En particulier, g(/0,,) 0 (donc VfeSF, si f

est singulière et sifUXest compact, alors il existe une singularité x telle que f U{x}
soit homéomorphe à une sphère).

d) Pour au moins un i de {1, 2}, /0,, est propre, /o,A/o,i ne contient aucun bout

singulier et il existe un plongement rr de /Oïl x [—1,1] dans M, tel que 7r(fQ^ x{0})
/o,,, et tel que tt~1(9) soit le feuilletage produit {/Ol x {r}}te[_11]#

e) Soit j Vautre indice. Alors, soitf0j vérifie également les propriétés énoncées en

d), soit /o,j est localement dense.

i) Si /0,i et f0f2 sont propres, alors pour tout i, pour toute feuille f différente de fOjl,

Vadhérence de f est disjointe de fOyl.

Démonstration. On utilisera les notations introduites précédemment. Fixons
/m&gt;0 tel que pour tout te[—jx, /ul], 9t soit conjugué à 9.

a) Démontrons ce point par l&apos;absurde. Supposons que /0,i ait deux bouts

singuliers. Soit xx l&apos;autre singularité (éventuellement xx peut être égal à x0). Soit 7

un chemin tangent à f0&gt;1 qui joint ces deux bouts. Par compacité de 7, il existe

tî &gt;0, e &gt;0 tels que tout chemin partant de xl9 tangent à 9 et e-proche de 7 ne
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rencontre pas F1(S1x[O, 1]x([-t), tj]\{0})). On choisit alors un difféomorphisme
cp de [-1,1], à support dans [-7], tj], tel que &lt;p(0)^0, assez proche de l&apos;identité

pour que 9vA soit conjugué à 9 par un homéomorphisme G e -proche de
l&apos;identité. La transformation 9-*9^\ couPe Ie chemin y qui joignait x0 à xx. Il
peut y avoir d&apos;autres chemins tangents à 9^x qui joignent x0 à xl9 mais on voit
facilement que ces chemins ne seront pas e-proches de 7: il y a contradiction,
G (y) étant tangent à 9^, joignant x0 à xt et étant e-proche de 7.

La transformation a
&quot;brisé&quot; 7. Le chemin
ne joint plus xl à x0

Figure 5

b) Supposons que la propriété 2b) soit fausse: par exemple, il existe une
singularité conique xt différente de x0, et g une feuille portant un bout singulier
issu de xt telles que xoeg\g. Nous allons construire un feuilletage 9V conjugué à

9 tel que x0 et xx soient sur la même feuille, ce qui sera une contradiction.
Il existe toe[—jul, /ul] tel que ai(t0) ou a2(t0) appartienne à g (par exemple

d\(to)eg). Soit 7 un chemin tangent à 9 joignant xx à ax{t^). Soit t1

min ({f g[—jul, /ul]/7H(CtlUQ2)7^0}). Alors, on a vu que 7 n&apos;est pas coupé par la
transformation 9 -» 9tl. Donc, il existe un chemin yx tangent à 9tl et joignant xt à

un point de Ctl 1U Ctl 2. Mais Cti ± et Ctl 2 sont sur les bouts singuliers issus de x0

Il y a contradiction: x0 et xx sont portés par la même feuille singulière de 9h.
c) II existe fe]0, |x] tel que la feuille /t de ^ soit sans holonomie. La

transformation 9-*9t ne fait que &quot;couper des feuilles&quot; donc par cette transformation,

une feuille sans holonomie reste sans holonomie. Donc, dans 9t, les
feuilles singulières f[t et f[2 sont sans holonomie. Mais 9t est conjugué à 9, donc
les feuilles singulières de 9&gt; f0A et foa, sont sans holonomie.
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d, e et f). Montrons tout d&apos;abord que (d et e)^f. En effet, si /0,i et /02 sont

propres, d&apos;après (d et e) on peut choisir un intervalle I et deux plongements ir, de

/0&gt;lxJ dans M tels que irt(fo.i x{0}) /0,, et 7r,(/0&gt;IxW)c/(r Soit Ao le
voisinage de x0 composé de x0 et des feuilles de 9 \ A qui rencontrent Tr^a^O) x
I) ou ir2(a2(0)xI); on voit alors facilement que Im (7rx) U Im (tt2) U Ao est un
voisinage de x0 saturé par 3F. Une feuille non singulière contenant un point 0,(0,
t e I, sera alors incluse dans ce voisinage et sera composée de, au plus, une feuille
de chacun des feuilletages 9 | Im (ttx), 9 | Im (tt2) et 3F \ Ao. Ceci achève de

prouver que (d et e)^f.
Montrons maintenant par l&apos;absurde que /0,i ou /0 2

n&apos;est pas localement dense.

Supposons donc que /0,i et f02 sont localement denses. En particulier, il existe

txe]-n, 0[ tel que fh,i fo,i&gt; et ^ existe t2 arbitrairement voisin de tx tel que
ft2a fo,2-

Soient &lt;pt et &lt;p2 deux difféomorphismes appartenant à Diffmt ([—1,1]) tels que
les restrictions cpï1 \ [0,1] et cp2

x
\ [0,1] soient égales, et que &lt;Pi(0) tx et &lt;p2(0)

t2. &lt;p2 peut être choisi C1-proche de &lt;pl9 donc 9Vu&lt;P2 sera CL-proche de 9*t et sera
conjugué à 9.

Soit F un chemin tangent à 9, passant par x0, joignant a^t^ à a2(t2). La
transformation 9 —&gt; 9fPuft&gt;2 ne coupe aucun chemin, et F induit donc un chemin Fx

tangent à ^«plf&lt;p2, qui joint ax{tij à a2(r2) sans passer cette fois par x0. Or ax(t^) et
«2(^2) sont sur les bouts singuliers de &amp;Vx^ issus de x0, donc les deux bouts sont
portés par la même feuille, ce qui est impossible (voir figure). Donc, f0A ou f02
n&apos;est pas localement dense.

Figure 6. La transformation
,2

ne coupe pas F et le chemin induit joint les deux bouts
singuliers de &amp;Vlt92.
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Supposons donc que f01 n&apos;est pas localement dense.
• Montrons d&apos;abord que, pour t &gt; 0 assez petit, ft est différente de /01 (on dira
/o,i est semi-propre par valeur supérieure).

L&apos;ensemble {t e ]0, ii[lo,i(t)&lt;Éfol} est un ouvert non vide, car /01 est non
localement dense; soit ]tt,t2[ une de ses composantes connexes.

• Si tx est nul, la démonstration est terminée.
•Si *i&gt;0, par définition de tl9 fh est dans l&apos;adhérence de f01, or f01 ne

rencontre pas ai(]tl912[). Cela prouve que fh est semi-propre par valeur
supérieure.

La transformation ^—»^ti ne fait que &quot;couper des chemins&quot;, donc par cette
transformation une feuille semi-propre reste semi-propre. Donc, la feuille ft\A
(feuille singulière de SFt) est semi-propre par valeur supérieure, et donc, 9h étant
conjugué à 9, f01 est semi-propre par valeur supérieure.

* Montrons maintenant par l&apos;absurde que f01 est propre par valeur inférieure
(donc est propre). Supposons donc que f0l n&apos;est pas propre. En particulier, il
existe toe ]-fx, 0[ tel que /^i /0,i- Soit 7 un chemin tangent à 9 joignant at(0) à

a^to). Alors, par holonomie le long de 7, il est clair qu&apos;il existe fiG]O, jll[,
t2e]— fi, 0[ tels que les feuilles fh et fhA soient égales.

La feuille ft2l n&apos;est pas localement dense (sinon SF%2 aurait sa feuille singulière
f\ltl localement dense), donc fh est non localement dense.

L&apos;ensemble {t e ]0, t\\lt£ fh} est donc un ouvert non vide; soit ]f3, t4[ une de ses

composantes connexes. Alors fu est semi-propre par valeurs inférieures, car fu est
dans l&apos;adhérence de fh et ne rencontre donc pas a^]^, t4[).

Donc 3FU a sa feuille singulière ft*tl propre par valeurs inférieures, ce qui
contredit l&apos;hypothèse &quot;/0,i non propre par valeur inférieure&quot;.

On vient de montrer que si /0,i n&apos;est Pas localement dense, elle est propre.
Nous alloi^s maintenant montrer par l&apos;absurde que si fOyl est propre, alors son

adhérence f0A est disjointe de foa (cela prouvera que /o,i\/o,i ne contient aucun
bout singulier).

Supposons donc que /0,i est propre et que /0,2 e17o,i- On vo^ facilement qu&apos;il

existe r\ &gt;0 tel que fOtl ne rencontre pas a2(]0, tj[); en effet, pour tout t&gt;0, at(t)
et a2(t) sont sur la même feuille. La propreté de / conclut alors ce point.

Par contre, il existe une suite (OneN, *n G ]~~ V&gt;&gt; 0[» convergente vers 0, telle que
pour tout rceN, a2(tn)efQ1. Pour n assez grand, on pourra donc trouver un
difféomorphisme &lt;pn de [-1,1] à support dans ]-l, tj], tel que &lt;pn(0) tn, et que &lt;pn

soit assez proche de l&apos;identité pour que ^t2 so^ conjugué à 9.
Un chemin tangent à 9, et joignant at(0) à a2(tn)9 ne rencontre pas F^x

[0, l]xfO, t|]), donc &quot;n&apos;est pas coupé&quot; par là transformation 9-+9^. Donc
at(t) et a2(tn) sont sur la même feuille de 9^. Mais a^O et a^t) sont chacun

sur un bout singulier de 9^^ ce qui contredit le fait que 9,^ soit conjugué à 9.
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Cette contradiction achève de montrer que /0,in/0f2= 0.
Il reste à construire le plongement tt de /olx[-l, 1] dans M, ayant les

propriétés annoncées.
Soit 7 une courbe simple fermée tangente à 9 et coupant le bout singulier de

fo,i- Soit /o,i /o,i\Oe bout singulier). D&apos;après ce qui précède, il existe e&gt;0 tel

que toute singularité xeX soit à une distance supérieure à 2e de /01. Soit
0= UxexB(x, e) où B(x, e) est la boule ouverte centrée en x, de rayon e. Quitte
à restreindre A, on peut supposer AcO.

On va construire un plongement tt0 de f01 x [—a, 0] (a &gt; 0) dans M\0, tel que
irô\9) {/cu x{t}}, que tt0 | /0,i x{0} soit l&apos;identité, et que iro{y x{t}) découpe sur
ful un disque contenant ax(t). On voit facilement que d&apos;un tel plongement on
peut déduire tt: en effet, lm(TT0) ne rencontrant pas A, ^|lm(7r0) n&apos;est pas
modifié par les transformations 9^&gt;9t\ en choisissant toe ]-a, 0[, on obtient un
plongement de fOflx[—a, 0] sur un voisinage de la feuille singulière /J«a privée de

son bout singulier. Il suffit alors de prolonger tt0 sur un voisinage de ce bout
singulier pour avoir le plongement voulu.

Soit F un plongement de S1x[-iiL, 0] dans M\0 tel que, pour tout Se S1,

r({0}x[—iJi,0]) soit un chemin orthogonal à &amp;, tel que pour tout te[~ii,0],
F(S1x{r}) soit un lacet yt tangent à 9&gt; et découpant le bout singulier de la feuille
f*ul de 9X\ on supposera de plus que 70 7- Soit b le chemin orthogonal à 9 défini

par b(t) 7t(0) pour tout te[~ii, 0]. Soint N le champ de vecteur unitaire
orthogonal à &amp;, de même orientation que b. Soit ((pt)teu le flot de N.

Remarque préliminaire. Notons d la distance sur M et d&amp; la distance sur
chaque feuille associée à la métrique induite par celle de M. Alors, par compacité
de M\0, il existe el9 e2, e3e]0, e[ qui vérifient la condition suivante:

Vx, y€M\0, d(x9y)&lt;e1^3\te]—e2,e2[ tel que &lt;pt(x) et y soient sur la
même feuille et que d^(&lt;pt(x), y)&lt;e3.

On notera &lt;pt(x) Py(x).
On voit facilement que si x(t) est un chemin C* et si y(t) est un chemin

continu restant sur une même feuille de &amp;9 alors Py(t)(x(0) est un chemin C*
tangent à 3*.

Soit ae]0, [l\ tel que Vfe[a, 0], &amp;t soit conjugué à 9 par un
homéomorphisme Gt e!-proche de l&apos;identité. Pour tout t, Gt(f0A) ne rencontre pas
0, donc n&apos;est pas modifié par la transformation 9—*9t; Gt(f01) est donc inclus
dans la feuille ful de 9.

Pour tout te[-a, 0] et tout xe/0)1, Gt(x)eM9 0 et d(x, Gt(x))&lt;ex. On peut
donc définir ito(x, t) PGt(x)(*) appartenant à ful.

Pour tout f, Gt(70) découpe le bout singulier de ful donc 7ro(7o, t) découpe le
bout singulier de fful. On en déduit facilement que 770(70, t) yt, et donc que
iro0&gt;(0),0
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Alors, pour tout chemin F tangent à fo,i&gt; d&apos;origine b(0), 7ro(r, t) sera un relevé
de F le long de N sur la feuille /u et d&apos;origine b(t). On montre alors facilement
que tt0 est un diflEéomorphisme local de fo,i dans M\0. Il reste à montrer que tt0
est injectif: soient (xx, tt), (x2, t2)e/0,iX[-a, 0] ayant même image par tt0. Alors
Tïoixx, [—a, 0]) et tto(x2, [-a, 0]) sont deux segments sur la même orbite de N, qui
ont même orientation, et ont un point commun. Alors, il existe î e{l, 2} tel que
7ro(X, 0) appartienne à l&apos;autre segment. Par exemple /tt0(x1, 0) tto(x2, t), t e
[—a, 0], donc f0A ful. Si t=£ 0, ceci est clairement en contradiction avec le fait que
fol privé de son bout singulier ne rencontre pas A. Donc t est nul, c&apos;est-à-dire

7T0(Xi, 0) 7TO(X2, 0), SOit Xt X2.
H reste à montrer que tl t2; si tx^t2 et Tro(x1,t1) &apos;no(x2,t2), on voit

facilement qu&apos;il existe t £ 0 tel que tto(xx, t) 7ro(xu 0), donc que fo,1 ful, et l&apos;on

vient de voir que cela n&apos;était pas possible.
On vient de voir que ir0 était un plongement. Ceci achève la démonstration du

lemme 1.

II. Etude des feuilletages stables à feuilles propres

1. Feuilles compactes d&apos;un feuilletage stable à feuilles propres
Voici tout d&apos;abord un lemme général (c&apos;est-à-dire n&apos;utilisant ni la stabilité du

feuilletage, ni la propreté de ses feuilles) sur l&apos;existence d&apos;une feuille propre au
voisinage d&apos;une feuille compacte.

LEMME 2. Soit 3~ un feuilletage d&apos;une variété V3 (pas forcément compacte).
Soit S une feuille de ST de tt1 différent de {0}. On suppose que S admet un germe
d&apos;holonomie hyperbolique et qu&apos;il existe une feuille propre f telle que S&lt;^f\f. Alors,
i) Soit F:tt1(S)-»(Rh&quot;* Vhomomorphisme d&apos;holonomie linéaire. L&apos;image FiiT^S))
est un sous-groupe discret, donc cyclique de M+*.

ii) Si S est de genre g(S)&gt; 1, alors g(/)&gt;0 (en fait, g(f) +oo).

On en déduit alors le corollaire suivant qui décrit les feuilles compactes d&apos;un

feuilletage C1-stable à feuilles toutes propres:

COROLLAIRE. Soit &amp; un feuilletage C1-stable à feuilles toutes propres d&apos;une

variété compacte M3. Soit S une feuille compacte de 9. Alors, soit S est une sphère,

soit S est un tore et son groupe d&apos;holonomie est cyclique, de générateur hyperbolique.

Démonstration du corollaire. Si S n&apos;est pas une sphère, alors tt^S) j= 0 et donc
d&apos;après 0a) S admet un germe d&apos;holonomie hyperbolique. Toutes les feuilles de &amp;

sont propres, et l&apos;on va donc pouvoir appliquer le lemme 2 aux feuilles voisines de
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S: si g(S)&gt;l, toute feuille voisine de S sera de genre °o? ce qui est impossible
d&apos;après Oc). Donc g(S) 1 et S est un tore; le lemme 2 assure de plus que son

groupe d&apos;holonomie linéaire est cyclique. Le lemme de N. Koppel (voir K) assure

que &lt;p—»&lt;p&apos;(0) est un homomorphisme injectif du groupe d&apos;holonomie de S

(commutatif) dans (R+*, •), ce qui conclut.

Démonstration du lemme 2. Soit i/r un germe de difféomorphisme hyperbolique
représentant une holonomie de S, avec i|/(0) de]0, l[. Soit I l&apos;intervalle de
définition de i^, identifié à un intervalle de R avec point-base zéro. On sait,
d&apos;après [S], que tp est C^-conjugué à (x—&gt;ax). On supposera donc que, pour tout
xel, ifj(x) ax.

Soit xoe/ni et soit e&gt;0 tel que /n[xo-e, xo+e] {xo}. Notons a —

[xo-e, xo+e] et xn i^n(x0).
1er point. Soit &lt;p un germe d&apos;holonomie de S tel que &lt;p&apos;(0)e]l — (e/x0), 1]. Alors,
3NeN/Vn &gt; N, &lt;p(xn) x^ En particulier, &lt;p&apos;(0) 1, et l&apos;image de F est cyclique.

En effet, pour x&gt;0 assez voisin de 0, |&lt;p(x)-x|/xe[0, e/xj. Donc, pour n
assez grand, |&lt;p(xn)-xn|/xne[0, e/xo], soit |&lt;p(xn)-xn|e[0, ane[, donc
&lt;p(xn)e i/rn(a); donc &lt;p(xn) xn par définition de a.

Alors, si &lt;p est un germe d&apos;holonomie, 3p, q eZ, pi1 0, &lt;p&apos;(0)p ^&apos;(0)q. De plus,

2e point Si g(S)&gt;2, alors on peut trouver Fl9 F2 lacets sur S dans le noyau de
l&apos;holonomie linéaire, qui se coupent de façon transverse, et en un seul point (on
peut de plus imposer que ce point soit le point-base de I).

Alors, d&apos;après le premier point: 3noeN, Vn &gt; n0, &lt;pri(xi) ^r^^)= Xn, où &lt;Prx

est l&apos;holonomie suivant rt.
Alors, pour tout n ^ n0, Ft et F2 se relèvent sur / en deux courbes fermées

d&apos;origine x» qui se coupent en un seul point. Cela suffit à prouver que / est de

genre g(f)&gt; 1. De plus, en changeant le point d&apos;origine x,», on peut choisir ainsi

une famille infinie de couples (disjoints) de courbes se coupant en un seul point.
Ainsi, g(/) °°.

Le lemme 2 est démontré.

2. Feuilles de hauteur finie d9un feuilletage stable à feuilles propres

Supposons désormais que 9 est de plus à feuilles toutes propres. L&apos;ensemble

des feuilles de 9 possède une relation d&apos;ordre définie par: f^gOf^g
(l&apos;antisymétrie de la relation provient de ce que les feuilles sont propres). (On
rappelle qu&apos;une chaîne d&apos;un ensemble ordonné est une partie totalement
ordonnée.)
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Remarques. 1. Il est clair que pour toute feuille / de 9, on a:

(/ minimal pour &lt;)&lt;^(/UX est compact).

2. (9% &lt;) est inductif: toute chaîne a possède un minorant; en effet Ofeaf est

un compact non vide et non inclus dans X. H contient donc au moins une feuille,
qui est un minorant de a. Le théorème de Zorn entraîne donc: V/e^, 3g e9
minimale pour &lt;, g^f.

Pour toute feuille / de 9, on notera h(/)eNU{oc} la hauteur de cette feuille.
(On rappelle que la hauteur des feuilles est définie par récurrence:

h(f) 0 &lt;£&gt; f minimale pour &lt;.

JVgd/v,
[Vi &lt; n, f n&apos;est pas de hauteur i

h(f)= +°°&lt;£&gt; \fn gN, / n&apos;est pas de hauteur n.)

LEMME 3. Soit 9 un feuilletage à feuilles toutes propres, C1-stable, sur une
variété compacte M Alors, VkeN:

a) Les feuilles de hauteur k, non maximales, sont de genre 1, et leur groupe
d&apos;holonomie est un groupe cyclique, de générateur hyperbolique. De plus, elles sont
en nombre fini.

b) Les feuilles de hauteur k maximales sont de genre 0 et d&apos;holonomie triviale.

Démonstration. D&apos;après le lemme 1, et sous les hypothèses ci-dessus, les

feuilles singulières sont de genre 0, sont d&apos;holonomie triviale, et sont maximales

pour &lt; (il n&apos;y a donc rien à montrer pour elles).
La démonstration se fera par récurrence: Soit S une feuille régulière de

hauteur zéro. S est donc une surface compacte et d&apos;après le corollaire du lemme
1, S est une sphère (donc est maximale) ou S est un tore et son groupe
d&apos;holonomie est monogène de générateur hyperbolique.

De plus, la famille des feuilles de 9 difféomorphes à T2 est finie: sinon, de
même que dans [RR], il y aurait un tore limite d&apos;une suite de feuilles tores (il faut
voir que la feuille limite ne peut pas être singulière). Ce tore aura donc son
holonomie plate, ce qui n&apos;est pas possible dans un feuilletage stable.

Le lemme est donc montré dans le cas où k 0.
Soit (Tùiei, I {1, ...,n}, la famille des feuilles de 9 qui sont des tores.

(Remarque: Vfe9, M/) li»/\/c(UieiTiUX).)
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H existe un plongement tt:(UiGiT;)x[-1, 1] c^M tel que tt\ Tlx{O} idT(,

et tel que 9 soit à la fois transverse au facteur {x}x[—1,1] et au facteur T, x{f}

Découpons M suivant les tores Ttx{l} et T,x{—1}. On obtient ainsi un
nombre fini de variétés compactes à bord, M1&gt;h..., Mx m, dont le bord est

composé de tores; ces variétés sont munies de feuilletages 3Fu transverses au

bord, et induisant sur chaque composante du bord un 1-feuilletage par cercles. On
recolle alors sur chacun des tores, un tore plein D2xS* feuilleté par {£&gt;2x{x}}xeS,

de façon à faire coïncider les deux 1-feuilletages induits sur le bord. On obtient
ainsi m variétés Mia,...,Mlm munies de 2-feuilletages C°° à singularités de

Morse, ^ia,..., ^i,m. On voit facilement que les SFU sont C^-stables à feuilles
toutes propres.

Cette construction fournit naturellement une application bijective
p1:^r\{Tl}ieI—&gt;l/(^! g) qui préserve les ordres (^) de chacun des feuilletages
(Pi(f) est définie par: / et Pxif) coïncident sur {JtMu). De plus, on voit
facilement que / et Pi(f) ont même genre et même groupe d&apos;holonomie, et que
MPiCf)) sup (0, h(f) — 1). On en déduit immédiatement que, si le lemme est vrai

pour les feuilles de hauteur k, il est encore valable pour les feuilles de hauteur
fc +1, ce qui achève la démonstration.

Nous aurons besoin d&apos;un peu plus par la suite: En itérant le procédé décrit
ci-dessus, on construit pour tout ieN, des variétés compactes Mia,..., Ml&gt;mi

munies de feuilletages ^tJ, C1-stables, à feuilles propres, et une bijection
p, :3*\ {feuilles non maximales de hauteur &lt;O~*Uj^i,j préservant les ordres

respectifs des feuilletages, préservant le genre des feuilles et leur groupe
d&apos;holonomie, et vérifiant h(pl(f)) sup (0, h(f) — i). De plus, / singulière^px(f)
singulière.

Cantwell et Conlon ont montré dans [CC] que si 3F est un feuilletage non
singulier sur une variété fermée, et si / est une feuille totalement propre de 9
(c&apos;est-à-dire: Vg&lt;=/, g est propre), alors / est de hauteur finie. Il est probable que
ce résultat s&apos;étend au cas où 3F est à singularités de Morse. Cependant, sous les

hypothèses du lemme 3, il y a une démonstration directe de ce résultat.

LEMME 4. Sous les hypothèses du lemme 3, toute feuille de 9 est de hauteur

finie.

Démonstration.

Remarque préliminaire. Pour toute feuille / de hauteur non nulle de 99 f\f est

un compact non vide, saturé pour 9. D&apos;après le lemme 2, si / est régulière, alors
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(f\f)HX 0; si / est singulière et porte une singularité x0, alors (/\/)DX x0;
x0 est isolé dans /\/, et (/\/)\{x0}^ 0. Donc, pour toute feuille / de hauteur
h(/)&gt;0, (f\f)\X est un compact non vide, saturé. On le note kf. On a, de façon
claire, / &lt; g^ kf a fcg.

Démontrons le lemme par l&apos;absurde. Soit fo€^ telle que h(/o) +°°- Soit A
l&apos;ensemble des chaînes de feuilles de cF de hauteur infinie. L&apos;ensemble A est
différent de {0} car {fç^eA; il est ordonné par l&apos;inclusion et (A, c=) est inductif
donc possède un élément maximal a (a est évidemment différent de 0).

Posons Yo H/ea kf- C&apos;est un compact, saturé pour 9, non vide, et disjoint de

X.

Propriétés de Yo.

a) Yo est composé de feuilles non maximales de hauteur finie. En effet, soit
f &lt;= Yo, alors /&lt;a, donc / n&apos;est pas maximale. De plus, si h(/) oc, {/}Ua serait
une chaîne plus longue que a, ce qui est impossible. Donc fi(/)&lt;°c.

b) Pour tout entier i, Yo contient une feuille de hauteur i. En effet, regardons
PiWcUj^ij&apos; C&apos;est une chaîne maximale de feuilles de hauteur infinie car pl
préserve les ordres des feuilletages (en particulier, 3//pl(a)c=^lJ). L&apos;intersection

fife^ca) Kf est alors un compact non vide, union de feuilles non maximales de 9xy
Elle contient donc une feuille T difféomorphe au tore T2. Soit S la feuille de 9
telle que pt(S) T. alors, S c Yo et h (S) fc.

Soit B l&apos;ensemble des compacts non vides de M\X composés de feuilles non
maximales de hauteur finie de ^, et contenant au moins une feuille de hauteur i

pour tout i eN. Puisque YoeB, on a B^ 0. Nous affirmons que B, ordonné par
l&apos;inclusion, est inductif (toute chaîne est minorée). En effet, soit Y,)ieI une chaîne
de B; alors, Y=f]lYl est un compact non vide de M\X, composé de feuilles non
maximales de hauteur finie de 9. Pour tout entier k, pout tout îgI, soit ytk

l&apos;ensemble des feuilles de hauteur fc incluses dans Y, ; cet ensemble est non vide,
et est fini d&apos;après le lemme 3. De plus, (y^Xei forme une chaîne pour l&apos;inclusion.

Cette chaîne est donc stationnaire; notons y^riieiy^ yk est donc non vide.
D&apos;une façon claire, yk est l&apos;ensemble des feuilles de Y de hauteur fc. On vient de

montrer que YeB, et est donc un minorant de (Y,)iejr. Ceci prouve que B est
inductif.

Nous pouvons donc choisir dans B un élément minimal Z. D&apos;après le lemme
3, l&apos;ensemble des feuilles non maximales de hauteur finie est dénombrable, donc
Z est une réunion dénombrable de feuilles. Soit F une transversale fermée

coupant Z. L&apos;intersection F HZ est un compact dénombrable et possède donc un
point isolé x0. Soit / la feuille passant par x0. Alors, Z\f est compact, et l&apos;on voit
facilement que Z\feB, ce qui contredit la minimalité de Z. Cette contradiction
achève la démonstration du lemme 4.
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3. Conclusion

COROLLAIRE. Soir 9 un feuilletage Cl-stable, à feuilles toutes propres sur
une variété fermée orientable. Soit y une courbe fermée tangente à 9, et soit &lt;p le

germe d&apos;holonomie associé à y. Alors, &lt;p est hyperbolique ou &lt;p est trival (clair
d&apos;après ce qui précède).

THEOREME. Soit M une variété fermée, orientable de rr± fini. Les seuls

feuilletages, transversalement orientables, C* à singularités de Morse, à feuilles
toutes propres, ^-stables sur M, sont ceux définis par une fonction de Morse à
valeurs critiques distinctes, et à surfaces de niveau simplement connexes.

Démonstration. D&apos;après [Hae], proposition 4.2, un feuilletage sur une variété
de tt1 fini vérifiant la propriété énoncée au corollaire ci-dessus ne possède aucune
transversale fermée. Soit 9 vérifiant les hypothèses du lemme 3. 9 n&apos;admet

aucune transversale fermée. En particulier, toute feuille non singulière est compacte.
Or, un ouvert feuilleté par des feuilles compactes n&apos;est stable que si ces feuilles
sont des sphères. La fin de la démonstration est alors claire.
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