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Sur la concentration moyenne des diviseurs

GÉRALD TENENBAUM

1. Introduction

Dû à Paul Lévy, le concept de fonction de concentration date de 1937. H s&apos;est

avéré, depuis lors, un outil fructueux de la Théorie des Probabilités [7]. La
fonction de concentration Qx d&apos;une variable aléatoire X est définie par la relation

d&gt;0).
U6(R

Nous nous intéressons ici à un cas particulier d&apos;essence arithmétique qui
apparaît naturellement dans le cadre de l&apos;étude de la structure multiplicative des

entiers. Soit Dn la variable aléatoire discrète qui prend, pour chaque entier n, les

valeurs log d, lorsque d parcourt l&apos;ensemble des diviseurs de n, avec probabilité
uniforme l/r(n). Notons G(n) la valeur en l 1 de la fonction de concentration
de Dn et posons

A (n) T(n)G(n) max card {d : d \ n, eu &lt; d ^ eM+1}.
u

L&apos;étude arithmétique de A(n) est particulièrement riche et délicate.
La question de l&apos;ordre normal de A(n) est sous-jacente dans la vieille

conjecture d&apos;Erdôs affirmant que presque tout entier n possède au moins deux
diviseurs d, d\ tels que d&lt;d&apos;^2d. Cette conjecture a été récemment résolue
dans [9]. On connaît même un encadrement relativement précis de l&apos;ordre normal
de A(n): on a pour presque tout n [9, 10]

(log log n)y &lt;A(n)&lt; ijj(n) log log n

pour toute constante Y&lt;-log2/log(l-l/log3) 0.28754..., et toute fonction
i/&gt;(rc) tendant vers l&apos;infini.

Abordée dans [1, 11], l&apos;étude de l&apos;ordre moyen de A(n) a été éclairée sous un
angle nouveau dans un important travail de Hooley [8], datant de 1979. L&apos;auteur

411



412 GÉRALD TENENBAUM

y montre que le comportement asymptotique de la quantité

S(x)= X A(n)
n*£x

intervient de manière cruciale dans plusieurs questions classiques, appartenant à

des domaines variés de la Théorie des Nombres, comme le Problème de Waring
ou l&apos;Approximation Diophantienne.

Cependant, alors que l&apos;étude analogue pour O(n) A(n)lr(n) est susceptible
d&apos;un traitement satisfaisant par une méthode élémentaire simple [5] conduisant à

l&apos;évaluation

la détermination du véritable ordre grandeur de S(x) se révèle particulièrement
ardue.

Dans [8], Hooley établit, par une méthode de transformation de Fourier, la

majoration

et l&apos;exposant de logx a été successivement amélioré dans [5], [6], jusqu&apos;à la
valeur 0.21969 (pour mémoire, (4/tt)- 1 0.27323...). Ces majorations sont très

éloignées de la meilleure minoration connue pour S(x),

S(x)»xloglogx,

établie dans [5].
A défaut d&apos;apporter une réponse optimale au problème, nous nous proposons

ici de montrer que S(x)/x est effectivement de l&apos;ordre d&apos;une fonction à croissance

lente de log x.

THÉORÈME. On a pour x ^ 16

S(x)&lt;JcS?(logx)

où ££ désigne la fonction à croissance lente définie par

&lt;£{u) exp {c0Vlog u • log log u}

pour une constante absolue positive convenable c0.
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La plupart des applications développées par Hooley dans [8] subissent ipso

facto une amélioration de même qualité. Définissant pour u assez grand

5£&apos;(u) exp {c&amp;Vlog u • log log m}

où Cq&gt;c0, on obtient ainsi que l&apos;inégalité

\\n2e-y\\^(&lt;£&apos;(logn)ln)V2

possède, pour tout irrationnel 6 et tout réel y, une infinité de solutions entières n
(\\x\\ désignant, comme c&apos;est l&apos;usage, la distance de x à l&apos;ensemble des entiers).
Une autre conséquence porte sur l&apos;estimation du nombre v{x) des entiers ^jc
représentables comme somme d&apos;un carré et de deux bicarrés. On obtient
l&apos;encadrement

xl&lt;£\\og x) &lt; v{x) &lt; ex, (x &gt; x0).

Pour certaines applications, toutefois, Hooley a introduit les généralisations

Ar(n) max card {dl9..., dr-X : dx • • • dr_x \n,e&quot;&lt;dl^ eM&lt;+\ (1 ^ i ^ r)}.

(On a donc A =A2. La valeur moyenne de Ar(n), r^3, a été considérée, outre
l&apos;article initial de Hooley, dans [4, 5, 6].) En particulier, c&apos;est le résultat concernant

A3(n) qui est utilisé par Hooley pour améliorer la majoration de la fonction
rsM égale au nombre de représentations de n comme somme de 8 cubes. D est

probable que la méthode du présent article soit également pertinente dans le cas
des fonctions Ar. Toutefois, certaines difficultés nouvelles apparaissent lorsque
r^3, et nous avons préféré reporter cette étude à un travail ultérieur.

La technique développée ici est assez semblable à celle de [10]. Elle procède
d&apos;un double principe. Un premier aspect, contingent, réside dans le fait
d&apos;approcher A(n) par les normes-Lq successives de la fonction A(n,u)
card {d : d \ n, eu &lt; d ^ eu+1}. Un second, fondamental, consiste à réduire la question

initiale à l&apos;étude, par récurrence sur l&apos;entier k ^ 1, du sous-problème obtenu
en remplaçant n par le produit de ses fc plus petits facteurs premiers.

L&apos;auteur tient à exprimer ici ses remerciements à Richard R. Hall pour son
aide lors de la préparation de cet article.
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2. Notations et conventions

La lettre p dénote exclusivement un nombre premier. Pour chaque entier n,

on note r(n) le nombre de ses diviseurs et &lt;o(n) le nombre de ses facteurs

premiers distincts, dont la suite ordonnée est désignée par

Pi(n)&lt;p2(n)&lt;- -

On pose P~(n) pt(n), P+(n) pw(n\ (n&gt;l). Par convention, P~(l) +oc,

l) l.
Pour x 5* 10, 1 ^ n ^ x, on pose

et l&apos;on définit la quantité

K K(n, x) max {k:l
On note alors

II P», (sifc^K)

nK, (sik&gt;K).

Pour chaque n, le nombre nk est donc un entier sans facteur carré (i.e.
1 où ix est la fonction de Môbius) ayant au plus k facteurs premiers, tous

On désigne par Ak l&apos;ensemble des entiers a satisfaisant à

[51oglogx], (x&gt;10),

nous convenons que le symbole Y! désigne une sommation portant sur tous les
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entiers n satisfaisant à

Pour la variable entière n s* 1, on définit les fonctions arithmétiques

A(n, u) card {d : d | n, eu &lt;d ^eu+1},

m)

Mq(n)=J+ d(n,«)««dM, (q&amp;l),

A**(n) card \du dq | n :log f5?^) « il, (q s» 1),

et les fonctions sommatoires

S(x)= Z/\(n)

S,(x)= I M(n

La lettre c, avec ou sans indice, désigne une constante absolue positive. Sauf
indication contraire explicite, les constantes impliquées par l&apos;utilisation des
symboles « de Vinogradov et O de Landau sont absolues. L&apos;écriture

XXY

signifie: X« Y et Y«X
Enfin, nous convenons, comme c&apos;est l&apos;usage, qu&apos;une somme (resp. un produit)

vide est nulle (resp. égal à 1).
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3. Lemmes

Dans cette section, nous nous proposons d&apos;établir, ou de rappeler, les
principales assertions auxiliaires qui nous serons utiles dans la suite.

Nous commençons par deux résultats classiques de Théorie Analytique des

Nombres. Le premier est une forme faible, susceptible d&apos;une preuve élémentaire
simple, d&apos;un résultat de Halberstam et Richert [2]. Le second est un outil
fondamental de la Théorie du Crible (cf. par exemple [3] p. 201).

LEMME 1. Soit f une fonction multiplicative réelle satisfaisant à

avec X-!&gt;0, 0&lt;A.2&lt;2. Alors on a pour

I /(n)«x,,x2*n (1-P-1) I /(P&quot;)P

v=O

LEMME 2. Pour 2^y^C!X, on a

card {n ^ x : /ut(n)2 1, P~~(n) &gt; y}
logy

LEMME 3. Pour l^k^L, aeAk, on a

Démonstration. Le membre de gauche de (1) est égal à

card Ib^| : ti(b)2 1, P&quot;(b) &gt; P+(a), K(b, x) ^2L - fcj. (2)

Comme P+(a)^xlf on a pour x assez grand

D&apos;après le Lemme 2, on obtient donc, en notant x la fonction caractéristique des

entiers b tels que jLt(b)2=l, P~(fr)&gt;P+(a),
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Cela implique la majoration contenue dans (1). Pour établir la minoration, il
suffit de remarquer que le cardinal (2) est au moins égal à

X(b)~

La seconde somme est majorée pour tout y ^ 1 par

d&apos;après le Lemme 1. Le choix optimal y 5 rend négatif l&apos;exposant de logx et
fournit donc une estimation d&apos;ordre inférieur au membre de droite de (3). Cela

implique le résultat annoncé.

LEMME 4. On a uniformément pour t^O, x^2, et

X ^ ^. (4)

Démonstration. Le membre de gauche de (4) est égal à la somme triple

m h

avec les conditions de sommation

fmph^x,
(5)

Notons que l&apos;on a pour x assez grand

pm ^x\^x\ &lt; Ci

On peut donc estimer la somme en h par le Lemme 2, soit

H mp log p
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De plus, on a, à p fixé,

1 (log log p 4- c3)k~1

On peut donc majorer la somme triple par

V(fc-l)!
(loglog

p(logp)(

avec le changement de variables w log log v. Posons maintenant z

(l + f)(w + c3). La dernière majoration ne dépasse pas

~k f
Jo

dz

Cela complète la démonstration.
Notre méthode de majoration de S(x) repose essentiellement sur l&apos;étude en

moyenne des normes-Lq de â(nk, u) par le biais d&apos;une double récurrence, en fc et

q. Les trois énoncés qui suivent constituent les inégalités fondamentales qui nous

permettront d&apos;entreprendre la réalisation de ce programme.
Le résultat suivant a été établi dans [10] (Lemma 6).

LEMME 5. Pour n, q ^ 1, on a

(6)

(7)

COROLLAIRE. Pour n^l, l^q^r, on a

Mr(n)1/r ^21+1A*Mq(n)1/q. (8)

Démonstration. On a

Mr(n) f A(n, u)r
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d&apos;où par (6)

ce qui équivaut au résultat annoncé.

LEMME 6. Pour n^l, q^2, et l^j^q-1, on a

MJ(n)^Mq(n)°~1)/(q&quot;1)T(n)(q~j)/(q~1). (9)

Démonstration. On a

M1(n)=\ A(n,u)du r(n). (10)

Le résultat est donc vrai pour /=1. Si /^2, il découle encore de (10) en
appliquant à l&apos;intégrale Mj(n) l&apos;inégalité de Hôlder, avec exposants (q- l)/(j- 1),

{q - l)/(q -/), pour la décomposition

4(n, u)1 A(n, M)q(j~1)/(q~1}zi(n, u)^&apos;1^&apos;^.

L&apos;énoncé suivant est une évaluation technique qui permettra d&apos;établir, au
Lemme 8, l&apos;inégalité de récurrence constituant le principe de base de la méthode.

LEMME 7. Pour a&gt;l, q, z&gt;2, l&lt;/&lt;q-l, on a

X ~ Nq,(a, log p)1/q« q(MJ(a)Mq_J(a)/log z)1/q. (11)
p&gt;z P

Démonstration. Appliquons l&apos;inégalité de Hôlder avec exposants q, ql(q -1), en
décomposant le sommant de (11) sous la forme

-l/(q-l)\(q-l)/q^ Nq,,(a, log p)) &quot;V^log p)-™«-»)«&apos;

On obtient que le membre de gauche de (11) ne dépasse pas

(I -^r tfqjfo log p) I p-^flog p)~1/(q~
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Le Théorème des Nombres Premiers permet de majorer le second facteur par

D suffit donc de montrer

I— N^a, log p)« 2«À4,(a)Àlq_j(a). (12)
p P

Le membre de gauche de (12) s&apos;écrit encore

m -log p)*&quot;&apos;^) du. (13)
1 p

En développant à(a, u-logp)q~J comme une somme multiple et en intervertissant

les sommations, on constate que la somme intérieure en p dans (13) vaut

V* V f^ë P 1

2* 2* î : w™log(mindi)&lt;logp&lt;u-log(maxdi)+l} (14)
di...,&lt;*,,_, |a l P J

où l&apos;étoile signifie que la sommation porte sur les (q - /)-uples de diviseurs de a
tels que log (max djmin di)&lt; 1. (On a donc

d&apos;après (7)).
Le Théorème des Nombres Premiers, sous la forme faible

Igp^x P

montre que l&apos;expression (14) est

En reportant dans (13) et en faisant appel à (15), on obtient bien la majoration
souhaitée (12).
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LEMME 8. Pour x,q&gt;2 et l&lt;fc&lt;L, on a

»y)&quot; (16)

Démonstration. Si K(n, x) &gt; fc, on a

1, u) 4(nk, u) + 4(nk, u-logpk+1(n)),

En élevant cette identité à la puissance q et en intégrant relativement à u, on
obtient

t (qW, log p^n)). (17)

D&apos;où, par l&apos;inégalité de Minkowski

^n,, log Pk.xCn))1^. (18)
J=l

Sommons l&apos;inégalité (18) pour tous les entiers n satisfaisant (Y!) et tels que
nk a g Ak, en omettant le second terme de la majoration si K(n, x) fc —ce qui
est licite puisqu&apos;alors nk+1 nk. Il vient

K(n,x)&gt;k

La somme intérieure s&apos;écrit encore

Zf X ^ 1

+i==ap a log F+(a) p&gt;^(a) p

d&apos;après le Lemme 3. On notera que la condition K(n,x)&gt;k est impliquée par
nk+1 ap. Appliquons le Lemme 7, pour majorer la somme en p, et le Lemme 3

sous la forme

On obtient que la somme intérieure du second terme du membre de droite de
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(19) ne dépasse pas

|c4q(MJ(a)Mq_J(a)/logP+(a))1/q £&apos; 1.

En reportant dans (19) et en sommant pour aeAk, il vient

Zt ¦,, lf ^&apos; y qV^ ^«&apos; /AdT.(fî|c)A^1_.(?tfc)\
À^j(nk+1) q&lt;2 q 2^ ^q(^k) +C4^| 2^ JL \ ï 7~\

K(n,x)s:k K(n,x)s:k j=l K(n,x)s=k ^ l°g Pk(^) /

Cela implique la majoration annoncée, en considérant la relation

X&apos; H(nk+1)1/q= r H(nk)1/q&lt;21/q X&apos; Mq(nk)1/q.
K(n,x)&lt;k K(n,x)&lt;k K(n,x)&lt;k

4. Première réduction du problème

Pour des raisons purement techniques, il est agréable de remplacer S(x) par
une somme portant sur des nombres sans facteur carré, dans laquelle les
arguments de la fonction A ont au plus L facteurs premiers, tous &lt;xx. Le résultat
suivant, auquel nous consacrons cette section, montre qu&apos;une telle substitution
peut s&apos;opérer au prix d&apos;un facteur multiplicatif O((loglogx)2).

PROPOSITION 1. On a pour x &gt;2

S(x)«x max (^^) (20)

et

S1(x)«(loglogx)2SL(x). (21)

Preuve de (20). Dans un premier temps, nous établissons, par souci de

complétude, la majoration

cv \~ x V V&lt;(n)2A(n)
S(x)«- 2- (22)

log x n:sx n

qui est implicitement contenue dans [8] (pp. 119 et 126).
Pour m, n &gt; 1, on a

4(mn)&lt;î(m)4(n). (23)
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Cela découle de l&apos;inégalité fonctionnelle

A(mn, u)&lt;]T A(n, w-logd), (m, n&gt; 1, ugU), (24)
d\m

(qui devient une égalité lorsque (m, n) 1). Pour établir (24), il suffit de remarquer

que chaque diviseur de mn s&apos;écrit au moins une fois comme produit d&apos;un

diviseur de m par un diviseur de n.

Gardant (23) à l&apos;esprit, on peut écrire

2, (logn)4(n) 2- A(d)A(md)&lt; L A(m) ^ A(d)r(d)«x

Comme on a également

il vient

^I^. (25)
gx n

Utilisant la décomposition canonique de chaque entier m sous la forme n md2,

li(m)2= 1, on peut écrire

y 4Xn)_ y ii(m)2A(md2) y |m(m)2Zi(m) y rid2)

En reportant dans (25), on obtient

Jx \ z z
\ +

log x Jx- z log x log x

d&apos;où l&apos;on déduit aisément (20).

Preuve de (21). Il est clair que presque tous les entiers sans facteur carré &lt;x

satisfont la troisième des conditions (£&apos;)• D&apos;où

I&apos;l»x. (26)
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Cela étant, on a

&lt;u(n)&gt;2L

La seconde somme est majorée, pour tout y ^ 1, par

X (2y)ù&gt;(n)y&quot;2L«vx(logx)2y&quot;1-10108y

d&apos;après le Lemme 1. Pour y 5, l&apos;exposant de log x est négatif. Compte tenu de

(26), on obtient donc

(27)

Désignons par a (resp. b) un entier générique satisfaisant à

ae U Ak, (resp.

Pour x assez grand, on a

Maintenant, on a d&apos;une part

^ (28)
a b^xla a

d&apos;après le Lemme 2. D&apos;autre part, en utilisant (23),

£ t(6)

«I4(a)-^ (loglogx)2l-^- (29)
a log

où la seconde majoration provient du Lemme 1. Il découle de (28) et (29)

I&apos; A(n) « (log log x)2 £&apos; MnK). (30)



Sur la concentration moyenne des diviseurs 425

Enfin, on peut écrire, puisque nL nK si K&lt;L,

Si(x) £&apos; A(nL) £&apos; A(nK)- £&apos; (A(nK)-A(nL)).
K(n,x)&gt;Ux)

Le dernière somme ne dépasse pas

£&apos; 2&quot;(n)&lt; X (2yr(n)y-L «y x(log je)2*-1&quot;510&quot;,

&lt;o(n)&gt;JL(x) n=£x

pour tout y &gt; 1. Comme le choix optimal y § fournit encore un exposant négatif,
on obtient grâce à (26)

A(nK). (31)

Le résultat annoncé découle alors de (30).

5. Fin de la démonstration du Théorème

Posons

Le Théorème découle de l&apos;estimation suivante.

LEMME 9. Pour x, q &gt;2, et 1 &lt; k &lt;L, on a

*}. (32)

Avant de prouver ce résultat, montrons comment on peut en déduire la

majoration annoncée pour S(x).
D&apos;après le Lemme 5 et la Proposition 1, on a

Sx(x)« (log log x)2T*,q(x) (33)

pour tout q&gt; 1. Nous allons majorer Tf^x) pour la plus grande valeur possible
de q en utilisant d&apos;une part (32) et d&apos;autre part l&apos;inégalité

7tr(x) ^ 3Tt,q(x), (2&lt; q &lt; r, fc &gt; 1), (34)

qui découle trivialement du Corollaire au Lemme 5.
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La relation (32) implique l&apos;existence d&apos;une constante absolue c telle que l&apos;on

ait pour fco&lt;fc&lt;L et q&lt;(cfc/log k)1/2

q (35)

Posons

k}=2\ q^KckJlogk,)1&apos;2], (/&gt;1),

et définissons I, J par

Llog2j&apos;
J Llog2j-

On a

et, pour J&lt;/&lt;J, d&apos;après (35) et (34),

Cela implique

{j-i ^|

Jlog3+X (k/q,)

&lt;xexp{c7(LlogL)1/2}

En appliquant alors (L - fcj) fois (35), il vient

T* Jx) &lt;exp {(L - kjVq^It^Cx)
&lt;xexp{c8(LlogL)1/2}

En reportant dans (33), on obtient donc

St(x) &lt; x exp {c9(log log x • log log log x)1/2}

d&apos;où le Théorème, d&apos;après la première partie de la Proposition 1.

Preuve du Lemme 9. Si K(n, x)&gt;fc, on a T(nk) 2\ d&apos;où par (9), pour
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En reportant dans (16), il vient

d&apos;où en ajoutant £&apos; 2(k+1)/q aux deux membres

K(n,x)2=fc

Si q &gt; 3, appliquons l&apos;inégalité de Hôlder à la dernière somme avec exposants
(q- l)/(q-2), q-1. En utilisant le Lemme 4 pour estimer le second facteur, on
obtient

K(n,x)a:k
i\-k\

-^)

De plus, cette inégalité est également vraie pour q 2, toujours d&apos;après le Lemme
4. On peut donc finalement écrire, pour l&lt;k&lt;L, q&gt;2, x&gt;2,

(i \ -k/(q-l)
1 V *Wq-1)ï£1(*)(&lt;I -2)/&lt;fl-1&gt; 06)

Cette majoration serait également valable pour les fonctions Tkq(x) au lieu de

A ce stade, cependant, nous utilisons la minoration

q (37)

qui n&apos;est pas immédiate pour TM(x) car les nk n&apos;ont pas nécessairement k
facteurs premiers.
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De (36) et (37), on déduit

L&apos;inégalité souhaitée (32) découle de cette majoration puisqu&apos;on a pour q &gt; 2

2qJ 82q

Cela achève la démonstration.
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