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Sur la concentration moyenne des diviseurs

GERALD TENENBAUM

1. Introduction

Da a Paul Lévy, le concept de fonction de concentration date de 1937. 11 s’est
avéré, depuis lors, un outil fructueux de la Théorie des Probabilités [7]. La
fonction de concentration Qx d’une variable aléatoire X est définie par la relation

Ox()=sup Prob(u<X=<u+l), (1>0).

ueR

Nous nous intéressons ici & un cas particulier d’essence arithmétique qui
apparait naturellement dans le cadre de I’étude de la structure multiplicative des
entiers. Soit D, la variable aléatoire discréte qui prend, pour chaque entier n, les
valeurs log d, lorsque d parcourt I’ensemble des diviseurs de n, avec probabilité
uniforme 1/7(n). Notons £(n) la valeur en [ =1 de la fonction de concentration
de D, et posons

A(n)=1(n)Q(n)=maxcard{d :d | n,e* <d<e"“*'}.

L ’étude arithmétique de A(n) est particulierement riche et délicate.

La question de l'ordre normal de A(n) est sous-jacente dans la vieille
conjecture d’Erdos affirmant que presque tout entier n possede au moins deux
diviseurs d, d’, tels que d <d'=<?2d. Cette conjecture a été récemment résolue
dans [9]. On connait méme un encadrement relativement précis de ’ordre normal
de A(n): on a pour presque tout n [9, 10]

(loglog n)Y<A(n)<y(n)loglogn

pour toute constante y <—log 2/log (1—1/log 3)=0.28754. .., et toute fonction
Y¥(n) tendant vers l’infini.

Abordée dans [1, 11], I'’étude de ’ordre moyen de A(n) a été éclairée sous un
angle nouveau dans un important travail de Hooley [8], datant de 1979. L’auteur
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412 GERALD TENENBAUM

y montre que le comportement asymptotique de la quantité

S(x)= Y, A(n)

n=x

intervient de maniere cruciale dans plusieurs questions classiques, appartenant a
des domaines variés de la Théorie des Nombres, comme le Probleme de Waring
ou I’Approximation Diophantienne.

Cependant, alors que I’étude analogue pour £(n) = A(n)/7(n) est susceptible
d’un traitement satisfaisant par une méthode élémentaire simple [5] conduisant a
I’évaluation

Z Q(n) = x(10g x)-(1/2)+o(1),

la détermination du véritable ordre grandeur de S(x) se révéle particulierement
ardue.

Dans [8], Hooley établit, par une méthode de transformation de Fourier, la
majoration

S(x) « x(log x)(4/1'r)—1
et 'exposant de log x a été successivement amélioré dans [5], [6], jusqu’a la

valeur 0.21969 (pour mémoire, (4/7)—1=0.27323...). Ces majorations sont tres
éloignées de la meilleure minoration connue pour S(x),

S(x)» x loglog x,

établie dans [5].

A défaut d’apporter une réponse optimale au probléme, nous nous proposons
ici de montrer que S(x)/x est effectivement de ’ordre d’une fonction a croissance
lente de log x.

THEOREME. On a pour x =16
S(x)<xZ(log x)

ou ¥ désigne la fonction a croissance lente définie par

P(u) =exp {coVlog u - log log u}

pour une constante absolue positive convenable c,.
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La plupart des applications développées par Hooley dans [8] subissent ipso
facto une amélioration de méme qualité. Définissant pour u assez grand

L'(u) = exp {cyvlog u - log log u}
ou cp>> ¢y, on obtient ainsi que l'inégalité

In26 —yl|l< (£ (log n)/n)"?

possede, pour tout irrationnel 6 et tout réel vy, une infinité de solutions entiéres n
(|lx|| désignant, comme c’est I'usage, la distance de x a ’ensemble des entiers).
Une autre conséquence porte sur I’estimation du nombre v(x) des entiers <x
représentables comme somme d’un carré et de deux bicarrés. On obtient I’en-
cadrement

x/¥'(log x) <v(x)<cx, (x> xp).

Pour certaines applications, toutefois, Hooley a introduit les généralisations

A(n)= max card{d,,...,d,_;:d, " d,_;|n e <d<e“*, (1<i<r)}.

Ug,U2,...s U,

(On a donc A =A,. La valeur moyenne de A,(n), r=3, a été considérée, outre
I’article initial de Hooley, dans [4, 5, 6].) En particulier, c’est le résultat concer-
nant A;(n) qui est utilisé par Hooley pour améliorer la majoration de la fonction
rg(n) égale au nombre de représentations de n comme somme de 8 cubes. Il est
probable que la méthode du présent article soit également pertinente dans le cas
des fonctions A,. Toutefois, certaines difficultés nouvelles apparaissent lorsque
r=3, et nous avons préféré reporter cette €tude a un travail ultérieur.

La technique développée ici est assez semblable a celle de [10]. Elle procede
d’un double principe. Un premier aspect, contingent, réside dans le fait d’ap-
procher A(n) par les normes-L? successives de la fonction A(n,u)=
card{d:d | n, e* <d <e“*'}. Un second, fondamental, consiste a réduire la ques-
tion initiale a I’étude, par récurrence sur ’entier k=1, du sous-probléme obtenu
en remplagant n par le produit de ses k plus petits facteurs premiers.

L’auteur tient a exprimer ici ses remerciements a Richard R. Hall pour son
aide lors de la préparation de cet article.
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2. Notations et conventions

La lettre p dénote exclusivement un nombre premier. Pour chaque entier n,
on note 7(n) le nombre de ses diviseurs et w(n) le nombre de ses facteurs
premiers distincts, dont la suite ordonnée est désignée par

pi(n)<px(n)<---<p,(n).

On pose P (n)=p;(n), P"(n)=p,(n), (n>1). Par convention, P~ (1) = +x,
Pt(1)=1.
Pour x=10, 1<n=<x, on pose

= ex {_1%__}
r—SxB (log log x)?

et 'on définit la quantité
K=K(n,x)=max{k:1sk<ow(n), p(n)<x,}.

On note alors

Il pv), Gik<K)

n = 1=sj=<k

ng, (si k> K).

Pour chaque n, le nombre n, est donc un entier sans facteur carré (i.e.
n(m)?=1ou u est la fonction de Mobius) ayant au plus k facteurs premiers, tous
le.

On désigne par A, 'ensemble des entiers a satisfaisant a

n(a)’=1,
(Ak) P+(a)sxla
w(a)=k.

Posant

L=L(x)=[5loglog x], (x=10),

nous convenons que le symbole )’ désigne une sommation portant sur tous les
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entiers n satisfaisant a

n<x,
EN nm?=1,
K(n, x)<2L.

Pour la variable entiere n =1, on définit les fonctions arithmétiques

A(n,u)=card{d:d | n, e* <d<e"*1}, (ueR),

A(n)= max A(n, u)

M,(n)= J'WA(n, u)du, (g=1),

max d;
M¥(n)=card {dl, vy dg | n:log (min d)s 1}, (g=1),

—+-oc
N,i(n,v)= j A(n, uyYA(n, u—v)%7du, (1<sj=sgq,veR),
et les fonctions sommatoires

S(x)= ) A(n)

n=x

Si(x)= Y u(n)?A(n)

i)=Y A,  (k=1)
Tia®) =Y M,(m)",  (k,q=1).

La lettre ¢, avec ou sans indice, désigne une constante absolue positive. Sauf
indication contraire explicite, les constantes impliquées par I'utilisation des sym-
boles « de Vinogradov et O de Landau sont absolues. L écriture

XY

signifie: X< Y et Y X
Enfin, nous convenons, comme c’est 'usage, qu'une somme (resp. un produit)
vide est nulle (resp. égal a 1).
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3. Lemmes

Dans cette section, nous nous proposons d’établir, ou de rappeler, les prin-
cipales assertions auxiliaires qui nous serons utiles dans la suite.

Nous commengons par deux résultats classiques de Théorie Analytique des
Nombres. Le premier est une forme faible, susceptible d’une preuve élémentaire
simple, d’un résultat de Halberstam et Richert [2]. Le second est un outil
fondamental de la Théorie du Crible (cf. par exemple [3] p. 201).

LEMME 1. Soit f une fonction multiplicative réelle satisfaisant a
Osf(pv)s)‘lA;a (vzl, 2:-°')’

avec A>0, 0<A,<2. Alors on a pour x=1
2 fn) <, x[TA=p™ X f@)p™
n=x P=x v=0
LEMME 2. Pour 2<y=<c;x, on a

card{n<x:u(n)’>=1,P (n)>y} X
logy
LEMME 3. Pour 1<k<L,ac A, ona

' X
I<— 1
2. TP @ )

Démonstration. Le membre de gauche de (1) est égal a
card {b Sg :w(0)?=1,P (b)>P*(a), K(b, x)<2L - k} . ?)

Comme P*(a)=<x,, on a pour x assez grand
a<xT<cx/x;.

D’apres le Lemme 2, on obtient donc, en notant x la fonction caractéristique des
entiers b tels que w(b)*=1, P(b)> P*(a),

X

Y x(by=<

W2 X s P @) 3)
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Cela implique la majoration contenue dans (1). Pour établir la minoration, il
suffit de remarquer que le cardinal (2) est au moins égal a

Y x()— Y x(b).

b=x/a b=x/a
w(b)=L

La seconde somme est majorée pour tout y=1 par

Z X(b)yw(b)~1_ &«

X
1 y—1—Slogy
R Yallog Pra)y (°8%) !

d’aprés le Lemme 1. Le choix optimal y =5 rend négatif I’exposant de log x et
fournit donc une estimation d’ordre inférieur au membre de droite de (3). Cela
implique le résultat annoncé.

LEMME 4. On a uniformément pour t=0, x=2, et k<L

Y w(n)(log p(n) ™ <cxes (1+1)7~. (4)

n=sx
Kn,x)=k

Démonstration. Le membre de gauche de (4) est é€gal & la somme triple
Y (ogp)* Y X1
p m h

avec les conditions de sommation

mph <x, pu(m)®>=pu(h)*>=1,
om)=k—1, p=<x, (5)
P*(m)<p<P-(h).

Notons que I’on a pour x assez grand

pm<=xt<sxb<c,x/x,.

On peut donc estimer la somme en h par le Lemme 2, soit
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De plus, on a, a p fixé,

k—1 k—1
—1-s 1 (Z 1) s(10glogp+c3)
wm  (k—1)! (k—1)!

)
p'<p P

On peut donc majorer la somme triple par

k—1
O( b Z (10g10gp+’c+31) )
(k—'T  plogp)

x J“ (loglog v +c3)* ! x J'°°

G0 T vlogorz P Tw-1

(W+cy)k le ™ IHOw gy,
(0]

avec le changement de variables w=loglogv. Posons maintenant z=
(1+1t)(w+c3). La derniére majoration ne dépasse pas

[~

1+ t)“"J z¥1e007F g7 = xe U1 + 1) 7K,
0

X

(k—1)!

Cela complete la démonstration.

Notre méthode de majoration de S(x) repose essentiellement sur I’étude en
moyenne des normes-L9 de A(n,, u) par le biais d’une double récurrence, en k et
q. Les trois énoncés qui suivent constituent les inégalités fondamentales qui nous
permettront d’entreprendre la réalisation de ce programme.

Le résultat suivant a été établi dans [10] (Lemma 6).

LEMME 5. Pour n, q=1, on a

A(n)S21“"‘Mq(n)1/" (6)
M#(n)<2°M,(n). (7)

COROLLAIRE. Pour n=1, 1sq<r,on a

M, (n)"" <2MVaM, (n) M. (8)
Démonstration. On a

M,(n)= j‘mA(n, u) du<An) M, (n)
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d’ou par (6)

M,(n) < 2(r~q)(1+1/q)Mq(n)1+(r—q)/q

(+1/q) /
<2 CHVDN (nyra,
ce qui équivaut au résultat annoncé.
LEMME 6. Pour n=1,q=2, et 1<jsq—1, on a
M(”) SMq(n)G‘1)’(“_1)7(n)("_")’("_1). (9)

Démonstration. On a

M(n)= JWA(n, u) du=7(n). (10)

Le résultat est donc vrai pour j=1. Si j=2, il découle encore de (10) en
appliquant a 'intégrale M;(n) I'inégalité de Holder, avec exposants (q —1)/(j — 1),
(q—1)/(q—j), pour la décomposition

A(n, u)i = A(n, u)q(j—l)/(q_l)A(n, u)(q—j)/(q—l).

L’énoncé suivant est une évaluation technique qui permettra d’établir, au
Lemme 8, I'inégalité de récurrence constituant le principe de base de la méthode.

LEMME 7. Pour a=1, q,z=2, 1=j=q-1,0na

))

1
o N, ;(a, log p)"9 <« q(M;(a)M,_;(a)/log z)". 11)
p>z

Démonstration. Appliquons I'inégalité de Holder avec exposants g, g/(q — 1), en
décomposant le sommant de (11) sous la forme

lo Va L
(“—squ,,-(a, log p)) (p~"(log p)~ @) 7",

On obtient que le membre de gauche de (11) ne dépasse pas

1/q (g—-1/q

(Z 10%) N,;(a,log p)) ( Y p~(log p)—l/(q—l))

p p>z
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Le Théoréme des Nombres Premiers permet de majorer le second facteur par
O(q(log 2)™"9).

11 suffit donc de montrer

T 2PN, (. 0g ) < 2'M (@M, (a). (12

p

Le membre de gauche de (12) s’écrit encore

jjA (a, u)f@ A(a, u—log p)i~ 1°§ p) du. (13)

En développant A(a, u—log p)*~' comme une somme multiple et en intervertis-
sant les sommations, on constate que la somme intérieure en p dans (13) vaut

x Z{logp:u-—1og(min¢)<logpSU‘1°g(maXd*)+l} o
dy,....dg-jl @ p

ou l’étoile signifie que la sommation porte sur les (q— j)-uples de diviseurs de a
tels que log (max d;/min d;)=<1. (On a donc

Y 1=M*_(a)=27M,_;(a) (15)
dyeendg-jla

d’apres (7)).
Le Théoréme des Nombres Premiers, sous la forme faible

I
Yy —0—5—p=10gx+0(1)

pP=x

montre que ’expression (14) est

O(Mz—j(a))-

En reportant dans (13) et en faisant appel a (15), on obtient bien la majoration
souhaitée (12).



Sur la concentration moyenne des diviseurs 421

LEMME 8. Pour x,q=2 et 1<k=<L,ona

Tir14X) =2"9T, o (x)+ c4q qi Y (Mj(n" M, ("")) . (16)

i=1 K(n,x)=k log pi.(n)

Démonstration. Si K(n,x)>k, on a
A(ry sy, u) = A(my, u)+ A(my, u—log pe1(n)), (ueR).

En élevant cette identité a la puissance q et en intégrant relativement a u, on
obtient

M, () =2My )+ 5, ()N 10g a0 a7

D’ou, par l'inégalité de Minkowski
q—1
M, (m. )V <2V9M, (m) Y9 +2 Y, N, ;(m, 1og psa(n))™. (18)
i=1

Sommons I'inégalité (18) pour tous les entiers n satisfaisant (3) et tels que
n. =a € A,, en omettant le second terme de la majoration si K(n, x) = k —ce qui
est licite puisqu’alors n, ., =n,. Il vient

2_:' M, ()" < (2M, ()" Z_ 1+22 Z_:_ N, ;(a,1og pi+1(n))Ve. (19)

Kn,x)>k

La somme intérieure s’écrit encore

’ X 1
N, i(a,log p)'/a 1« = N;(a,log p)'/9,
P*’(a)gpsxl b &P nk+¥-=ap a log P+(a) p>;(a) P i

d’aprés le Lemme 3. On notera que la condition K(n, x)> k est impliquée par

Ni+1 = ap. Appliquons le Lemme 7, pour majorer la somme en p, et le Lemme 3
sous la forme

On obtient que la somme intérieure du second terme du membre de droite de
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(19) ne dépasse pas

1c,q(M;(a)M,_;(a)/log P*(a))a Y 1.

ng =a

En reportant dans (19) et en sommant pour a € A,, il vient

(I\'Ij(nk)Mq_,-(nk)) ”“.

2 M(m.)"=2"" ) M) +cq ) X log pi(n)

Kn,x)=k Kmn,x)=k i=1 K(nx)=k

Cela implique la majoration annoncée, en considérant la relation

Y MDY= Y Mm)Ua<2¥r ¥ M (n)"

Knx)<k Kn,x)<k Kn,x)<k

4. Premiére réduction du probléme

Pour des raisons purement techniques, il est agréable de remplacer S(x) par
une somme portant sur des nombres sans facteur carré, dans laquelle les argu-
ments de la fonction A ont au plus L facteurs premiers, tous <x,. Le résultat
suivant, auquel nous consacrons cette section, montre qu’une telle substitution
peut s’opérer au prix d’un facteur multiplicatif O((loglog x)?).

PROPOSITION 1. On a pour x=2

st max (%) 0
et
S1(x)« (log log x)*S;(x). (21)

Preuve de (20). Dans un premier temps, nous établissons, par souci de
complétude, la majoration

*_y p(n)’A(n)

S(x)«
log x /= n

(22)

qui est implicitement contenue dans [8] (pp. 119 et 126).
Pour m,n=1, on a

A(mn)<1(m)A(n). (23)
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Cela découle de I'inégalité fonctionnelle

A(mn, u)= Z A(n,u—logd), (m,n=1,ueR), (24)

dlm

(qui devient une égalité lorsque (m, n) =1). Pour établir (24), il suffit de remar-
quer que chaque diviseur de mn s’écrit au moins une fois comme produit d’un
diviseur de m par un diviseur de n.

Gardant (23) a I’esprit, on peut écrire

Y (logn)A(n)= Y A(dA(md)= Y, A(m) Y A(d)r(d)<x Y. A—i—?.

n=x md=x m=x d=x/m m=x

Comme on a également

Y log( )A(n)<x Z A(n)

n=x

il vient

S(x)« — ZA(n). (25)

logx,=x n

Utilisant la décomposition canonique de chaque entier m sous la forme n =md?,
uw(m)*=1, on peut écrire

Z é_(_"_): Z lJ«(m)zA(mdz) Z P«(m)zﬂ(m) dzl T(dz) .

2
n=x N md?=x md m=x m

En reportant dans (25), on obtient

S(x)«

X J dS,(z) Sl(x) X J"‘ (Sl(z)>g_z_

log x z log X log X z z

d’ou I'on déduit aisément (20).

Preuve de (21). 11 est clair que presque tous les entiers sans facteur carré <x
satisfont la troisieme des conditions (}'). D’oul

Y imx (26)
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Cela étant, on a

Sx)=Y Am)+ Y um)r(n).

n=x
w(n)>2L

La seconde somme est majorée, pour tout y=1, par

Z (2y)w(n)y——2L <<y x(log x)2y——1—10logy

n=x

d’apres le Lemme 1. Pour y =5, I’exposant de log x est négatif. Compte tenu de
(26), on obtient donc

S,(x)< Y A(n). Q7)
Désignons par a (resp. b) un entier générique satisfaisant a

ae U A, (resp. u(b)>*=1, P(b)>x,).

1sk=<2L
Pour x assez grand, on a
a SX%LSCIx/xl

Maintenant, on a d’une part

Y Am)=Y AG@) ¥ 1 >Z xA(a) (28)

hesaela a log xl

d’aprés le Lemme 2. D’autre part, en utilisant (23),

3 A(n)SZ'A(nK)T(nn) ZA(a) Y 1(b)

b=x/a
<Y Ala)———= _xlogx _ (loglog x)* Y. xA(a) (29)
- a(log x,)* o alog x,

ou la seconde majoration provient du Lemme 1. Il découle de (28) et (29)

Y A(n)<(loglog x)* Y. A(ng). (30)
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Enfin, on peut écrire, puisque n; =ng si K<L,

St)=Y An)=Y Aln)— Y. (Alng)—A(n)).

K(n,x)>L(x)

Le derniére somme ne dépasse pas

ZI 2@(”)5 Z (2y)w(n)y—l. «y X(l()g x)2y—1—510gy’

wn)>L(x) n=x

pour tout y = 1. Comme le choix optimal y =3 fournit encore un exposant négatif,
on obtient grace a (26)

St(x)=Y. A(ng). (31)

Le résultat annoncé découle alors de (30).

5. Fin de la démonstration du Théoréme

Posons

TEo(x)= L (M, (m)"2+249).

Le Théoréme découle de 'estimation suivante.

LEMME 9. Pour x,q=2, et 1<k<L,ona

Tir1.q(X) =< T% o(x)}{2"9 + c5q*@) 73971} (32)
Avant de prouver ce résultat, montrons comment on peut en déduire la

majoration annoncée pour S(x).
D’apres le Lemme 5 et la Proposition 1, on a

S1(x)« (log log x)*T¥ ,(x) (33)

pour tout q=1. Nous allons majorer T7 ,(x) pour la plus grande valeur possible
de q en utilisant d’une part (32) et d’autre part I'inégalité

Ty, (x)=3Tk . (x), @R=q=rk=1), (34)

qui découle trivialement du Corollaire au Lemme 5.
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La relation (32) implique I’existence d’une constante absolue c¢ telle que I’on
ait pour ko<k=L et q=(ck/log k)'*

T} 14(x)<e" T} ,(x). (35)
Posons
ki=2, g =[(ckflog k)], (i=1),

et définissons I, J par

I=1+[logk0], Jz[logL].

On a
TE . (x)= Z (4.2% +25/%) < ¢ x

et, pour I=j<J, d’aprés (35) et (34),

T'zk.n a (x)=<exp {k-/q;}T.?‘,q,. (x),
ki1, qu(x) 3Tk,+1 .a; ( )

Cela implique

J—-1
T, ()=cox exp {103+ Y. (kia)|
i=I
=x exp {c,(L log L)"%}
En appliquant alors (L —k;) fois (35), il vient

T{,q, (x) <exp {(L —k;)/ qJ}Tt,,q, (x)
= x exp {cg(L log L)"?}

En reportant dans (33), on obtient donc
S1(x)=x exp {cs(log log x - log log log x)"/%}
d’out le Théoréme, d’aprés la premiere partie de la Proposition 1.

Preuve du Lemme 9. Si K(n,x)=k, on a 7(n,) =2 dou par (9), pour



Sur la concentration moyenne des diviseurs 427

M;(n )M, _;(m ) =M, (n, )@ 2@ Doka/a=D

En reportant dans (16), il vient
Y M, (mye) 0 =<2"1Y" M, (n,)"

+ c,q?2K@"1 Z' M, ()@@ (10g p, (1))=Y

K(n,x)=k

d’ol en ajoutant Y’ 2%**1a aux deux membres
1
’I‘;‘:+l,q(x) = 2 /th,q(x)

+ C4q22k/(q—1) Z' ( Mq(nk)”“ +2""')(“‘2)’(“‘1)(log p(n))~a,

K(n,x)=k

Si q =3, appliquons I'inégalité de Holder a la derniére somme avec exposants
(g—1)/(q—2), q—1. En utilisant le Lemme 4 pour estimer le second facteur, on
obtient

Z' ( Mq(nk)”q + zk/q)(q—z)/(q—l)(log pk(n))—”q

K(n,x)=k
1 —k\ 1/(g—1)
« T;l:,q(x)(q~2)/(q—1)(x(2___) )
q

De plus, cette inégalité est également vraie pour q = 2, toujours d’apres le Lemme
4. On peut donc finalement écrire, pour 1=k=<L, q=2, x=2,

1 —k/(a—1)
T 1.q(x) =2Y9T¥ (x) + cqu(l _ﬂ) x @Dk (x)@-2/a-D, (36)

Cette majoration serait également valable pour les fonctions Ty 4(x) au lieu de
T’,':,q(x). A ce stade, cependant, nous utilisons la minoration

T# (x)=2K3 Y 1 » 2kax (37)

qui n’est pas immédiate pour T, (x) car les n, n’ont pas nécessairement k
facteurs premiers.
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De (36) et (37), on déduit

1 —k/(q—1)
Tt-u,q (x)= T}t,q(X) {leq + Cuqz(l —5&) 2"k/q(q-l)} .

L’inégalité souhaitée (32) découle de cette majoration puisqu’on a pour q=2

1)':l 9
2(1 24 28'

Cela acheve la démonstration.
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