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Indécomposables are standard

Klaus Bongartz

The study of representation-finite algebras over an algebraically closed field is

more complicated in characteristic 2 because not ail algebras are standard
([3], [14]). We show that this phenomenon disappears if a representation-finite
algebra has a faithful indécomposable module.

It follows that the proofs of the second Brauer-Thrall conjecture via coverings
work in any characteristic (for a différent approach see [13]). There are two such

proofs which both dépend heavily on the work of Bautista, Gabriel, Roiter and
Salmeron on multiplicative bases ([3]). The first proof is due to Bautista, the
second to Fischbacher ([2], [10]).

Furthermore, we obtain a direct proof of an important theorem in [3], which
says that a distributive algebra is representation-finite if and only if so is its
standard form.

1. Statement of the résulte

This note is intimately related to [3]. In fact, we merely refine the results on
penny-farthings given there.

For the convenience of the reader we recall briefly some of the définitions and
results of [3] in a form which is sufficient for our purposes. The foliowing
notations and conventions will be kept throughout the paper.

So, let k be an algebraically closed field. We are interested in distributive
catégories A ([3], 1.3). Such a category is isomorphic to kO/I™, where fcQ is the

path category ([3], 1.1) of the Gabriel quiver Q QA ([3], 1.1) and r is an
admissible idéal ([3], 1.1). It is well-known that f* dépends on the choice of some

présentation ir ([3], 1.1), whereas Q is given canonically. A path w of Q is stable

if w£ T* for ail tt. In that case, the depth ([3], 1.1) of the image w in A ([3], 1.1) is

independent of tt ([3], 2.1). A contour of A is a pair (u, w) of two stable paths in
Q having the same depth and the same starting and ending points. For each

distributive category A, there is its standard form A * kQ/I where I is generated
by the non-stable paths and the différences v - w obtained from ail contours.

400
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Figure 1

We are studying a spécial kind of contours called penny-farthings for obvious
reasons. Namely, the subquiver P of Q that supports the arrows of a penny-
farthing (an • • • a2otu p2) has the shape given in Figure 1. Moreover, we ask the
full subcategory of A living on P to be defined by P and one of the following two
Systems of relations

0 an • • • a2a1-p2 a1an am- • • a1pan • • • al+1 or

0 an • • • a2a1-p2 axan~atpan am • • • atpan • • • a(+1,

where /:{1, 2,..., n -1} -» {1, 2,..., n} is some non-decreasing function (see

[3], 2.7).
Note that we look at left modules and that we write the composition from the

right to the left.
To state our main resuit we dénote by |x|+ and |x|~ the number of arrows of Q

starting and ending at the point x respectively.

THEOREM. Let A^A1 be a mild ([3], 1.4) category so that the associated

ray-category A ([3], 1.7) contains no infinité chain ([3], 1.12). Suppose that a
penny-farthing as in Figure 1 occurs as a contour of A.

a) If there exists an arrow |3 : a0 —» b not contained in P, then n 2 and we are
in one of the following two situations :

i) ax &lt;-^-&gt; ao*)P is a subquiver of Q. We hâve \ao\+ + \ao\~ 5, |ax|+ + |ax|&quot;~ 3,

\y

&quot;

\fi |br |c|&quot;=l and 0 0a2= 7^= 0p ô|8 Ôy for ail arrows

c b

ii) ax^=± cQ is a subquiver and we hâve
1 and 0 |3p 8p for ail 8,
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b) If |aor + |aor 4 and A(a0, y)^0 for some y^P, then n 2 and the

following holds:

ai5=± &lt;O is a subquiver of Q, |a1|+ + |a1|~ 3, |c|~=l and 0 ya1p 8y
I /or ail ô.

c

The proof of the theorem is given in Section 2. It is a lengthy exercise in
Galois coverings ([11]). The so called BHV-bazar (see [12], [6] and [3], 10.8) is

used to detect some représentation-infinité full subcategories of the universal
cover of A. Of course one can also use the technique of cleaving diagrams ([3], 3).

Indeed, to condense the argument we use lemma 7.7 of [3] which is obtained by
this technique. However, in a first approach the criterion of [6] and the lists of [5]
convinced me of the truth of the theorem.

To end this introduction, we mention some more or less immédiate but
interesting conséquences which are proved in the last paragraph.

COROLLARY 1. A distributive category is locally représentation -finite iff so is

Us standard form. In that case the Auslander-Reiten quivers coincide.

COROLLARY 2. A mild représentation-infinité category contains no penny-
farthing provided its ray-category has no infinité chain.

Therefore, such a category is standard by [3], 9.6.

COROLLARY 3. A représentation-finite algebra of finite dimension that has a

faithful indécomposable is standard.

This shows that the détermination of the almost split séquences of
representation-finite algebras is reduced to the standard case, hence by Galois-
coverings to simply connected faithful algebras. Namely, let X be an indécomposable

of maximal dimension occurring in the almost split séquence 0 -&gt; M —&gt; N -&gt;

L —» 0. Then the annihilator of X annihilâtes M, N and L.

2. The proof of the theorem

Throughout this section, A satisfies the requirements of the theorem stated
before a).
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2.1. We remind the reader how to construct the universal cover A of A
([7], 3.3).

First one takes the universal cover QA of QA with respect to some base point
x0 (we can assume that A is connectée!). Given an essential contour (v, w)
([3], 2.7) of A, one chooses a walk u from x0 to the start of v. The Gabriel quiver
Qâ of A is the quotient of ÔA by the normal subgroup of the fundamental group
of Qa generated by ail u~lv~1wu gotten in the above manner. Finally, the idéal
of kQji defining A is generated by ail lifted non-stable paths and différences v - w
obtained from contours. In the terminology of [3], 10.1-2, A is the linearization
fc(A) of the universal cover of the ray-category A.

The point is that Â is Schurian, directed and interval-finite and it satisfies

11^=0 (see [7] for the définitions). This is shown in [7] if A is locally
representation-finite. In the other case we look at Â A/I where I is the idéal
generated by p3. Since A and Â hâve the same essential contours we get
Q\ Qâs whence Â is directed and interval-finite. It is Schurian because A is

distributive, and HXA =0 follows from [3], 10.1.

Clearly, we may assume that A and any full subcategory is defined by
commutativity and zéro-relations. To prove the theorem we hâve to show that
certain cases cannot occur, e.g. n&gt;3 in our penny-farthing. To this aim we pick
always an appropriate représentation-infinité full subcategory M of Â which does

not contain p3. This condition implies that M fully embeds into A (use for
instance [3], 7.7). Usually, we describe M by its Gabriel quiver and we indicate
the zéro-relations by

The next useful lemma is well-known for representation-finite algebras whose
Auslander-Reiten quiver has no oriented cycle ([8], 5.1).

LEMMA. Under the above hypothèses any path from x to y in QA is stable

provided Â(x,

Proof. Suppose not. We choose x, y € Â not satisfying the statement so that
the convex hull M of x and y is as small as possible. Since Â has no closed chain,

HtM 0 by [6], 2.2. Thus ail points of M are separating ([7], [6]). In particular,
the radical R of the indécomposable projective corresponding to x has to be

indécomposable. So we can suppose that there is no arrow x —» y.

By the minimality of M, the arrows starting in x fall into two non-empty
disjoint subsets St and S2, where aGSt (resp. a e S2) if vâ^ 0 (resp. vâ= 0) for ail
paths leading from the end of a to y. Let Rx be the submodule of JR generated by
ail â,ae Sr We claim R R1($R2 which is the wanted contradiction.

Of course, R R1 + R2. If the sum is not direct, there are two arrows

at :x -* z, in S, and two paths vt : z, -» t so that î^^ 0 for i 1, 2. Choosing a

path w : f —&gt; y we get 0 ^ wi^c^ wi)2a2) which is impossible.
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2.2. In this paragraph we reduce to the case n 2.
First we claim that A contains the full subcategory M given in Figure 2.2.1,

where 7r(aO a, for ail i and /.

a2 ^ a2
n_1 - a1

3 *

j2 -&apos;o

»3 n1 —

•r

Figure 2.2.1

Indeed, Q^ has the above quiver as a subquiver and it only remains to show
that QM has no additional arrows.

By Lemma 2.1 and the zéro-relation ai_i —&gt; al -* al we hâve M(a&amp; al) 0.

Any non-zero morphism from aj to any other point factors through aj -&gt; al or
through aJ-&gt; a{, and any arrow x —» al gives rise to an oriented cycle. From
al~* a30 and Lemma 2.1 we infer M(aï, a}) 0 for ail 0&lt;k &lt;n-l, l&lt;j&lt;n-1.
Similarly, M(aj, al) ± 0 would contradict aj Since the left rectangle in
Figure 2.2.1 is conjugate to the right one there are also no maps between al and
the

ag

a^

a?&apos;.,

Now

-a?

l&lt;|&lt;n

M(aj, a]
-1

\l
al

0 for
&lt;-al

^al

some

^al
-&gt; ai

1&lt;/, k&lt;n-l gives rise to a closed chain

f al)^0 inducesal in M. In the same vein, M(af,

By Lemma 2.1 and the zéro-relation a*_i —* al -* a\, we get M(a}, al) 0

M(al, a?) for ail 0 &lt; / ^ n -1. The remaining possibilités are excluded by obvious
reasons.

Next, we treat case a) of the tjieorem, i.e. there is an arrow 0 : a0 —? b. We
show that the full subcategory N of A supported by the subquiver of Qâ given in
Figure 2.2.2 is représentation-infinité provided n&gt;3.

-a1n-2

Figure 2.2.2
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3i ao- ao&quot;

Q2

Figure 2 2 3

To abbreviate the proof that this figure gives also the quiver of N, we use the
fact that A (6, a,) 0. This is contained in the dual of Lemma 7.7 in [3], In the
sequel we refer to it as Lemma 7.7.

The arrow al -&gt; b2 implies N(aJ, 52) 0 for ail j&gt;2, and the closed chain
a,1 —» b2 &lt;— al -» al «- a* —&gt; b2 excludes the case a] —» b2. For rc &gt;4, N con-
tains a représentation-infinité category of type 2 in the list of [3], 10.8. If n equals
3, N belongs to the family 40.

In the case b) of the theorem we choose a stable path a0 —» ax -» • • • —? a, —*

c with cjéP so that i is as small as possible. For / 1,2, let N, be the full
subcategory of A supported by Q, (see Figure 2.2.3). If i&gt;2, Nx is given by Qr
and no relation. In the other case N2 has quiver Q2 and it is defined by the
indicated relation (see Figure 2.2.3). Therefore, it contains an algebra of the
family 4 or it belongs to the family 43. The vérification of the détails is left to the
reader. One needs the same type of arguments as in case a).

2.3. To make the computations easier, we introduce the category À Ali
where I is the idéal defined by I(x, y) 0 if (x, y) belongs to
X: {(a0, a0), (a0, ax), (al9 a0)} and I(x, y) (Rad2 A) (x, y) otherwise.

To see that I is an idéal, we only hâve to show A(v, y)I(u, v) A(x, u) 0 for
(x, y)eX and u, v arbitrary. First take x a0. If {m, v}£{a0, ax} we are done by
Lemma 7.7. In the other case we hâve I(w, u) 0or Rad2 A(a1? a^Afao, at) 0.

So, take x ax and y a0. For v a0 we obtain I(u, v) 0 or I(u, ao)A(al9 u) ç
w) 0, where I(u, ao)GA(al9 a0) A(u, at) because a2 and
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p are the only arrows ending at a0 (look at the separated quiver in case a)). If
vi= a0 we get similarly A(v, ao)I(u, v)A(a1, u) ^A(au ao)(Rad2 A) (x, y) which is

zéro.
The point is that the universal cover A of À is easy to handle because À is

defined by zéro relations and by p2 a2al. Of course, À has the same Gabriel
quiver as A.

2.4. We are ready to prove part a) of the theorem. Looking at the separated
quiver, we infer |ao|+ + |aor 5 and that there exists no arrow a1 —» b. Assume
that there is an arrow d -» b, d —» ax or an additional arrow ax —» d. Then Figure
2.4 shows représentation-infinité full convex subcategories of A which do not
contain p3. They belong to the families 12, 24 and D6,i,o of the list in [3], 10.8.

Now we restrict to case i), that means there exists an arrow ax —» c. If there
would be an arrow d —» c in QA, A would contain a member of family 20.

Therefore, the quiver of the full subcategory M of Â with support {a0, au fc, c} is

given by the figure in part a) i) of the theorem. We infer 0 /3p /3a2= 7«i
because otherwise M contains a category of type D5 10, 23 or 11.

If ôy^O for some 8:c -» d we consider the full subcategory N of A with
support {a0, au b, c, d} and we divide it by the idéal generated by ail ejS. Then 8y
is not annihilated in the residue-category N and N contains an algebra of the
family 20. An analogus argument using a member of family 12 shows that 6/3 0

for ail arrows ô. The proof of part i) is complète. In fact, we hâve also shown part
ii) as one vérifies easily.

d°

¦8- é-

Figure 2.4
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2.5. In the proof of part b), we look first at the same residue-category as in
2.3. We infer |ax|+ 2 in the same way as in the beginning of 2.4.

Next, we claim that dim A(c, c) 1. Otherwise, by Lemma 7.7 the quiver QM
of the full subcategory M supported by {a0, al9 c} is obtained by adding a loop 8

in c to the subquiver of Q given in part b). The residue-category defined by
Ô2 Ô7=O has in its universal cover an algebra of type 21.

We define I(x, y) 0 for (x, y)e Y {(a0, a0), (a0, a^, (ao,c)9 (a^ajj) and

I(x, y) (Rad2 A) (x, y) otherwise. Similarly to 2.3 one vérifies that I is an idéal.
To see A(v, c)I(u, v)A(aQ, m) 0 one has to use \ax\+ 2 and dim A(c, c) 1.

Considering the universal cover of À=A/I we infer that |a1|~ |c|~= 1,

because A cannot contain a member of the family 21. For the same reason we
hâve

To obtain 8y 0 for any arrow 8 : c —» d one looks at the full subcategory
with support {a0, al5 c, d}. Its universal cover contains an algebra of type 21 again,
if 0^0.

The proof of the theorem is complète.

3. Conséquences of the theorem

3.1. Let A be the category with Gabriel quiver a\ ^-^r a^J
defined by the relations 0 a2OL1-p2= Pa2 ya1 ^p p4= U L

a!(l-p)a2. Then its standard form A1 has the same Gabriel quiver,^ *

but it is defined by 0 a2a1-p2 j3a2= 7«i Pp oc1a2&apos;

As usual we write P(x) or I(x) for the projective or injective indécomposable
corresponding to a point x.

We claim that Figure 3.1 gives for A and A1 that part of the Auslander-
Reiten quiver which contains ail indécomposables not annihilated by p3, namely
P{a0) and I(a0). Hère &gt;indicates the translation, X dénotes I(a0)/Soc I(a0), Y
is the obvious indécomposable and &lt;p, $ are the obvious irreducible maps.

Indeed, P(b) is simple projective so that the almost split séquence starting at

P(b) is the drawn one. Thus X is the translate of P(a0) and the almost split

Figure 3.1
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séquence starting at P(aQ) is also correct. If an indécomposable U is not killed by
p3, it admits a map x&apos;-P(^o) —* U with 0^x(p3)e U(ao). By the définition of
almost split séquences we get x &lt;p&apos;&lt;? + $&apos;$ for some maps &lt;p&apos;:I(a0) -* 1/ and
itf&apos;.Y-» U provided U -* P(a0). From i^r(p3) 0 we conclude that &lt;p&apos;&lt;p(p3)

*(p3)^0, hence that U^&gt; I(a0).
Since A/(p3) -^ Axl{p3) it follows that A and A1 are both representation-finite

and hâve the same Auslander-Reiten quivers. The same reasoning applies for the

two algebras arising in case ii) of part a).

3.2. Similarly, look at the quiver
and define A1 by 0 p1-a2a1= 7«iP
and A by 0 p2 — a2ax ya1p p4==a

This time, it is easy to describe the part of the Auslander-Reiten quivers
containing ail modules not killed by a1pa2, namely P(ax) and Iia^. The resuit is

given in Figure 3.2 and the proof proceeds as befofe. From
A/{a1pa2) -^ A 1l(a1pa2) we infer again that the Auslander Reiten quivers coin-
cide.

Figure 3.2

3.3. In this section we prove Corollary 1.

Arguing as in the proof of [3], 9.7 we can assume that A is finite. Thus, let A
or A1 be representation-finite. Then Â-^ A1 has no infinité chain. Moreover,
proceeding by induction on dim A and using the correpondence between ideals of
A and A1 (see [3]), we conclude that A and A1 are mild.

If A1 contains no penny-farthing we hâve A -^ A1 by [3], 9.5. So, let P be a

penny-farthing of A1. We use the notation of the introduction.
Now, A(a0, y)^0 for some y^Piff A1(a0, y)^0 for some y£P (use the

construction of A1 given in [3], 1.7 and 1.11). In that case, part a) or part b) of
our theorem applies to A1. Thus we can split ofï the points b and c into a
&quot;receiver&quot; and an &quot;emitter&quot; ([4]). The resulting catégories A1 and A1&apos; are
decomposed into direct sums A&apos; At 11A2 and A * A \ 11 A\. Hère we are in the
situation of 3.1, 3.2 or induction applies. Our statement about A and A1 follows
from the close relationship between mod A and mod A&apos; respectively mod A1 and
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modA1&apos; (see [4]). It is even so that A and A1 hâve the same number of
isomorphism classes of indécomposables.

By duality, we are reduced to the case A(a0, y) A (y, ao) A\a0, y)
A \y, a0) 0 for ail y i P. But then the P(ao)&apos;s are injective in mod A and mod A \
By [9], page 404, the P(ao)&apos;s are the only indécomposables not annihilated by p3.

Because of (A/&lt;73))1 -=* A1/^3) induction applies.
The statement about the Auslander-Reiten quivers is well-known. But with a

little more effort, the above proof can be refined to show this directly.

3.4. In the proof of Corollary 2 we can assume that A is standard, because A
is mild ifï A1 is so (see [3], 9.7). Moreover, there is no projective-injective by [9].
Thus, if A contains a penny-farthing, we can suppose that up to duality we hâve a

décomposition A&apos; A1IIA2 as in 3.3 above, where A2 is a proper quotient of A
and Ax a quotient of the catégories considered in 3.1 and 3.2. But thèse are
representation-finite by [6] and so is A&apos;. We conclude that A is representation-
finite by [4] in contradiction to our hypothesis.

3.5. Finally, let U be a faithful indécomposable of a representation-finite
non-standard algebra A. Then A contains a Riedtmann-contour ([3], 9.2) by [3],
9.5. Up to duality, we are dealing with a quotient of one of the catégories in 3.1

or 3.2. But then U is annihilated by p3 or by
Note. In the meantime, Fischbacher has shown that the universal cover of a

ray-category having no infinité chain is interval-finite. Combining this with [3], [6]
and this paper one gets a numerical version of the Second Brauer-Thrall
conjecture. Moreover, one can skip parts of Section 2.1 of this note. Also, as was

pointed out by the référée, one can give an elementary proof of the main theorem
of this article which uses only some Galois-coverings of representation-finite full
subcategories of quotients of A.
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