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Indecomposables are standard

KrLAUus BONGARTZ

The study of representation-finite algebras over an algebraically closed field is
more complicated in characteristic 2 because not all algebras are standard
([3],[14]). We show that this phenomenon disappears if a representation-finite
algebra has a faithful indecomposable module.

It follows that the proofs of the second Brauer-Thrall conjecture via coverings
work in any characteristic (for a different approach see [13]). There are two such
proofs which both depend heavily on the work of Bautista, Gabriel, Roiter and
Salmerén on multiplicative bases ([3]). The first proof is due to Bautista, the
second to Fischbacher ([2], [10]).

Furthermore, we obtain a direct proof of an important theorem in [3], which
says that a distributive algebra is representation-finite if and only if so is its
standard form.

1. Statement of the results

This note is intimately related to [3]. In fact, we merely refine the results on
penny-farthings given there.

For the convenience of the reader we recall briefly some of the definitions and
results of [3] in a form which is sufficient for our purposes. The following
notations and conventions will be kept throughout the paper.

So, let k be an algebraically closed field. We are interested in distributive
categories A ([3], 1.3). Such a category is isomorphic to kQ/I", where kQ is the
path category ([3],1.1) of the Gabriel quiver Q=Q, ([3],1.1) and I™ is an
admissible ideal ([3], 1.1). It is well-known that I™ depends on the choice of some
presentation 7 ([3], 1.1), whereas Q is given canonically. A path w of Q is stable
if w¢ I for all 7. In that case, the depth ([3], 1.1) of the image w in A ([3], 1.1) is
independent of 7 ([3],2.1). A contour of A is a pair (v, w) of two stable paths in
Q having the same depth and the same starting and ending points. For each
distributive category A, there is its standard form A'=kQ/I where I is generated
by the non-stable paths and the differences v —w obtained from all contours.

400



Indecomposables are standard 401

Figure 1

We are studying a special kind of contours called penny-farthings for obvious
reasons. Namely, the subquiver P of Q that supports the arrows of a penny-
farthing (a,, - - * asay, p?) has the shape given in Figure 1. Moreover, we ask the
full subcategory of A living on P to be defined by P and one of the following two
systems of relations

_ 2 _ _
0=a, - aa;—p"=a,a, S Qpy " o P, Ay OF
_ 2 _ —
O_an R . 574 2 ¢ -alan—-alpan_af(i)' T Oopay, Ry,
where f:{1,2,...,n—1}—>{1,2,...,n} is some non-decreasing function (see
[3], 2.7).

Note that we look at left modules and that we write the composition from the
right to the left.

To state our main result we denote by |x|* and |x|™ the number of arrows of Q
starting and ending at the point x respectively.

THEOREM. Let A =A"' be a mild ([3],1.4) category so that the associated
ray-category A ([3], 1.7) contains no infinite chain ([3], 1.12). Suppose that a
penny-farthing as in Figure 1 occurs as a contour of A.

a) If there exists an arrow B :ay, — b not contained in P, then n =2 and we are
in one of the following two situations:

i) a4 e:":.i"i @p is a subquiver of Q. We have |ao|* +|ag| =5, |a |" +|a,| =3,
lv 1 lg |bI"=]c|"=1 and 0= Ba,=ya;= Bp = 6B = 8y for all arrows
6.
c b

ii) a, % a@p is a subquiver and we have |ag|* +|ao|™ =5, |a.|" +]a,|" =2,
lﬂ |b|"=1 and 0= Bp =8B for all 8.

b
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b) If |ag|"+|ag =4 and A(ay, y)#0 for some y¢ P, then n=2 and the
following holds:

az e .
a2 a/(,D is a subquiver of Q,lay|"+|a;|"=3, |c| =1 and 0= ya,p =8y
ly for all 8.

C

The proof of the theorem is given in Section 2. It is a lengthy exercise in
Galois coverings ([11]). The so called BHV-bazar (see [12], [6] and [3], 10.8) is
used to detect some representation-infinite full subcategories of the universal
cover of A. Of course one can also use the technique of cleaving diagrams ([3], 3).
Indeed, to condense the argument we use lemma 7.7 of [3] which is obtained by
this technique. However, in a first approach the criterion of [6] and the lists of [5]
convinced me of the truth of the theorem.

To end this introduction, we mention some more or less immediate but
interesting consequences which are proved in the last paragraph.

COROLLARY 1. A distributive category is locally representation-finite iff so is
its standard form. In that case the Auslander-Reiten quivers coincide.

COROLLARY 2. A mild representation-infinite category contains no penny-
farthing provided its ray-category has no infinite chain.

Therefore, such a category is standard by [3], 9.6.

COROLLARY 3. A representation-finite algebra of finite dimension that has a
faithful indecomposable is standard.

This shows that the determination of the almost split sequences of
representation-finite algebras is reduced to the standard case, hence by Galois-
coverings to simply connected faithful algebras. Namely, let X be an indecompos-
able of maximal dimension occurring in the almost split sequence 0 > M — N —
L — 0. Then the annihilator of X annihilates M, N and L.

2. The proof of the theorem

Throughout this section, A satisfies the requirements of the theorem stated
before a).
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2.1. We remind the reader how to construct the universal cover A of A
(7],3.3). 3

First one takes the universal cover Q, of Q, with respect to some base point
X, (we can assume that A is connected!). Given an essential contour (v, w)
([3],2.7) of A, one chooses a walk u from x, to the start of v. The Gabriel quiver
Qj of A is the quotient of éA by the normal subgroup of the fundamental group
of Q, generated by all u~'v™'wu gotten in the above manner. Finally, the ideal
of kQjy defining A is generated by all lifted non-stable paths and differences v —w
obtained from contours. In the terminology of [3], 10.1-2, A is the linearization
k(A) of the universal cover of the ray-category A.

The point is that A is Schurian, directed and interval-finite and it satisfies
H,A=0 (see [7] for the definitions). This is shown in [7] if A is locally
representation-finite. In the other case we look at A = A/I where I is the ideal
generated by > Since A and A have the same essential contours we get
Q; = Qz, whence A is directed and interval-finite. It is Schurian because A is
distributive, and H,A =0 follows from [3], 10.1.

Clearly, we may assume that A and any full subcategory is defined by
commutativity and zero-relations. To prove the theorem we have to show that
certain cases cannot occur, €.g. n=3 in our penny-farthing. To this aim we pick
always an appropriate representation-infinite full subcategory M of A which does
not contain p>. This condition implies that M fully embeds into A (use for
instance [3], 7.7). Usually, we describe M by its Gabriel quiver and we indicate
the zero-relations by - - - -.

The next useful lemma is well-known for representation-finite algebras whose
Auslander—Reiten quiver has no oriented cycle ([8], 5.1).

LEMMA. Under the above hypotheses any path from x to y in Qjy is stable
provided A(x,y)#O0.

Proof. Suppose not. We choose x, ye A not satisfying the statement so that
the convex hull M of x and vy is as small as possible. Since A has no closed chain,
H,M =0 by [6], 2.2. Thus all points of M are separating ([7], [6]). In particular,
the radical R of the indecomposable projective corresponding to x has to be
indecomposable. So we can suppose that there is no arrow x — y.

By the minimality of M, the arrows starting in x fall into two non-empty
disjoint subsets S; and S,, where a € S, (resp. a € S,) if va# 0 (resp. va = 0) for all
paths leading from the end of a to y. Let R; be the submodule of R generated by
all @, a € S;. We claim R = R,® R, which is the wanted contradiction.

Of course, R=R;+R,. If the sum is not direct, there are two arrows
a;:x — z; in S; and two paths v;:z; — t so that 0,a;# 0 for i =1, 2. Choosing a
path w:t — y we get 0 # wo,a; = wv,a,, which is impossible.
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2.2. In this paragraph we reduce to the case n =2.
First we claim that A contains the full subcategory M given in Figure 2.2.1,
where w(al)=aq; for all i and j.

2
R ale—al a)
4 [3 1 1
i i Sap-jm— - — =3,
1 ,
V4
’/
3
B
Figure 2.2.1

Indeed, Q; has the above quiver as a subquiver and it only remains to show
that Q,, has no additional arrows.

By Lemma 2.1 and the zero-relation al_;, — a3 — a3 we have M(ag, a3)=0.
Any non-zero morphism from aj to any other point factors through ay — a3 or
through aj— aj, and any arrow x — a} gives rise to an oriented cycle. From
a} — a3 and Lemma 2.1 we infer M(az,a})=0forall0=sk=n—-1,1<j=n-1.
Similarly, M(a;, a3)# 0 would contradict ay — aj. Since the left rectangle in
Figure 2.2.1 is conjugate to the right one there are also no maps between aj and
the a?s, 1<j=n-1.

Now M(a},ap)#0 for some 1=<j k=n-—1 gives rise to a closed chain
a2 — a} < a! - a} < a2 — a? in M. In the same vein, M(a?, a})# 0 induces
a3 — ag <« a} - aj « ay — ag.

By Lemma 2.1 and the zero-relation a,_, — aj — a3, we get M(a/,a3})=0=
M(a3, a}) for all 0=<j=<n— 1. The remaining possibilities are excluded by obvious
reasons.

Next, we treat case a) of the theorem, i.e. there is an arrow B:a, — b. We
show that the full subcategory N of A supported by the subquiver of Q; given in
Figure 2.2.2 is representation-infinite provided n = 3.

2 e 2 2
al_y- ag b
1
ay a3 y a4 an-2
4
4
Ve
I,
3
A

Figure 2.2.2
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2

?[o
4 3 1
Q;: g Ph-———-—-- "“—1’1““‘—3.1
N
b2
2 12
8 q------ - S a
021
4 3 1
30 a - a1 8n-2
/’
//
3/
G
Figure 2.2.3

To abbreviate the proof that this figure gives also the quiver of N, we use the
fact that A(b, a;)=0. This is contained in the dual of Lemma 7.7 in [3]. In the
sequel we refer to it as Lemma 7.7.

The arrow a3 — b? implies N(al, b*)=0 for all j=2, and the closed chain
a} = b> « a} — a3 < a} = b? excludes the case a}! — b2 For n=4, N con-
tains a representation-infinite category of type 2 in the list of [3], 10.8. If n equals
3, N belongs to the family 40.

In the case b) of the theorem we choose a stable patha, — a; — -+ > a; —>
c with c¢ P so that i is as small as possible. For j=1,2, let N; be the full
subcategory of A supported by Q, (see Figure 2.2.3). If i=2, N, is given by Q,
and no relation. In the other case N, has quiver Q, and it is defined by the
indicated relation (see Figure 2.2.3). Therefore, it contains an algebra of the
family 4 or it belongs to the family 43. The verification of the details is left to the
reader. One needs the same type of arguments as in case a).

2.3. To make the computations easier, we introduce the category A = A/I
where I is the ideal defined by I(x,y)=0 if (x,y) belongs to
X:={(ao, ao), (ag, ay), (ay, ag)} and I(x, y)=(Rad? A) (x, y) otherwise.

To see that I is an ideal, we only have to show A(v, y)I(u, v) A(x, u)=0 for
(x,y)e X and u, v arbitrary. First take x = a,o. If {u, v} ¢ {a,, a,} we are done by
Lemma 7.7. In the other case we have I(u, v) =0 or Rad®* A(a,, a;)A(ay, a;)=0.
So, take x =a, and y = a,. For v = a, we obtain I(u, v) =0 or I(u, ag)A(a, u)<
A(a,, ag)A(u, a,)A(a,, u)=0, where I(u, ap) < A(a,, ap) A(u, a,) because a, and
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p are the only arrows ending at a, (look at the separated quiver in case a)). If
v# ao we get similarly A (v, ag)I(u, v)A(aq, u) < A(a,, ag)(Rad? A) (x, y) which is
Zero.

The point is that the universal cover A of A is easy to handle because A is
defined by zero relations and by p?= a,a,. Of course, A has the same Gabriel
quiver as A.

2.4. We are ready to prove part a) of the theorem. Looking at the separated
quiver, we infer |ag|"+|ag]” =5 and that there exists no arrow a, — b. Assume
that there is an arrow d — b, d — a, or an additional arrow a; — d. Then Figure
2.4 shows representation-infinite full convex subcategories of A which do not
contain p>. They belong to the families 12, 24 and 136,1,0 of the list in [3], 10.8.

Now we restrict to case i), that means there exists an arrow a, — c. If there
would be an arrow d — ¢ in Q,, A would contain a member of family 20.
Therefore, the quiver of the full subcategory M of A with support {a,, a,, b, ¢} is
given by the ﬁgure in part a) i) of the theorem. We infer 0= Bp = Ba, = ya,
because otherwise M contains a category of type D5 10023 or 11.

K 8y#0 for some 8:c — d we consider the full subcategory N of A with
support {ay, a;, b, ¢, d} and we divide it by the ideal generated by all €B8. Then &y
is not annihilated in the residue-category N and N contains an algebra of the
family 20. An analogus argument using a member of family 12 shows that §8=0
for all arrows 8. The proof of part i) is complete. In fact, we have also shown part
ii) as one verifies easily.

aj 3} b d’ d! al a) !
l )
\
N
N
N
3 2 0 AN 2 0
4 % o a 3 sl
// ’/
Vd 7/
» 4 /
// //
2 ?
a Lol
1
3 2 0 ,
a3 ag al 0

Figure 2.4
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2.5. In the proof of part b), we look first at the same residue-category as in
2.3. We infer |a,|" =2 in the same way as in the beginning of 2.4.

Next, we claim that dim A(c, ¢) = 1. Otherwise, by Lemma 7.7 the quiver Q,,
of the full subcategory M supported by {a,, a,, c} is obtained by adding a loop &
in ¢ to the subquiver of Q given in part b). The residue-category defined by
82=8y=0 has in its universal cover an algebra of type 21.

We define I(x,y)=0 for (x,y)e Y ={(ao, a), (ay, a1), (ao, ¢), (a,, ap)} and
I(x, y)=(Rad? A) (x, y) otherwise. Similarly to 2.3 one verifies that I is an ideal.
To see A(v, ¢)I(u, v)A(aq, u) =0 one has to use |a;|"=2 and dim A(c, ¢) = 1.

Considering the universal cover of A =A/I we infer that |a | =|c|" =1,
because A cannot contain a member of the family 21. For the same reason we
have ya,p=0.

To obtain §;=0 for any arrow 6:c — d one looks at the full subcategory
with support {a,, a4, ¢, d}. Its universal cover contains an algebra of type 21 again,
if 8y+#0.

The proof of the theorem is complete.

3. Consequences of the theorem

oy p

3.1. Let A be the category with Gabriel quiver a2 a@
defined by the relations 0=a,a;—p’>=Ba,=ya;=Bp= pt= ly le
a(1—p)a,. Then its standard form A’ has the same Gabriel quiver,
but it is defined by 0 = a,a,— p>= Ba,= ya, = Bp = a a,. ¢

As usual we write P(x) or I(x) for the projective or injective indecomposable
corresponding to a point x.

We claim that Figure 3.1 gives for A and A' that part of the Auslander—
Reiten quiver which contains all indecomposables not annihilated by p>, namely
P(a,) and I(ay). Here------ »indicates the translation, X denotes I(ay)/Soc I(a,), Y
is the obvious indecomposable and ¢, ¢ are the obvious irreducible maps.

Indeed, P(b) is simple projective so that the almost split sequence starting at
P(b) is the drawn one. Thus X is the translate of P(a,) and the almost split

b

Pb) — — — —m — — — I(ay)
P(ao) ‘‘‘‘‘‘‘‘‘‘‘ —=X
N /
Y

Figure 3.1
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sequence starting at P(a,) is also correct. If an indecomposable U is not killed by
p3, it admits a map x:P(ae) — U with 0# x(p®)e U(ay). By the definition of
almost split sequences we get x = ¢'¢ + ¢’y for some maps ¢':I(ap) > U and
¢':Y — U provided U — P(a,). From ¢(p3)=0 we conclude that ¢'¢(p?)=
x(p?) #0, hence that U = I(a,).

Since A/{p>) = A'/{p>) it follows that A and A® are both representation-finite
and have the same Auslander-Reiten quivers. The same reasoning applies for the

two algebras arising in case ii) of part a).

a, d
a, =2 a@

3.2. Similarly, look at the quiver
and define A* by 0=p*—aa, = yalp a0, ly
and A by 0=p?—a,a;=yap=p*=a,a,~ apa,. ¢

This time, it is easy to describe the part of the Auslander—Reiten quivers
containing all modules not killed by a,pa,, namely P(a,) and I(a,). The result is
given in Figure 3.2 and the proof proceeds as befote. From
Al{aipaz) = A'/{a;pas) we infer again that the Auslander Reiten quivers coin-
cide.

P(a1)__/_.._ - > X
\Y
Figure 3.2

3.3. In this section we prove Corollary 1.
Arguing as in the proof of [3], 9.7 we can assume that A is finite. Thus, let A

or A! be representation-finite. Then A = AT has no infinite chain. Moreover,
proceeding by induction on dim A and using the correpondence between ideals of
A and A?! (see [3]), we conclude that A and A! are mild.

If A' contains no penny-farthing we have A > A' by [3], 9.5. So, let P be a
penny-farthing of A'. We use the notation of the introduction.

Now, A(ae, y)#0 for some y¢ Piff A'(ay, y)#0 for some y¢P (use the
construction of A' given in [3], 1.7 and 1.11). In that case, part a) or part b) of
our theorem applies to A'. Thus we can split off the points b and c into a
“receiver” and an ‘“emitter” ([4]). The resulting categories A’ and AY are
decomposed into direct sums A'=A; 1A, and AV=A11lAL Here we are in the
situation of 3.1, 3.2 or induction applies. Our statement about A and A follows
from the close relationship between mod A and mod A’ respectively mod A* and
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mod AV (see [4]). It is even so that A and A' have the same number of
isomorphism classes of indecomposables.

By duality, we are reduced to the case A(ao, y)=A(y, ap)=Aa,, y)=
A'(y, ag) =0 for all y¢ P. But then the P(a,)’s are injective in mod A and mod A®.
By [9], page 404, the P(a,)’s are the only indecomposables not annihilated by p>.
Because of (A/{(¥3))* = A'/{p>) induction applies.

The statement about the Auslander—Reiten quivers is well-known. But with a
little more effort, the above proof can be refined to show this directly.

3.4. In the proof of Corollary 2 we can assume that A is standard, because A
is mild iff A" is so (see [3], 9.7). Moreover, there is no projective-injective by [9].
Thus, if A contains a penny-farthing, we can suppose that up to duality we have a
decomposition A’= A, I A, as in 3.3 above, where A, is a proper quotient of A
and A, a quotient of the categories considered in 3.1 and 3.2. But these are
representation-finite by [6] and so is A’. We conclude that A is representation-
finite by [4] in contradiction to our hypothesis.

3.5. Finally, let U be a faithful indecomposable of a representation-finite
non-standard algebra A. Then A contains a Riedtmann-contour ([3], 9.2) by [3],
9.5. Up to duality, we are dealing with a quotient of one of the categories in 3.1
or 3.2. But then U is annihilated by p> or by a;pa,.

Note. In the meantime, Fischbacher has shown that the universal cover of a
ray-category having no infinite chain is interval-finite. Combining this with [3], [6]
and this paper one gets a numerical version of the Second Brauer—Thrall
conjecture. Moreover, one can skip parts of Section 2.1 of this note. Also, as was
pointed out by the referee, one can give an elementary proof of the main theorem
of this article which uses only some Galois-coverings of representation-finite full
subcategories of quotients of A.
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