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Lefschetz fixed point theorem for intersection homology

MARk GOREsSkY” and ROBERT MACPHERSON®

§1. Introduction

In this paper we give some formulas for the Lefschetz numbers in intersection
in homology of a class of “placid” self maps of singular spaces. A placid self map
f:X — X induces a self homomorphism

i, : IHF(X) — THF(X)

on the intersection homology IH?(X) of X. Its (intersection) Lefschetz number
IL(f) is given as usual by the formula

IL(f)= Y (= 1) Trace (fx)

We show that both the graph of f and the diagonal carry fundamental classes in
the intersection homology of X X X, and that the Lefschetz number IL(f) is the
intersection number of these two classes. This is exactly the procedure originally
used by Lefschetz to study fixed points in manifolds using ordinary homology [L].
So the results of this paper can be viewed as an addition to the series of theorems
which show that the intersection homology of a singular space behaves like the
ordinary homology of a smooth variety (see [CGM], [GM 4]).

Let X be an n dimensional Witt space. (See §2 for the definition of a Witt
space. Any complex analytic variety of pure dimension k is a 2k dimensional Witt
space.) A self map f of X is called placid if X can be stratified so that the
dimension of the inverse image of each stratum is at most the dimension of that
stratum. For example, all maps of manifolds are placid and all flat maps of
algebraic varieties are placid. The induced map

fa, : IHT(X) = IH7(X)

! Partially supported by a grant from the Alfred P. Sloan Foundation and National Science
Foundation grant #MCS 82-01680.
2 Partially supported by National Science Foundation grant #MCS 82-02334.
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Lefschetz fixed point theorem for intersection homology 367

on the middle intersection homology groups IH'(X) of X may be defined by
observing that with appropriate stratification the image of an allowable cycle in
the sense of [GM 1] is still allowable.

Our approach hinges on the fact that the graph G(f) < X X X and the diagonal
A © X x X carry fundamental classes [G(f)] and [A] in TH?(X X X), where n is
the dimension of X. This fact is rather surprising since G(f) and A are usually not
allowable as cycles for middle intersection homology. For example, if pe X is an
isolated singularity, then A goes through the stratum p X p, but allowable n-cycles
in X X X must miss all zero dimensional strata. Our solution to this difficulty is to
show that G(f) and A can be “moved slightly” to allowable cycles in a unique
way (up to homology). We make this precise in two ways:

1) There is a larger perversity p (see §3) for which A and G(f) are allowable
as cycles for IH?(XxX) and for which IH?(XxX)— IH?(XxX) is an
isomorphism (Proposition 4.2). Then [G(f)] and [A] are the IH7}(X X X) elements
which map to these cycles.

2) Let N(G(f)) and N(A) be regular neighborhoods of G(f) and A. Then
there are unique classes [G(f)]€ IHR(N(G(f))) and [A]e IH}(N(A)) that restrict
to their usual fundamental classes in the nonsingular parts of N(G(f)) and N(4).
(See Theorem 5.2.)

Like any two intersection homology n-cycles in a 2n dimensional Witt space,
[G(f)] and [A] have an intersection number [G(f)]-[A]

THEOREM I (86). IL(f)=[G(f)]-[A]

One corollary of this theorem is that IL(f) can naturally be expressed as a sum
of contributions from the connected components of the fixed point set of f. In
particular, if f has no fixed points, then IL(f)=0. This corollary is not new; it
follows from the Lefschetz fixed point theorem of Verdier [GI]. Verdier’s
formula for IL(f) is less explicitly computable than Theorem I above, but it is
more general: it treats an arbitrary complex of sheaves S instead of the complex
IC* which gives rise to intersection homology, and it treates an arbitrary self map
f provided with a lift to S. (The lift may not be naturally induced by f.)

Probably there is no single ultimate Lefschetz fixed point theorem. There will
always be a trade-off between explicitness and generality. In this vein, we give two
more formulas for IL(f) which are still more computable, but which apply only to
special cases. If pe X is an isolated fixed point of f, then the cycles A and G(f)
intersect the link £ of (p, p) in X X X in disjoint n— 1 cycles which we denote by
4; and G (f).

THEOREM II (§89). If p is an isolated fixed point of f, then the contribution of p
to the Lefschetz number IL(f) is the linking number of [A.] and [G.(f)] in £Z.
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These linking numbers make sense because IH, (¥)=IH,(£)=0 (§8). (A
more explicit version of Theorem II for the case of algebraic curves is due to C.
Alibert [A].)

If p is an isolated fixed point of f, we call f contracting at p if there is a conical
open neighborhood N of p such that f takes the closure of N into N. For
example, if all the eigenvalues of the self map of the Zariski tangent space to X at
p have absolute value less than 1, then f will be contracting at p. If f is contracting
at p, then there is an induced map

fx, : [H(X, X — p) > IH(X, X —p)

THEOREM 111 (§12). If p is an isolated fixed point of f and f is contracting at
p, then the contribution of p to the Lefschetz number IL(f) is equal to

Z_ (—1) Trace (fy,).

Theorem III is proved by an explicit geometric computation of the linking
numbers of Theorem II. The class of [G; (f)] is decomposed into its Kunneth
components, each of which bounds a chain in £. Half of these chains meet |A]|
and the other half do not, for geometric reasons stemming from the fact that f is
contracting. The intersection numbers with [A,] of the half that meet it are the
terms of the summation formula of Theorem III. This is explained in detail in §11
and §12.

In Section 14, we give generalizations of the above theorems to the case where
the self map f is replaced by a placid self correspondence. This may be of interest
in the treatment of Hecke correspondences. We also treat the case of intersection
homology with perversities other than the middle one (§15).

We conclude the introduction with some speculations as to the form that a
more general Lefschetz fixed point theorem than the ones we state here might
take for a compact complex analytic variety X. Suppose that the self map f is
provided with a lift to a complex of sheaves S (i.e., we are given a map of
complexes from f*(S) to S). Then this data induces a global Lefschetz number
L(f, S), the alternating sum of the traces of the maps induced on hypercohomol-
ogy, and a local trace number Tr (p) at any fixed point p, the alternating sum of
the traces of the maps included on the stalk cohomology at p. We also note that f
induces a self map on the normal cone C to the fixed point set X7 of f.

CONJECTURE: If the fixed point set of C contains only X', then the Lefschetz
number L(X, S) is the Euler characteristics of X with coefficients in the constructible
function Tr (p).
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(See [Mac] for the definition of the Euler characteristic of a variety with
coefficients in a constructible function.) Note that this conjecture is compatible
with Theorem III above, since the stalk cohomology of IC" at p is just the
intersection homology of N. It is also compatible by analogy with Deligne’s
calculation of the Lefschetz number of the Frobenius map [DB].

More generally, we conjecture that the Lefschetz number of an arbitrary self
correspondence on a compact complex analytic variety lifted to a complex of
sheaves is given by the Euler characteristic of the fixed point set with coefficients
in some constructible function whose value at a point p of the fixed point set is
determined by local data.

We would like to thank John Milnor for useful conversations on the contents
of this paper and Armand Borel for suggesting substantial improvements in the
manuscript, and we would like to thank the Eidgenossiche Technische Hochschule
in Zurich for its hospitality.

§2. Conventions

Unless otherwise specified, the spaces X and Y will be compact oriented
subanalytic (or P.L.) pseudomanifolds and all maps between them will be sub-
analytic (or P.L.). By intersection homology we shall mean intersection homology,
with coefficients in the rational numbers Q, and with compact support.

- c—2
If no perversity is specified, we mean the middle perversity m(c) = [———], SO

. 2
we Wwrite
IH,(X) = IH7(X)

We shall also assume that X is a Witt space ([S], [GM 2]) which means that
there exists a stratification of X such that for each stratum of odd codimension c,

IH(c—l)/2(L; Q=0

where L is the link of the stratum.
For example every complex analytic variety is a Witt space since it can be

stratified by even dimensional strata.
It follows ((GM 2]) that

IH¥(X; Q) =IHx(X; Q)
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where 7 is the ‘“‘upper middle’ perversity,

o-[5]

and this intersection homology group satisfies Poincaré duality.

We refer to [GM 1] for the definitions of (rn, i)-allowability of cycles, geomet-
ric intersections etc., and to [GM 2] for Deligne’s construction of the sheaf of
intersection chains. We will use the sign conventions of Dold [D] VIII §13.

We shall also use ‘“‘relative” intersection homology IHT7(X, Y) where X is
compact and Y is open in X or else Y is a collared boundary of X. This group is
represented by (m, i)-allowable chains in X whose boundary lies in Y. (Alterna-
tively it is the hypercohomology with closed support of the restriction of the
intersection homology sheaf to X —Y). The relative Poincaré duality theorem
states that the intersection pairing

IHAX, Y)XIH"_ (X-Y)— Q

is nondegenerate.

§3. Intersection homology of products and joins

The Lefschetz fixed point theorem requires a knowledge of the global and
local (intersection) homological properties of X X X, since the graph of a self-map
of X lies in X X X. The link of a point (p, q) in X X X is the join of the link of p in
X and the link of q in X, and a neighborhood of (p, q) is the cone over this join.
(This is shown in §7 below). We study the intersection homology of products and
joins in this preliminary section.

We recall from [GM 2] §6.3 that it is X and Y are Witt spaces then the natural
homomorphism

D HHX)QIHI(Y)— IHH(XXY)

p+q=i
is an isomorphism. Furthermore, X X Y is again a Witt space. (This is proved in
[S], and also follows from Proposition 3.1 below.) So the natural homomorphism

IHE(X xY)— IHL(X X Y) is an isomorphism (here 7i(c)=[(c—1)/2)).

PROPOSITION 3.1. Suppose X and Y are compact Witt spaces of dimensions
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rand s. Let X * Y denote their join. Then if r=2R or 2R+1 and s =2S or 2S+1,
- Il ¢=|3
he, Ko [2] S [2]

IHg . s(X * Y) = IHg(X)Q IHs(Y)
and

IHg  s1(X * Y)=IHg.,s.2(X X Y)=0.

Proof. The intersection homology (with compact supports) of the open cone is

IH(X) for i=R

IH@x) = |
0 for i>R.

IH, (X * Y) may be calculated from the Mayer—Vietoris sequence for the covering

¢X XY, Xx8&Y of X * Y, which (using the Kunneth formula) is:

—_— @ A ———-)(SB Aq) (ﬁ} A,,)——> IH (X *Y)—>
i+j= i+j=k
i=R ji=S

where A;; denotes IH;(X)®IH;(Y). Note that ¢, is surjective for k=R +S+1
and injective for k=R +S+1.

The following technical lemma will be needed in the next section when we
show that the diagonal and the graph of a placid map lift canonically to the middle
intersection homology of X X X.

Suppose X and Y are stratified pseudomanifolds. Stratify X XY by the
product stratification. Define the following (stratum-dependent) perversities on
XXxY,

[cod (A)+cod (B) - 1] if cod(A)#cod (B)

2
p(AXB)=
+
[cod (A) : cod (B)] if cod(A)=cod(B)#0
. .

%_1 if codimB=0
G(A x B) =4 °————°d‘2m B 4 if codim A =0

codim A codim B .

> + 5 —2 otherwise.
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where A is a stratum of X, B is a stratum of Y, and [ ] denotes the “‘integer part”
function. Note that g=m =n <p.

COROLLARY 3.2. The natural maps
IXXY)> IHp(X X X)—> IHLXXY)—> [HYXXY)
are isomorphisms, if X and Y are Witt spaces.

Proof. In fact the natural map of sheaves I1G; — IC;, — 1C; — IG; are quasi-
isomorphisms. The middle arrow is a quasi-isomorphism since X XY is a Witt
space, as we noted at the beginning of this section.

If two perversites @ and b differ minimally, i.e., if they agree except for their
values on one stratum & where b(¥) = a(¥)+ 1, then to check that IC; — IC; is
a quasi isomorphism it suffices to check the vanishing of a certain intersection
homology group of the link of & (see [GM 2], §5.5). If they differ by more, this
technique can be applied inductively, one stratum at a time, starting with the
smallest ones. We proceed to check the relevant vanishing.

For the right hand arrow above, if codim A =codim B = C, the relevant group
is IH-_,(L, * Lg), where L4, Ly are the links of A and B. If C—-1=2R+1=
2S+1=R+S+1, this is zero by §3.1. If C—1=2R=2S=R+S, this is
IH _1y2(LA)Q IH_1y2(Lg) which is zero since X and Y are Witt spaces.

For the left hand side, let dim L, =2R or 2R+ 1 and dim Lg =28 or 2S+ 1.
In case dim L, =2R and dim Lz =28 there are two offending groups (since then
q(AxXB) and m(AXB) differ by 2) which are IHg,g,1(La * Lg) and
IHg .s.o(Lao * Lg). Otherwise there is just one, which is IHg.g.»(La * Lg). By
§3.1, these are zero.

§4. Placid maps and their graphs

A subanalytic map f: X — Y between two subanalytic pseudo-manifolds will
be called placid if there exists a subanalytic stratification of Y such that for each
stratum S in Y we have

codimy f~*(S) = codimy (S)
Examples of placid maps are: branched coverings, smooth maps and flat maps (in

algebraic geometry), Thom (A;) mappings, and all subanalytic maps between
smooth manifolds.
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PROPOSITION 4.1. Suppose f: X — Y is a placid map. Then pushforward of
chains and pullback of generic chains induces homomorphisms on intersection
homology,

fs: TH7(X) — IHT(Y)
f*:IH'iﬁ(Y)_)m'iﬁ+dirn(X)—djm(Y)(Y)-

Proof. Stratify X so that f~'(S) is a union of strata in X whenever S is a
stratum of Y. (This can be done since f is subanalytic.) A simple dimension count
shows that for any (rn,i)-allowable chain ¢ in X, the image f(|£|) is also
(m, i)-allowable. This defines f,. (Notation here as in [GM 1].)

To construct f*, observe by McCrory [Mc] that any homology class in IH7(Y)
can be represented by a chain £ with the property that for any stratum S of Y and
for any stratum A < f~(S) of X, the map

flA:A—S

is dimensionally transverse to |&NS. It follows that f7'(|¢]) s
(m, i +dim (X)—dim (Y))-allowable. A similar remark applies to homologies be-
twen two cycles &, and &,. We thus obtain a homomorphism f* on intersection
homology.

Remark. The preceding calculation shows that for any perversity p and for any
coefficient ring R we obtain homomorphisms

fs:IHA(X, R) — IHX(Y; R)
f* : IH?(Y; R)— IHiﬁ+dim (X)—dim (Y)(X; R)

whenever f: X — Y is placid.

Remark. If X and Y are topological pseudomanifolds of dimension n and m
not necessarily subanalytic, then a placid map can be defined as a continuous map
for which there exist stratifications ((GM 2], §1.1) {X;} and {Yi} such that
fYX,_)< Y, for all i. Then Deligne’s construction gives a map f* ICy—
IC;{m —n] and hence gives the induced maps fx and f*. The map fy can also be
constructed from King’s singular construction [K], f* is its adjoint.

DEFINITION. The intersection homology Lefschetz number IL(f) associated
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to any placid self-map f: X" — X" is

r

IL(f)= ), (~1)" Trace (fy: IH?(X; 2) > IH{(X; 2)

i=0

This number is an integer. (Note that the two stratifications of X cannot be taken
to be the same).

PROPOSITION 4.2. If f:X"— Y*® is placid map between two compact
oriented Witt spaces, then the graph of f determines a canonical homology class
[G(H]e H (XX Y;Q).

Proof. Projection to the first factor G(f) — X is a homomorphism and deter-
mines an orientation of G(f) from the orientation of X. Chooose a stratification
of Y with respect to which f is placid. Choose a stratification of X such that
f'(S) is a union of strata in X whenever S is a stratum of Y. Let p denote the
(stratum-dependent) perversity of §3,

cod (A)+cod (B)—1
p(AXB)= 2
cod (A) if cod(A)=cod(B)#0

if cod(A)#cod(B)

We claim that the graph G(f) is (p, r)-allowable in X X Y and thus determines a
canonical class in IH?(X X Y). (This together with Lemma 3.2 will complete the
proof of the proposition). We must show that for each stratum A X B,
dim (G(f)NAXB)=<r—cod (A)—cod (B)+p(A X B).
This is obvious if codim (A) = codim (B) for in this case
dim (G(f)N A X B)=dim (A)
If codim (A) > codim (B) then p(A X B)=cod (B). Since G(f) is a graph we have
dim (G(f)NAXB)=dim (A)=<r—-cod (A)+ p(A X B)—cod (B).

If codim (A) <codim (B) then p(A X B)=cod (A). Since f is placid, we have

dim (G(f) NA X B)=<dim (A Nf }(B))=dim f"(B) = r—codim f}(B)

=<r-—codim (B)<r—-cod (B)+ p(A xXB)—cod (A)
as desired.
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§5. Intersection homology of a neighborhood of a cycle

In this section, we establish a geometric characterization of the middle intersec-

tion homology class [G(f)] of the graph G(f) of a placid map f. Let | denote the
logarithmic perversity

0 if c=2

He)= [—S—] if ¢>2

Suppose X is an n-dimensional Witt space and £ is a j-dimensional subanalytic
cycle in X which is (I, j)-allowable. For example, the graph G(f) of a placid map
in X X X is (I, n) allowable since [ = p. Let N(¢) be a regular neighborhood of ||
(i.e., a subanalytic neighborhood with stratified and collared boundary dN(&) such
that dN(£¢) — X is a normally nonsingular inclusion and such that there exists a
deformation retraction f:N(&) — |&).

LEMMA 5.1. The rank of IH7(N(§)) is no greater than the number of
connected components of the nonsingular part of |€|.

Proof. The nonsingular part of |¢| is contained in the nonsingular part of X.
Choose one point in each of the k connected component of the nonsingular part
of |£| and for each of these k points choose an n —j dimensional disk in X which
intersects |£| transversally. Take N(¢) sufficiently small that dN(&) intersects each
of these disks transversally. We define a homomorphism

¢ : HT(N(§€) — Q"

by assigning to any (m, j)-allowable cycle 7 its intersection number with each of
these k disks. We claim ¢ is an injection. We shall sketch the argument since it is
essentially the same as that in [S] (where he assumes that |¢| is (1, j)-allowable
but the same proof works when |£] is (I, j)-allowable): Suppose ¢(n)=0. Using a
carefully chosen deformation retraction r: N(|£]) — |£] it is possible to deform |n|
into |£|. The resulting j+ 1 dimensional chain 7 is (i, j + 1)-allowable because its
intersection with each stratum S has dimension no more than max (dim |n|NS+1,
dim |¢|N' S). Furthermore this chain 1 does not contain any component of the
nonsingular part of |£| since ¢(n)=0. This implies that 37 = 7, so the intersection
homology class represented by 7 is 0.

Remark. The rank of IH} (N(&),dN(£)) is also bounded by the number of
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components of the nonsingular part of |£| because the intersection pairing
IHT(N(&) % Hy;_(N(§), dN(£)) > Q

is nondegenerate.
If we combine the preceding lemma with Proposition 4.2, we obtain the
following

THEOREM 5.2. Let f:X"— Y® be a placid map between two compact
oriented Witt spaces and let N(G(f)) be a regular neighborhood of the graph of f in
X X'Y. Then its homology class

[G()le IH,(N(G(f))

is uniquely characterized by the following condition: For every nonsingular point
p € X the intersection number

[pIX[Y]- jllG(f)]=+1

where jy: IH,(N(G(f))) — IH,(X X Y) is induced by inclusion, and [p]x[Y] is the
(intersection) homology class represented by the oriented cycle {p}x Y.

Proof. By Lemma 5.1, there is at most one such class. But the cycle rep-
resented by the graph lifts canonically to IH} (X XY) and satisfies the above
equation, so there is at least one such class.

§6. Intersections in X XY

In this section, we calculate the fundamental class [ G(f)] of the graph of f in
IH,(X X X), and we prove the first version of the Lefschetz fixed point theorem:
that the Lefschetz number IL(f) is the intersection number [G(f)]-[A].

Suppose f:X"— Y*® is a placid map between Witt spaces. Let [G(f)]e
IH}(XXY; Q) denote the homology class represented by the graph of f (via
Theorem 4.2). If [¢é]e IH*(X; Q) and [n]e IHT(Y; Q), let [¢£]1®[n] denote their
cross product in IH (X xY) and let [G(f)]- (¢]®[7n]) denote the image of the
class [G(f)IR([£1®[n]) under the intersection product

IH(X X X)QIHT, (X X Y) — IH},;— (X X Y)
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where ¢ is the top perversity t(c)=c—2. Let mx and my denote the (placid)
projections of X XY to the first and second factors respectively. Using the sign
conventions of Dold [D] VIIIL. 13, (see appendix) we have:

LEMMA 6.1.

() G(N]- (€1®[nD) = (—1)*""f (€D - [n]e H},; _(Y)
(mx)x(G(N]- (€1®[nD) = (—1)*""[£]- f*(mD € IH},;_(X)

In particular, if [£€] and [n] are classes in integral intersection homology then
these two products will also be integral classes.

Proof. Choose stratifications of X and Y so that f'(S) is a union of strata in
X whenever S is a stratum in Y. Choose geometric cycles &€ IC?(X) and
n € IC]'(Y) representing [¢] and [7], so that the support |n| of n is dimensionally
transverse to f (as described in §4) and also to f(|¢|). Let p and g denote the
(stratification-dependant) perversities defined in §3. Then the graph G(f) is a
(p, r)-allowable chain in X X X and the cycle |&|x|n]| is a (g, i +j)-allowable chain
in X X X. (This is a simple dimension count). By [GM 1] we have a commutative
diagram, where the top and left side are the isomorphisms from §3.2 and §3.3,

IH}(X X Y)QIHA (X X Y) = [H(X X Y)®IHT, (XX Y)

THI(X X Y)®IHA, (X X Y) — [HL,; (XX Y)

It follows that the classes [G(f)] and [£]®[n] may be multiplied in the lower left
hand corner, where they have transverse representatives G(f) and || X |n]|. Since
p+g=1 we obtain their product by orienting the intersection G(f)N|¢&|x|n|
IGM 1)]). Thus (m)(G()]: [€I®[n] is represented by the cycle nx(G(f)N
(€1 xm) =&lNF (n]). Similarly (my)(G(f)]:[£]®[n]) is represented by the
cycle f(|€) N|m|. This completes the proof.

Remark. The integrality statement is explained by the fact that the bottom
line of the diagram can be defined with integer coefficients.

We now use the method of Lefschetz ([L]) to compute the homology class of
the graph of a placid map. Let puq, ..., u, be a basis for IHE(X; Q) with dual
basis u¥, ..., u¥ and let P; = e(y; - u;) where & : He(X) — Q is the augmentation
(so P;=0 unless dim (;)+dim (y;) =dim (X)). Let vy,...,0g be a basis for
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IHE(Y; Q) with dual basis v, ..., v§ and let Q; =¢&(v; - v;). Let F = (F;) be the
matrix of fy: IHE(X) — IH%(Y) with respect to the bases {w;} and {v;}. We shall
use the symbol |v| to denote the dimension of a homology class v.

PROPOSITION 6.2. The homology class of the graph G(f) is given by
[G(N]=2 X DM Fui®y,
i
=2 T (DM T, @u?
i
where T is the matrix T= P 'FQ.

Remark. If we specialize to the case f =identity: X — X and w; = v; for all i,
then this second formula becomes

[A]=Z TR

Proof. By Poincaré duality it suffices to show that bath sides of the equation
have the same product with each class w,®@v*% where |w|+|v¥|=s. By the
preceding lemma,

[G(H)] (ki BvF) = (7y)x(G ()] - (1; ®VT))
= (- 1)S(v—|ui|) Z FipUp . UT

= ()" Y Fy} - v, = (1) ™,
p

which coincides with
L L (DM E(ut @) - (1 ®v).
i

These formulas give the following result:

THEOREM 1. Suppose f: X" — X" is a placid self map of a Witt space. Let
[A]e IH,(X X X; Q) denote the homology class represented by the diagonal. Then
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the Lefschetz number IL(f) is given by

IL(f)=[G(NH]-[A]

§7. Local geometry of X XY

In this section the points in a join A * B of two spaces will be denoted by
triples (a, t, b) where a€ A, te[0,1], be B, and where we identify (a, 0, b)~
(a’,0,b) or (a,1,b)~(a, 1, b"). The cone c(A) (with vertex v) over a space A is
the join A * {v}. We will omit the third coordinate (which is always v) when
denoting points in c(A).

Suppose X is a pseudomanifold and L, is the link of a point x,€ X. Then it is
possible to choose a stratum preserving homeomorphism h,:c(L,) — U, between
the cone on L, and a neighborhood U, of X, such that h,; (vertex)=x, and
h,| L, is the identity. This determines a ‘radial distance” function | |: U; — [0, 1]
by specifying that |h,(l, t){=1¢ for all le L, and t€[0, 1].

A similar choice of homeomorphism

h2 " C(Lz) - U2

between the cone on L, and a neighborhood U, of a point y,€ Y determines an
embedding

H:cone (L, * L,) > XXY
which is a homeomorphism onto the conical neighborhood
V={(x,y)e U x U, | |x|+|y|=1}
of (xo, yp) in X X Y, by specifying
H((l4, 4, 1,), t) = (h(l, t(1 — A)), hy(1,, t4)).
We may think of A and t as “polar coordinates” on V, since
t(x, y)=Ix|+|y| and ACxy)=|yl/(x|+]|yD.
We shall denote by £ the boundary of this conical neighborhood, i.e.

L=0V={(x,y)eXXY]||x|+|y|=1}



380 MARK GORESKY AND ROBERT MACPHERSON

Thus, £ is homeomorphic to the join L, * L,. It contains two distinguished
subsets, the “‘top”

ngn{xO}x Y= H(lla 1’ 12)9 1)
and the “bottom”
B= KA nXX{YO}z H((lb Oa 12)7 1)

which are homeomorphic to L, and L, respectively.

§8. Local linking numbers

Suppose X is an n-dimensional Witt space. Fix a point x € X. Let L denote the
link of x in X and let £ denote the link of (x, x) in XX X. Let N be a regular
neighborhood (in &) of A =ANZ. We use ‘“Alexander duality” to define a
nondegenerate linking pairing

M IHn——l(N)®HIn——1($— N) - Q
by
p(a®b)=dg'(a)- b

where dy4 is the connecting homomorphism in the following diagram of dually
paired exact sequences:

i i
H,(¥) —> IH(ZN) - IH, (N) — IH, (¥

o X
IH, (¥) «—IH, (£~ N) «— IH,(¥, £~ N) «—— IH,(¥)
Il Il
0 0
(The vanishing of the intersection homology groups on the ends was computed in
§3.1).
We have already seen (§4.2, §5.2) that A; determines a unique class [4; ]€

IH? ,(N) and that if X is normal then (§5.1) this group is one-dimensional. Thus
we have proven:
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PROPOSITION. If X is normal, the linking number with the diagonal deter-
mines an isomorphism

maIH; ((£—-N)— Q.

§9. Local contributions to the Lefschetz number

Suppose f: X — X is a placid map with isolated fixed points. For each fixed
point x, choose a conical neighborhood U of x and let V=cone (¥) be the
corresponding conical neighborhood of (x, x) in X X X. By choosing U sufficiently
small we can guarantee that it contains no fixed points other than x, and that the
graph G(f) of f is transverse to £. Orient the intersection G, (f) = G(f) N & with
the product orientation: it then determines a homology class

[G.(H]e IH;_(£—N)
where N is a small regular neighborhood of AN¥ in &

THEOREM I1. The intersection number [G(f)]-[A]= IL(f) is the sum of the
linking numbers p,(( Gy (f)]) taken over all the fixed points.

Proof. The proof is standard, so we will only sketch it here. Let x;,..., x,
denote the fixed points of f. For each fixed point x; choose a conical neighborhood
U, of (x;, x;) in XX X and let &, =aU; be the link of (x;, x;). Let N; be a regular
neighborhood of AN, in ¥, and let K; be a relative cycle in (£, N;) so that
[0K;]=[A N%;]e IH,_,(N;). Find a chain H, < N; which realizes this homology,
i.e., so that dH, =9K; — A N %, Thus there is a cycle A’ with support,

|A'|=A4A- (L;l AN U,)U(L‘J K; UHi)

It is easy to see that A’ is an (i, n)-allowable cycle which is contained in a regular
neighborhood of the diagonal in X X X and which only differs from the diagonal
near the fixed points of f.

Since [4']=[A4]€ IH7?(X x X) they have the same intersection number with the
graph G(f). However [G(f)IN[A’']=X[G()NZL]IN[K;] since the points of
intersection of the graph of f with A’ occur in the chains K;. But this sum is
precisely the definition of the local linking numbers of each (G(f)NY;) with
(ANZL).
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§10. The local trace

Suppose f: X" — X" is a placid self map with an isolated fixed point x € X. Let
U, and U, be (conical) neighborhoods of x, with boundaries dU, and dU,, such
that

U,cfY(Uy,-0aUy)

If £ is a compactly supported cycle in IC;(U,) then fy(&) is a compactly supported
cycle in IC;(U,). Thus f determines a ‘“local homorphism”

(f3): 1 IHi(Uy) — IH,(Uy)
The adjoint to fy is a homomorphism
(fﬁ)n*i :IHn~i(U2’ aUZ) - IHn—i(Ul’ aUl)

which may be interpreted geometrically as assigning to almost every relative cycle
£eIC,_ (U, dU,) the (appropriately oriented) relative cycle f'(¢§)NU, e
ICn—i(Ula aUl)

DEFINITION. The local trace Tr, (f) of f at x is the sum
Tr, ()= Y 1 Tr ()= (1" X (=1) Tr (f5)..
i=0 i=0

Remark. Let L denote the link of the point x. Then

0 for iz[n+1
IH;(U,) = 2 :
IH/(L) for is[i‘—;—l
IH,_,(L) for i= ";3]
IH,(U,, 8U,) = i
0 for i= n+1]
)

Thus the local homomorphism (f3); corresponds to a homomorphism IH;(L)—
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-1
IH,(L) if i< [nT] (and is 0 otherwise) while its adjoint (f¥),_; corresponds to

the homomorphism IH, _;_(L)—IH,_; (L) if i= [22—1] (and is 0 otherwise).

§11. The local class of the graph

Let £ denote the link of (x, x) in X X X. Consider the n —1 dimensional cycle
G, ()= G(f)NZL. Since IH, _,(¥) =0, the graph does not represent an interesting
class in £. However it is always contained in a subset &£—N(T) which is
homeomorphic to ¢(L) X L. (Here, T is the “top” defined in §7, and N(T) denotes
a small regular neighborhood of T in £.) We will now compute the homology
class [G; (f)]e IH,,_(¥£ — N(T)) which is represented by Gy (f).

Observe that the intersection product (§2)

IH, (£ —N(T))xIH,(¥£, N(T)) > Q (*)
is a nondegenerate pairing between
IH, (£-N(T))= & IH,(L)®IH, ; (L)

a=[(n-1)/2]

and

IH(&NT)= & [H,(L)®IH, (L)

a=[(n+1)/2]
n+1
Suppose a = [—2—], aeclIH,(L), and BeIH,_;_,(L). Let a @B denote the
corresponding class in IH, (%, N(T)).

LEMMA 11.1. The product G, (f) - (a« @ B) under the intersection pairing (*)
is equal to the product

(=)D - £5(B).
under the intersection pairing

IH,(L)®IH,_-.(L) > Q
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Proof. Choose conical neighborhoods U, and U, such that U< f™! (interior
(U,)) as above. Let L, =9U, and L, =9U,. Choose homeomorphisms h; : c(L;) —
U, to obtain H:cone (L, * L,)— V as in §7. The homeomorphism H restricts to
a homeomorphism, H:L, X L,— ¥ =49V. Choose cycle representatives ¢ in L,
and m in L, of the homology classes @ and B, so that the cycle &€Xc(n) is
dimensionally transverse to the cycle G(f) in U, X U,.

It is easy to verify the following assertions:

(1) The class BelIH,_,(U,, aU,) corresponding to BelIH,_, (L, is rep-
resented by the chain c(§).

(2) The class a®BeIH, (¥, N(T)) is represented by the chain H(¢ * m)=
LN (c(é)*c(n))

(3) The class Gy (f)e IH,_(£—N(T)) is represented by the chain G(f)N<L.

Consider the chain

(U x U~ V)N G(f) N(c(§) X c(n))]

=o(U, X U,— V)N G(f)N(c(§) X c(n))
=(—D"G()N(EXc(n)—LNG(f) N(c(€)*c(n))
=(=D"G(H)NEXc(M)—(—D"GL(f)N (€ * m)

By the same argument as in §6.1, the first term is the number
(=1)""4 Vg . f¥(B) which equals (—1)@*P(=1)"""2" Vg . f*(8). We have shown
this is homologous to (—1)"G, (f) - (¢ ®B) as desired.

§12. Contracting fixed points

DEFINITION. A fixed point x € X of a placid self map f: X — X is contracting
if there exists a (conical) distinguished neighborhood U of x which contains no fixed
points other than x, such that U< f™* (interior (U)).

THEOREM 1II. Suppose x € X is an isolated contracting fixed point of f. Then
the local contribution at x to the Lefschetz number of f is precisely the local trace of f
at x.

Proof. By §9, we must compute the intersection number of [G.(f)]e
IH,_,(£—N(4)) and the unique class K € IH, (¥, N(4)) such that 4,(K)=[A.].
We will instead view this intersection as taking place in the ‘“‘lower half” of £.

For simplicity of notation we now identify £ with the join L * L. Since f is
contracting, there exists € >0 so small that the graph G, (f) does not intersect the
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“middle section’ of the join,
Mz{(lla L IZ)EL * L ‘ |t_%‘<8}

which we may assume contains the regular neighborhood N(4;) of the diagonal
ANZL. (see §7 and §8 for notation.)
Let T={(,,t, l,)eL * L|t>%1—g}. Corresponding to the inclusions

NQA)cMcT<¥
we have a diagram of groups

IH,_ (-T2 IH,_ (- M)—> IH,_,(¥- N(4))

which are dual to the groups

j i*

IH (%, T) < IH, (¥, M) < IH, (¥, N(4))
H, (1) « H, (M) < IH, ,(N(8))
Il I I
n—1 n—1
[(®1)/2] IHa(L)®IHn-—1—a(L) @ IIIa(L)®IHn—1~a(L) Z
a=[(n+ a=0

(The vertical arrows are isomorphisms since IH,(¥) = IH,,_,(£) =0 by §3. The
calculation of IH,_,(T) appears in §3).

Let {e;,..., e} be a basis for IH, (L), with dual basis {e%, ..., e*}. The local
homomorphism

f¥:IH (L) — IH,(L)

may be expressed as a matrix (f;) with respect to the basis {es,...,e}. The
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intersection number of [G; (f)] with K can be computed as follows (using the fact
04i*(K)=[A; ] which was calculated in §6):

l*]*[GL(f)] K= [GL(f)] ‘ j*i* a;I[AL]
=[GL(f)] : 3;1j*i*[AL]
=[GL(f)]- o5 '*i*[ A, ]

n—1

=[G.(NH] %' 2 eQ@et

leil=[(n+1)/2]

n—1

= L ()T - fi(eT)
le,]=[(n+1)/2]

n—1

r
- Y e § g per
i=1

le,l=[(n+1)/2]
n—1

=Dt ) (D

lel=[(n+1)/2]

=Tr, ()

§13. Nonexpanding fixed points

Suppose U, < U, are (compact) conical neighborhoods of an isolated fixed
point x, of a placid self map f: X — X, such that

U Cf—l(Uz"aUz)

Let h:c(0U,) — U, be a stratum preserving homeomorphism (as considered in
§7) between the cone over oU, and the neighborhod U,. For each x e U, we
define the ray containing x to be the set of points

{h(h7'(x), 1) | tel0, 1]}
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