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The cyclic homology of the group rings

Dan Burghelea

Introduction

Let F be a discrète group; dénote by (F) the set of conjugacy classes of
éléments of F, and by (F)&apos; respectively (F)&quot; the subsets of (F) represented by
éléments x e F, of finite respectively infinité order. For each x e F let Fx

{g g F | gx xg} be the centralizer of x, {x} the subgroup generated by x and Nx
the quotient group FJ{x}. If xf and x&quot; belong to the same conjugacy class x, Fx

and FX&quot; as well as Nx&gt; and Nx» are isomorphic and we can write Fx and Nx for their
isomorphism class.

For R a commutative ring with unit we dénote by R[G] the 1?-group ring of
G; it is an K-algebra with unit. We will dénote by HH^RlG]) respectively
HC^iRlG]) its Hochschild respectively cyclic homology (see [C] or [LQ]). There
is a long exact séquence (called Gysin-Connes séquence) which connects them,

(see [C] [LQ] or [B]).

THEOREM I&apos;. If k is a field of characteristic zéro then:

2) ^ &lt;y^ ^&lt;T^Moreover the Gysin-Connes exact séquence décomposes as a direct sum of exact

séquences parametrized by xe (G). If x is of finite order resp. of infinité order the

corresponding exact séquence is the homology Gysin séquence of the fibration

BNx-&gt;BNxxBS1^-&gt;BS1 resp. BGX-*BNX-+BS\

Hère H^(X; R) dénotes the homology of the space X with coefficients in JR,

and BG the classifying space of the group G. The gênerai case of an arbitrary

1 It is well known that HCJik) H^(BS1, k) see [LQ]
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commutative unitary ring jR requires more définitions so the resuit about

HC^iRlG]) given by Theorem I is stated at the end of Section I. As a

conséquence, we can describe HC*(R[G * H]) and HC*(R[G x H]) (the last one
under additional hypothèses) in terms ot R[G] and R[H] as follows:

PROPOSITION IL
U {âe(G*H)\âr\eG*H=0, dnG*eH 0} with Râ R regarded as a
graded R-module concentrated in the degree zéro.

DEFINITION. We say that the group G has the property &quot;h&quot; if for any
élément of infinité order the fibration

is rationally trivial (or equivalently the Gysin homomorphism H*(BNX; Q)—»

HHj_2(BNx; Q) is trivial). Clearly ail abelian groups hâve property &quot;h.&quot;

PROPOSITION III. If G has property &quot;h&quot; and k is a field of characteristic

zéro then

HC*(k[GxH])= © H*(BNt;k)®HC*(k[H]&gt;
X€&lt;G&gt;&apos;

+ © H*(BNx;k)®HH*{k[H]).
xe&lt;G)&quot;

COROLLARY IV.

«eZ\{0}

the last sum is the direct sum of copies of HH*(k[H]) indexed by aeZ\{0}.

Besides the cyclic holology, Connes has defined the periodic cyclic homology
PHC*(k[G]) lim &gt; HC*+2n(k[GD -» HC*+2n_2(k[GD -&gt;•••), for * 0, or
1. The results above implies the analogous formulae for periodic cyclic homology.

For each Je e (G)&quot; represented by x g G let

T*(x; R) lim &gt; H*+2n(BNx; R) A H^2n

with S the Gysin homomorphism of the fibration B{x} S1 -&gt; BGX -* BNX and
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H2n(BG;R) if * 0

THEOREM

PHC*(k[G]) © K*(BN*;fc) + © T*(Jc;fc).
X6&lt;G&gt;&apos; xe&lt;G&gt;&quot;

PROPOSITION IIP. PHQ(JR[G*HD FHQ(K[G]) + PHCÎ(!(JR[H]), where

G*H is the free product of G and H.

COROLLARY IV.

It should be noticed that homotopy theoretic computations permit to identify
the right side of the equality 2) in Theorem I to the equivariant homology
H%\BG^;R). T. Goodwillie [G], Burghelea-Fiedorowicz [BF], and others hâve

proved that for a space X, and S^equivariant homology of Xsl is isomorphic to
the &quot;cyclic homology&quot; of the space X. The proof given hère is, however, the
&quot;right one&quot; for the case of discrète groups, since it explains the décomposition in

terms of conjugacy classes and the différent behaviour of finite order éléments

compared to the infinité order éléments. A. Connes has noticed an interesting
analogy with the Selberg-Trace formula, but this will not be discussed hère.

The paper is organized as follows: In Section I we présent the proof of
Theorem I. The proof of Proposition 1.8 and 1.6&apos;, important steps in the proof of
Theorem I are deferred to Section II; this because we use the fibration associated

with the cyclic set, a géométrie tool not really essential for Theorem I. Algebraic
proofs for Propositions 1.6&apos; and 1.8 are possible (but apparently longer).

In Section III we dérive ail the other statements contained in this Introduction
and in Section III we will présent few comments on the torsion free groups. The
author thanks the référée for useful suggestions in improving the exposition; in

particular the concept of cyclic groupoid as used hère was suggested by him.

Section I

The purpose of this section is to calculate the cyclic homology of the group
ring of the group F and prove Theorem I stated at the end of this section. In
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order to do this we need the theory of cyclic sets introduced in [C] for which we
define Hochschild homology, cyclic homology and Gysin Connes exact séquence.
For a group F one defines a cyclic set ^(F), whose Gysin Connes séquence is the
same as the Gysin Connes séquence of the group ring R[F] (Proposition 1.4). We
show that this cyclic set splits naturally as a disjoint union of cyclic sets

parameterized by the conjugacy classes of éléments of F, ct(F) U*e&lt;r&gt;(^(^)*-

Some observations (1.1, 1.2, 1.5) about nerves of groupoids allows us to define
inside of each cyclic set ^(F) a cyclic set of spécial type É(Fx;x) having the
same Gysin Connes exact séquence as ^(F). This implies that the cyclic sets
U*e&lt;r&gt;«2Xfx&gt;x) and ^(F) hâve identical Gysin Connes séquences; with the
inclusion U*e&lt;r&gt; ^(Fx, x) —» ^(F) inducing an isomorphism in both Hochschild
and cyclic homology. Propositions 1.6, 1.6&apos; and 1.8 give the description of each of
thèse Gysin Connes séquences.

Recall that a simplicial set X (Xn, dln, s^) consists of the sets Xn, and the

maps dln:Xn -* Xn_1? sln:Xn -» Xn+1, i 0,1,..., n, which satisfy the usual
commutation relation. A cyclic set X (X, t*) consists of a simplicial set X equipped
with a cyclic structure f* i.e., a séquence of maps ^ :Xn -» Xn so that (tn)n+1 id,
dlntn t^-id1,,~\ slntn tn+xS1^1 for l&lt;i&lt;n. The morphisms of cyclic sets are
morphisms of simplicial sets which commute with the cyclic structure.

For a cyclic set X (Xm dlw sln, O let T*(X:R) be the chain complex as-
sociated with the simplicial set (Xm dln, sln) i.e. Tn(X; R) is the free jR-module
generated by Xn and dn : Tn(X; R) -&gt; Tn^(X; R) is given by dn lo^n (-l)ldln.
The homology H*(T*(X; R)), which is by définition the homology of (Xn, dln, s^
or equivalently, of the géométrie realization of (Xn, dln, s1^) will be called the
Hochschild homology of X with coefficients in R and denoted by HHJJC; R).

Following [C] or [LQ] one can also associate to X the bicomplex (Epq(X; R),

d^dU with Ep,q(X;R)=Tp(X;R), dJ.q dp(resp.ZlaftsBp(-l)ldp if q is even
(resp. odd), d&quot;q= l + rp + - • -hr^resp. l-rp,resp. 0) if q^O and even (resp. q
odd, resp. q 0). Hère tp (-1)%.

The homology of the total complex (E*(X; JR), D) with D dI + d11 is then
the cyclic homology of X with coefficients in R. As noticed in [B] this homology
can also be calculated by using the complex denoted (C*(X; R), 3d), which is

described as follows: Cn(X; jR) ©is=0 Tn_2l(X; JR) with 3d being given by
3d(xmxn_2,xn_4,...) (dxn + (3xn_2, dx^+^x^,...). Hère pn :Tn(X; JR)-&gt;

Tn+1(X;JR)is given by the formula pn (-l)n(l-Tn+1)S^(l + Tn + T^+- • +&lt;)with
S» being the JR-linear extension of the degeneracy map s». One then has a short
exact séquence

0 -&gt; T#(X; R) A C*(X; R) A J? C#(X; JR) -&gt; 0 (*)

with I being induced by the inclusion, foj each n, of Tn(X;R) in
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and S by the projection of ©13s0 Tn_2l(X; R)
onto ©i^i Tn_2l(X; JR). This short exact séquence induces a long exact séquence
called the Gysin Connes séquence:

&gt; HH*(X; R) -4 HQ(X; R) -4 HC*_2(X; R) -§? HH^X; R) -+ • • •

OBSERVATION 1.1. Let /:X-&gt; Y be a morphism of cyclic sets. Then if
HH*(f) is an isomorphism, HC*(f) is also an isomorphism.

It suffices to note that / induces a morphism between the Gysin Connes exact

séquences associated with X and Y. A simple inspection of the resulting diagram
shows by induction that HCn(f) is an isomorphism.

Let us recall that a groupoid % is a small category ail of whose morphisms are

isomorphisms. The nerve (or the classifying space) of the groupoid &lt;ë is the

simplicial set Nerve % whose set of n-simplexes consist of strings Ax &gt;A2

&gt; • • • An &gt; An+1 with faces and degeneracies defined in the obvious way.

OBSERVATION 1.2. If &lt;€ is a groupoid such that for any A,BG(
Hom (A, B) ^ 0, and %A dénotes the full subgroupoid with only one object A, then

the inclusion C€A^&gt;C€ induces a simplicial inclusion Nerve %A -» Nerve % which is

a homotopy équivalence (hence it induces an isomorphism on homology).

A cyclic groupoid (&lt;#, e) is a groupoid equipped with a &quot;cyclic structure&quot; e

which associâtes to each object A a morphism eA g Hom (A, A) such that

/ • eA eB • / for /gHom (A, B). For any groupoid % let (% id) be the cyclic
groupoid obtained by taking the trivial cyclic structure eA idA. A cyclic groupoid
gives rise to a cyclic set Nerve (&lt;#, e) (Nerve c€, t*) with tn(at, a2,..., an)
(a^1 ° a2x - • • a&quot;1 ° eAn, al9..., an_!), a,eHom (Al9 Al+1).

OBSERVATION 1.3. HC^Nerve («, id); R) eks=0 HHîis_2k(Nerve («, id);
JR) and the Gysin-Connes exact séquence reduces to the short exact séquences

O -» HHîis(Nerve («, id); JR) -&gt; 0 HH^2k(Nerve («, id); R)

rsic_2k(Nerve («, id); R) -* 0

By Observation 1.1 it suffices to verify the statement for groupoids with one
élément, hence for groups. This was already done by Karoubi in &quot;Homologie

cyclique des groupes et algèbres-C. R. Acad. Sci t. 297 p. 381-4&quot; section IL
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EXAMPLES. Let G be a discrète group and xeCenterG.
1) One also dénotes by G the group G regarded as a groupoid with only one

object * and Hom (*, *) G, and one dénotes by (G, x) the cyclic groupoid whose

cyclic structure is given by x. Henceforth we will write É(G, x) instead of
Nerve (G, x).

2) ^(G) dénotes the groupoid whose objects are the éléments of G and
Hom(g&apos;,g&quot;) {a6G/«&quot;Va g&quot;}. In what follows (^(G), ë) will dénote the
cyclic groupoid ^(G) with cyclic structure êg g, and €(G) will dénote its
associated cyclic set.

3) If g dénotes the conjugacy class of g in G, let ^(G)8 be the full
subgroupoid of ^(G) whose objects are the éléments g g G in the conjugacy class

g; then we hâve the cyclic subgroupoid 0#(G)8, ë) of (^(G), ë) and, therefore,
the cyclic subset ^(G^c^G). It is easy to see that ^(G) décomposes as a

disjoint union Uge&lt;G&gt; ^

PROPOSITION 1.4. The Gysin Connes séquence for R[G] can be naturally
identifiée with the Gysin Connes séquence of the cyclic set ^(G) with coefficients in

R; in particular the Hochschild homology HH*(R[G]) (resp. cyclic homology

HC*(R[G]) are isomorphic to HH^(C€(G); R) (resp. HC*(«(G); JR)).

Proof. We define a natural isomorphism of chain complexes
0G : T^Ol(G);!?)-» T*(R[G]) which commute with the corresponding
homomorphisms 0*; hère T*CR[G]) is the chain complex (see [L, Q] or [B2])
which calculâtes the Hochschild homology of R[G]. 0G sends the gênerator
(«i, a2, •. •, a») of T*(«(G);R) to the élément (a^-i • * &apos; a^g®^®- • •

®an) of Tn(R[G]) £[G]®c^®#[G] with g being the &quot;source&quot; of the
n + l

morphism aG^(G). Clearly 6G induces an isomorphism 8G :CJ$(G)\ J?)-&gt;

C^(R[G]) making the following diagram commutative and, therefore, proving our
statement.

^); R) -* C^(G); R) -&gt; if *

0 T*(R[GD -^ C*(R[G]) &gt; I^C#(R[G]) -* 0

Let us fix in each conjugacy class g a représentative geG. One defines

^; g)^&lt;f(G)8 as the map of cyclic sets induced by the functor
G defined by iê(*) g and tê(a) aae Hom (*, *), and one considers

^g, g)-&gt;&lt;l(G). Using Observations 1.1 and 1.2 we conclude.
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OBSERVATION 1.5. The Gysin Connes exact séquence of the cyclic set «(G)
is the direct sum of the Gysin Connes exact séquences of «2?(Gg, g) indexed by

ge(G) (for any coefficients R).

PROPOSITION 1.6. If geCenterG is of finite order and k is a field of
characteristic zéro then the Gysin Connes exact séquence of Ê(G, g) (with coefficients

in k) is isomorphic to the homology Gysin séquence (with coefficients in k) of
the trivial fîbration

B(G/{g}) -+ B(G/{g})xBS1 -+ BS\

Proof. If G e this is Observation 1.3. If g^e the map of cyclic spaces
«2?(G, g) —&gt; Ê(GI{g}&gt; é) induces by Observation 1.1 an isomorphism between the

Gysin Connes exact séquences.

PROPOSITION 1.7. HC^(É(Zy 1); R) R (resp. 0) if * 0 (resp.

Proof. First, notice that HH*(&amp;(Zy 1); R) R (resp. 0) if * 0,1 (resp. ^0,1,
since HH*(É(Z, 1); R) is equal to H*(BZ\ R). The resuit will follow from Gysin
Connes exact séquence once one concludes that HCi(É(Z, 1); JR) O. To verify
this we will check that any generator [m] of CX(Ê(Z, 1); R) TX(É(Z, 1); JR), is a

boundary, where Tt(3!(Z, 1); R) is the free R-module on generators {[m]lm g Z}.
Indeed for each [m] there exists (x2, x0)e T2(- - 0©To(# • &apos;) C2(- • •) such that
&amp;d(x2, xo) [m], where T2(- • •) (resp. To(- • •)) is the free R-module generated by
the symbols [m, n], m,neZ (resp. *); since /30- To(- • •)-» Tx(- • •) is given by
j8(*) tO]+[l]onecantakex2=-[m-l, l]-[m-2,l] [0, l]-(m-
and xo=m(*) if

PROPOSITION 1.8. If g€Center G is an élément of infinité order the Gysin
Connes exact séquence ofÉ(G, g) with coefficients in R is the same as the homology
Gysin séquence (with coefficients in R) of the fibration BG —&gt; B(G/{g}) —&gt; BS1. In
particular HC*(É(G, g); K) H*(BGI{g}; R).

If geCenterG is an élément of order n let a e H2(BG/{g}&apos;9 Zn) be the
characteristic map of the fibration B{g}-*BG-+BG/{g}9 and let rne
H2(BSX; Zn)=sHom (Z, Zn) be the cohomology class corresponding to the projection

Z-*Z^. Let (BG/igjxBS1) x K(Z^, 1) be the total space of the fibration
over BG/iglxBS1 with fibre K(2^, 1) defined by the class
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PROPOSITION 1.6&apos;. If geCenter G is of order n then

HC*(É(G, g); R) H*((BG/{g}xBS1) x K(Zn, 1); R).

The proofs of Proposition 1.8 and 1.6&apos; will be given in the next section.
Proposition 1.4, Observation 1.5, Proposition (1.6&apos; (Proposition 1.6 if JR is

field of characteristic zéro) and Proposition 1.8 imply:

THEOREMI. 1

2) HC*(R[G]) 0*e&lt;Gy H^(BNX x BS1) x K^ 1); R) + ©*e&lt;Gr H*(BNX ; 1?)

vvitfi x a chosen représentative in x. Moreover, the Gysin Connes exact séquence
is a direct sum of exact séquences parameterized by x g (G); the exact séquence
corresponding to x is the homology Gysin séquence (with coefficients in JR) of the

fibration BGX —» BNX -&gt; BS1 if x has infinité order and of the trivial fibration
BNX —» BNX x BS1 -» BS1 if x has finite order and R has characteristic zéro.

Clearly Theorem I implies theorem I&apos;.

Section n

It is shown in [B-F] that to any cyclic set X (X, f*) one can associate in a
ly m py

natural way a fibration ||X|| &gt;|||X||| +BS1 whose fibre ||X|| is the géométrie
realization of the underlying simplicial set X. It is also shown there that the
homology Gysin séquence of this fibration is the same as the Gysin Connes

séquence of the cylic set X.

Proof of Proposition 1.8. Let É(Z, 1) -i* É(G, g) A i?(G/{g}, e) be the morph-
ism of cyclic sets induced by i:Z-*G, i(l) g and the projection G -&gt; G/{g}; let
Xl9 X2 and X3 dénote the spaces £(Z, 1), É(G, g) and É(G/{g}; e) respectively.
One can construct the following homotopy commulative diagram, whose vertical
lines are fibrations up to homotopy

B(GI{g}) ^
jlkll JllMII I

B(G) -^ \\\É(G, g)||| &gt;ES1

î- î- î
S1-^-» S1 -=^ S1

(2) (1)
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We can choose BS1 to be a commutative topological group so that A is given by
\(u, v) \i(u) 4- k2(v), u € BG/{g} v € BS1 with kt (resp. A2) the restriction of A to
BG/{g}x* resp. *xBS1. Note that e* : tt^S1) Z-» irSÉiG, g)|||) is trivial as

iX2-e&apos; factors through |||^({g}, g)||| (which is contractible by Proposition 1.7).
Hence, A2 is a homotopy équivalence. We claim that the fibration (2) is isomor-
phic to one induced from the universal fibration (1) by the projection

BiGftxtyxBS1—^BS1. To see this, one defines a homotopy équivalence

6:B(G/{g})xBS1-^B(G/{g})xBS1 by 0(u, v) (u, -deg(A2) • A^ + u) and
notices that A • 6 pr2. This implies Proposition 1.8.

Proof of Proposition 1.6&apos;. We hâve to show that É(G, g) is homotopy équivalent

to (BNxBS1) x K(Zn;l). It suffices to verify that the restriction of the
fibration

K(Zn ; 1) B{g} -&gt; \\\É(G, g)\\\ -^ \\\&amp;(GI{g}9 e)\\\ BG/{g} x BS1

to BG/{g}x* (resp. * x BS1) has a (resp. rn) as its characteristic class. This follows
immediately from the commutativity at the diagrams

B{g} &gt; BG &gt; BG/{g}

where X È(G, g), Y 5(G/{g}, e), and

î t- î
&gt; |||5({g}, g)||| &gt; B{g}/{g}xBSl

î î î
K(Z91) &gt;

where in: «^({g}, g)—&gt;É(G, g) is induced by the inclusion {g}c= G.

Section III

The purpose of this section is to complète the proof of the remaining
statements from Introduction.
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Proof of Proposition IL Let P=G * H. The reader can verify that Px ± {x} only
if x contains a représentative of either form gt * eH or eG * g2 in which case P% is

isomorphic to either Gêl or Hê2. With this observation in mind one applies
Theorem I. Q.E.D.

Let xeCenterG, yeCenterH hence (x, y)eCenter GxH, and let {x}, {y},
{(x, y)} dénote the subgroup of G resp. H, resp. GxH generated by x resp. y,

resp. (xxy). Proposition III follows by applying Observation 1.5, the homology
(actually homotopy) équivalence |||5(rx,x)|||-|||«£(r)||| and Observation 3.1
below.

OBSERVATION 3.1.(1) a) If both x and y are of jinite order then

H*(\\\&amp;(G x H, (x, y))|||; k) H*(BG xBHx BS1, k).

b) If x is of infinité order and y of finite order then

H*(\\\É(G x H, (x, y)|||; k) H*(B(G/{x}; k)®H*(BH; k).

c) // x and y are of infinité order and the fibration S1 B{y} -» BH -» B(H{y})
has trivial Chern class aHeH2(B(H/{y}); R) then

H*(|||5(G x H, (x, y))|||; jR) H*(B(G) x B(H/{y}); R).

Proof. a) is in fact Proposition 1.6. If either x or y are of infinité order
|||i?(GxH;(x,y))||| has the same homology as B(GxH/{(x, y)}) by Proposition
1.8. Notice that we hâve the fibration

B{GI{x}) x

If x is of infinité order and y of finite order, hence the group {x}x{y}/{(x, y)} is

finite, the fibration implies

H*(B(G x H/{(x, y)}); k) H*(B(GI{x})xB(H/{y}); fc)

H*(B(G/{x})xBH;k)

which is b). If both x and y are of infinité order, it is not hard to check that the

1 Hère k dénotes a field of characteristic zéro and R a commutative unitary ring.
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fibration

y)}) -+ B(G/{x}) x B(H{y})

is a fibration of Chern class Oo + crH where crG eH2(B(G/{x}; R) respectively
o-HGfiPCBCH/iy});!?) are the Chern classes of the fibration B{x}-»BG-&gt;
B(GI{x}) resp. B{y}-*BH-*B(H/{y}). H crH 0 then clearly H*(B(GxHI
{(x, y)}); R) H^B(G)xB(HI{y}); R).

Theorem Ip, Proposition IIP and Corollary IVP follows from Theorem I&apos;,

Proposition II and Corollary IV.

Section IV

If G is a torsion free group, Le. the only élément of finite order is zéro, the
formula given by Theorem I becomes:

HC*(JR[G]) H*(BG; R)&lt;8)H*(BS1; R) + 0 H+iBN*; R).
xe&lt;G&gt;\ê

Theorem I also implies

PHC*(R[G]) K*(BG;R)+ 0 T*(t;R).
xe&lt;G&gt;\ê

If N$ is of finite homological dimension then T(Jc; R) is zéro for any élément of
infinité order. In gênerai this is not the case. For instance let F be a discrète group
for which there exists &lt;p : K(F, 1) —» CF* which is a homology équivalence. Such F
always exists by a theorem of Kan-Thurston see [BDH]; one can even assume
that F is torsion free. Let S1-±&gt; E-* K(F, 1) be the pullback of the universal
S&apos;-bundle by &lt;p; clearly E K(G, 1) and if x i*(l)eG,i*:Z tt^S1)-* tt^E)
we hâve H*(BG; R) Q for any R and T*(x; R) R (resp. 0) if * is even (resp.
odd). In spite of this it will not be very surprising if the following conjecture is

true:

CONJECTURE. If K(F91) has the homotopy type of a finite CW-complex,
then T(x ; R) 0 for any x g (F)&quot;.

This is obviously true for those F which are fundamental groups of compact
riemannian manifolds of nonpositive sectional curvature.
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