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The cyclic homology of the group rings

DAN BURGHELEA

Introduction

Let I' be a discrete group; denote by (I') the set of conjugacy classes of
elements of I', and by (I')’ respectively (I')" the subsets of (I") represented by
elements xeI, of finite respectively infinite order. For each xelI let I', =
{geI'| gx = xg} be the centralizer of x, {x} the subgroup generated by x and N,
the quotient group I'/{x}. If x’ and x” belong to the same conjugacy class X, I',.
and I, as well as N,. and N, are isomorphic and we can write I'; and N; for their
isomorphism class.

For R a commutative ring with unit we denote by R[G] the R-group ring of
G; it is an R-algebra with unit. We will denote by HH, (R[G]) respectively
HC,(R[GY)) its Hochschild respectively cyclic homology (see [C] or [LQ]). There
is a long exact sequence (called Gysin—Connes sequence) which connects them,

-— HH,(R[G] 5 HC,(R[G]) & HC, ,(RIG]) % HH, (R[G]) — - - -
(see [C] [LQ] or [B])).

THEOREM I'. If k is a field of characteristic zero then:

1) HH*(k[G]) = ®fce{G) H,(BG;; k)

2) HC,(k[G]) =B,y H (BN:; k)@ HC, (k)® +D; .oy H, (BN;; k).
Moreover the Gysin—Connes exact sequence decomposes as a direct sum of exact
sequences parametrized by X € (G). If x is of finite order resp. of infinite order the
corresponding exact sequence is the homology Gysin sequence of the fibration

BN, —BN, x BS' 22 BS? resp. BG,— BN, —>BS".

Here H (X R) denotes the homology of the space X with coefficients in R,
and BG the classifying space of the group G. The general case of an arbitrary

11t is well known that HC*(k) = H*(BSI; k) see [LQ].

354
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commutative unitary ring R requires more definitions so the result about
HC,(R[G])) given by Theorem I is stated at the end of Section I. As a
consequence, we can describe HC(R[G * H]) and HC,(R[G X H]) (the last one
under additional hypotheses) in terms of R|G] and R[H] as follows:

PROPOSITION II. HC, (R[G*H])= HC (R[G))+ HC (R[H])+ ;v Rs
U={ae(G*H)|aNeg*H=T, aNG*ey=} with Ry=R regarded as a
graded R-module concentrated in the degree zero.

DEFINITION. We say that the group G has the property “h’ if for any
element of infinite order the fibration

B{x}=S8'— BG, — BN,

is rationally trivial (or equivalently the Gysin homomorphism H,(BN,; Q)—
H, ,(BN,; Q) is trivial). Clearly all abelian groups have property “h.”

PROPOSITION I11. If G has property “h” and k is a field of characteristic
zero then

HC,(k[GxH))= @ H.(BN;; k)® HC,(k[H]

Xe(GY

+ @ H.(BN;; k)@HH (k[H)).

xe(GY

COROLLARY IV.

HCy(k[Hx Z]) = HC(k[H]) + HC,_1(k[H) + & (HH(k[H])q;

acZ\{0}
the last sum is the direct sum of copies of HH (k[ H]) indexed by a€ Z\{0}.
Besides the cyclic holology, Connes has defined the periodic cyclic homology
PHC(k[G]) =lim (- - - = HCy124(k[G]) = HC 120 2(k[G]) = - - ), for *=0, or

1. The results above implies the analogous formulae for periodic cyclic homology.
For each £ €(G)" represented by xe G let

Ty(%; R)=1im (- - + = Hy12,(BN; R) 5 Hy 120 o(BN; R) = - - 2)

with S the Gysin homomorphism of the fibration B{x}=S' — BG, — BN, and
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let
& H,,(BG;R) if *=0
n=>0
K (BG; R)=
® H,,..(BG;R) if *=1
n=0
THEOREM I,

PHC(k[G])= D K.(BN;;k)+ D T.Z;k).

1e(G)Y xe(GY

PROPOSITION 1I,. PHC,(R[G*H])= PHC,(R[G])+PHC.(R[H]), where
G *H is the free product of G and H.

COROLLARY IV. PHC,(k[G x Z]) = PHC(k[G])+ PHC,_,(k[G)).

It should be noticed that homotopy theoretic computations permit to identify
the right side of the equality 2) in Theorem I to the equivariant homology
H%'(BG$; R). T. Goodwillie [G], Burghelea-Fiedorowicz [BF], and others have
proved that for a space X, and S'-equivariant homology of X' is isomorphic to
the “cyclic homology’ of the space X. The proof given here is, however, the
“right one” for the case of discrete groups, since it explains the decomposition in
terms of conjugacy classes and the different behaviour of finite order elements
compared to the infinite order elements. A. Connes has noticed an interesting
analogy with the Selberg-Trace formula, but this will not be discussed here.

The paper is organized as follows: In Section I we present the proof of
Theorem I. The proof of Proposition 1.8 and 1.6', important steps in the proof of
Theorem I are deferred to Section II; this because we use the fibration associated
with the cyclic set, a geometric tool not really essential for Theorem I. Algebraic
proofs for Propositions 1.6’ and 1.8 are possible (but apparently longer).

In Section III we derive all the other statements contained in this Introduction
and in Section III we will present few comments on the torsion free groups. The
author thanks the referee for useful suggestions in improving the exposition; in
particular the concept of cyclic groupoid as used here was suggested by him.

Section I

The purpose of this section is to calculate the cyclic homology of the group
ring of the group I' and prove Theorem I stated at the end of this section. In



The cyclic homology of the group rings 357

order to do this we need the theory of cyclic sets introduced in [C] for which we
define Hochschild homology, cyclic homology and Gysin Connes exact sequence.
For a group I one defines a cyclic set €(I'), whose Gysin Connes sequence is the
same as the Gysin Connes sequence of the group ring R[I"] (Proposition 1.4). We
show that this cyclic set splits naturally as a disjoint union of cyclic sets
parameterized by the conjugacy classes of elements of I', €(I') = Uszea €)%
Some observations (1.1, 1.2, 1.5) about nerves of groupoids allows us to define
inside of each cyclic set €*(I") a cyclic set of special type £(I'; x) having the
same Gysin Connes exact sequence as €*(I'). This implies that the cyclic sets
Uszem P(I',x) and €(I") have identical Gysin Connes sequences; with the
inclusion Ugc(ry &, x) - €(I') inducing an isomorphism in both Hochschild
and cyclic homology. Propositions 1.6, 1.6’ and 1.8 give the description of each of
these Gysin Connes sequences.

Recall that a simplicial set X = (X, d., s) consists of the sets X, and the
maps d}: X, > X, _,, si: X, > X,,,, i=0,1,...,n, which satisfy the usual com-
mutation relation. A cyclic set X = (X, t,) consists of a simplicial set X equipped
with a cyclic structure t, i.e., a sequence of maps ¢, : X,, — X, so that (¢,)"*'=id,
dit, =t,_,di", sit,=t,.1s5! for 1=<i=<n. The morphisms of cyclic sets are
morphisms of simplicial sets which commute with the cyclic structure.

For a cyclic set X=(X,, d}, s, t,) let To(X:R) be the chain complex as-
sociated with the simplicial set (X, d},s') i.e. T,(X;R) is the free R-module
generated by X, and d,, : T,(X; R) = T,_,(X; R) is given by d,, = Yoi=, (—1)'d’..
The homology H,(T.(X; R)), which is by definition the homology of (X,, d:, s)
or equivalently, of the geometric realization of (X, d.,s.,) will be called the
Hochschild homology of X with coefficients in R and denoted by HH *(5( ; R).

Following [C] or [LQ] one can also associate to X the bicomplex (E,, (X; R),
d} . d) with E,(X; R)=T,(X;R), d},=d,(tesp. Y1, (—1)'d}) if q is even
(resp. odd), dpf,=1+7,+---+18(resp. 1 -7, resp.0) if q#0 and even (resp. q
odd, resp. q =0). Here 7, =(—1)"t,.

The homology of the total complex (E.(X; R), D) with D =d"+d™ is then
the cyclic homology of X with coefficients in R. As noticed in [B] this homology
can also be calculated by using the complex denoted (Cy(X; R), gd), which is
described as follows: C,(X;R)=®,.o T.:(X; R) with zd being given by
8d (Xp, Xp_2, Xn_g, . . .) = (dX, + BXp_p, dXp 2+ BXn_s,...). Here B,:T.(X;R)—
T,..(X; R) is given by the formula 8, = (= 1)"(1 - 1., )St(1 + 7, + 72+ - - + 77) with
Sr being the R-linear extension of the degeneracy map s,. One then has a short
€xact sequence

0= Ty(X; R) 5 Co(X;R) S Y Cu(X;R) > 0 (*)

with I being induced by the inclusion, for each n, of T (X;R) in
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D, T,—(X; R)=C,(X;R) and S by the projection of D, T,_»(X; R)
onto D, T,,_,;(X; R). This short exact sequence induces a long exact sequence
called the Gysin Connes sequence:

-+—> HH(X; R) 5 HC(X;R) S HC,_,(X; R) B HH,_,(X;R)— - - -

OBSERVATION 1.1. Let f: X — Y be a morphism of cyclic sets. Then if
HH (f) is an isomorphism, HC(f) is also an isomorphism.

It suffices to note that f induces a morphism between the Gysin Connes exact
sequences associated with X and Y. A simple inspection of the resulting diagram
shows by induction that HC,(f) is an isomorphism.

Let us recall that a groupoid € is a small category all of whose morphisms are
isomorphisms. The nerve (or the classifying space) of the groupoid € is the

simplicial set Nerve € whose set of n-simplexes consist of strings A; — A,
]

o
—--- A, —> A, ., with faces and degeneracies defined in the obvious way.

OBSERVATION 1.2. If € is a groupoid such that for any A, Be€o0b%
Hom (A, B) # &, and € denotes the full subgroupoid with only one object A, then
the inclusion €, — € induces a simplicial inclusion Nerve €, — Nerve € which is
a homotopy equivalence (hence it induces an isomorphism on homology).

A cyclic groupoid (%, ) is a groupoid equipped with a “cyclic structure” &
which associates to each object A a morphism e, € Hom (A, A) such that
f:rea=¢p-f for feHom (A, B). For any groupoid € let (6, id) be the cyclic
groupoid obtained by taking the trivial cyclic structure 4 = ida. A cyclic groupoid
gives rise to a cyclic set Nerve (4, €)= (Nerve 6, t,) with t,(a;, ap,...,a,)=
(@7toaz' - a ' oea,ay,...,a,-1), a;€ Hom (A;, ALy).

OBSERVATION 1.3. HC (Nerve (4, id); R) = @ =0 HH, 5 (Nerve (%, id);
R) and the Gysin—Connes exact sequence reduces to the short exact sequences

O — HH,(Nerve (¢, id); R) - © HH, _,.(Nerve (¢, id); R)

k=0

— @ HH, _,, (Nerve (4, id); R)—>0
k=1
By Observation 1.1 it suffices to verify the statement for groupoids with one
element, hence for groups. This was already done by Karoubi in ‘“Homologie
cyclique des groupes et algebres—C. R. Acad. Sci t. 297 p. 381-4" section II.
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EXAMPLES. Let G be a discrete group and x € Center G.

1) One also denotes by G the group G regarded as a groupoid with only one
object * and Hom (*, *) = G, and one denotes by (G, x) the cyclic groupoid whose
cyclic structure is given by x. Henceforth we will write £(G.x) instead of
Nerve (G, x).

2) 4(G) denotes the groupoid whose objects are the elements of G and
Hom (g', g")={a e G/a™'g'a=g"}. In what follows (€(G), £) will denote the
cyclic groupoid €(G) with cyclic structure £, =g, and €(G) will denote its
associated cyclic set.

3) If § denotes the conjugacy class of g in G, let €(G)* be the full
subgroupoid of €(G) whose objects are the elements g € G in the conjugacy class
g; then we have the cyclic subgroupoid (€ (G)%, &) of (4(G), £€) and, therefore,
the cyclic subset € (G c€(G). 1t is easy to see that €(G) decomposes as a
disjoint union J;c(qy €(G)*

PROPOSITION 1.4. fhe Gysin Connes sequence for R[G] can be naturally
identified with the Gysin Connes sequence of the cyclic set €(G) with coefficients in
R; in particular the Hochschild homology HH(R[G]) (resp. cyclic homology
HC,(R[G)) are isomorphic to HH(€(G); R) (resp. HC,(€(G); R)).

Proof. We define a natural isomorphism of chain complexes
OG:T*(‘é (G); R)—> T«(R[G]) which commute with the corresponding
homomorphisms B; here T,(R[G]) is the chain complex (see [L, Q] or [B,])
which calculates the Hochschild homology of R[G]. 65 sends the generator
(ay, sy . .., ) Of T(€(G); R) to the element (a;'a,}; - a;'g®a;®- -
®a,) of T.(R[G])=R[G]I®_.:-®R[G] with g being the “source” of the

n+1
morphism « € €(G). Clearly 65 induces an isomorphism 0 C.(€(G); R)—
C.(R[G]) making the following diagram commutative and, therefore, proving our
statement.

0— T (%(G); R)— C(%(G); R)— Y C,(&(G); R)—0

Lok -«

0 —> TW(R[G])) — C4(RIG]) —> ¥ C4(RIG]) = 0

Let us fix in each conjugacy class § a representative ge G. One defines
i*:%(G,; g) > €(G)® as the map of cyclic sets induced by the functor
t%: G, — G defined by t%(*) = g and (*(a) =@ a ¢ Hom (*, *), and one considers
i: Uy £(G,, g) — €(G). Using Observations 1.1 and 1.2 we conclude.
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OBSERVATION 1.5. The Gysin Connes exact sequence of the cyclic set (G)
is the direct sum of the Gysin Connes exact sequences of Q(Gg, g) indexed by
g €(G) (for any coefficients R).

PROPOSITION 1.6. If ge Center G is of finite order and k is a field of
characteristic zero then the Gysin Connes exact sequence of £(G, g) (with coeffi-
cients in k) is isomorphic to the homology Gysin sequence (with coefficients in k) of
the trivial fibration

B(Gg}) — B(GHghxBS' — BS'.

Proof. If G =e this is Observation 1.3. If g#e the map of cyclic spaces
L(G, g) = Z(G/{g}, e) induces by Observation 1.1 an isomorphism between the
Gysin Connes exact sequences.

PROPOSITION 1.7. HC (#(Z, 1); R)=R (resp. 0) if * =0 (resp. #0).

Proof. First, notice that HH (£(Z, 1); R)=R (resp. 0) if *=0, 1 (resp. #0, 1,
since HH. *(.,@(Z, 1); R) is equal to H,(BZ; R). The result will follow from Gysin
Connes exact sequence once one concludes that HC1(§(Z, 1); R)=0. To verify
this we will check that any generator [m] of C,(£(Z, 1); R) = T,(#(Z, 1); R), is a
boundary, where T,(£(Z, 1); R) is the free R-module on generators {{m]/m € Z}.
Indeed for each [m] there exists (x,, xo) € To(: + ) Ty(- - *) = C,(- - +) such that
gd(x3, xo) =[m], where T,(- - -) (resp. To( - *)) is the free R-module generated by
the symbols [m,n], m,neZ (resp. *); since Bo: To(- - *) = Ti(: - +) is given by
B(*)=[0]+[1] one can take x,=—-[m—1,1]-[m—-2,1]—-- - [0, 1]— (m —1)[0, 0]
and xo=m(*) if m=0.

PROPOSITION 1.8. If geCenter G is an element of infinite order the Gysin
Connes exact sequence of Z(G, g) with coefficients in R is the same as the homology
Gysin sequence (with coefficients in R) of the fibration BG — B(G/{g}) — BS'. In
particular HC,(%(G, g); R) = H,(BG/{g}; R).

If geCenter G is an element of order n let a € H*(BG/{g}; Z,) be the
characteristic map of the fibration B{g}— BG — BG/{g}, and let 1,€
H?*BS'; Z,)=Hom (Z, Z,) be the cohomology class corresponding to the projec-
tion Z — Z,. Let (BG/{g}*x BS") X K(Z,, 1) be the total space of the fibration
over BG/{g}xBS' with fibre K(Z, 1) defined by the class o+r1,€
H*(BG/{g}xBS'; Z,).
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PROPOSITION 1.6'. If geCenter G is of order n then
HC,(£(G, g); R) = H,(BGHg}x BS") X K(Z,,1); R).

The proofs of Proposition 1.8 and 1.6’ will be given in the next section.
Proposition 1.4, Observation 1.5, Proposition (1.6’ (Proposition 1.6 if R is
field of characteristic zero) and Proposition 1.8 imply:

THEOREM 1. 1) HH4(R[G]) =@ H«(BG,; R)

2) HC (RIG]) =@y H, (BN, x BS") X K(Z,, 1); R)+ @y H,(BN,; R)
with x a chosen representative in X. Moreover, the Gysin Connes exact sequence
is a direct sum of exact sequences parameterized by X € (G); the exact sequence
corresponding to X is the homology Gysin sequence (with coefficients in R) of the
fibration BG, — BN, — BS' if x has infinite order and of the trivial fibration
BN, — BN, X BS* — BS! if x has finite order and R has characteristic zero.

Clearly Theorem I implies theorem I'.

Section II

It is shown in [B-F] that to any cychc set X = (X, t,) one can associate in a

natural way a fibration || X||— ‘HIXIH >BS' whose fibre ||X]| is the geometric
realization of the underlying simplicial set X. It is also shown there that the
homology Gysin sequence of this fibration is the same as the Gysin Connes
sequence of the cylic set X.

Proof of Proposition 1.8. Let £(Z, 1) - #(G, g) 5 £(G/{g}, e) be the morph-
ism of cyclic sets induced by i: Z— G, i(1) = g and the projection G — G/{g}; let
X,, X, and X; denote the spaces £(Z, 1), £(G, g) and £(G/{g}; e) respectively.
One can construct the following homotopy commulative diagram, whose vertical
lines are fibrations up to homotopy

B(Gg) = B(G/{g}))x BS' - BS!
A

A A
flr i il
B(G) — ||#(G,g)ll — ES!
B{g}=S' — St —=» §?

2 (1)
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We can choose BS' to be a commutative topological group so that A is given by
A(u, v) = A(u) + A,(v), u e BG/{g} ve BS* with A, (resp. A,) the restriction of A to
BG/{g}x* resp. * x BS'. Note that &,:m,(S)=Z — m(|&(G, g)|) is trivial as
ix, " &' factors through [|£({g}, g)ll (which is contractible by Proposition 1.7).
Hence, A, is a homotopy equivalence. We claim that the fibration (2) is isomor-
phic to one induced from the universal fibration (1) by the projection

B(G/{x})xBSI—p-r—’—>B81. To see this, one defines a homotopy equivalence

0:B(G/{g})x BS'— B(GH{ghxBS' by 6(u,v)=(u,—deg(A;) - A,(u)+v) and
notices that A - § = pr,. This implies Proposition 1.8.

Proof of Proposition 1.6'. We have to show that (G, g) is homotopy equival-
ent to (BN x BS?!) % K(Z,;1). It suffices to verify that the restriction of the
fibration

K(Z,;1)=B{g}— |Z(G, g)ll = I£(G/{g}, e)ll= BG/{g}*x BS"

to BG/{g}x* (resp. *x BS"') has o (resp. 7,) as its characteristic class. This follows
immediately from the commutativity at the diagrams

B{g} — [I€(G, &)l — BG/{g}*xBS'

o

B{g} — BG —>  BG/{g}

where X = Z(G, g), Y= Q(G/{g}, e), and

B{g} — lI2G, oll *> BG/{g}xBS!
A A N

A
in

K(Z,, 1) — [I€(g}, ol —> B{g}{g}xBS"

K(Z,1) — [I£(Z 1) — B(Z/{1})xBS*

where in: 2({g}, g) = Z(G, g) is induced by the inclusion {g}< G.

Section III

The purpose of this section is to complete the proof of the remaining
statements from Introduction.
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Proof of Proposition II. Let P= G * H. The reader can verify that P, # {x} only
if X contains a representative of either form g, * ey or eg * g, in which case P; is

isomorphic to either G; or H;. With this observation in mind one applies
Theorem I. Q.E.D.

Let x e Center G, y € Center H hence (x, y)e Center G X H, and let {x}, {y},
{(x, y)} denote the subgroup of G resp. H, resp. G X H generated by x resp. vy,
resp. (x X y). Proposition III follows by applying Observation 1.5, the homology

(actually homotopy) equivalence [|Z(I,, x)||~||€*(I)|| and Observation 3.1
below.

OBSERVATION 3.1.% a) If both x and y are of finite order then
H.(I£(G x H, (x, y))lI; k) = Hx(BG x BH x BS"; k).

b) If x is of infinite order and y of finite order then

H.(I£(G x H, (x, y)ll; k) = H«(B(GKx}; k)@ Hy(BH; k).

c) If x and y are of infinite order and the fibration S* = B{y} > BH — B(H{y})
has trivial Chern class oy € H*(B(H/{y}); R) then

H,(l2(G x H, (x, y))lI; R) = H«(B(G)*x B(H/y}); R).

Proof. a) is in fact Proposition 1.6. If either x or y are of infinite order
I<6(G x H; (x, y))|| has the same homology as B(G x H/{(x, y)}) by Proposition
1.8. Notice that we have the fibration

B(EEY) L B (6 x HiiGx, y) — BGHx) x BEHIYY,
{0x, y)}

If x is of infinite order and y of finite order, hence the group {x}Xx{y}/{(x, y)} is
finite, the fibration implies

H.(B(G x H/{(x, y)}); k) = H (B(G/{x}) X B(H/{y}); k)
= H,(B(G/{x}) X BH; k)

which is b). If both x and y are of infinite order, it is not hard to check that the

'Here k denotes a field of characteristic zero and R a commutative unitary ring.
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fibration

{x}x{y}
{(x, y)}

is a fibration of Chern class og+o0y where o€ HAB(G/{x}; R) respectively
oy € HX(B(H/{y}); R) are the Chern classes of the fibration B{x}— BG —
B(G/{x}) resp. B{y}—> BH — B(H/{y}). f oyx=0 then clearly H,(B(G X H/
{(x, y)}); R) = H,(B(G) X B(H/{y}); R).

Theorem I, Proposition II, and Corollary IV, follows from Theorem T,
Proposition II and Corollary IV.

S'=B

— B(G x HA(x, y)}) = B(G/x}) x B(H{y})

Section IV

If G is a torsion free group, i.e. the only element of finite order is zero, the
formula given by Theorem I becomes:

HC,(R[G))= H,(BG; R\® H.(BS'; R)+ @ H,(BN,;R).

xe(GH)\é

Theorem I also implies

PHC,(R[G)=K.(BG;R)+ @ T.(%;R).

xe(GH\é

If N; is of finite homological dimension then T(X; R) is zero for any element of
infinite order. In general this is not the case. For instance let I" be a discrete group
for which there exists ¢ : K(I', 1) = CP” which is a homology equivalence. Such I"
always exists by a theorem of Kan-Thurston see [BDH]; one can even assume
that I' is torsion free. Let S' % E — K(I', 1) be the pullback of the universal
S'-bundle by ¢; clearly E=K(G, 1) and if x=i,(1)€ G, iy:Z=m,(S*) = 7,(E)
we have H,(BG; R)=0 for any R and T,(%; R)= R (resp. 0) if *is even (resp.
odd). In spite of this it will not be very surprising if the following conjecture is
true:

CONJECTURE. If K(I', 1) has the homotopy type of a finite CW-complex,
then T(x; R)=0 for any X e(I')".

This is obviously true for those I' which are fundamental groups of compact
riemannian manifolds of nonpositive sectional curvature.
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