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On products of soluble groups of finite rank

Joun S. WILSON

1. Introduction

1.1. If H, K are subgroups of a finite group G, then the set HK contains
|H| |K|/|H N K| elements; thus writing s(X)=1log|X| for each finite group X, we
have

s(G)+s(HNK)=s(H)+ s(K), (%)

with equality if and only if G = HK. More generally, suppose that s is a function
mapping groups to elements of {x;xeR, x=0}U{x} and suppose that s is
constant on isomorphism classes, additive on extensions, and satisfies s(Y) < s(X)
whenever Y is a subgroup of X. If H, K are subgroups of a group G and K is
normal, then

H/(HNK)=HK/K < G/K,

and so again (*) holds, with equality if G = HK. There are many “rank functions”
s which have these properties. Our intention here is to consider some of those
which are useful in the study of infinite soluble groups, and to investigate to what
extent the above conclusions are valid if the requirement that K be a normal
subgroup is relaxed.

The rank function that we shall be mainly concerned with is minimax rank.

The minimax rank m(X) of a group X is the number of infinite factors in a finite
series

1=X,<--<4X,=X

for X with all factors finite, cyclic or quasicyclic, if such a series exists, and is

infinite otherwise. It follows from Schreier’s refinement theorem that m(X) is an

invariant of X. The groups with finite minimax rank are just the soluble by finite

minimax groups, and a description of many of the properties of these groups can
337



338 JOHN S. WILSON

be found in Robinson [7], Chapter 10. Polycyclic groups are minimax, and the
minimax rank of a polycyclic group X is just its Hirsch number h(X). We shall say
that a group G is almost the product of its subgroups H, K if the set HK contains
a subgroup of finite index in G. We may now state our first result as follows:

THEOREM 1. Let H, K be subgroups of a soluble by finite minimax group G.
Then

(a) m(G)+m(HNK)=m(H)+ m(K), and

(b) equality holds in (a) if and only if G is almost the product of H and K.

This is not in the same category as the elementary results mentioned earlier:
we shall show later that it implies a weak form of Dirichlet’s Unit theorem. The
fact that the above equality holds if G = HK was proved for the case when H, K
are abelian by ZaiCev in [10], and for the case when H, K are nilpotent by
Amberg and Robinson in [1].

1.2, Theorem 1 yields information about subgroups of a minimax group which
permute with each other, because of the simple

LEMMA 1. For subgroups H, K of a group G the following conditions are
equivalent:
(i) G is almost the product of H and K;
(ii) H has a subgroup H, of finite index such that H)K = KH,, and |G : HyK| is
finite;
(iii) K has a subgroup K, of finite index such that HK,= K H and |G : HK,)| is
finite.

Proof. Each of (ii), (iii) clearly implies (i). If (i) holds, there is a subgroup
L <1 G with G/L finite and L =<=HK. We define Hy,=HNLK; thus LK is a
subgroup, and both |H:Hy| and |G : LK| are finite. However

LK=LKNHK=(LKNH)K = H,K.
This and a similar argument show that (i) implies (ii) and (iii).

We may now deduce

COROLLARY 1. Let H, K be subgroups of a soluble by finite minimax group

G such that HK = KH, and let H, be a subgroup of finite index in H. Then there
exists a subgroup H, of finite index in H, such that H,K = KH,.
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To prove this, we apply Theorem 1 twice. First we obtain
m(HK)+ m(HNK)=m(H)+ m(K);

then, since m(HNK)=m(H,;NK) and m(H)=m(H,), we deduce that HK is
almost the product of H, and K, and the result follows from Lemma 1.

It has long been known that every product of two abelian groups is metabelian
(It [5]), and one suspects that every product of two abelian by finite groups is

metabelian by finite. The next corollary provides further evidence for this
conjecture.

COROLLARY 2. Let G=HK, where H, K are abelian by finite. If G is
soluble by finite and minimax, then G is metabelian by finite.

Corollary 1 permits us to deduce this from Itd’s theorem; it yields an abelian
subgroup of H, of finite index in H such that H,K=KH, and an abelian
subgroup K, of finite index in K such that H,K,= K,H,. Thus H,K, is a
metabelian subgroup, and it has finite index in HK since |HK : H,K|<|H : H,| and
|HLK : H,K,|<|K :K,)|.

1.3. The other rank functions that we consider are torsion-free rank and C,--
rank. The torsion-free rank ry(X) of a group X is the number of infinite cyclic
factors in a finite series for X each of whose factors is either infinite cyclic or a
torsion group; and for each prime p the C,--rank r,(X) is the number of factors
quasicyclic of type C,- in a finite series each of whose factors either is of type C,-
or has no sections of type C,-. Of course these are understood to be infinite if no
series of the required type exist, and, if finite, they are invariants by Schreier’s
refinement theorem. It is easy to see that the class of soluble by finite groups
having no infinite abelian sections of finite exponent contains the class of soluble
by finite minimax groups and is contained in the class of groups of finite
torsion-free rank. We shall prove the following two results:

THEOREM 2. If G is a soluble by finite group having no infinite abelian
sections of finite exponent and if G is almost the product of its subgroups H, K, then

ro(G) + ro(H N K) = ro(H) + ro( K).

THEOREM 3. Let G be a soluble by finite minimax group and let H, K<G.
Then for each prime p

(@) r,(G)+r,(HNK)=r,(H)+r,(K), and

(b) equality holds in (a) if G is almost the product of H and K.



340 JOHN S. WILSON

If X is a minimax group, then m(X)=ry(X)+Y r,(X), the sum being taken
over all primes p, and so Theorem 2 and Theorem 3 provide one of the
implications in Theorem 1(b). In conjunction with Theorem 1, they yield a little
more information than Theorem 1(b).

COROLLARY 3. If G is a soluble by finite minimax group and H, K are
subgroups of G, then G is almost the product of H and K if and only if

r,(G)+r,(HNK)=r,(H)+r,(K)

for p=0 and for every prime p.

1.4. Let R be a commutative ring and U a subgroup of its group of units, and
write G for the group of matrices

G 1)
0 1/’
with ue U, be R. Let A, H be respectively the group of all upper unitriangular

matrices in G and the group of all diagonal matrices in G, and let K be the group
of all matrices

(u u—l)
0 1 /7

with u € U. Thus A is normal in G and is isomorphic as an abelian group to R,
while both H and K are complements to A in G and are isomorphic to U.

Our theorems are proved by first reducing to the case of groups with structure
rather like this group G, and similar reductions would apply for any sufficiently
well behaved rank functions. It is in the consideration of groups with the above
structure that the choice of rank function becomes important, and we can best
illustrate this with some examples.

EXAMPLE .1. First we take R =7Z[1/s], where s is the product of distinct
primes p;, ..., p,, and we take U to be the multiplicative group generated by
P1 - - -, Pp- Thus G is minimax and

m(G)=m(A)+m(H)=2n+1.
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However
ro(G)=n+1 and HNK-=1,
so that
ro(G)+ro(HNK)—ro(H)—ro(K)=n+1-2n=1—n.

Therefore no inequality holds in Theorem 2 corresponding to the inequalities in
Theorem 1(a) and Theorem 3(a).

EXAMPLE 2. More generally, we take for R any ring which is minimax
regarded as an abelian group, and we take for U any finitely generated subgroup
of its group of units. Then

m(G)+m(HNK)—-m(H)—m(K)=m(A)—m((H)=m(R)—m(U).

According to Theorem 1 we therefore have m(U)=m(R). This applies in
particular if R is the ring of integers of an algebraic number field F, and it shows
that no abelian subgroup of the group of units of R has torsion-free rank greater
than dimg F. This is the weak form of Dirichlet’s Unit theorem mentioned earlier.
In fact Theorem 3(a) implies that the group of units of R is itself finitely
generated. A form of the Unit theorem plays a crucial part in the proof of
Theorem 1.

EXAMPLE 3. 1t is well known that, if H, K are closed subgroups of an
arbitrary linear algebraic group G, then the set HK is closed and its dimension is
dim H +dim K —dim (H N K). Therefore

dim (G)+dim (H N K) =dim (H) + dim (K),

with equality if G = HK. For our final example we take G of the type constructed
above and we take R =C and U =C\{0}. Then G is a linear algebraic group, and

dim (G)+dim (H N K) —dim (H) —dim (K) = 0.

However G is not almost the product of H and K: if it were, then since A is
divisible we would have A < HK, and an easy calculation shows that the element

o 1)

of A does not lie in HK.
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In §2, Theorems 1, 2 and 3 are shown to follow from two results concerning
groups G and subgroups H, K such that H, K are complements to an abelian
normal subgroup A. These results, Propositions 1 and 2, are proved in §3. In
Proposition 1, A is a divisible abelian g-group of finite rank for some prime q,
and the proof is straightforward. Proposition 2 lies deeper, and the Unit theorem
enters its proof through Lemma S in §3.2.

The case of Theorem 1 in which G is polycyclic (and in which minimax length
becomes Hirsch number) is of special interest, and its proof is somewhat easier
than the general case. Firstly, there are fairly obvious simplifications in the proof
that it follows from Proposition 2. The use of Lemma 5 in Proposition 2(a) can be
replaced by an appeal to a weak form of the Unit theorem: that if F is an
algebraic number field then the group of units of its ring of integers has
torsion-free rank less than dimg, F. Finally, for the proof of Proposition 2(a) in this
case, the first paragraph of the proof of Lemma 6 is unnecessary.

2. Reductions

21. In Lemmas 2 and 3, s is a function mapping groups to elements of
{x; xeR, x=0}U{x} and G is a group such that s(G) is finite; s is assumed to be
constant on isomorphism classes, additive on extensions, and to satisfy s(Y)=
s(X) whenever Y is a subgroup of X.

LEMMA 2. Suppose that H  K=G and A < G, and suppose in addition that
one of H, K contains A. Consider the following statements:

(1) s(G/A)+s((HA/A)N(KA/A))=s(HA/A)+s(KA/A);

(i) s(G)+s(HNK)=s(H)+ s(K).
Then (i) and (ii) are equivalent; and equality holds in (i) if and only if equality
holds in (ii).

This is a straightforward consequence of the modular law.

LEMMA 3. Suppose that HH K=G and A <G, and define Hi=HNKA,
K,=KNHA and G,=HANKA. (Thus G;=(HNKA)A=H,;A and G,=
K,A). Consider the following statements (i)—(iv):

1) s(G)+s(HANK)=s(HA)+s(K);

(1) s(HA)+s(KANH)=s(HANKA)+s(H);

(iii) s(Gy)+s(H,NKy)=s(Hy)+s(Ky);

(iv) s(G)+s(HNK)=s(H)+ s(K).

(a) If (i), (ii) and (iii) hold, then so does (iv).
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(b) If equality holds in (i), (ii) and (iii), then equality holds in (iv).
(c) If (i), (ii) and (iii) hold and equality holds in (iv), then equality holds in (i),
(ii) and (iii).

This follows on adding (i), (ii) and (iii).

LEMMA 4. Let H K=G and A <G, and suppose that G is almost the
product of H and K. Write H, = HN KA, K, = KNHA and G,= HA N KA. Then

(a) G is almost the product of HA and K

(b) HA is almost the product of HA N KA and H; and

(¢) G, is almost the product of H, and K,.

Proof. (a) is clear. Let L be a subgroup of finite index in G such that L < HK.
Then |HA : HA NL| <~ and

HANL=HANHK=H(HANK)<H(HANKA).
Similarly |(HA NKA):(HANKA)NL|<% and
(HANKA)NL=(HANHK)NKA =HK,NKA =(HNKA)K,=H,K,.

2.2. We are now ready for the

FIRST REDUCTION STEP. It is sufficient to prove Theorems 1, 2, and 3 for
groups G and subgroups H, K satisfying the following additional conditions:
(i) G has an abelian normal subgroup A such that

G=HA=KA, HNA=KNA=1, and Cg5(A)=A;

(ii) either A is a torsion-free group with ro(A) finite on which H acts rationally
irreducibly by conjugation, or, for some prime q, A is a divisible q-group with r,(A)
finite, all of whose proper H-invariant subgroups are finite.

Proof. We begin with Theorem 2 and argue by induction on t(G)=ro(G)+1,
where [ is the smallest integer such that G has a series of normal subgroups of
length | with each factor finite, torsion-free abelian or torsion abelian. Let N be
the first non-trivial term in such a series of length [. The result is certainly true if
ro(G) =0 and so the induction begins. We define A to be a non-trivial torsion-
free abelian normal subgroup if such a subgroup exists and to be N otherwise. In
the first case we may add to our induction hypothesis the assumption that
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Theorem 2 holds for every group having a torsion-free abelian normal subgroup
B with 0<r,(B)<ry(A).

By Lemma 4, the hypotheses of Theorem 2 are satisfied by each of the triples
(G, HA,K), (HA,(HANKA), H) and (G,, H,, K,), where G,, H, and K, are
defined as in the lemma. Using induction on t(G) and working modulo A, we see
from Lemma 2 that the first two triples satisfy the conclusion of the theorem.
Thus by Lemma 3 it suffices to show that the theorem holds for (G,, H,, K,).
Replacing (G, H, K) by this, we may therefore suppose that G = HA = KA.

Suppose now that A is a torsion group. We must show that ro(H N K) = ro(K).
For any chain (L,) of subgroups we have ry(lJL,)=max (ro(L,)); thus if
rolH N K) <ry(K) then Zorn’s Lemma yields a subgroup H, = H maximal subject
to ro(H; NK)<ry(K). Choose ac A\H; and let B=(a®), so that H,B>H,.
Because of the hypothesis on elementary abelian sections of G, the subgroup B is
finite. It follows that |[H,BNK:H,NK]| is finite and that r,(H,BNK)=
ro(H; N K), in contradiction to the choice of H,.

Suppose instead that A is torsion-free. By Lemma 2 we may pass to factor
groups modulo () (H®; g€ G), and so we may assume that [ (H?®*;ge G)=1.
Thus since Cy(A) <t G we have Cy(A)=1, so that

Cs(A)=A and HNA=Cy(A)=1.

If KNA>1 then the result holds by induction and Lemma 2, and so we may
assume that KN A = 1. Finally our induction ensures that the result holds if G
has an abelian normal subgroup B=A with 0<ry(B)<rys(A), and so we may
assume A rationally irreducible as an H-module. This completes our reduction of
Theorem 2.

The reduction of Theorem 1 and Theorem 3 is rather similar. In these results
G is a minimax group and we argue by induction on m(G). We may assume
m(G)>0, so that G has an abelian normal subgroup A which is either torsion-
free or a divisible q-group for some prime q, and we may add to our induction
hypothesis the assumption that Theorem 1 and Theorem 3 hold for every group
having an abelian normal subgroup B with 0<m(B)<m(A).

We defer the reduction of the proof that if m(G)+m(HNK)=m(H)+ m(K)
then G is almost the product of H and K, and we complete the reduction of the
proofs of all the other assertions of Theorem 1 and Theorem 3 simultaneously. If
the triple (G, H, K) is such that G is almost the product of H and K, then each of
the triples (G, HA, K), (HA,(HANKA), H) and (G,, H;, K;) has the corres-
ponding property by Lemma 4. Thus, after using induction and Lemma 2, and
after appealing to Lemma 3, we are left to consider the triple (G,, H;, K;). In
other words, we may assume G = HA = KA. By Lemma 2 we may assume that
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(N (H®*; ge G)=1, so that HN A = C4(A) = 1. Induction and Lemma 2 allow us
to assume that m(K N A)=0 and that KN A is finite. If A is a divisible gq-group
then only the identity automorphism of A induces the identity automorphism of
A/(KNA), so that the centralizer in G of A/(KNA) is C5(A)= A. Further we
have

(HKKNA)NA=HNA)KNA)=KNA.

Therefore, if we now pass to the quotient group G/(KNA), all conditions
(including the conditions that C;(A)= A and HN A =1) are preserved and so we
may also assume that KN A =1. Finally the induction hypothesis on abelian
normal subgroups of G allows us to assume that H acts rationally irreducibly on
A if A is torsion-free and that A has no proper infinite H-invariant subgroups if
A is a divisible g-group.

Theargument for the remaining assertion of Theorem 1 is slightly different.
The hypothesis on (G, H, K) is that

m(G)+m(HNK)=m(H)+ m(K).

Since Theorem 1(a) has already been proved for groups G with m(G)=m(G),
Lemma 3(c) shows that the triple (G,, H;, K;) inherits this hypothesis. If the
conclusion holds for this triple then some subgroup of finite index in G, lies in
H,K,, and so for some n we have A" <H,K,. However, applying Lemma 3(c)
again with A" in place of A, we find that (G, HA", K) inherits the hypothesis. By
Lemma 2, so does (G/A", HA"/A", KA"/A"); thus by induction some subgroup
of finite index in G lies in (HA")(KA™). Since

(HA")(KA")=HA"K =HH,K K = HK,

the result follows.

Thus we must investigate the triple (G,, H;, K;), and we replace (G, H, K) by
this, so that we have G = HA = KA. Suppose that N << G and N is contained in H
or K. By Lemma 2 the hypothesis is satisfied by (G/N, HN/N, KN/N), and if the
conclusion holds for this triple then it clearly holds for (G, H, K). This observation
permits us to follow the argument above. First we may assume that [ (H®; g€ G)
=1, so that ANH=Cyx(A)=1. Next, by induction we may assume that
KN A is finite, and passing to G/(K N A) we also ensure that KN A = 1. Finally,
an appeal to the hypothesis on abelian normal subgroups completes the reduction.

2.3. The following two Propositions will be proved in §3:
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PROPOSITION 1. Let G = HA = KA, where A is a non-trivial divisible abelian
normal q-subgroup of finite rank, and where

HNA=KNA=1 and Cg(A)=A.

Suppose that H is abelian by finite and has finite torsion-free rank, and suppose that
all proper H-invariant subgroups of A are finite. Then (H, K)N A is finite. In
particular

(a) all of the indices |(H, K):H|, {H, K):K|, |H:HNK| and |K:HNK]| are
finite, and |G :(H, K)| is infinite;

(b) G is not almost the product of H and K.

PROPOSITION 2. Let G=HA = KA, where A is a non-trivial torsion-free
abelian normal subgroup of finite torsion-free rank, and where

HNA=KNA=1 and Cg(A)=A.

Suppose that H is abelian by finite and has finite torsion-free rank, and suppose
that H acts rationally irreducibly on A. Then

@ r,(G)+r,(HNK)=r,(H)+r,(K) for each prime p, and moreover
m(G)+m(HNK)>m(H)+m(K) if m(G)<ox;

(b) G is not almost the product of H and K.

SECOND REDUCTION STEP. Theorems 1, 2 and 3 follow Propositions 1
and 2.

First we note that in Proposition 1 and 2 the hypothesis that H is abelian by
finite is implied by the other hypotheses and the assumption that H is soluble by
finite. To see this we use the well known fact that soluble by finite irreducible
linear groups are abelian by finite (cf. Wehrfritz [9], Corollary 3.4 supplemented
by Theorems 1.7 and 1.19). In the case of Proposition 2, H acts on faithfully and
irreducibly on the Q-vector space A ®; Q. For Proposition 1 it is most convenient
to use duality (see Hartley [4]): A* =Hom; (A, Q/Z) is a free Z,-module of finite
rank on which H acts faithfully according to the rule a(fh) = (ah™M)f, for a € A,
fe A*, he H; moreover A*®,Q, is an irreducible Q,H-module by Lemma 2.1
of [4].

It follows that in the cases of Theorem 1, 2 and 3 that remain to be studied,
the hypotheses of either Proposition 1 or Proposition 2 are satisfied. Propositions
1(a) and 2(a) give the inequalities required in Theorem 1(a) and Theorem 3(a).
The remaining implications of Theorems 1, 2 and 3 hold vacuously in these cases:



On products of soluble groups of finite rank 347

Propositions 1(a) and 2(a) show that equality cannot arise in Theorem 1(b) while
Propositions 1(b) and 2(b) show that G cannot be almost the product of H and K.

3. Proof of Proposition 1 and Proposition 2

3.1. First we give the rather elementary proof of Proposition 1.

We suppose the first assertion of Proposition 1 false; thus (H, K)N A is an
infinite H-invariant subgroup of A, and so (H, K)N A = A and (H, K)= G. Since
H is abelian by finite and ro(H) is finite, there is a finitely generated normal
subgroup H,=<(h,,..., h,) of H such that H/H, is periodic. For each i, write
h; = a;k; with a;€ A and k; € K. The normal subgroup A; of G generated by
a,...,a, is finite. We have H, = A, K, and therefore H; has a subgroup of finite
index, which may be chosen characteristic in H,, which lies in K. Replacing H, by
this, we have H; =K and we still have H; <1 H. Thus

AH,<AH=G and H,=AH,NK<K.

Since (H, K)= G we conclude that H, <t G. However H{NA =1 and C5(A)= A,
and therefore H, = 1.

It follows that H is a torsion group. Since torsion subgroups of Aut A are
finite (see Robinson [7], Corollary to Lemma 3.28), H is therefore finite, and
G = AH is locally finite. However

K=AK/A =AH/A=H,
so that K is also finite, and G is finitely generated. The resulting contradiction
completes the proof of the first assertion of the proposition.

The remaining assertions now follow immediately: we have for example

KH, K): H|=|KH, K)A:HA||(H, KN A:HNA|=KH, KY\NA:HNA|<w®

and |[K:HNK|=|(H, K): H|. Clearly G is not almost the product of H and K
because H and K fail to generate a subgroup of finite index in G.

3.2. Next we turn to the proof of Proposition 2(a). The crucial information about
ranks is given by the following lemma, the first assertion of which is well known.

LEMMA 5. Let A be a torsion-free abelian group of finite torsion-free rank and
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let H be an abelian group which acts faithfully and rationally irreducibly on A.
(a) If ro(H) is finite, then H is finitely generated.
(b) If further A is a minimax group, then ro(H)<m(A).

Proof. The action of H on A makes V= A ®, Q an irreducible QH-module,
and the centralizer ring F=Endgy V is a division ring by Schur’s Lemma.
Because H is abelian, its image H in Endg V lies in and spans F, so that F is an
algebraic number field and dimz V=1. Since H= I:I, assertion (a) now follows
from the theorem of Skolem [8] that the multiplicative group of an algebraic
number field is a direct product of a finite cyclic group and a free abelian group.
However we shall give a proof of (a) since the arguments are needed in the proof
of (b). We shall use the Unit theorem (see for example Cassels [3], p. 72) together
with some facts about valuation rings and Dedekind rings; a convenient reference
is Bourbaki [2], Chapters VI and VII.

Since H has finite torsion-free rank, it has a finitely generated subgroup
L=<(h,,...,h,) such that H/L is a torsion-group. Each element of F lies in all
but finitely many of the valuation rings of F (see [2], proof of Proposition 12 on
p. 487). Let V,,...,V, be the valuation rings not containing the set
{hq, h1', hy, b3, ..., h,, h;'}, let S; be the family of non-archimedean absolute
values on F corresponding to V,..., V|, and let S be the union of S, and the set
of archimedean absolute values on F. Thus if V is a valuation ring of F and
Vé{V,,..., Vi} then the group of units U of V contains L; indeed, since V is
integrally closed, all roots of elements of L lie in U, and so H < U. It follows that
H is contained in the group of S-units of F, so that the Unit theorem may be
applied: it yields that H is a direct product of a finite cyclic group and a free
abelian group of rank at most |S|—1, and (a) follows.

To prove (b) we must show that |S|=m(A). First we note that the number of
archimedian absolute values on F is r+s, where r is the number of real

embeddings of F and s is the number of (pairs of conjugate) complex embed-
dings; and since

r+2s=dimg F=r¢(A),

we certainly have |S|—|S;|=r,(A). It will therefore suffice to show that |S;|=
m(A)=r(A). ﬂ

Let M be the subring of F generated by H. If a € A\O then the map x—>ax
from M to A is injective; thus M is minimax and m(M)=m(A). Let I be the ring
of integers of F and let N be the subring generated by I and M. Since |[:M N1} is
finite we have el =M for some integer e >0, and therefore eN <M. It follows
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that N/M is a finite group and that m(N)=m(A); and because
m(I) = ro(I) =ro(A)

the result will follow if we prove that |S,|=m(N/I).

Since I is noetherian and the ring N is generated by I and H, N is noetherian.
Let P be a maximal ideal of N; then I NP is a non-zero prime ideal of I and the
localization I;~p of I at IN P is a discrete valuation ring (for example by Theorem
1 on p. 494 of [2]). However

Linp=Np=F,

and because Np# F we have Np = I;~p. It follows, again from Theorem 1 on p.
494 of [2], that N is a Dedekind domain.

Now each integrally closed subring of F is the intersection of the valuation
rings which contain it ([2], Theorem 3 on p. 378); since I lies in all valuation rings
of F it follows that N is the intersection of all valuation rings of F apart from
Vi,..., Ve and that I=NNV,N---NV,. We define

W,=NNnNV, for i<k.

j#Ei

Each W/I is a subgroup of N/I and clearly the sum of these subgroups is their
direct sum. By Proposition 2 on p. 497 of [2] if f¢ V, there are elements x € W,
with x — fe V.. Thus each W,/I is non-trivial, and so is infinite since I is integrally
closed. It follows that m(N/I)= k =|S,|, and the proof of Lemma 5 is complete.

It is now an easy matter to prove Proposition 2(a). Let G, H, K and A be as in
the statement of Proposition 2, and let H, be an abelian normal subgroup of finite
index in H. Since H acts rationally irreducibly on A, the tensor product A @, Q is
an irreducible QH-module, and so by Clifford’s theorem it is a direct sum of
irreducible QH,-submodules. The intersections By,..., B, of these with A are
acted on rationally irreducibly by H,, and the quotient of A by their product is a
torsion-group. For i=1,..., n let C;, = Cy (B;). Thus

n CichIO(le. ) .XBn)chO(A):'l’
i=1

so that H, may be embedded in (Hy/C;) X - - - X (Ho/C,,).
We now apply Lemma 5, regarding B; as an (Hy/C;)-module for each i.
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Assertion (a) shows that each H,/C, is finitely generated. Therefore H, is finitely
generated, so that r,(H) = 0 for each prime p. Since K = H we also have r,(K)=0
and so the assertion of Proposition 2(a) concerning C,--rank follows. Moreover
for each i we have ry(Hy/C,) <m(B,;), so that

ro(H) = ro(Hp) =< ro((Ho/Cy) X - - - X (Hy/C,))
=2 1o(Ho/G)< X m(B))

=m(B,X--XB,)=m(A).
Thus

m(G)+m(HNK)—-m(H)— m(K)
=m(A)+m(K)+m(HNK)—m(H)—m(K)
=m(A)-m(H)>0.

This concludes the proof of Proposition 2(a).

3.3. Finally we must prove Proposition 2(b). The following lemma is essentially
the special case in which H is abelian.

LEMMA 6. Let H be a finitely generated abelian group and let A be a
torsion-free abelian group of finite rank on which H acts rationally irreducibly and
non-trivially. If 8:H — A is a non-zero derivation and a.,...,a,, are finitely
many elements of A then {x6+ax;xe€H,i=1,...,m} is a proper subset of A.

Proof. We suppose the result false. If B is a ZH-submodule containing xé and
yé with x, y € H, then

(xy 18 =(x6—y8)y '€ B;

thus if H=<(h,,..., h,) and if we define a,,,,=hd for i=1,...,s, then the
submodule generated by a,, .. ., a,.,s contains x8 for each x € H and so equals A.
Let E=(e,,...,e,) be a free abelian subgroup of A of rank r=r,(A). There are
equations '
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and

eah§=2m,-kee,~ (i=r, k=s, e€{0,1}),
i=1

]

with rational coefficients A;; and ;.. Writing R for the subring of Q generated by
the A; and wy,., we see that E®; R is a ZH-module containing A. However
E ®; R is free as an R-module, and it follows easily from this that for each
a € A\O there are only finitely many primes p for which p~'a € A.

Choose ye H\ Cy(A). Since H is abelian, the map a—>a(y—1) is a ZH-
module endomorphism of A, and since H acts rationally irreducibly on A, this
map is injective and A/A(y—1) is a torsion group. It follows that

n(yd) = ao(y — 1),
for some apo€ A and some positive integer n. Since H is abelian we have
(x8)(y —1) = (y8)(x — 1),
for all x € H, so that
(n(x8))(y — 1) = (n(y8))(x — 1) = ag(x — 1)(y - 1)
and
n(xd) =aqg(x—1)

for all x € H. Therefore a,# 0 since §# 0, and writing b, = na; +a, for 1=i=m
we have

nA = U {nax+ag(x—1); xe H}= U {bix —ao; x€ H}.
i=1 i=1

For i=1,...,m we define U, to be the set of integers u such that nua,=
b;x —a, for some xe H. Thus Z=U,U---UU,. If

nua,=bx—a, and nvay=b;y—a,
with x, y € H, then

(nu+1)byy = (nu+1)(nv+ 1)ay,= (nv + 1)bx,
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so that
(nu+1)(byx ") = (nv+1)b,.

Thus if ve U, then (nv+1)b;, is divisible in A by nu+1 for all ueU,. If
(nv +1)b, # 0 for some v € U, we can therefore conclude that there are only finitely
many primes which divide integers in {nu+1; u € U,}; and the same conclusion
holds if (nv+1)b,=0 for all ve U, since then U, has at most one element.
Because Z=U,U---UU,, it follows that the prime divisors of the integers in
{nu+1; u ez} are finite in number. However this is absurd: if p is any prime not
dividing n, then —n is invertible modulo p so that p divides an integer of form
nu+ 1. The result follows.

We may now prove Proposition 2(b). Let G, H, K and A be as in Proposition
2, and suppose that G is almost the product of H and K. Thus A" < HK for some
integer n>0. We write H;= HNA"K, so that |H:H,| is finite. If x € H, then
xa € K for some a € A"; on the other hand if xa; = k; with a,€ A" and k; € K for
i=1,2, then aj'a,=ki'k,e ANK =1 so that a, = a,. It follows that for x € H,
there is a unique x60 € A" with x(x8)e K. If x, y e H,, then K contains

x(x0)y(y0) = (xy)((x0)’ (y0)),

and so the map 6:H; — A" is a derivation. Moreover 6 is surjective because
A" =HK.

Let H, be an abelian normal subgroup of finite index in H such that Hy< H,,
let D be an H,-invariant subgroup of A" with ry(D) as large as possible subject to
ro(D)<ry(A), and write B/D for the torsion subgroup of A"/D. Thus B is
H,-invariant, and A = A"/B is rationally irreducible, regarded as an H,-module.
Let C=Cy(A). If T is a transversal to H, in H, then Hy/C'=H,/C for each
teT, and

N C'= Cy(A"BY) = CHO(A” N B‘)= Cu(AM =1.
teT teT teT

Since obviously H,# 1 we conclude that H, acts non-trivially on A. Lemma 6
shows that H,/C is finitely generated, and so we also conclude that H is finitely
generated.

We define 8 to be the derivation x+—>(x0)B from H, to A and we choose a
transversal {t,, ..., tn.} to Hy in H,. Since 6: H, — A" is surjective we have

A" = U {0)6; xe H = U {16)*(x0); x < H
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and

A=

{ai(x8); x € Hy},

iCs

where a; =(t,0)B for each i.
If 8 were trivial we would have H,0 <B, and so

A"= U {(x0)0; x e Hob= U B*(:6).

Thus one of the B% would have finite index in A", by a well known result of
Neumann [6], and this is not the case. Therefore § is non-trivial, and we may
apply Lemma 7, with A in place of A and H, in place of H. We obtain a
contradiction, and the proof of Proposition 2(b) is complete.
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