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Geometric invariants of link cobordism

Tmm D. CocHrAN?

Abstract. A geometric notion of a “derivative” is defined for 2-component links of S™ in $"*2 and
used to construct a sequence B, i=1,2,... of abelian concordance invariants which vanish for
boundary links. For n>1, these generalize the only heretofore known invariant, the Sato-Levine
invariant. For n = 1, these invariants are additive under any band-sum and consequently provide new
information about which 1-links are concordant to boundary links. Examples are given of concordance
classes successfully distinguished by the B' but not by their @-invariants, Murasugi 2-height, Sato—
Levine invariant or Alexander polynomial.

§1. Motivation and summary of results

The most interesting global question in higher-dimensional knot theory is “Is
every link [l , S™ < $"*2, n=2 concordant to a boundary link?” [1, 12, 3, 4].
For even n this is equivalent to “Is every link concordant to the trivial link?” [1].
A false proof of an affirmative answer to these questions appeared in [10] and was
rebutted in [4]. Thus, in studying the most important geometric equivalence
relation on links, the simplest possible question has gone unanswered (for partial
results, see [3, 4]).

Again, in the classical dimension (n=1), the question of which links are
concordant to boundary links is interesting [9]. Briefly, a boundary link is one
whose components bound disjoint Seifert surfaces in S* (see §2). For this category
of links, connected sum (band-sum) can be made well-defined, and their study
reduces largely to the study of the individual components. More importantly, as in
higher-dimensions, boundary links seem to be a vital intermediary between the
general link and the unlink, when considering concordance questions. For exam-
ple, the proper analogue of an Alexander polynomial one knot (which is known to
be concordant to the trivial knot in the topological locally-flat category [6]) seems
to be a good-boundary link [5].

In this paper, we describe a sequence B'(L) i=1, 2,... of independent abelian
cobordism (concordance) invariants for smooth 2-component links L =
H?zl S" < §"*2, For n> 1, these generalize the only heretofore known invariant

! Supported in part by a grant from the National Science Foundation.

291
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B(L)=B*(L), due to N. Sato [23] and J. Levine (unpublished), and obstruct
cobordism to a boundary link. For n = 1, the invariants are strong, yet are much
more computable than many other known cobordism invariants such as the
g -invariants of Milnor [18], or the various ‘“‘covering linkage invariants” of
Murasugi, Kojima and Laufer ([14, 15, 19]). Furthermore, the B' are additive
with respect to any band-sum of links (even though the band-sum operation itself
is not well-defined on concordance classes). This leads to the following new result
which partially answers question 22 of [9].

THEOREM 5.6. Let €, be the set of cobordism classes of 2-component links in
S? with linking number 0. The invariants B'i=1,2, ... define a function ¢ :€,—
X1 Z such that:

a) the image of ¢ is an infinitely-generated abelian group,

b) ¢ is additive on any band-sum of links,

¢) the first coordinate of ¢ is the Sato—Levine invariant,

d) the class of a boundary link vanishes under ¢.

Property d) distinguishes our invariants from the signature invariants of Tristram,
which can be used to construct a function satisfying a) and b) [27]. In addition, we
show that all of our invariants, including that of Sato—Levine are invariants of
I-equivalence.

In higher dimensions, if there is a single link with a non-vanishing 8', then a
corresponding theorem holds for €,.. To this date, no such link is known, although
these new invariants provide new hope (see 5.10, 6.10) for detecting the first
higher-dimensional link which is not cobordant to a boundary link.

In accomplishing the afore-mentioned we define a “derivative’” and ‘“‘an-
tiderivative’ on the set of links. These notions promise to be of significant interest
beyond their immediate application in this paper, and are related to work of R.
Hain, R. Porter, and D. Sullivan [11, 20, 25].

§2. The basic definitions and notation

A (spherical) n-link is an ordered pair (M, K) of disjoint, oriented, smooth
submanifolds of S™*?, each component of which is diffeomorphic to S". A
(manifold) n-link is the obvious generalization where (M, K) may be any ordered
pair of closed, oriented, connected n-manifolds. Two n-links L,=(M,, K,) and
L,=(M,, K,) are CAT-cobordant if there exists a proper, locally-flat, oriented
CAT-submanifold (Y, W) of S"*>x I which is CAT-homeomorphic to (M,, K,) X
I and such that a(Y, W)=L,U(—L,). (Note: CAT = DIFF, PL, or TOP). When
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we write simply cobordant we shall mean DIFF-cobordant. TOP-cobordism
without the local flatness is called I-equivalence. Null-cobordant will mean
cobordant to the trivial link. A Seifert surface V for a component M of an n-link
(M, K) is an orientable, connected, smooth submanifold of $"*? whose boundary
is M. A boundary link is one whose components bound disjoint Seifert surfaces.
We shall work in the smooth (DIFF) category unless specifically noted
(although the invariants, at least for n =1, apply to PL-links and are invariant
under I-equivalence). A small open regular neighborhood of A in B will be
denoted N (A) and the exterior of A (B—N(A)) will be denoted E(A).

§3. Admissible links and weak cobordism

We are primarily and eventually concerned with spherical links and cobordism
classes of such. Nonetheless certain types of non-spherical links and certain
weaker ‘“‘cobordism’ relations arise naturally from spherical links. In fact, in §4,
we shall define a derivation process D( ) which will often take us out of the
spherical category, and which will be invariant under a weaker ‘‘cobordism”
relation than that of link cobordism.

The type of manifold link which arises shall be called admissible.

DEFINITION. A (manifold) link L =(M, K) is an admissible link if K is an
n-sphere and if K has a Seifert surface which misses M.

PROPOSITION 3.1 (2.1 of [23]). Let L =(M, K) be a manifold link in S™*2.
The following are equivalent:

i) K has a Seifert surface which misses M

ii) [K]=0 in H,(S""*—M).

Note that a link (M, K) in S is admissible if and only if 1k (M, K)=0. A
higher-dimensional link (M, K) is admissible if and only if K is a sphere and the
“inclusion” H,(M)— H,(E(K))=Z is the zero map. (Sato’s 2.1 also proves this
[23]). Note also that if (M, K) is admissible, then M automatically has a Seifert
surface in E(K) since H,(E(K))=0 when K is a sphere (n>1). This motivates
the following notion (used also in [2, 23)).

DEFINITION. (V, Z) is a special Seifert pair for (M, K) if V is a connected
Seifert surface for M in E(K), Z is a connected Seifert surface for K in E(M), and
V meets Z transversely.

Clearly then, special Seifert pairs exist for admissible links.
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All of our invariants will be invariants under a weaker equivalence relation-
ship than strict cobordism; it will be called weak-cobordism.

DEFINITION. Two admissible links L,=(M,K,)i=0,1 are weakly-
cobordant (denoted Lo~ L,) if there are Seifert surfaces Z; for the K; in E(M;) i =
0,1, and a proper, oriented, (n+ 1)-dimensional submanifold (Y, W) of S""*x1I
such that

a) (Y, W)=L,1I(-L,)

b) W=8"X1TI

c) the closed (n+ 1)-manifold ZoU WU (—~Z,) bounds a compact, orientable
(n+2)-manifold Z in E(Y) and ZNEM,) is Z, for i =0, 1.

Thus, the spherical component K is required to vary by a true concordance but
the manifold component M is allowed to vary by an arbitrary “‘cobordism”
subject to ¢). The proof of the following is similar to that of 2.1 of [23].

PROPOSITION 3.2. Condition c) above is equivalent to either of:
i) [ZoUWU(-2Z,)] is zero in H,,,(E(Y))
ii) the map H(Y) — H,(E(W))=Z is zero.

It is convenient to say that L, is weakly-cobordant to L, via (Y, W, Z,, Z,)
where (Y, W, Z,, Z,) is as above. Then Proposition 3.2 has the following useful
corollary.

PROPOSITION 3.3. If Lo~ L, via (Y, W, Z,, Z,), and Z; are Seifert man-
ifolds for the K; in E(M;) i =0, 1, then Lo~ L, via (Y, W, Z;, Z1).

Proof. Since the M, are connected, H, (E(M;))=0 for i=0,1. Thus
Z,UWUZ, is homologous to Z;UWUZ] in H,,(E(Y)). O

§4. Derivatives of links

We shall define an operation D( ) on the set of weak-cobordism classes of
admissible links which will a fortiori be an operation on the cobordism classes. By
iterating this derivation, we will produce a sequence of links associated to the
original link, and our invariants will be the Sato-Levine invariants of this
sequence. First, we require some preliminaries. Suppose that (M, K) is an
admissible link. A pair of arcs (v, ) is called admissible if they are disjointly
embedded in E(L), joining (M, K) to the basepoint *.
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THEOREM 4.1. If (M, K) is an admissible link in S"*? and (y,.) is an
admissible pair of arcs, then a special Seifert pair (V, Z) may be chosen so that

i) VNZ =F is connected, non-empty, and non-separating in V unless L is a
boundary link,

ii) (VU Z) intersects the arcs only at their initial points.
Furthermore, in the case n =1, given any Seifert surface Z for K in E(M) which
misses the arc interiors, there is a special Seifert pair (V, Z) satisfying ii) and

iii) VU Z is the union of parallels of a single simple closed curve on Z.

Proof. We shall sketch a proof for the case n = 1. First note that whenever 2
sheets of an immersed surface meet transversely in a circle, this singularity may be
removed by a “‘cut-and-paste’” operation. Now choose any special Seifert pair for
(M, K) which meets the arc interiors transversely. For each sheet of V or Z which
hits an arc, remove a small disc and run a tube back along the arc to connect-up
to a small torus about M or K. These tubes and torii can be nested to avoid
intersections. Any singularities created by tubing a sheet of V with a torus about
oV may be then desingularized as above. Having achieved ii), the further
modifications to V and Z will take place in a small neighborhood of int (VU Z)
so that ii) will be undisturbed.

The oriented 1-manifold G=VNZ (we will choose a convention in the
paragraph following this proof) corresponds to a homotopy class of maps [g]: Z —
S' where g '(*)=G and thus to a cohomology class y. This class is a non-
negative multiple of a primitive class x, which is represented by a simple closed
curve on Z. Consequently there is a map f:Z — S* which is homotopic to g, such
that f~'(x) is the appropriate number of parallels of this curve. It follows that
there is a compact surface in Z x[—1, 1] which intersects Z X{+1} in +G and
intersects Z X{0} in these parallels which we call F. The insertion of this
Zx[—1,1] in place of our present neighborhood of Z results in a new Seifert
surface for M (still called V) which meets Z in F. Only the component of V
containing M should be retained. This completes the proof of iii). Now perform
this procedure on VN Z as a submanifold of V. It must “stabilize’” at some point
because the procedure decreases the number of components of VN Z. It is then a
small exercise (in orientability) that F must be connected. [

The intersection F of the Seifert surfaces guaranteed by 4.1 is somehow
characteristic of the link itself, so we shall call it a characteristic intersection of the
admissible link (M, K). Notice that it is a closed, connected, orientable n-manifold
like M itself. In fact, it will be viewed as oriented according to the following
convention. Beginning with orientations on S™*? and the link (M, K), the special
Seifert pair (V, Z) acquires an orientation (o, o,) using the “inward normal last”.
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Choose oriented normal one-fields (9, Z) to (V, Z) so that (o,, ¥) and (o, Z) yield
the orientation on the ambient sphere. Now look at F as a submanifold of Z and
choose o so that (o, 7) gives o, at that point. A technical theorem insures that ¢
can be chosen tangent to Z over F. Notice that if (M, K) is a boundary link then F
can be taken to be a tiny unknotted sphere far away from K.

We can now define our ‘‘derivative operation’ for admissible links.

DEFINITION. The derived link D(L) of an admissible link L = (M, K) is the
weak -cobordism class of the (manifold) link (F, K) where F is any characteristic
intersection for L.

Since F is naturally embedded in Z, a Seifert manifold for K, it may be pushed off
slightly, thereby exhibiting D(L) as an admissible link. Henceforth, the word link
will be used for admissible link, and if spherical link is meant, it will be so specified.
The following theorem, the cornerstone of the paper, shows that D(L) is
well-defined and that it is independent of the weak-cobordism class of L.

THEOREM 4.2. Suppose that L, =(M,, K;) i =0, 1 are weakly-cobordant links
and that (V,, Z;) are special pairs yielding characteristic intersections F, for i =0, 1;
then (F,, K,) is weakly-cobordant to (F,, K,).

Proof. Suppose that L,~L, via (Y, W, Z;, Z1). It follows from 3.3 that
L,~L, via (Y, W, Z,, Z,). Referring now to diagram 4.2, let Z be the (n+2)-
manifold which Z,UWU(-Z,) consequently bounds in E(Y). Since W=
S"xI, H, ,(E(W)) is trivial and so, by Proposition 3.2, V,U YU (-V,) bounds
an (n+2)-manifold V in E(W) such that VNE(K,)=V, for i=0,1. We can
assume that V intersects Z transversely in the compact, oriented (n + 1)-manifold
F whose oriented boundary is F,II(—F,). Since Z will have a trivial normal
bundle, F can be pushed off of Z slightly, thereby exhibiting that (F,, K;)~
(F,,K,) via (F,W,Z,,Z,). O
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w D(w)

Figure 4.4.

COROLLARY 4.3. Given any link L, the sequence of links
L,D(L), D(D(L)), ... (obtained by iterated derivatives) is well-defined in the
category of links modulo weak-cobordism.

Let us examine a few examples of link derivatives. The Seifert surfaces are
suppressed but the reader should try to fill them in.

EXAMPLE 4.4 (Figure 4.4). If W= (M, K) denotes the Whitehead link, then
D(W) is represented by the unlink (F, K). This may also be observed by noting
that (F, M) is the unlink, and (F, M) = D(K, M) = D(M, K) since W is symmetric.

EXAMPLE 4.5 (Figure 4.5). The links #, are due to Milnor [18], and
illustrate that derived links are often easy to compute. The successive characteris-
tic intersections are shown by the dashed lines. These were obtained by using the
obvious genus one surface for M (missing K) and either of the fairly natural
choices for a Seifert surface for K. It is easier to use the one which is a
de-singularization of the apparent ribbon intersections (except the right-most
clasp). Since F,, can be isotoped to the right as shown, we see that D"*1(A,,) is
represented by the unlink just as for W above. Notice also that D(K, M) is
(F;, M) which is not (apparently) the same as D(M, K)=(F;, K). In general,
D(K, M) is not weakly-cobordant to D(M, K). Thus, since in S a link (M, K) is
admissible if and only if (K, M) is, one can generate another invariant sequence
{D4«(M, K)} where D.(M, K)=D(K, M). One might wonder whether or not
“mixed derivatives” are defined. Unfortunately in general they are not, although
some interesting positive results concerning these notions are included in §9.

n copies

Figure 4.5.
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(a) (b)
Figure 4.6.

EXAMPLE 4.6 (Figure 4.6). In the previous examples, D'(L) was eventually
represented by the trivial link; whereas here the sequence is constant. Diagram
(b) shows that M can actually be viewed as a push-off of a curve on the natural
genus one Seifert surface for K. The link D(L) = (F;, K) is isotopic to (M, K),
hence D'(L)=L for all i. Let us note that the two links in Figure 4.7 have the
same p.-invariants ([14, 15,24]) the same Alexander polynomial, and the same
Sato-Levine invariant. Yet, their derived series are very different since the
right-hand link is identical to 4.6(a). These facts can be used to distinguish their
concordance classes quite easily (see §5).

w L
Figure 4.7.

These examples will take on more significance when we have defined our
invariants in the next section.

In closing, let us remark that it would be computationally convenient to allow
an admissible link (M, K) to have a disconnected first “‘component” M, for then
the characteristic intersection F could be allowed to be disconnected. All other
definitions would remain the same. Besides avoiding the technical Theorem 4.1,
this would allow for easier computation of the successive derivatives. Unfortu-
nately, although much of the theory holds in this broader context, there are
certain problems whose resolution requires more effort than the effort to force F
to be connected. Nonetheless, we state the appropriate results in this broader
context.

THEOREM 4.8. Derivatives may be computed for (M, K) using disconnected
characteristic intersections as long as one uses the same Seifert surface Z for K in
each successive computation. In particular, if M is connected, and a generalized
derivative @"(L) is defined using disconnected characteristic intersections, but
always using Z as Seifert surface for K, then @"(L)=D"(L), i.e., they are
weakly-cobordant.

Note: Proposition 3.3 fails for M, disconnected.
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§5. The invariants

Given any weak-cobordism invariant B( ), we could now produce a sequence
of weak-cobordism invariants {B8‘( )} by setting B'(L)=pB(L) and B(L)=
B "Y(D(L)) for i>1. We shall investigate such a sequence, with the weak-
cobordism invariant B(L) being the Sato-Levine invariant. To define the latter,
consider any characteristic intersection F for L, together with the natural framing
of its normal bundle given by the normal 1-fields (¢, Z). By the Thom-Pontryagin
construction (F, ¥, Z) corresponds to an element of ,.,(S?).

DEFINITION. The Sato—Levine invariant B(L) of an admissible link L is the
element of m,..(S? given by (F, ¥, Z).

Remarks. It is important to note that F need not be connected to compute the
Sato-Levine invariant [23]. The invariant B8 is defined for an even larger class of
manifold links than admissible links (Sato calls them semi-boundary links).
Furthermore, B is invariant under an extremely weak equivalence relationship,
called B-equivalence, which essentially allows ‘“‘weak-cobordisms’ on both com-
ponents. In fact, Sato has shown that the B-equivalence classes of semi-boundary
links form a group which is isomorphic to ,.»(S?) via the invariant 8 [23]. In
contrast, we shall show that the set of links in S modulo weak-cobordism maps
onto an infinitely-generated abelian group, with similar results for the classes of
admissible links in S™, n>3. These answer a question of Sato (§0. of [23]).

THEOREM 5.1. If L is admissible, then B(L)

a) is a weak-cobordism invariant (thus a fortiori a cobordism invariant),
b) vanishes if L is a boundary link,

c) is symmetric (i.e. B(M, K) = B(K, M)).

Proof. Theorem 4.1 of [23] proves a) since weak-cobordism is a stronger
relationship than B-equivalence. Statements b) and c) follow from the definitions.

COROLLARY 5.2. The sequence {B'( ),i=1,2,...}, given by B'(=)=B(-)
and B'(-)=B " YD(-)), is a sequence of cobordism invariants on the category of
spherical links. These invariants vanish if L is cobordant to a boundary link. More
generally, all of the above hold in the category of admissible links modulo weak
cobordism.

Proof. Suppose that m is the least integer such that B™( ) is not a weak-
cobordism invariant. Then there are admissible links L, L’ which are weakly-
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cobordant but such that ™(L)# ™ (L"). It follows from 4.3 that D(L)~ D(L')
and thus, by choice of m, that g™ (D(L))=8™ “(D(L')). Hence B™(L)=
B™(L"), contradicting the existence of such an m. The more restricted statement
concerning spherical links follows immediately. Finally, if L' is a boundary link,
then it is clear that each D'(L’) can be represented by a boundary link (split link
for i >0). Since B'(L’) is equal to the Sato—Levine invariant of D' "'(L’), Theorem
5.1b) ensures that it vanishes. [

Let us re-examine the examples of §4 and compute their B*. Referring to 4.4,
B'(W) is seen to be —1 by computing the linking number of F with a push-off of
F into the Seifert surface used for K. Thus ‘(W) is zero except for i = 1. On the
other hand, the Sato-Levine invariant of #, (4.5) is zero if n=1, and in fact
Bi(M,) vanishes if i<n+1 and B"*'(M,)=—1. Finally, note that B"*(K, M)
(example 4.5) is zero, confirming the essential asymmetry of the invariants.

The Sato-Levine invariant of Example 4.6 is calculated by computing the
linking of F; with its own push-off in the Seifert surface for K. For this link,
BI(L)=-1 for all i.

The links —W and L of Figure 4.7 have the same (i -invariants and the same
Sato-Levine invariant, but their weak-cobordism classes are distinguished by 2.

EXAMPLE 5.3. Suppose that L = (M, K) is a semi-fibered (spherical) link in
S*. This is one in which K is a fibered knot in S* with fiber Z> such that M is
disjoint from this copy of the fiber. Theorem 5.4 of [2] shows that, if V is a Seifert
surface for M, then VN Z is the (possibly disconnected) surface F which repres-
ents a spherical homology class in H,(Z). As a result it can be arranged that F is
actually a union of embedded spheres in Z. Thus, in the sense of 4.8, each D'(L)
will be a semi-fibered spherical link, and since spheres cannot carry the non-zero
element of ,(S?), it follows that B'(L) =0 for all i (see Theorems 5.4 of [2] and
4.7 of [3)).

The most striking property of the B° is that they are additive under band
connected-sum of links. This is surprising because, although band-sum makes the
set of concordance classes of (spherical) knots into a group, it is not well-defined
on the set of concordance classes of spherical links. We do not even know if
band-sum is well-defined on weak-cobordism classes of admissible links.
Nonetheless the B° are additive and it is this fact which allows us to say something
about concordance classes of spherical links “modulo” boundary links.

DEFINITION. If L,=(M, K;) are admissible links (sitting inside different
copies of S"*?) and b, = (v;, p;) are pairs of admissible arcs for the L;j =0, 1, then
Lo#yL, is defined to be the link (My#,M,, Ko#,K,) gotten by oriented ‘“band-
summing”. (We have suppressed data associated to the “twisting” in the bands.)
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THEOREM 5.4. If L;=(M,;, K;) are admissible links and b, are pairs of
admissible arcs, for j=0, 1, then B'(Lo#,L,)=B'(Ly)+B*(L,) for i=1.

Proof. The theorem is true for i =1 because Theorem 4.1 shows that special
Seifert surfaces may be chosen to avoid the arcs, and Sato has shown under these
conditions that his invariant is additive [23]. Lemma 5.5 below will show that
D(Ly#,L,)~ D(Ly)#.D(L,) for some other band data ‘“c”’. Then

Bn(LO#bLl) = Bn_l(D(LO#bLl)) = B"—I(D(Lo) #CD(L1))

is the induction step in a proof that each B8' is additive.

LEMMA 5.5. With L;, b; as above, D(Lo#,L,) is represented by D(L,) #.D(L,)
where co= (qo, po) and ¢, =(q,, p1).

Proof. Suppose (V;, Z;) are the special Seifert pairs for L, =(M;, K;) j=0,1
ensured by Theorem 4.1. Assume that neither L, is a boundary link since those
other cases follow easily. Then the characteristic intersections F; are non-
separating in their respective V,. A special Seifert pair for L,#,L, may be taken
to be (V, Z)=(Vo#, V1, Zo#,Z,) where these denote the boundary-connected-
sums along the arcs y=+y,Uvy; and p=p,Upy; but VNZ=F,lIF, does not
satisfy the conditions to be a characteristic intersection since it is disconnected.
However, since the F; are non-separating, they can be joined by arcs w; (in V)) to
the initial points of their respective v;, in such a way that an oriented band-sum
can be carried out along the union of qy=vy,Uw, and q;= vy, Uw,. As in the
proof of 4.1, the Seifert manifold Z may now be surgered along this arc so that
the new VN Z is F,#,F,. By definition then, D(Lo#,L,) = (Fo#,F, Ko#,Ky) =
(Fo, Ko) #.(F,, K,) as desired. O

We can now say something about the structure of €, the set of cobordism
classes of spherical n-links (if n =1, require 1k (M, K) = 0), by saying something
about W<, the set of weak-cobordism classes of spherical n-links (same
restriction). Let @, (,,.5(S?) be the abelian group of formal power series in the
variable x with vanishing constant term and with coefficients in 7,42(S?). There
is a natural “derivation” 9:%®, — @, given by 8(x)=0 and a(x"*")=x' if i>0.
The following theorem expresses our major results for n=1 and gives partial
answers to Cameron Gordon’s questions 21 and 22 of [9].
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THEOREM 5.6. There are commutative diagrams of functions:

€, —» W€, —> P(1) —>» my(SD)=7
P

We, —> P,(2)

where B(L)=Y:_, B'(L)x' and  is projection to the first factor, such that
a) B is additive with respect to any band-sum of links,
b) the image of B is an infinitely-generated, torsion-free abelian group,
c) B sends any boundary link to zero.

Proof. The links M, of 4.5 form a sequence L; = (;_; for j=1,2, ... such that
B'(L;) =—8,; (—1 or 0 according as i = j or not). Since B is additive, it follows that,
for any reZ*, the image of B contains a copy of X;_,Z. O

COROLLARY 5.7. There is a surjection €, £ 5 G where G is an infinitely -
generated torsion-free abelian group, such that B is additive with respect to any
band-sum and sends any class containing a boundary link to zero.

Remarks

(5.8) In the next section it will be shown there are representative links in 6,
with unknotted components whose images generate the Z” subgroup.

(5.9) The image of B cannot be all of ?(Z) for cardinality reasons, and indeed
we shall see that B(L) must be the power series expansion of a rational function
in x.

(5.10) If n=2, there is no known spherical link L with B(L)# 0; however
there are admissible links (M, K) in each dimension realizing non-zero classes
under the Sato-Levine invariant [23]. Thus, even if B vanishes for all higher-
dimensional spherical links, the higher 8! may not, since B*(L)=B(D(L)), and
D(L) is often non-spherical. As of this writing, we have been unsuccessful in
realizing the aforementioned (M, K) as the derived link of a spherical link. To
read more on the Sato-Levine invariant of spherical 2-links, the reader may
consult [2],

§6. Antiderivatives and realizability

We shall show that antiderivatives exist in the category of weak-cobordism
classes of links and that these behave as expected. Antiderivatives of links are



Geometric invariants of link cobordism 303

then used in realization theorems involving our invariants, and in proving
theorems like 5.6.

DEFINITION. L' is an antiderivative of the admissible link L if D(L')~ L,
and then L' is written | L. The link L' is called an a-antiderivative of L if L'={L
and BY(L)=a in m,.,,(S?. This is denoted §,L. As with D(L), § L should be
understood to be a weak-cobordism class.

THEOREM 6.1. If L = (M, K) is an admissible n-link with special Seifert pair
(V, Z), then L has a 0-antiderivative §, L =(M’', K). Furthermore,

1) if n=1, L has an m-antiderivative {,, L =(M’', K) for any m € mw5(S?),

2) if L is spherical then the above (M', K) is spherical with M' unknotted and
with special Seifert pair ((S* X S™)°, (Z#S'xS")°) where ° denotes the punctured
manifold.

Proof. The desired link (M’, K) is obtained by a procedure akin to ‘“‘doubling”
the component M (see [21]). M bounds V and this induces, as in §4, a normal
1-field ¥ to V which can be completed to a trivialization (9, w) of the normal-
bundle of M in S"*2. Let M, be a push-off of M along ¥ (for part one, use an
“m” push-off instead of this ““0” push-off). Let A be the manifold thus spanned
(A =M XxI). Referring now to Figure 6.2, choose an arc y which begins on M,
runs along A to M, intersects Z transversely in a single point very near K, and
then ends shortly thereafter. The direction from which y cuts Z involves the
orientation convention and we will not belabor this. Now thicken +y along its
entire length by a factor of B", remaining tangent to A and Z where they
intersect. Then thicken this y X B™ by a final I =[-1, 1] factor. We will only be
concerned with the “top half”’, or y X B" X[0, 1] as shown in 6.3. There is now an
embedded (n+1)-manifold V' in E(K) consisting of AU(yxB"x{0hU
(yxB"x{1) U@y xB" x[0, 1]). In case M is a sphere, V' is a punctured S X S",
but in any case the boundary of V' is a connected n-manifold M’ in E(K). Notice
that ZNM'is (yNZ)xadB", an (n—1)-sphere which we call S. There is another
manifold M whose boundary is S, which is constructed by taking the boundary

M
L0
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N
A

Figure 6.3.

(n—1)-sphere of M —(y X B" x{0}) and running it along y X dB" X {0} until it hits
S. A thickening B%>X M may then be used to perform an ambient “‘surgery’”’ on Z.
Let Z'=Z—(B2x S)U(8B%x M), a Seifert surface for K which misses M’ and
which, if M were a sphere, would be homeomorphic to a punctured Z#(S*x S").
Refer to Figure 6.4. The link L'=(M',K) is thus admissible and D(L') is
represented by (V'N Z’, K). Upon examination, the first component of this link is
easily seen to be isotopic (fixing K) to a push-off of M into A. Hence, L’ is an
antiderivative of L and B(L’') is the class of (M, d, w) in ,.,(S?%). Since M
bounds V in $™*?, this class is certainly zero. If n =1 and we had used the “m”
push-off, then B! would be m. O

Figure 6.4.

The next theorem, concerning links in $°, is philosophically satisfying. It shows
that antiderivatives are ‘‘unique up to their Sato-Levine invariants”, that is that
any two | L are weakly-cobordant. This implies that, on the category of links
whose derivatives are eventually boundary links, the invariants B' determine the
weak-cobordism class. The proof fails for n>1.

THEOREM 6.5. If D(L)~D(L") and B'(L)=B'(L') for 1-links L, L’ then
L~L'

Proof. The method of proof is embodied in Figure 6.6, which is valid if neither
L nor L' is a boundary link. The idea is to use copies C, and C_ of the given
weak-cobordism (C, W) to “surger” the Seifert surfaces for M and M’ along
copies of the characteristic intersections F and F’. The linking number of a
push-off of F into the Seifert surface with F itself is given by B'(L). Thus
BY(L)=B*L') is used to extend the choices of push-off (F,, F}) to a push-off
c,. o
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Figure 6.6.

Theorems 6.1 allows for realizability results which imply, in the presence of
any non-vanishing B', the same sort of infinitely-generated behavior that we
observed in Theorem 5.6 and Corollary 5.7.

COROLLARY 6.7. If L is a spherical n-link with B*(L)= C, then there is a
sequence of spherical links L;,j=k,k+1,k+2,..., each with one component
unknotted, such that

0 i<j
B'(L;)=4C i=j
BI(L) i>j.

Proof. Simply let L, .,=oJo" - Jo L (the r™ antiderivative).

COROLLARY 6.8. There are links W, ,n=1,2,..., in S® with unknotted,
unlinked components such that B*(W,) = —8,, (delta function).

Proof. Let W, be the Whitehead link of Figure 4.4 and W, = f, W, _; thereaf-
ter. Figure 6.9 shows the 0-antiderivative of the Whitehead link (constructed as in
the proof of 6.1).

Since Sato and Levine have shown that any a € 7,.(S) can be realized as
B(L) for a non-spherical, admissible link L [23], we can use Theorem 6.1 to get
the following higher-dimensional analogue of Theorem 5.6.

Figure 6.9.
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COROLLARY 6.10. Let W€, be the weak-cobordism classes of admissible
n-links for n=1. Then there is a map B : W€, — P, (m,.-(S?) which is defined
as in 5.6 and enjoys properties a) and c) of that theorem. Furthermore there are
links LY, j=1,2,... such that B(L;) = ax’ where a € m,.,(S?).

§7. Kojima’s n-function and invariance under I-equivalence

Since our invariants B'(L)i=1,2,... naturally yield a power series B(L)=
* 1B (L)x', one wonders if they are related to other known ‘‘polynomial
invariants”. In fact, the theorem below shows that, for links in S3, B(L) is
identical to the m-function of Kojima [14] after a non-trivial change of variable.
This observation allows us to use Kojima’s result that the n-function is invariant
under TOP-cobordism (I-equivalence) to deduce that the B° are also. Since
Kojima’s function is a generalization of invariants considered by D. Goldsmith
[8], and has a (rather abstruse) connection to some of Laufer’s invariants [15], the
same may be said of our invariants. This relationship also implies that B(L) is the
power series of a rational function of x and that if K is unknotted, for example,
then B(L) is a polynomial (finite). Conversely, Kojima’s function can now be seen
to be additive on band-sums and to be an invariant only of weak-cobordism.
Finally, in general it is difficult to calculate the m-function. (§2. of [14]), in as
much as it involves constructing an infinite cyclic cover of E(K) and the
Alexander polynomial of K. On the contrary, the 8' may be calculated in S and
the complexity of calculation, we feel, grows much more slowly (with link
complexity) than for the m-function and similar covering invariants.

Let us define the m-function of an admissible 1-link L = (M, K). Let Y be the
infinite cyclic cover of E(K), A(t) be the symmetrized Alexander polynomial of K,
z be a lift of M to Y, z, be a nearby lift of the zero push-off of K, and ¢, be a
generator of the covering translations. Then A(t,) annihilates the class of z in
H,(Y), so A(t4)(z) = ad for some 2-chain d in Y. The n-function is:

oo

n(L)= ;_m ,—\%—5 (zg - tad)t™.

The following theorem holds for links in S3.

THEOREM 7.1. Kojima’s m-function may be expanded in powers of x =
(1-t)(1— 1) so that n(L)=Y:_, a;x* where B'(L) = q; for all i. Thus

a) the m-function is an invariant of weak-cobordism and is additive on any
band-sum,
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Figure 7.2.

b) B(L) is an invariant of I-equivalence and is the power series of a rational
function,

c) If L=(M, K) and a lift of M vanishes in H,(Y;Q), then B(L) is a (finite)
polynomial.

Proof. We only sketch the proof. First one shows that for any embedded
circles w,y in Y satisfying wNtgy = ¢, there is a “linking” (w, y) defined as
above so that m(L)=(z,, z), and that this “pairing” is “‘sesqui-linear’” and
conjugate-symmetric (with respect to t — f). Figure 7.2 shows that z ~(1—t,)F in
H,(Y) where F is a lift of the characteristic intersection curve. Therefore

(2o, 2) = (1= )(1 - EXF,, F)=x(F,, F)

where F, is the push-off of Fin Y normal to V. If F, is a lift of the zero push-off
of F in S?, then (F,, F) can be seen to equal (F,, F)+ B'(L). Once having shown
that any (w,, w) can be written as a power series in positive powers of x, it follows
that B'(L) = q; for all i. Theorem 2 of [14] insures that each B' is invariant under
I-equivalence (although defined only for PL links). It can be shown that both
n=—o(Zg - tyd)t" and A(t) are polynomials in x with integral coefficients, which
shows that B(L) is rational. If ¢) holds then there is a constant a such that
d =(A(t)/a)d' where ad' = a(z). Hence, n(L) is a polynomial. [J

EXAMPLE 7.3 (Figure 7.3). The link pictured has the same Murasugi
“2-height” as the unlink (see [19]) and has vanishing Sato-Levine invariant. In
fact, it is a Z,-boundary link. Yet it is not I-equivalent to a boundary link since
B%(M, K) = —4. Tts derivative is shown on the right.

D(L)
Figure 7.3.
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§8. Calculations in S°

There is an algebraic method of computing B8 for large i which is amenable to
computer calculations. Suppose that [M]=x is a primitive class in H,(S>—F)
where F is a Seifert manifold for K (there always exists such an F by 4.1). Let Q
be the matrix representing the Seifert pairing (p. 200 of [21]) corresponding to a
symplectic basis for H,(F). Let A be the inverse of the Mayer-Vietoris
isomorphism:

HI(F) _2+:U;> Hl(ss—F).

Then the n™ characteristic intersection can be taken to be an embedded curve on
F representing A"x and B"(L)=+(A"x - A"*'x). Furthermore, if P=Q—-Q7T is
the block diagonal matrix then A =—PQ, so B8° can be computed solely from
x=[M] and Q.
It follows that if F is genus one then B'(L)==xB*(L) for all i. It
f‘%‘:"jk can also be calculated that the absolute value of 8*° of the link in
Q Figure 8.1 is greater than 10%°, so it appears unlikely that {8‘} is
u always bounded. This could be confirmed by calculating the n-
Figure 8.1.  function of the link.

§9. Generalizations and further applications

The invariants we have discussed may be generalized in several directions. The
first of these would be to links of 3 components. Here, there is a Sato-Levine
invariant associated to the 3-component link, as well as an invariant associated to
each 2-component sub-link. The generalization of our notion of derivative could
take several forms, and we shall not pursue this.

Secondly, there is the possibility of more (and deeper) invariants. Specifically,
the reader has no doubt noticed that the asymmetry of the derivation D leads to
two independent sequences of invariants. For if L =(X, Y) is a link, then we
could define Dy(L)=(VxNV,,Y) and Dy(L)=(X, VxNVy). Iterations of
either can be used to define a sequence of concordance invariants. But what about
“mixed derivatives”’? Unfortunately DyDy (L) is not, in general, invariant under
concordance of L; but this seems to be because this is not the proper generaliza-
tion. It seems to be more productive to fix L and compute successive intersections
always using one of either Vx or Vy. This leads to a sequence of characteristic
intersections which is indexed by the set of sequences of X’s and Y’s. The
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self-linkings and linkings of these characteristic intersections are invariants, in a
certain sense, of the original link. In a subsequent paper, we shall fully develop
these invariants and shall relate them to Milnor’s fi-invariants. For now, we
include the following result, in order to under-score the relationship of our
invariants with the lower central series of the fundamental group G of the
exterior of a classical link L whose components (M, K) have zero linking number.
Recall that the lower central series G,,n=1,2,... of a group G is defined
inductively by G, =G and G; =[G, G,_,]. Milnor defines his & invariants in [18].

THEOREM 9.1. The following are equivalent:

a) BY(L)=0,

b) the longitudes of L lie in G,=[G,[G,[G, Gll],
c) the first g-invariant, 1(1122), vanishes.

Proof. We shall prove only a)=>b). We shall need a small lemma. Suppose
a € G is represented by an embedded curve in S — V,, — Vi and that F is a charac-
teristic intersection of L.

LEMMA 9.2. If Ik (a, F) =0 then a € G,.

Proof of Lemma 9.2. The hypotheses insure that a (as a curve) has a Seifert
surface V in S>—L —F. It follows that H,(V) has a symplectic decomposition
A®DB where i (B) is in G, (ignoring basepoints). Thus a € Gs.

From Figure 9.3 we see that [ =(ly )y =(ly " )[m, F] where lk(m,K)=1. If
we ignore basepoints and apply the lemma to F*, we see that F* (and hence F)
lies in G; if Ik (F*, F)=BYL)=0. Thus we need only show that Iy~ lies in G,.
There is an obvious embedded curve w representing ly~* which bounds a surface
S in $3— Vy,— V. The surface S is simply a push-off of a sub-surface of Vj,.
Examining the homomorphism ¢ : H,(S) — Z given by ¢([a]) =1k (a, F), it can be
deduced that there exists a set {a,, a5, ..., a,} of embedded curves on S which
are in the kernel of ¢, and such that Iy =[], [b,, a;]. By the preceding lemma,
each g; lies in Gy so Iy 'isin G,. O

The final generalization of the invariants would be to study classes of bound-
ary links modulo “boundary cobordism” (see [1]). For example, if W (M) stands
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for either O-twisted Whitehead double of M (a knot in S3), and K is such that
Ik (K, M)=0, then for the boundary-link (W(M), K) to be boundary-null-
cobordant, all of the B‘(M, K) must vanish. It is not clear to me that the
invariants in this context would provide any more information than various
signature invariants.

§10. Questions

1. Is there a link L =(M, K) in S such that both (M, K) and (K, M) are
weakly-cobordant to boundary links but L is not cobordant to a boundary link?

2. Do the vanishing of the B'(L) imply that L is weakly-cobordant to a
boundary link? (True if some D'(L) is a boundary link.)

3. Is band-sum well-defined on weak-cobordism classes of 1-links? If so, and
2) is true, then the monomorphism : W%, —Z"%x 0, given by Y(L)=(B'(L),
cobordism class of 2™ component of L) tells us exactly what W&, is.

4. Is there a higher-dimensional spherical link with a non-vanishing 3°?

5. Is there a classical link L which is not weakly-cobordant to a boundary link
but such that L#,L is? (Yes here implies No to 2).)
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