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Total positivity and algebraic Witt classes

Dennis R. Estes, JURGEN HURRELBRINK, and ROBERT PERLIS

This paper is in three parts. In the first part we give a criterion for an element
of an algebraic number field F to be totally positive. Part two contains simple
reformulations of this criterion in terms of Brauer groups, the Milnor K-Group
K,(F), and sums of squares. Part three contains an application, due to P. E.
Conner. It characterizes the totally positive elements of F as those elements a for
which the rank one quadratic form aX? is Witt equivalent to the trace form of
some finite extension E of F. As a corollary, it is proved that every Witt class in
the Witt ring W(F) is represented by a trace form when the base field F is purely
imaginary.

We take this opportunity to acknowledge the generous contribution of P. E.
Conner, and we thank him for many discussions.

I. The Norm Theorem

Let F be an algebraic number field. An element « in F* is said to be totally
positive (relative to F) if a is positive in every possible ordering of F. In
particular, if F has no real embeddings, then every element of F* is totally
positive.

NORM THEOREM. Let a# 0 be an element of an algebraic number field F.
Then there is a positive rational number q such that —q is a norm from F(JJa)/F if and
only if «a is totally positive. Moreover, the existence of one positive rational number q
with —q a norm from F(va)/F is equivalent with the existence of infinitely many
rational primes q with —q a norm from F(Va)/F.

Proof. We may replace a by at® with t# 0 in Z without affecting the statement
of the theorem, and therefore we can assume that a is an algebraic integer.
Suppose that « is totally positive, and set m = 8:Ngqo(a). Then m is a positive
integer. Let ¢,, be a primitive m-th root of unity, and let N be the normal closure
over Q of F(Va, {,). Fix an embedding of N into the field of complex numbers, so
we can talk about complex conjugation acting on N. By Cebotarev’s Density
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Theorem, there are infinitely many prime numbers g, unramified in N, having a
prime factor Q in N whose Frobenius automorphism is complex conjugation. Of
these infinitely many q take any one which is relatively prime to m. We claim that
—q is a norm from F(\/-c;)/F.

This can be checked locally. Let P denote a prime of F. If P is infinite, then
Fp(\/a) = Fp; this is obvious if P is complex, while if P is real this follows from the
fact that «, being totally positive, is positive in the real embedding of F associated
with P. In either case, we see that —q is a norm from the trivial local extension.
Now consider finite primes P of F. There are several cases. If P does not divide
mgq, then —q is a unit in the local unramified extension Fp(s/g)/Fp and therefore
—q is a local norm (see [Lang], Lemma 4, p. 188). It remains to consider finite
primes P dividing mgq.

First, we claim that —q=1 (mod m). For this let Q, from above, be the prime
of N lying over q whose Frobenius automorphism @, is complex conjugation.
Then we have

(Cm)—1 = (I)Q(gm) = (Cm)q (mOd Q)-

Since (q, m) =1, the m-th roots of unity are distinct mod Q, and it follows that
{Rl=1{9 in F; that is, —q=1 (mod m).

Now suppose that the prime P of F divides mq. If P divides m and is
nondyadic, then the fact —q =1 (mod P) implies that —q is a square in Fp, and is
therefore a norm from Fp(Va)/Fp. If P is a dyadic prime dividing m, then —q=1
(mod m) implies —q =1 (mod 8) by the definition of m, so —q is already a square
in the subfield Q, of Fp, and therefore —q is a norm from Fp(va)/Fp. Finally,
suppose that P divides q. Again, let Q be the chosen factor of q in N whose
Frobenius automorphism equals complex conjugation, and let P, be the
Frobenius automorphism of a prime factor Q' of P in N. Then ®o = o '®yo for
some ¢ in Gal(N/Q). We claim that the extension Fp(Va)/Fp is trivial. Now this
extension is sandwiched in the quadratic extension N, /Q,. Note that the Galois
group of this latter extension is generated by ®Pg..

Therefore Fp(vVa)=Fp if and only if @ has the same restriction to both of
these fields. But this is detected in the dense subfields F(va) and F. If & acts
non-trivially on F then there is nothing to show, so we may assume that @ is
trivial on F. Then for each x in F we see that o(x) is fixed by complex
conjugation, so & is a real embedding of F. Since a is totally positive, O'(\/-(;) is
real, and it follows that @, is also trivial on F(va). Hence Fo(Na)= Fp,so —q is
a norm from Fp(Va)/Fp. This being true for every P, Hasse’s Norm Theorem
implies that —q is a norm from F(vVa)/F.



286 D. R. ESTES, J. HURRELBRINK AND R. PERLIS

Conversely, if a is not totally positive then a is not a square in F. If q is a
positive rational number and —q is a norm from F(va)/F then —q = x>— ay? for
appropriate x and y in F. But then for some real embedding of F we would have
x%—ay? to be positive, while —q is negative. Hence —q is not a norm.

We finish this first part with a small remark. While we started it for algebraic
number fields, the Norm Theorem can be interpreted for any field F of charac-
teristic 0. It is easy to see that the Norm Theorem remains true when F is any
p-adic field. However, for F =R(X,, X, X3, X,)(v~d) with d = X2+ X2+ X2+ X2
one can show that the Norm Theorem is false for the choice a =d.

II. Reformulations

Since —q is represented over F by the binary quadratic form (1, —a) if and
only if a is represented over F by (1, q), the Norm Theorem can be restated as

REFORMULATION 1. Let F be a number field and o in F*. Then there exists
a positive q in Z such that « is represented over F by the form (1, q) if and only if «
is totally positive.

Recall that an element of F* is totally positive if and only if it is a sum of
squares of elements in F*. Hence even for sums of squares in F which require
more than two squares (i.e. three or four in the number field case) we obtain

REFORMULATION 2. Leta be an element in a number field F. Then a is a sum
of squares in F if and only if a is a single square plus a sum of equal squares of
elements of F, i.e. a =x>+y*+- - -+y? for certain elements x, y in F.

Since —q is a norm from F(a)/F if and only if the quaternion algebra

(a,l;- q) is isomorphic to a full matrix algebra M,(F), if and only if the class of

(a,}: q) is trivial in the Brauer group Br(F), we have

REFORMULATION 3. Let F be a number field and o in F*. Then there exists

a,;q) =1 in Br(F) if and only if a is totally positive.

a rational prime q such that (

Now consider the quadratic norm residue homomorphism from the Milnor
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K-group K,(F) to Br(F), which maps every Steinberg symbol {a, b} in K,(F) to
, b\ . . .
the class of (a—F~) in Br(F). The kernel of this map is the subgroup of squares in

K,(F) (see [Tate], Theorem 2, p. 207 for number fields F, or [Mer] for arbitrary
fields F). Thus we see

REFORMULATION 4. Let F be a number field and o in F*. Then there exists
a rational prime q such that {a, —q} is a square in K,(F) if and only if «a is totally
positive.

III. Algebraic Witt classes

We will use the results of [C-P] to obtain another characterization of total
positivity. Let E be a finite extension of the algebraic number field F. The trace
form of the extension E/F is the quadratic form trg(X?), and the Witt class of
this form in the Witt ring W(F) is denoted (E). The Witt classes in W(F) arising
in this way from algebraic extensions E/F are said to be algebraic classes. For an
element a of F*, the Witt class of the rank one form aX? is denoted {(a).

COROLLARY 1. The element a in F* is totally positive if and only if the Witt
class {(a) in W(F) is algebraic.

We use three lemmas from [C-P].

LEMMA 1. Let f(t)=t™+ at+ b be an irreducible polynomial in F[t], with odd
degree m = 3. Let E = F[t]/(f(t)) be the associated extension of F, and let d =dis(E)
be the discriminant of the Witt class (E). Then in W(F)

(Ey=(d)+(d)— (1)((1 = m)—(1)).

This is proved in [C-P], Theorem VI1.2.1 for the field F=Q, but the proof is
valid for any field F of characteristic 0.

LEMMA 2. For any odd m =3 and for any « in F* there is an irreducible
trinomial f(t)=t™+ at+ b in F[t] for which the resulting extension E has dis(E)=
a, modulo squares in F*.

This was shown in [C-P], Theorem VI1.2.8, again for the field F=Q. However,
the argument is entirely local in character, and extends at once to any algebraic
number field F.
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LEMMA 3. Let E be a finite extension of the algebraic number field F. Then in
any ordering of F the corresponding signature of the Witt class (E) equals the
number of extensions of that ordering to an ordering of E. Hence if X is an algebraic
Witt class in W (F), then every signature of X is non-negative.

This is proved in [C-P], Theorem 1.5.2 when F=Q, and again the proof
remains true without change when F is an algebraic number field.

Proof of Corollary 1. Take a in F* and assume that {a) is algebraic. By Lemma 3,
every signature of (a) is non-negative, so a is non-negative and hence positive
in every ordering of F. So a is totally positive.

Conversely, suppose a is totally positive. By the Norm Theorem we can find a
positive rational integer whose negative is a relative norm from F (v&)/F. Multi-
plying by the square 4, which is clearly a relative norm, we may assume our
rational integer to be even, say 2n. Take m =2n+ 1. Then using Lemmas 1 and 2
we find an extension E/F of degree m for which

(E)={a)+X

with X =({a)—(1))((—2n)—(1)) in W(F). We contend that X =0. For this it
suffices to show that the invariants of X equal the corresponding invariants of the
0 class in W(F), namely: rank(0) =0 (mod 2); sgn(0) = 0 in any ordering, dis(0) =1
modulo squares in F*, and every Hasse-Witt symbol ¢,(0) = 1. Clearly rank(X)=
0 (mod?2). Since a is totally positive, the presence of the factor (a)—(1)
guarantees that every signature of X is 0. Being the product of two classes of even
rank, dis(X) is a square in F* (see [C-P], p. 12), so dis(X)=1 modulo squares.
Finally we compute the Hasse-Witt symbols ¢,(X). By multiplying the factors in
X and adding two copies of the trivial class (1,—1) we obtain the rank 8
representative (—2a, —a,2n,1,1,—1,1, —1) of X. Then the Hasse-Witt symbol
¢,(X) is just the Hasse symbol of this rank 8 representative, and using the
definition (see [C-P], p. 15) we see at once that ¢,(X) = (—2n, a),. But since —2n
is a relative norm from F(\/_(;)/F this latter symbol is 1, as desired. So X =0, and
(a)=(E) is an algebraic class, proving Corollary 1.

In the extreme case when the number field F is totally complex there are no
orderings at all, so every element « in F* is totally positive, and the Witt class (a)
of every rank one form aX? is algebraic. In fact we can show more.

COROLLARY 2. If the algebraic number field F is totally complex then every
Witt class in W(F) is algebraic.
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Proof. Take X in W(F) and suppose first that X has even rank. Since F has no
orderings, it follows that X is algebraic by [C-P], Theorem I1.9.5. So we must
consider classes of odd rank.

Since F is an algebraic number field with no orderings, any quadratic form
over F of rank exceeding four is isotropic. Hence the odd-rank Witt class X is
represented by a rank three form, which may still be isotropic. The matrix of this
form, after diagonalizing, is a non-singular 3 X3 diagonal matrix over F. Then
Lemmas I11.5.4 and III1.5.2 of [C-P] show the existence of a cubic extension L of
F and an element a in L* such that X can be written

X = TLJF(“)L

as the Scharlau Transfer of the Witt class («); in W(L). (Since we will deal with
several fields, we have appended a subscript on the Witt classes). Now the field L
is also totally complex, so we can apply Corollary 1 to (a); in W(L) to find an
extension E/L for which (E); =(a); in W(L). Note that the class (E); in W(L) is
just the image under the Scharlau Transfer T, of the class (1)g in W(E). If we
then transfer this class all the way down to W(F) we obtain

(E)r = Tgp{Dg = Tyra) = X,
so X is algebraic. This proves Corollary 2.

In general it is a difficult problem to determine the algebraic classes in the Witt
ring of an algebraic number field F. By Lemma 3, any algebraic class necessarily
has non-negative signature in every possible ordering of F. When F=Q is the
field of rational numbers, it is proved in [C-P] that non-negative signature is not
only a necessary but also a sufficient condition for a Witt class in W(Q) to be
algebraic. This result together with Corollary 2 makes it reasonable to ask:

Question. Let F be an algebraic number field. Is it true that a Witt class X in
W(F) is algebraic if and only if the signature of X with respect to every ordering of F
is non-negative?
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