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Nombre de ponts et générateurs méridiens
des entrelacs de Montesinos

Michel Boileau et Heiner Zieschang

Un entrelacs est une famille finie de courbes fermées différentiables, plongée
dans la sphère S3. Un nœud est un entrelacs à une composante.

Une présentation à n ponts d&apos;un entrelacs L dans S3 est donnée par une
décomposition de S3 comme réunion de deux boules Bt UB2 telles que L HB1 et

LHB2 soient formés par n arcs simples, non noués et non enlacés, proprement
plongés dans chaque boule. C&apos;est-à-dire qu&apos;il existe dans chaque boule Bx,

î 1, 2, n disques disjoints tels que le bord de l&apos;un d&apos;entre eux consiste en la
réunion d&apos;un arc de LHBX et de l&apos;intersection du disque avec dBt (voir Figure
la)). Tout entrelacs admet une présentation en ponts, que l&apos;on appelle usuellement

un &quot;plat&quot; (&quot;Geflecht&quot;, voir G. Bankwitz-H. Schumann [BaS], H. Schubert
[Sch], J. Birman [Bi], voir aussi Figure lb)).

Le nombre de ponts (ou &quot;bridge number&quot;) b(L) d&apos;un entrelacs L est le plus
petit entier positif n pour lequel L admet une présentation à n ponts. Si
l&apos;entrelacs L a une présentation à n ponts, le groupe tti(S3-L) peut être
engendré par n générateurs méridiens: c&apos;est-à-dire des éléments qui sont
représentés dans Trt(S3-L) par le bord d&apos;un disque recontrant l&apos;entrelacs L
transversalement en un point (par exemple, les générateurs d&apos;une présentation de

Wirtinger de tti(S3 — L) sont des générateurs méridiens). On a donc 6(L)&gt; w(L),
où w(L) est le nombre minimal de générateurs méridiens nécessaires pour
engendrer 7r1(S3~L).

S. Cappell and J. Shaneson [Ki, pb 1.11], ainsi que K. Murasugi, ont demandé
si l&apos;égalité b(L) - w(L) est vraie pour tout entrelacs L dans S3. Nous donnons ici
une réponse affirmative pour certains entrelacs L (cf. [BoZj).

Au §1, nous montrons que bit) w(L) r pour les entrelacs de Montesinos à

r&gt;3 branches. Ces entrelacs sont définis et construits dans [MoJ (voir aussi

[Mo2], [Zi], [BuZ, ch. 12], [Bo], [BoS]); ils contiennent en particulier la classe des

entrelacs de bretzel (voir [Re p. 9]. L&apos;égalité b(L) w(L) est évidente pour les

entrelacs à 2 ponts (r&lt;2).

An §2 nous étendons ces calculs aux cas des entrelacs de Montesinos

généralisés (voir [Moa], [Mo2]).
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Figure 1

Ces résultats donnent en particulier le premier calcul explicite du nombre de

ponts des entrelacs de Montesinos.
Un résultat analogue dans le cas des entrelacs toriques a été obtenu par M.

Rost et le second auteur (voir [RoZ], Corollary 1.5).
Les auteurs tiennent à remercier vivement le Référée pour leur avoir suggérer

l&apos;utilisation du Lemme 1.6 qui permet de simplifier grandement la preuve du
Théorème 1.1. C&apos;est d&apos;ailleurs la preuve très simple de ce lemme, donnée par le
Référée, que nous reproduisons ici.

1. Nombre de ponts d&apos;un entrelacs de Montesinos

Un entrelacs de Montesinos à r&gt;3 branches admet une projection plane
typique comme sur la Figure 2a) (voir [MoJ, [Mo2], [Zi], [BuZ, ch. 12]).

Sur la Figure 2a), l&apos;entier e est le nombre de demi-tours positifs affichés, ainsi

que les entiers a[ et a&quot; sur la Figure 2b). Chaque boîte | at, ft | représente un

tangle rationnel illustré sur la figure 2b) par un cardan (voir [BaS], [Mo2]); les

entiers al9 ft sont définis par la fraction continue

+(±an)

et la condition que at et ft sont premiers entre eux et a,&gt;0. Chaque tangle
rationnel est classifié, à isotopie près respectant le bord de la boîte, par la fraction
ft/o, e Q (voir [Si], [Mo2]). On suppose dans la suite que les franctions ft/a, ne

sont jamais un entier nely c&apos;est-à-dire que les boîtes | ô,, ft | ne sont jamais

R^nJ auquel cas on pourrait simplifier la présentation du noeud cette dernière

condition équivaut à supposer ax &gt; 1, 1 &lt; i ^ r.
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Figure 2a). Entrelacs de Montesinos m(01 e; (alt 0j),...,(«,., |3r)).

1
Figure 2b). Tangle (a, fi) fila — -—

+(±an)
où a, a&apos;, + a&quot;, 1 &lt; i &lt; n.

1.1. THÉORÈME. Soir L m(0 | e; (a^ 00,..., (a,,
Montesinos àr^3 branches, alors w(L) fe(L) r.

un entrelacs de

Puisque w(L)^b(L), la démonstration du Théorème 1.1 découle des deux
affirmations suivantes:

1.2. AFFIRMATION. b(L)&lt;r

1.3. AFFIRMATION. w(L)&gt;r

1.4. Démonstration de VAffirmation 1.2. D&apos;après Bankwitz-Schumann [BaS],
T T

voir aussjJMo2], [Zi], [BuZa, ch. 12], tout cardan \ a, (3 \ peut se mettre sous la
T T

forme |T(a, |3)|, où T(a, &amp;) est une tresse à trois brins comme sur la Figure 3.
i ^

En effet, il est toujours possible de décomposer p/a en fraction continue avec
un nombre impair de coefficients 0+ (cf. [Si]). Puis, par des rotations de 180° de
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Figure 3

certaines parties du cardan autour d&apos;axes horizontaux ou verticaux, on peut se

ramener à un cardan comme sur la Figure 3 où tous les 1/2 tours al sont d&apos;un

même côté (voir Figure 4).
On en déduit alors aisément une présentation à r ponts de l&apos;entrelacs de

Montesinos m(0|e; (ai, 0i),..., (ov, ft.)) (voir Figure 5). Ceci achève la
démonstration de l&apos;Affirmation 1.2.

1.5. Démonstration de VAffirmation 13. Soit V le revêtement double de S3,

ramifié le long de l&apos;entrelacs de Montesinos L m(01 e\ (au jSx),..., (a,, (3r)). J.

M. Montesinos ([MoJ, [Mo2], voir aussi [Zi], [BuZ, ch. 12]) a montré que le
revêtement double ramifié V est une variété de Seifert de base S2, ayant r fibres

exceptionnelles de type (a,, À,) avec A.,ft 1 mod at (voir [Se], [OVZ]).
De plus l&apos;involution de revêtement t envoie fibre sur fibre et induit sur la base

S2 une réflexion p par rapport à un grand cercle contenant l&apos;image des r fibres

exceptionnelles de V (voir Figure 6).
L&apos;Affirmation 1.3 se déduit dans la plupart des cas du Lemme suivant qui nous

a été signalé par le Référée et dont nous reproduisons ici la preuve.

Figure 4
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Figure 5

1.6. LEMME. Soit L un entrelacs dans S3 et V le revêtement double de S3

ramifié le long de L. Alors w(L) &gt; 1 + rang ir^V), où rang ir^V) désigne le nombre

minimal d&apos;éléments nécessaires pour engendrer

Démonstration. Soit A mlvm2v • • • vmw un bouquet de w cercles

méridiens dans S3-L, tel que l&apos;homomorphisme ir1(A)-&gt;7r1(S3-L) induit par
l&apos;inclusion est surjectif. Si p: V-»S3 est le revêtement double de S3 ramifié le

long de L, Thomomorphisme induit: ir1(p~1(A))-^ it^V) est encore surjectif.
Soient mt p~1(mI), l&lt;i&lt;w, comme 7r1(p~1(A))/(m1,..., mw) est libre de rang
w-1 et que mE, l&lt;i&lt;w, est homotope à zéro dans V, on obtient

rang 7r1(V)&lt;w-l.

Figure 6
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Soit (f) le sous-groupe cyclique de tt^V) engendré par la fibre ordinaire de la
fibration de Seifert de V. Comme r&gt;3, le groupe quotient r=7r1(V)/(f)
s&apos;identifie au sous-groupe des isométries du plan P (P est le plan sphérique S2,

euclidien E2 ou hyperbolique H2) engendré par les rotations d&apos;angles 277/0,,
1 &lt; i &lt; r, autour des sommets d&apos;un polygone du plan P ayant r côtés et d&apos;angles

tt/c*,, l&lt;i&lt;r (voir [OVZ]). On a l&apos;inégalité rangtt^V)&gt;rangT (utilisée dans

[B0Z2] pour calculer explicitement rang tt^V)).
D&apos;après [PRZ, Satz 3]:

{r-2
si r est pair, r &gt; 4, un des at est impair et tous les autres

ax sont égaux à 2; donc w(L)&gt; r-2.
r—1 dans tous les autres cas; donc w(L)&gt;r-l.

Il reste donc à démontrer l&apos;Affirmation 1.3 dans le cas suivant (après une
renumérotation convenable): r pair, r&gt;4, a, =2 (l&lt;i&lt;r-l), ar 2À + l avec
À&gt;1.

Dans ce cas, l&apos;entrelacs de Montesinos L=m(0|e; (2,1), (2,1),..., (2,1),
(2à +1, /3)) admet r— 1 composantes, dont r — 2 sont triviales et la dernière est un
noeud à 2 ponts non trivial. L&apos;Affirmation 1.3 dans ce cas là découle alors du
lemme suivant:

1.7. LEMME. Soif L L1U--ULn un entrelacs quelconque qui est la
réunion de n entrelacs L, (l&lt;i&lt;n). Alors, on a les inégalités:

et

Démonstration. Dans le cas du nombre de ponts b(L), le lemme découle du
fait qu&apos;un présentation en ponts de L détermine une présentation en ponts des

entrelacs L, (1 &lt; i &lt; n).
Dans le cas du nombre de générateurs méridiens, on a w(L) £r=i wt(L), où

w,(L) désigne le nombre de générateurs, parmi les w(L) générateurs méridiens de

ir1(S3-L), qui sont représentés par le bord d&apos;un disque rencontrant l&apos;entrelacs 1^

transversalement en un point. Soit alors Nt le sous-groupe de Tr^S3-!,) normalement

engendré par les éléments méridiens qui sont représentés par le bord d&apos;un

disque recontrant L\Lt en un point. Le groupe quotient ir^S3 — L)/^ est

isomorphe au groupe it^S3-!^) et il peut être engendré par w,(L) générateurs
méridiens. D&apos;où, wt(L) &gt; wQ^ (1 &lt; i &lt; n) et l&apos;inégalité cherchée en découle.

1.8. Remarque. Les inégalités du lemme 2.2 sont bien connues. Dans les deux
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cas, l&apos;inégalité peut être stricte. Par exemple l&apos;entrelacs de Montesinos m(0| 1;

(p, 1), (q, 1), (r, 1)), p, q, r impairs &gt;1, vérifie w(L) b(L) 3 d&apos;après le Théorème
1.1, et il est la réunion de deux composantes non nouées. (Dans ce cas simple, il
s&apos;agit en fait d&apos;un entrelacs de bretzel, le fait que w(L) b(L) 3 peut être
démontré sans utiliser [PRZ], il suffit de remarquer qu&apos;un groupe triangulaire
n&apos;est jamais un groupe diédral).

2. Nombre de ponts des entrelacs de Montesinos généralisés

Un entrelacs de Montesinos généralisé m(—g|e; (&lt;*i, 0i),..., (a,, ft.)) (voir
[MoJ, [Mo2]) est la réunion d&apos;un entrelacs de Montesinos classique m(0J6;
(&lt;*i&gt; 0i)&gt; • • • »

(&lt;*r&gt; ft-)) e* de g composantes non nouées et non enlacées, entourant
la bande centrale de l&apos;entrelacs de Montesinos comme sur la Figure 7.

Pour g^l, J. M. Montesinos ([MoJ, [Mo2]) a montré que le revêtement
double ramifié V d&apos;un tel entrelacs est une variété de Seifert ayant r fibres
exceptionnelles de type (c^, à^), «ift 1 mod ai9 et de base une surface non
orientable de genre g. (Ceci justifie le signe - devant g dans la notation).

2.1. THÉORÈME. Soif L m(-g|e; (al9 00,... ,(&lt;*,, &amp;)), g&gt;l, un
entrelacs de Montesinos généralisé. Alors,

i) Pour r &gt;2, on a w(L) b(L) g + r.

ii) Pour r=l, on a w(L) 6(L) g + 1 si a1e-j31 sinon on a w(L)

Pour r 0, on a w(L) b(L) g +1 si e ss ±1, sinon on a w(L) b(L) g + 2.

VJ

*

Figure 7. Entrelacs de Montesinos généralisé m(-g | e; (av ^x),..., (a^ /3r)).
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Figure 8

2.2. Démonstration du Théorème 2.1. Dans le cas i), r&gt;2, la démonstration
découle, comme pour le Théorème 1.1, du Lemme 1.6, de la formule du rang
pour le groupe quotient ttx{V)HS) (voir [PRZ], Satz 3, Korollar) et de la Figure 8

qui exhibe une présentation à g + r ponts de l&apos;entrelacs de Montesinos généralisé.
Dans le cas ii), si r=l, l&apos;entrelacs L=m(-g|e; (al9 j3x)) est une réunion

L-Lx\JT2yJ9 • • UTg, où L1 m(-l|e; (ai, Pi)) et Tl9 2&lt;i&lt;g, est un noeud
trivial. D&apos;après la Figure 9 (voir aussi [Mo,.], [Mo2, Prop. 2]) L1 m(-l|e;
(al9 fit)) m(-l | 0; (au ^1-ea1)) m(0 | 0; (2,1), (2, -1), (eat-pl9 ax)). D&apos;après

C^

Figure 9. m(-l | 0; (alf ^i- CO | 0, (2,1), (2, -1), (ea -^ at))
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Zl

Figure 10 m(-g | 0, {ax, ±1))

le Théorème 1.1, si eai-/3i^ ±1, on a w(L1) b(L1) 3, sinon Lt est un
entrelacs à 2 ponts et on a vvCLx) i&gt;U-i)= 2.

La démonstration dans ce cas découle alors du Lemme 1.7 qui montre que
w(L) &gt; w(Lx) 4- g -1, et des Figures 8 et 10 qui exhibent une présentation avec le
nombre voulu de ponts dans chaque cas. (Voir en particulier la Figure 10 pour
une présentation de L à g + 1 ponts lorsque ea1-j31=±l.)

Si r 0, ce cas se déduit du précédent en posant a1 1 et &amp;x 0.
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