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Non-rotational minimal spheres and minimizing cones

Dirk Ferus and HERMANN KARCHER

Recently the study of minimal and constant curvature hypersurfaces in space
forms has produced many new examples of geometric interest, see [4, 5, 6, 8].
They are constructed by rotation of planar curves with rotation groups of
cohomogeneity 2. Hence they carry a foliation with homogeneous leaves of
codimension one (except for some singular leaves), which projects radially onto a
homogeneous isoparametric family in the unit sphere.

In this paper we shall instead ‘“‘blow up” isoparametric families of the sphere
to obtain in particular minimally embedded hyperspheres in the sphere. Our
emphasis, however, is on inhomogeneous isoparametric families (see [3] for
details), and we call the resulting hypersurfaces non-rotational, since they cannot
be obtained by rotation group actions. For example, for n = 16 there is at least
one, for n = 8k =24 there are at least 1+[k/2], and for n = 16k =32 there are at
least 5+k+[k/2] such non-rotational minimal hyperspheres in S"~'. We also
foliate R" by complete minimal hypersurfaces which are regular except for one
absolutely minimizing cone [2]. Constant curvature examples can also be obtained
in this way, but the emerging differential equations are somewhat more compli-
cated.

The content of this paper is as follows. In the first three sections we describe
the process of deforming spheres such that a given isoparametric family is
respected, and the situation is controlled by a ‘“generating curve”. We compute
the curvatures of the resulting hypersurface, and show that prescribed mean
curvature leads to a second order differential equation for the generating curve.
This equation is, up to certain “multiplicity constants’’, the same as obtained in
[4] and [8] by different arguments. Section 3 contains the precise statements of
our main results. In section 4 we begin the analysis of the differential equation (in
the minimal case) with a study of the boundary behaviour of the solutions. In
section 5 we transform the equation to a vector field in 3-space, of which we then
give a rather detailed geometric description. As an application we construct in
section 6 the minimal foliation of R" mentioned above. In the rest of the paper we
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248 DIRK FERUS AND HERMANN KARCHER

finally use the shooting method to find solutions which give minimal hypersurfaces
in the sphere. In the course of this argument we need information about the
rotation of solutions around special ones, and for that purpose extend Sturm-—

Liouville results for the linearized equation by a very neat geometric argument to
the non-linear case.

We thank H. B. Lawson for drawing our attention to the minimal cones.

1. The basic construction

An isoparametric family in the sphere is a family of compact, parallel, constant
curvature hypersurfaces, which fill the sphere up to some focal manifolds. For
details which we need about these families in the sequel, we refer to [3]. The
reader should carry in mind the example

cos @SP Xsin ¢S < SPHItIcRPHIXRIYY,
which is given by the levels F~'({cos 2¢}) of the quadratic polynomial
F(x,y):=(x,x)={y,y), xeR*™, yeR""

restricted to the sphere. Given functions r(s)>0. ¢(s) on an interval J, the union
of blown up levels

r(s)(cos ¢(s)SP Xsin @(s)S?) cRP ! xR**!

is an immersed hypersurface (possibly with singularities, where 2¢(s) is a multiple
of ).

Our hypersurfaces are constructed in a similar way, but based on a quartic
polynomial

F(x):={(x, x)*-2 f: (Px, x)?, m=1, (1)

i=0

where the P;:R" — R" are self-adjoint endomorphisms which satisfy P,P, + P,P, =
26;1d. Such sets of endomorphisms are obtained from each orthogonal represen-
tation of the Clifford algebra of (R™, —(.,.)) on R™2. The levels F~({cos 4¢}) N
S"!, 0<¢@<m/4, form an isoparametric family, and have constant principal
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curvatures
Ay =cot ¢, A3 =—tan ¢ with multiplicities m,:=m,
7 1r - n @)
A, =cot ((p +Z)’ A, =—tan ((p +Z) with multiplicities m,:= 27 m-—1,
and mean curvature h(¢)/(n—2), where
h(g):=2m, cot 2¢ —2m, tan 2¢. (3)

“Most” of these families (beginning with n = 16) are inhomogeneous, i.e. not the
orbits of a subgroup of Iso(S"™"). The only exceptions occur for (m,, m,)=(5, 2),
6,1), 9,6), (1,k), (2,2k—1), (4,4k—1), where in the last case there exist
inequivalent representations giving both, one homogeneous and several in-
homogeneous families. The case (1, k) is announced in [8]. The extremal levels
F'{x1)NS~'=:M, are the focal manifolds of the family. M, =
{xeS"'|(Px,x)=0 for all i} has a trivial normal bundle, and M_ is a sphere
bundle S™*™2— M_—S™ over S™, which is in most cases differentiably,
though not metrically, a product bundle.

In the space forms S", R", H" we shall always use polar coordinates [0, 7] X
S™~1 resp. [0, o[ xS™"! with the metric of curvature K given by

g =dr*+ G(r) dw?, 4)
where
G"+GK=0, G(0)=0, G'0)=1, (5)

and where dw? denotes the standard metric on S™!. Consider now S™' and
therefore all distance spheres {r}x S"~! endowed with an isoparametric family of
type (1). From any differentiable curve in S% R? or H? with polar coordinate
representation (r, ¢) and arc-length parametrization

"+ GAr)e')=1, 0=<e¢(s)<mu/4, (6)

we obtain a hypersurface in S, R" or H" by taking

M:= {r(s)}x (F*({cos 4 (s)H NS™). (7)

seJ
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M is immersed except that it may have conical singularities over the focal
manifolds ¢ =0, ¢ =n/4. It is immersed, if either ¢(J) €0, 7/4{, or if r'(s)=0
whenever ¢(s) €{0, n/4}. It is embedded, if moreover the curve (r, ¢) is injective.
Its topological type is as follows:

(i) M~ S'xregular level, resp. R X regular level, if ¢(J)<]0, m/4[.

(ii) M ~normal bundle of M, or M_, if just one end of the curve reaches O or
/4 with r' =0.

(iii) M~ S, if the curve goes from ¢ =0 to ¢ = 7/4 with r' =0 at the ends.

(iv) M ~normal disc bundle of M, or M_ glued to itself, if the curve goes
from ¢ =0 to ¢ =0, or from ¢ = /4 to ¢ = w/4 with r' =0 at both ends.

2. Curvature computations

We shall compute the principal curvatures of M. Since the isoparametric
hypersurfaces in S"~! are parallel to each other, they carry a family of normal
great circles. The pre-images of these great circles under the radial projection

[0, 7]xS" oM —>S"!
or

[0’ oo[xsn~1 SM— Sn—l

are planar curves congruent to (r(s), ¢(s)), and perpendicular to the isoparametric
levels of the distance spheres. The principal normals

= (—G(r(S))<P'(s)’ Gr(fz)))

of these planar curves are hypersurface normals, and the curves are lines of
curvature: like meridians of ordinary surfaces of revolution. Their geodesic
curvature k with respect to the ambient space form is a principal curvature of M,
and computed as

k=, Vayulr', @").

The covariant derivative in the space form is

Glr' 4
Vaalr', )= (7, 07+ (-GG, 252,

G
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where G = G(r), and G' =(dG/dr)(r). Hence

rll

K= __G_:;'+ G'o'.
In terms of
sina:=r, cos a:= Go' (8)
we obtain
G'(r(s))

k(s)=—a'(s)+

GG cos a(s). 9)

The other principal curvatures equal those of the isoparametric level in {r(s)}x
S$"~! with respect to the space form and to the normal v. We decompose

v=g(n-2)(-2)+ e 015 (10

where ¢ is the unit normal of the isoparametric family used in (2). With respect to
—9/ar the distance sphere {r(s)}x S™"~! has principal curvature (G'/G)(r(s)) in the
ambient space, and it has sectional curvature G %(r(s)). The A;’s from (2)
therefore change by a factor G (r(s)), and from (10) and

a .
f(n-5)=Ge'=cosa,  gne)=—r'=sina
r

we obtain the principal curvatures

Gr(s)_ sin a(s) A

G(r(s)) G(r(s))

cos a(s)

with multiplicities m,. Therefore h :=(n—1)Xmean curvature of M is given by

G'(r(s)) cos a(s) h(e)

h=—a®+=D 506 "G

sin a(s), (11)

where h is as in (3).
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3. The differential equation. Main results

Given a constant h, any solution of the following 3-dimensional first-order
differential equation produces by the previous section a hyper-surface of constant
mean curvature h/(n—1) in the space S™, R", or H" (related to the equation by its
curvature K via (4)).

r=sina

, _Ccosa
MEETD) (12)
a'=—ﬁ+(n-1)G'(') ho) .

G(r) Cos a _G(r) sin

Special solutions are the distance spheres (r=const., a=0), where h=
(n—1G'(r)/G(r), and the so-called minimal cone with h=0 and
(¢ = @0, @ = 7/2), where ¢, is the unique zero of h in ]0, n/4[, characterized by

tan® 2, = s g (13)
m;

Note that (12) is the same differential equation as derived from orbital geometry
in [4, 8], except that h contains different m;’s for inhomogeneous families. By
proving the existence of suitable solutions of (12) we shall obtain:

THEOREM 1. Each isoparametric family of Clifford type (1) in S™! yields by
the above construction a minimally embedded S™ ' in S™, which is not an equator.
(Proof in sections 7-9.)

THEOREM 2. Each isoparametric family of Clifford type (1) in S"~! yields by
the above construction a foliation of R" by complete minimal hypersurfaces, which
are regular except for one absolutely minimizing cone. The foliation is invariant
under homotheties of R". (Proof in section 6.)

4. Solutions extending smoothly over a focal manifold

We want to find solutions of the differential equation (12), for which ' — 0 as
¢ — 0 or m/4. Necessarily then lim &« =0 mod n. To be specific, let us assume

¢(0):=1lim ¢(s)=0, a(0):=lima(s)=0, r(0):=limr(s)=r, for s\O.
(14)
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Then, using (12) and (13)

[ 12 ' — 1

¢'(0):=1lim ¢'(s) = GO (15)
and

AN - — 1 ey — _ _ G'("o)__ m; .. a(s)

a'(0):=1im a’(s) h+(n-1) G () G(ro)hmq)(s)’
whence

’ N _ G'(r()) -1

a(O)——( h+(n 1)——-—G(r0))(1+m1) . (16)

It follows that the initial derivatives of arbitrary order are uniquely determined,
and Hsiang states in his papers that one can show convergence of the resulting
power series. We shall prove somewhat less, but by a hopefully simpler argument:
For each r, there exists a unique smooth solution of (12), (14) which depends
continuously on r,. We restrict ourselves to A =0, K €{0, 1}, but the general case
can be handled similarly.

First note that near s =0 one can take ¢ instead of s as independent variable.
Then (12), (14) become

% = G (r(e)) tan a(o)
¢

(17
Z—S =(n—-1)G'(r(¢))—tan a(e)h(e) !

r(0) =ro, a(0)=0.

To this we apply a modified Picard iteration. We fix a natural number N, and let
rn(@), an(¢) be N-th order polynomials, the coefficients of which are determined
by the differential equation as above, starting with ry(0) = ry, ax(0) =0. In other
words, (ry, an) is the N-th order Taylor polynomial of a prospective solution of
(17). For a fixed positive @ we consider the space

R ={(p, w): [0, ] — R? smooth | ¢(0) = ©®(0) =0, for 1 <i<N}. (18)
The operator

ZL(p, w)(@) :=(£1(p, »)(@), Lrp, w)(@)) (19)
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with

Z1(0, 0)(@):=ro—re(@) + j * G+ ) tan (an + @)

20)
Z4(p, )(#):=—an(@)+ | (=G (ry+p)—tan (eny + )}

maps R into itself, and a fixed point (p, w) of & will obviously provide a solution
(r=ry+p,a=ay+w) of (17). On R we use the L”-norm determined by

p;(vqi)l A lel==sup‘wgf3 , (21)
@ @

llell:= sup

where ¢ €[0, ¢]. Note that this implies

lo(@)l=<llpll ™, lw (@) <|lwlle™** on [0, @]. (22)

We now choose @ small enough to guarantee

Ire(@) — 1ol <1, |aN(cp)|S—7I

8

on [0, @], and make the a priori assumptions

la(e) <1, |wi(¢)|<—’§' (23)

on [0, ®@]. If moreover @ <3, then a few lines of straight-forward computation
give

"55 1(p1, @) — ZL4(p,, w))||<a "(01’ 1) = (p2, @),

N+2

where a=2 for K=1, and a =2(r,+2) for K=0, and

) n—1
“°<£2(p1, wy)— -(fz(Pz, wz)" =2 m "(Ph ;) —(p2, wz)"-

If we choose N sufficiently large, we obtain

"ff(pl’ wl) _3(02’ w2)n = q “(pb (01) - (p29 (02)" (24)
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with g <1. Starting the iteration with (p,, wo) = (0, 0), and assuming (23) for all
i <j, we obtain from (22), (24)

(DN+1

|p,~+1(<p)|+|w;+1(<p)\$|l(p;+1, wj+1)“ N1 s“(ﬂl, wl)" 1-q .

Note that |.|| depends on @ monotonically. Thus, choosing & small enough we
have (23) for all i, and £ is contracting on this subset of R.

This gives the existence of a unique solution. As for the continuous depen-
dence: The Taylor ploynomials ry, an depend differentiably on ry, and therefore
the operator & depends (in the above norm!) differentiably on r,, and is uniformly
contracting with respect to ro. Hence the solutions are Lipschitz dependent on r,.
Differentiable dependence can be proved, because the singularity of h in the

integrand does not get worse in the linearized equation, but we shall not need
this.

Remark. The above considerations give unique existence and continuity of
solutions of (17) on the interval 0<r,<m (resp. ) including 0. This will be
needed later.

S. Qualitative description of the vector field

Our aim is to get a qualitative picture of the solution curves of (12). We
restrict ourselves to h=0. It is obviously irrelevant that the solutions are paramet-
rized by arc-length. The description becomes simpler, if no vanishing de-
nominators occur, and we therefore discuss the vector field Y determined by the
equivalent system

F=G(r)sin4¢ sin «
@ =sin 4¢ cos a ) - (25)
a=(n—-1)G'(r) sin 4¢ cos a —sin a(4m, cos”® 2¢ —4m, sin” 2¢)

=(n—1)G'(r) sin 4¢ cos a —(n —2) sin a(cos 4¢ —cos 4¢,),

where ¢, is given by (13).
To simplify notation we normalize the curvature in the case K>0 to K=1.
We think of the r-axis as pointing vertically upward, and consider the following
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“fundamental domain’’:

[o,oo[x[o,"zr]x[o,n], if K<0

[0, 7]x [0, %T]x[o, w), if K=1.

In its interior we have 7>0. In the neighbouring domains —wr<a <0 and
m<a <2 all essential features are the same, but r<0.

a) The vector field vanishes on the four vertical edges ¢ €{0, n/4}, a €{0, 7},
which correspond to points over the focal submanifolds with sin a =0, i.e. with
dr/de = 0. The results of section 4 about the singular initial value problem show:
Solution curves of (25) in the interior of the fundamental domain will —in the
limit, of course, —start from (or end at) these vertical edges if and only if the
initial vector (or the negative of the ““final”’ vector) of the corresponding solution
of (17) points into the interior. Therefore, if K <0, solutions start into the interior
from (¢ =0, a =0) and (¢ = /4, a = w) for arbitrary positive r, but no solutions
from the interior end on the vertical edges. If K =1, we have interior solutions
starting at (0<r<u/2,¢=0,a=0) and (0<r<m/2, ¢ = /4, a = 7), and ending
at (m2<r<moe=7/4,a=0) and (7w/2<r<m, ¢ =0, a =m).

b) The faces ¢ =0 and ¢ =w/4 are filled with straight solutions without
geometric interest: r = const., ¢ €{0, w/4}, a = const. sin a.

c¢) On the horizontal face(s) r=0 (and r=, if K=1) the vector field Y is
horizontal (# =0), with a horizontally attractive fixed point (r, ¢, a) = (0, ¢q, 7/2).
For K =1 (m, ¢o, m/2) is a horizontally repulsive fixed point. The minimal cone
solution starts vertically upward from the bottom fixed point:

H) =sin 4poG(r(1),  o(=00,  al)=7.

If K=1, it ends at the top fixed point.

d) On the two remaining faces a« =0 and a = 7 the vector field is in the case
K =<0 transversally inward. For K =1 one has equator sphere solutions r(t) = n/2,
¢(t) =cos a sin 4¢(t), a € {0, 7}, dividing the faces into the lower halves, where Y
is transversally inward, and the upper halves, where it is transversally outward.

To describe Y inside the fundamental domain, we study its behaviour along
several surfaces.

e) The planes ¢ =const.: For a€]0, w/2[ the field is transversal toward
growing ¢, for a € |n/2, w[ toward decreasing ¢.
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f) The planar pieces

0<o <@, a=§ (26)

ar v
< <— =—
Po<@ <, a=> (27)

The flow is transversal toward increasing a on (26), and toward decreasing @ on
27).

Therefore the flow moves around the minimal cone solution.

g) The cylindrical levels

L (g, a):=sin™ 2¢ cos™2 2¢ sin a = const. (28)

The function L is zero on the vertical boundary of the fundamental domain, and
maximal on the minimal cone solution. We have

2
£ L(o(0), (D)= (1~ DG (1) sin 4p(0) =20 .
t sin a(t)
If K=<0, then G'=1, and we have dL/dt =0 inside the fundamental domain, with
equality only for a = 7/2. But to the latter set the flow is transversal. This shows:
For K <0 the function L is strictly increasing along the solution curves inside the
fundamental domain, i.e. the minimal cone solution attracts the others. If K =1,
then G'(r) = cos r. Therefore the minimal cone solution attracts the others below
r = /2, and repells them above.
h) The cylindrical level

T T
f(a, @) = (cos 4¢@o—cos 4¢)" — k" cos a =0, ¢0<(P<Z, and O<a<’2-, (29)

where k:=(1+cos 4¢,), connects the minimal cone solution to the edge ¢ =
/4, =0. For K=1 we shall eventually count the intersections of a solution
(r(1), (1), a(t)) with this surface. Now, on it

d . )
X f(a(t), (1)) = n(cos 4¢,—cos 4¢)" 'k "4 sin> 4¢ k" cos «
+(n—1)k" sin 4¢ sin « cos « cos r

+(n—2)k" sin? a(cos 4¢,—cos 4¢)
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= (cos 4@ —cos 4¢){(2(nk ™) *(cos 4@, —cos 4¢)" ! sin 4¢
—((n-2)k™Y2sin a)?*+ @(n(n —=2)Y?+(n—1) cos r)
X (cos 4@ —cos 4¢)" ! sin 4¢ sin a}>0.

Hence the solutions intersect (29) transversally and always in the same direction.

At this point the qualitative picture of the solutions of Y is reasonably
complete. To construct the minimal spheres we need quantitative estimates for
the rotation of the solutions around the minimal cone. We postpone this, and
prove Theorem 2 first.

6. Proof of Theorem 2: Foliations of R” by complete minimal hypersurfaces

In this section we assume K =<0. For any r,>0 there exists a solution of (12)
with h =0, which starts at (¢ =0, @ =0) or at (¢ = /4, a = 7) into the interior of
the fundamental domain. The solutions cross the cylinders (28) toward the
minimal cone solution; therefore r'(s) =sin a(s) is bounded away from 0, and r
increases monotonically to +o: We obtain complete minimal hypersurfaces, which
are embeddings of the normal bundle of the focal manifold M, (resp. M) into R"
or H". For R" we can show that they form a foliation: they do not intersect each
other nor the minimal cone. To prove this, we need in addition to the qualitative
picture of section 5 some further information obtained from an integration of
(12). We first show: If ¢(0) =0, then ¢(t) <@, for all t. As long as ¢ < ¢, we have
a </2 by f) of section 5. Therefore ¢’ >0, and we can choose ¢ as independent
parameter. From (17) we obtain, using K =0,

-(—1!- =r tan

de o

gﬁ:(n—l)——h tan a. (30)
do

We substitute o :=r"! dr/de = tan o, and obtain

g—"= (1+0)(n—1-0oh(e))=:S(a, @)
P

ag(0)=0.
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As in (15), (16) we get

dr da n—1
—(0)=0, —(0) =
d(p() d(p(O) m;+1
d’r n—1
'd—(;;(o)—roml+1-
whence

n—1
'(0)= .
a'(0) m;+1

The function

n—1
2h ’

f:= f):=0

is a lower bound for o, as we shall show below. Therefore

¢

In(r(@)-Tn () = [ ‘o= [ 7, (31)

0 0

and the right-hand side goes to « as ¢ goes to ¢,, see the definitions of f and h.

Hence ¢(t) < ¢, along the complete solution curve. A similar argument works for
¢(0) = /4.

Now o=f is a consequence of f'(¢)<S(f(¢), ¢), ¢=0. For ¢ =0 we have
f'(0)=(n—-1)/2m,<a’'(0). For ¢ >0 the inequality is equivalent with

4m,(1+cot’>2¢)+4m,(1+tan?2¢)<h(e)*+i(1+2m,+2m,)
—-remember n—1=1+2m,+2m, -, or

3(m, +m,)+6mym,<4m,(m,—1) cot® 2¢ +4m,(m,— 1) tan> 2¢ +3+ mi+m3.
The inequality

my(m;—1) cot? 2¢ + my(m,— 1) tan® 2¢ =2(m my(m; — 1)(m,— 1))
gives the sufficient condition

3(my+my)+6mym,<8(m;m,y(m;—1)(my— 1))?*+i+m?+m2.
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This is obviously satisfied for the lowest-dimensional inhomogeneous Clifford
family (m,, m,) =(3, 4). All others have 3<m,<m, and m;+m,=11. Then

0<(m;+my)>—11(m,;+my)+3
or, equivalently,
3(m,+my)+6mm,<8(m;—1)(m,—1)+i+mi+m3.

This a fortiori implies (31). Hence the minimal hypersurfaces given by initial
conditions on the edges (¢ =0,a=0) and (¢ =7n/4,a =) do not meet the
minimal cone. Equation (30) is invariant under r— Ar, A €R,. Therefore the
minimal hypersurfaces do not intersect each other, and together with the minimal
cone form a foliation of R". To show that the minimal cone is absolutely
minimizing, we define the (n—1)-form

oy, ...,0,-1):=det(v,vq,...,V,_1),
where v is the unit normal field of the foliation. Then, by minimality,
dow =—h det=0.

The 1/r-singularity of w at 0 is integrable. If N*~!' cR" has unit normal 1 and the
same boundary as some portion C of the minimal cone, then

vol (C) = J

C

W= L w= jN (v, n)(£dN) =<vol (N),

where equality holds only for v = +n, i.e. for N a leaf of the foliation.

7. Proof of Theorem 1

We consider the case K=1, h=0. The fundamental domain is then a
“fundamental cube”. We concentrate on solutions of (12) with (singular) initial
conditions (r=r,, ¢ =0, a =0), 0<r,<m/2. (See section 4 for the handling of this
singular initial value problem.) We show in section 8, that for r, sufficiently close
to O these solutions intersect the planar piece (27) at least once below r = 77/2, and
at least once above. In particular they intersect (29) at least twice. By contrast, we
show in section 9 that either there exist solutions which do not intersect (29) at
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all, or that for r, close enough to /2 the first intersection of solutions with (27) is
above r = m/2; since these intersections are transversal we find in particular a
solution which reaches (27) at r = /2 and then continues symmetrically to end at
a — 1o on the edge (¢ =0, a = ) — clearly intersecting (29) only once.

How can a transversal intersection with (29) disappear? Limits of solutions —
which we consider until they hit the boundary of the fundamental cube (necessar-
ily above /2, see (28)) — are again solution curves of the vector field, and the end
points on the boundary of the cube are either singular points or points of
transversal intersection.

By the above there exists r* € ]0, w/2[ such that solutions with ry<r* have at
least two transversal intersections with (29) while for r,=r* there is at most one.
The end point of this limit solution has to be on the compact surface (29) and the
boundary of the cube-but bounded away from the minimal cone solution
(r*>0). This forces the end point to be on the vertical edge (¢ = n/4, a =0). The
basic construction of section 1 performed with this solution of (12) gives a
minimally immersed (n—1)-sphere in S™ which is embedded since r is strictly
increasing along each solution in the fundamental cube.

8. The rotational behaviour near the minimal cone

First we study the linearization of (12) with K=1, h =0, along the minimal
cone solution ¢ = @,, @ = /2, and r' =sin 4¢,G (r). Here r is a good independent
parameter, and from

fl_gzoosa

dr G o (32)
de G . _he

dr——(n 1)Gcota G

we obtain the linearized equation (P = 8¢, A = da)

a@_ A

adr G

dA G' (¢ )]

b - _n2 33
- (n-1) GA+4(n Z)G. (33)



262 DIRK FERUS AND HERMANN KARCHER

For later comparison with (32) we need to change one coefficient slightly:

a_ A
dr G
dA

—=—(n- 1)9—A+c(n 2)-—
dr

where c is close to 4. This yields

and, substituting ¥ := G*® with 2k =n and G =sin, we get

P+ (k+2c(k—1)—(k—1)(k —2¢) cot?> r)¥ = 0. (34)

LEMMA 1. For k =8 (= smallest value of interest for inhomogeneous families)
and c sufficiently close to 4, each solution of (34) has at least two zeros in each of
the intervals J(w/2)—1, w/2[ and ]7/2, (7/2)+1].

Proof. By continuity we can restrict ourselves to ¢ =4. If k=8, then (34)
becomes ¥"+64¥ =0, and every solution has at least two zeros in each open
interval of length >u/4. For k>8 (k =12 is the next value of interest) we can
reparametrize with s := (9k —8)Y*(r — (7/2)), and want to show that each solution of

k?—-9k+8 ., s

ok —8 tan W)‘I’(S)':O (35)

v'(s)+ (l -

has at least two zeros in ]0, 8[. This will imply the lemma. By Sturm-Liouville the
number of zeros does not increase, if we decrease the coefficient. We use
tan? x <x2/1—x2 to find

k2-0k+8 s _(k=1)(k=8)s’
k-8 A (gk—8)2  (9k—8)9(k—8) 81

and we change (35) to

2

W (s) + (1 —és—l)vp(s) =0. (36)
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Computer integration of (36) with ¥(0)=0, ¥'(0)=1 gives 3 zeros in [0, 7.1],
and, using separation of zeros, therefore at least 2 zeros in ]0, 8 for arbitrary
initial conditions. For a theoretical estimate note that the difference between
consecutive characteristic parameters, i.e. s-values with ¥(s)=0, W¥'(s)=
Jao¥(s), ¥'(s)=0, W¥'(s)=—/qo¥(s) of the equation ¥"+q¥=0 with
qo:=min q>0 is less than m/(4{/q,). Apply this to (36) on the subintervals
between 0, 0.79, 1.59, 2.41, 3.26, 4.15, 5.11, 6.20, 7.74. This proves Lemma 1.

From it we conclude that the solutions (r, @(r), A (r)) of (33) rotate around the
minimal cone solution (® =0, A =0) intersecting the surfaces (27) and (29) at
least twice, once below r = 7/2, and once above. We want to show that the same is
true for those solutions of the non-linear equation (32), which between (7/2)—1
and (m/2)+1 stay close enough to the minimal cone solution. We control the
distance from the minimal cone using the function L of (28). To compare the
linear with the non-linear case, we take a solution (r, @(r), A(r)) of (33), and
think of it as generating a helicoidal surface {(r, A\®(r), AA(r) | A >0} around the
minimal cone solution. Its forward normal is given by

N AP (r), AA(r)=(P'A-DPA', - A, D)

A? G’ &> )
(-2 v(m-1D)Z PA-c(n-2)—, -A, D). 37
( G +(n—-1) G PA—-c(n—2) G’ A, (37)

In coordinates (r, ¢ = ¢ — @, A = a —(7/2)) the vector field of (32) reads

X(r, @, A)= (1,_tanA G'(r) E(_?i_))

,—(n—1) tan A +

G(r) G(r) G(r) (38)

where

H(®P):=2m, cot 2(P + @) —2m, tan 2(D + ¢y).

If we can show that (X, N)>0, then the solutions of (32) intersect the helicoidal
surface always in the forward direction, and hence they spin around the axis at
least as fast as the surface. They therefore intersect (27) and (29) once below, and
once above r = /2.
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Now

2 ' 2 A
X, N>—~%+(n 1)§—<I>A c(n— 2)—-+—6tanA

—-(n—-l)%—tanA-l—H(q)) /3]

= El;‘ {A(tan A-A)+ P(H(P)-c(n—2)P)—(n—1)G'P(tan A—-A)}.

Since H'(0) =4(n—2), we can choose ¢ =4—2n <4 such that Lemma 1 holds,
and then choose &£ >0 such that

<eg

w v
|L(¢°+¢’5+A)‘"L(%’ ‘2‘)

implies

H(P)
b

—c(n—2)=nn-2).

and

3

A+%~stanAsA +2A3,

Then

1 (A*
(X, Ny=— {—3—+ n(n-2)¢>—2(n-1)|G’ <1>A3l}.

Using

2n—1) | @AY <n(n—3)@2+ 1" D 46
n(n—3)

W€ S€€

(oo

1
X N>>—{ 3 n(n-3)

G

which is positive for (A, @) # (0, 0), if we choose & >0 sufficiently small to force
A’< n/4(n —1).
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LEMMA 2. Assume K=1,h=0. If r,>0 is sufficiently small, then the
solutions of (12) with initial conditions (ry, ¢ =0, a = 0) intersect the surfaces (27)
and (29) at least twice, once below r = m/2, and once above.

Proof. 1t follows from the remark at the end of section 4 that for r,— 0 the
solutions of (12) on s> 0 converge to a solution in the bottom face, which by c)
and g) of section S is attracted by the fixed point (r=0, ¢ = ¢,, @ = 7/2). Hence
we can first select £ >0 sufficient for the above considerations, and then choose
ro=>0 sufficiently small so that the solutions of (12) will enter the cylinder
L(¢, a)=L(¢,, w/2)—€ below r=(mw/2)—1, and stay in it beyond (7/2)+ 1. The
rest of the proof was given above.

9. Solutions with little rotation

In the previous section we proved the existence of solutions which intersect
the surface (29) (at least) twice. Now we want to find solutions which intersect it
at most once to guarantee the existence of (at least) one solution from the edge
(¢ =0, a =0) to the edge (¢ = 7/4, a =0), see section 7. As in section 8 the proof
combines an a priori estimate for solutions of the non-linear equation with
properties of the system obtained by linearizing along the equator solution
(r=m/2, a =0). We still suppose K=1, h=0.

We know already that solutions which start with sufficiently small r, from the
edge (¢ =0, a =0) intersect the planar piece (27) at least once below r = /2, see
Lemma 2. If there should exist ry€ 10, 7/2[ such that the corresponding solution
does not meet (27) before leaving the fundamental cube through the face a =0,
then it would not intersect (29) at all, and we would find even two minimally
embedded spheres. Since we have no indication for this better fact to be true, we
may assume that all solutions (with ry€ 10, 7/2[) meet (27). The first intersection
r*(r,) depends continuously on r,, and we shall prove that r*(r,) > /2 for some r,
sufficiently close to 7r/2. This implies the existence of a solution with r*(r,) = 7/2;
the symmetry properties of (12) with respect to the axis (r = n/2, a = 7/2) imply
that this solution continues symmetrically and ends at r=m—r, on the edge
(¢ =0, a = 7). Apart from giving another compact embedded minimal hypersur-
face in S™ it also intersects (29) only once and therefore completes the proof of
Theorem 1.

Either r*(r,) > /2 for all r, sufficiently close to /2, or else there are values
ro<r/2 arbitrarily close to /2 such that the solutions of (12) starting at r=r, on
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the edge (¢ =0, a =0) satisfy

«(0,sD< [0, 2]5r0,sD=o0, 2. (39)

We can derive a contradiction from this last possibility.

LEMMA 3. (A priori estimate for a assuming (39)) Given ¢*€[0, w/4[ and
€ €0, m/2[ there exists & € ]0, w/2[ such that for roe[(m/2— 8, /2] the correspond-
ing solution satisfies a(@)<g on [0, ¢*]. (This will be used for one fixed e, e.g.
e =m/4.)

Proof. Assuming a([0, s]) <[0, n/2[ we can use ¢ as independent parameter
and obtain - first for ¢ < ¢, —from (17)

a(e)= ‘ra’s Jw(n —1)cos r(t) dt<(n—1) cos ro@ =: a™(ry, @). (40)

0 0

Secondly, on [¢,, 7/4] we have

d . ) .
o (sin a sin™ 2¢ cos™22¢) =(n—1) cos r cos a sin™ 2¢ cos™z 2¢
P

<(n—1) cos r(eg) sin™ 2¢, cos™z 2¢,,

whence
sin () = (S2280) ™ (2 206) it 4 () + (1) cos rlgo) (0~ o)}
sin2¢ / \cos2¢ 9 ha o
sin 2¢0\ ™ (oS 20\ ™, .
< (BR200) ™ (22 2%0) Vin o)+ (n-Dcosro (=00} @1)
sin 2¢ cos 2¢

Clearly (40), (41) prove the lemma with explicite estimates under the assumption
r(e) <m/2. ‘

Again using (39) the solutions meet (27) below r = /2 and therefore meet
¢ = @ below r = m/2. We shall now for ¢ = ¢, estimate the growth of r (for r,
close to 7/2) by comparison with solutions of the linearized equation along the
equator solution (r = n/2, a =0).
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The linearization yields (R = ér, A = da)

éé: —(n—1)R—hA.
deo

As in section 8, to achieve a comparison we have to change the coefficients a
little. Eventually the pole of h is the essential feature; we multiply the other
coefficients by 3 (any other positive number <1 would do, too) and study the
system

dR _
deo

dA  n-1

do 2

1A
(42)

R—-hA

with the initial conditions
R(po)=—-1, A(po)=0 (43)

on the interval [¢g, 7/4{.

LEMMA 4. There exists ¢* € J@o, 7/4] such that R(¢*)=0.

Proof. (42), (43) imply

dR d’R 1 (44)
n —
R(‘pO)z _1’ E{;(‘PO)=O’ d(p2 (‘pO): .

4

Therefore R(g,) is a local minimum and every other negative critical point of R is
also a local minimum: As long as R stays negative, R is strictly increasing. We
choose ¢, > ¢, sufficiently close to ¢, such that R is negative on [¢o, ¢,]; we have
dR/d¢ >0 at ¢,. Again, as long as R is negative
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or

—‘—1— In (g—l3 sin™ 2¢ cos™? 2<p) =0,
do de

hence for ¢ = ¢,

dR sin 2¢,\™1fcos 2¢,\™* _dR
— (1) | = = .
do sin 2¢ cos 2¢ de

The left-hand side has an unbounded integral as ¢ goes to /4. Therefore R(¢)
cannot stay negative on [¢,, 7/4].

We call ¢* the first zero. For this ¢* we choose &€ ]0, 1/2] according to
Lemma 3 such that « <u/4 on [0, ¢*] for all roe[(w/2)— 8, w/2[. Still assuming
(39), we will finally show that solutions of (12) with roe[(7/2)— 8, /2] reach
r=m/2 on [¢q, ¢*]; since they also have a < 7/4 this contradicts (39), as desired.

(42) corresponds to the vector field

X= (%A, 1, ——P—;—ER——hA).

The helicoidal surface corresponding to proportional solutions (compare section
8) have the upward normal field

n—1

N= (A, —3A%- R?*—hAR, ——R).

The non-linear system (12), written in appropriate coordinates (R =r—(w/2), A =
a) is given by the vector field

Y=(cosRtan A, 1, —(n—1)sin R—h tan A). (45)

Therefore

(N, Y)=(cos Rtan A—3A)A +(n—1)GR —sin R)(—R)
+h(A —tan A)(—R). (46)

As long as the solutions of (45) stay negative they satisfy —1< -8 <R <0 and
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therefore
0<cos R—1%, 0>1R-sinR.

Because of (39) they are at ¢ = ¢, above the helicoidal surface determined by the
initial conditions (43); they cannot intersect this surface from above because at
intersection points (N, Y)>0 from (46). This shows that the solutions of (45) with

ro€l(@/2)—8, w/2[ reach R(¢)=0 before the solution (43) of (42), i.e. before
¢ = ¢*, as we claimed.
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