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Some weighted norm inequalities concerning
the Schrôdinger operators

S. Y. A. Chang, J. M. Wilson and T. H. Wolff

Introduction

Let v be a nonnegative, locally integrable function on (Rd. Let L —A — v be
the associated Schrôdinger operator. If L is essentially selfadjoint on Cq9 then
positivity of L is équivalent via an intégration by parts with

f |u|2t;dx&lt;f |Vu|2dx VueCo. (0.1)

In [8], C. Fefferman asks for conditions on u &gt; 0 which imply

f |u|2t;dx&lt;cf \Vu\2dx (0.2)

for some constant c. By considering translates and dilates of a fixed bump function
it is clear that a necessary condition for (0.2) is

7^7 J vdx^c&apos;KQT2 (0.3)

for some c&apos;, for ail cubes Q c=|Rd. (|Qj and l(Q) dénote the Lebesgue measure and
side length of Q respectively.) Letting v dx be (approximately) Lebesgue measure
on a codimension 2 hyperplane, we see that (0.3) is not sufficient. In [8], it is

shown that a sufficient condition is:

(°-4)
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218 S Y A CHANG, J M WCLSON AND T H WOLFF

for some p&gt;l and cp&lt;&lt;». Comparing (0.3) and (0.4) suggests the following
question. Let &lt;p :[0, &lt;»)—&gt;[i)oo) be increasing. When it is the case that

H&gt;: suPt^j f v(x)l(Qr2&lt;p(v(x)l(Qr2) dx &lt;« (0.5)
&lt;* \Q\ Jo

implies (0.2)? We will show that if

(0.6)

then (0.5) implies (0.2), and that this is essentially best possible. In [8], some joint
work of C. Fefferman and D. H. Phong is presented in which (0.4) =£&gt; (0.2) is used
also to give bounds on the number of bound states of Schrôdinger operators.
Using (0.5), (0.6) instead of (0.4), we get a slight sharpening of their results.

We will now sketch the proof given in [8] that (0.4) implies (0.2). First it is

shown that (0.3) implies

is2(u)vdx&lt;c \\Vu\2dx (0.7)

where S is a variant of the Lusin area function. It is well-known that

j|M|2wdx&lt;js2(u)wdx (0.8)

if w&gt;0 satisfies the Muckenhoupt A^-condition. Set

A key point is that MpV satisfies the A^-condition for any v. If (0.4) holds, then
MpV also satisfies (0.3). Hence

f|u|2t&gt;dx&lt;f|u|2Mpudx

&lt;c
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A natural question arises from this: for what maximal fonctions M do we hâve

[ \u\2vdx&lt;cls2(u)Mvdx (0.9)

with c independent of u and u? It was suggested in [8] that (0.9) might hold for
M M, the Hardy-Littlewood maximal function. If this were the case, then (0.5)
would imply (0.2) when &lt;p(x)= l + log+ x. Much of this paper is concerned with
inequality (0.9). In Section 1, we show (0.9) does not hold for the Hardy-
Littlewood maximal function. We also show that the &quot;converse&quot; inequality

s2(u)udx&lt;c[|u|2Mi;dx

is true. In Section 2, we give the above mentioned results relating (0.2), (0.5) and
(0.6). The examples showing that (0.6) is best possible are based on the counter-
example to (0.9) in Section 1. In Section 3, we consider another question, raised
by E. Stein (see [7] for related considérations). What is the sharp order of local
integrability of a function which has a pointwise bounded S function? It is easy to
see that if S(f)eL~ then feBMO. Hence ealfmmLeLloc for a suitable constant
a&gt;0. But (0.9), if true with M M, would hâve implied 6a|f|2/l|s(f)l£eLiKÏ for
suitable a &gt;0. As it turns out this last statement is true despite the failure of (0.9).

Very recently, Kerman and Sawyer [12] gave a real variable necessary and
sufficient condition on v for (0.2) to be true. Define

Then (0.2) holds if and only if

f {M^xo i vdx for ail cube Q. (0.10)

It is clear that our conditions (0.5), (0.6) must imply (0.10), and therefore that
our results in Section 2 could be derived from theirs. However, it does not seem
trivial to show directly that (0.5), (0.6) implies (0.10) (in fact we do not know how
to do this!). So we will give our original arguments. In Section 4, we make some
remarks about (0.10) and conditions of type (0.5). Specifically, if v satisfles (0.2)
and Aoo, then v satisfies the Kerman-Sawyer condition (0.10).
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The argument we give for Theorem 3.1 is due to H. Rubin; we are grateful for
his permission to include it. An alternate proof and generalization of our results in
Section 2 has recently been given by S. Chanillo [5].

Some additional notation is as follows. Q will always be a dyadic cube in Md.

O0 is the unit cube {(xl5 x2,..., xd) : 0 &lt; x, &lt; 1}.

We are grateful to C. Fefferman, who pointed out the questions in this paper
to us.

Section 1

Let i/r€C°°((Rd) be real, radial, suppi/&gt;ç{|x|&lt;l} and J i/r 0. For /€L11oc((Rd),

we set:

Let M dénote the Hardy-Littlewood maximal function. We prove the following:

THEOREM 1.1. There exists a C=C(d) so thaï for ail w&gt;0 in LUS^) and
ail feLl^iW1) we hâve:

THEOREM 1.2. There exists no C such thaï

for ail fe£f(Ud) and w^O in Lj,

Remark. The proof of Theorem 1 still works if we replace S by the &quot;poly-

disc&quot; S-function, and M by the corresponding &quot;strong&quot; maximal function as
described in [4].

Proof of Theorem 1.1. For k 0, ±1, ±2,... let Ek={Mw&gt;2k}. Let B(x, r)
dénote the bail in Ud centered at x of radius r. Define



Some weighted norm inequalities concerning the Schrôdinger operators 221

Set

\B(x, y)| JB(x,y)

Observe that &lt;£&lt;2k+1 in Ak\Ak+\ We hâve

\sl(f)wdx=\ w(x)(f \f*^(t)\2

c\ |/*^y(O|2&lt;&amp;(t,y)^^
Jr-*&apos; y

Now note that when (r, y) € Ak, supp i(fy(t - •) &lt;= jEk. Thus:

y

|/|2dx

where the next to last inequality is by Plancherel&apos;s theorem.
Then, the sum is bounded by:

|/|2dx

c\\f\2Mwdx.

Proof of Theorem 1.2. We give the counterexample for d - 1. Let N be large.
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Set w(x) 2Nx(|xN2-N}. For fc 0,1,2,... define:

{-
0 otherwise

Let

(this f£ Sf, but that is unimportant: / is smooth enough to be nicely approximable).
Clearly:

J|/|2wdx~(logN)2

We now estimate J SJ(/)Mw dx. Let

1 ft+y
—\ Mwdx

For k 0,1,..., N let Tk {(f, y) : (t - y, t + y) ci [-2&quot;k, 2~k]}, i.e., the &quot;tent&quot; over
{|x|&lt;2&quot;k}. Note that JR(t, y)&lt;C(N-fc + l)2k in Tk\Tk+\ k&lt;N, R(t9n)&lt;C2N
in TN+1. Thus:

s2(f)Mwdx

k=o Jrk\

JpN+ l

The last term is 0, since

supp i|ry(r- •) and J i/r 0).

0 for (t, y)eTN+1 (f is constant on
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For the first tenu we note that

on (T°)c

Thus:

f if* (t)\2Ru )dtdy^c
Ats)

y &apos;

y ~~N

So we only need consider the middle terms. For each fc, when (t, y)g Tk\Tk+1,
we hâve

since the terms for j&lt;k are constant on [t — y, t + y]. Therefore:

The estimate for R(t, y) implies that:

I f
k=0JTk\Tk+1

ClogN

which proves Theorem 2.

The proof works because the coefficients of the ak(x) run &quot;backwards&quot;: they

get larger as the &quot;frequencies&quot; of the ak get higher. This is also the idea (sort of)
behind the counterexample in Section 2.

Section 2

In this section, we will establish a theorem which indicates that we may put an

average condition ont)(i)&gt;0) which is slightly stronger than the L logL condi-
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tion as stated in the introduction (yet weaker than the Lp-condition for ail p&gt; 1),

with the Schrôdinger operator L -A—t; a positive operator.

THEOREM 2.1. Suppose &lt;p is an increasing function [0, o°)-»[l,oo) wiffi
f°° dx

&lt;c&lt;oo, then for every positive function v on M (d&gt;3) which satisfies:
h xq&gt;(x)

(*),: j^j £ v(x)l(Q)2&lt;p(v(x)l(Q)2)

/or aH cube Q in Md then

f u2(x)v(x)dx^cA \Vu(x)\2dx for ail ueCo(lRd) (2.1)

where Cx is a constant dépends only on Co.

Remark. The function &lt;p(x) 1 + (log+ x)1+e, or 1 + (log+ x)(log log+ x)1+e, s &gt;

0; ail satisfy the condition I ——&lt;œ but not the function &lt;p(x)= l + (log+ x).
Ji Xtp(x)

The dyadic analogue of the theorem is a little easier to verify, to pass from the
dyadic case to the &quot;continuous&quot; case, we will apply the following lemma of C.
Fefferman ([8]; Lecture II, Lemma B).

First we will explain some notations used in [8]. For Q a dyadic cube, define

H+ space of functions supported in Q, and linear + constant on each of the

dyadic subcubes obtained by bisecting Q.
H®= space of functions supported in Q, and linear + constant on ail of Q.
H°= the orthogonal complément of H® in H+.

For every ueL2(Md), we write u Y,Qû(Q) where û(Q) dénotes the
orthogonal projection of L2 onto HQ. Define |||m||| =ZQ (diam O)&quot;2||m(O)||1 then

LEMMA [8]. |||m||&lt; C ||Vu||| for ail u e C£((Rd), C a universal constant.

Proof of Theorem 2.1. For each integer n, we let En dénote the set {xe
Ud, 22(n~1)&lt;t?(x)&lt;22n}. Let Sn dénote the collection of dyadic cubes of length
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l(Q) 2~n. Then for each u € CÔ(Rd), we hâve

f u2(x)u(x)dx&lt; £ 22n( u2(x)dx
JR- n -oo J^

Z 22&quot; I j &quot;2(x)dx

=s2f 22n I f I Û(Q)Y+( I Û(Q)Y

where

I 2Î22» I f I û(Q)Ydx

11 2 £22&quot; I | I û(Q))2dx.

For the term I, we hâve the direct estimate:

I~2 L22&quot;qÇ9 o?q l|Û(Q)lli

2 f 22M I ||Û(Q)i
I(Q)s2-&quot;

k=0 i(Q)=2-{n+k)

I I KO)&quot;

k=0

&lt; 2( £ 2&quot;2k) I ||Û(Q)||1 KQ)-2 &lt; C llVulll by the lemma.

To estimate the second term, we notice that for each fixed dyadic cube Qn € 3n, if
Q is dyadic and Q^Qn then û(Q) is a linear function on Qn thus
(supxeQn|Û(Q)(x)|)2 ||Û(Q)|QJÊ&lt;Cd||i}(O)||lKQ)-d for each such Q and for
some constant C depending only on the dimension d. Let ao ||w(Q)lon||oo then

D*2 î 22&quot; I f I a

2 î 22&quot; I |£nnQn|( I
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We now notice that since v satisfies the (*)&lt;„ condition, we hâve for every dyadic
Q in(Rd

Thus if we let Can &lt;p(22nKQ)2), then

lnl2(R))

dx
,t&apos;1cp(22&apos;)&quot;

Hence

£ 22&quot;

&lt;2C0 £ 22&quot; I \EnC\Qn\

2C0 £ 22&quot; X «oCq.» Z
n -oo Q dyadic Qne%

2C0 t 2
n _oo Q

Iaà £ 22&quot;&lt;p(22&quot;I(Q)2)|QnEn|

Ia2JKQ)d-2 by(2.2)
Q

QI ||û(Q)|g
Q

(2.2)

Q

2C0Cd |||u||g ^ Q ||Vm||1 (by the lemma) Q constant • C0Cd.

Combining the estimate in I and II, we get

f M2(x)t;(x)dx&lt;I+II&lt;C1||VM|| (d Cj + constant).

This finishes the proof of the theorem.
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As in ([8], p. 145) we hâve

COROLLARY 2.1. Suppose &lt;p is an increasing fonction with &lt;p(x)^l,
dx

—7-7= Co&lt;°°, and also &lt;p(4x)&lt;C2&lt;p(x) for ail xeUd for some C2. Then there
x x&lt;p(x)

exists some constant C3, such that if AvQ(vl(Q)2q&gt;(vl(Q)2))&lt;C3 for ail cube Q in
Ud, then L -A-u&gt;0.

Proof. L is positive is équivalent to the inequality f u2udx&lt;J|Vu|2 for ail
m e C^(Rd). Thus it follows from the resuit of the theorem (and the fact C1 C1 +
constant) that there exists some constant C4, C5 (depending only on Co and the
dimension d) such that if v satisfies

W,C4: Avo(vl(Q)2&lt;p(vKQ)2)) ^ C4

then Lx -A-C5{5 is positive. Thus if &lt;p satisfies the additional hypothesis
&lt;p(4x)&lt;C2cp(x), then we can choose some constant C3 (C3&lt;C4C5Cl£*4C5) such
that if v satisfies the condition (*)&lt;p(C3), and if we set v (l/C5)v then for each
cube Q in (Rd,

Thus L -A-v —A- C5v Lx is a positive operator. If we translate the resuit
in Corollary 1, we obtain the following estimate of A^L) (the first non-positive
eigenvalue of L) as in the case of Theorem 5 in ([8], p. 145).

COROLLARY 2.2. With the same assumption as in Corollary 2.1 about &lt;p,

there are constants C, c depending only on d, &lt;p such that cEsm&lt;-A1(L)&lt;CEblg,
where

Esm sup [Avov - cl(Q)~2]
Q
p

Q

sup [AvQv&lt;p(vl(Q)2) - cl(Q)-2l
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With some minor changes, one can check that the proof of Theorem 6 in ([8],
page 154 on) works for the (*)&lt;p version exactly as in the Lp-version, and obtain
the following parallel resuit:

PROPOSITION 2.3. With the same assumption about &lt;p as in Corollary 2.1, if
we assume in addition that &lt;p(4x)&lt;C2&lt;p(x) with C2&lt;2d~~2. Then there exists

constant c, C (depending on &lt;p, and d) so that if L —A — v has at least CN
négative eigenvalues, then there is a collection ofpairwise disjoint cubes Qu QN

for which

Remark. &lt;p(x) (log(cd + x))1+e for e&gt;0 would satisfy the assumption of the

proposition for some constant cd depending on dimension d.

In the second part of this section, we will describe a counterexample for the

question posed in the introduction.
We first remark that in Ud, when the dimension d is one or two, the condition

(*) ((*) is the C*)^ condition for &lt;p(x) log+x)

(*) i^r f v(x)l(Q)2 log+ (v(x)l(Q)2) dx &lt; C

for ail cubes Q in Ud, with l(Q) side length of Q, implies that v 0. To see this
fact, we notice that the condition (*) is équivalent to

l V(x)\Og+(v(x)l2(Q))dx: KQf

Thus for d l or 2, and for cubes Q with I(Q)&gt;1 we hâve

Jo v(x)log+(v(x)l2(Q))dx&lt;C. If for each positive integer k we let Ek

|x€(Rd:u(x)&gt;:-~[. Then we get u(x)dx&lt;-——- for ail cubes Q withl fcJ JQnEk logl(Q)
l(Q)&gt;:k. Choosing an increasing séquence of cubes Q to cover Ek we may
conclude Ek 0 for each k. Thus v^O.ln fact, when d lor2;À&gt;0 and v &gt; 0

satisfies some mild decay conditions the operator -A —Au always has a négative
eigenvalue. (Unique négative eigenvalue if A. is small enough.) In particular it is

never positive. For more précise statements of this fact and other results of
properties of eigenvalues of -A —Au when d 1, 2, the reader is referred to [13],
[16]. (The authors would like to thank the référée for pointing out thèse for us.)
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Thus for ail v satisfies (*),

|Vu|2 dx

for ail u e CÔ(Rd) for the trivial reason. If in this case (d 1 or 2), we restrict the
condition (*) to a bounded subset D in R (or U2), that is if we assume:

M&apos; ik f &quot;(x)I(Q)2 log+ Mx)f(Q)2) dx &lt; C

for ail cubes Q in Ud contained in a fixed bounded set Dc|d then (*)&apos; implies in
particular (when d 1, or 2)

Thus for ail u, C°° with compact support contained in D, we hâve

fu2(x)t;(x)dx&lt;(f eau2(x)/J-|Vu(x)|2dx+-f i&gt;(x)log+ t&gt;(x)dx)j |Vu(x)|2dx

|Vu(x)|2 dx

for some universal constant a (which dépends only on the Lebesgue measure D)
and for some constant C The existence of the constants a, c is a spécial case of
the work of N. Trudinger [17] on the sharper form of the Sobolov inequality.

In Ud with d &gt; 3, we will construct some v which satisfies the condition (*), yet
ta* u2(x)t;(x) dx/ta« |Vu|2 dx fails to be bounded for ail u € Co(IRd). The construction

is a variation of the counterexample for the inequality (1.2) given in the
f00 dx

previous section. This example also shows that the condition —7~~\&lt;0° stated
in Theorem 2.1 is essentially the best possible condition.

EXAMPLE I. Suppose cp:[l,00)-&gt;[l,00) is an increasing function with
dx

x&lt;p(x)
(p(4x)&lt;2d~2&lt;p(x) and with —TT divergent. Then there exists a positive
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fonction t; on Ud which satisfies

(*)„ sup t-M v(x)l2(Q)&lt;p(v(x)l2(Q))dx^l.
Q \U\ Jq

cubes in Rd

Yet the weak type (2.2) bound

fails for ail positive constant A &lt;&lt;» and for some function u (which dépends on
A) in Co(Rd).

——
X(p{x)

Construction of the example. The assumption —— diverges is équivalent
Jx X(p{x)

1
to the condition that £ ^2 diverges. We will also assume without loss of

&lt;P(2

generality that &lt;p(l) 1, and d 3 (the example works for any d &gt; 3 with suitable
changes of constants). Let r(n) &lt;p(22n) n 0,1,2,..., and mbea fixed constant

(so that Y —t is big 1. For each 0&lt; j &lt; m, define a collection @, of dyadic cubes
j&lt;m t(i) &apos;

in IR3 recursively as follows:

©o={unit cube Qo in M3}, No 1

©, is a collection of N, dyadic cubes in M3,

each with side length 2~J, satisfying the following properties:

(a) Each cube in ©, is a subcube of some cube in ©,-i.
(b) Each ©j-x cube contains c, ©, -cubes, where c, is either one or two and

dépends only on /.

(c) c, is chosen in such a way so that \ • 21 J ^N, ^2 • 2*

(c) can be done because by our assumption on &lt;p, r(m— /)&lt;T(m — (j — 1))^

2T(m-j), e.g. if ©,_! has been defined, let a =1 if NJ_1&gt;2) and c, =2
T(m)
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otherwise. Then if c, 1, we get

r(m) r(m) J * r(m)

If c, =2, then N, =2N,_t and

^^^^ 2,2,1
r(m) T(m)

We terminate the process when j m and define v 22m on those ©m cubes

and t; 0 otherwise. We will now verify that - satisfies the condition (*)„ for some
c

constant c. Note that it suffices (up to a change of the constant c) to verify (*)&lt;,, for
ail dyadic cubes. To see C*)^ for dyadic cubes, fix a dyadic cube Q in (R3, and

N
assume, say, Q has side length l(Q) 2 &apos;&lt;1. Then Q contains either 0 or —p

©m-cubes. Thus it follows from condition (c) that

|^j Jf v(x)l2o&lt;p(v(x)l2Q) dx=23&apos; ¦ 22m • 2-2&apos;^2-

For dyadic cubes Q with the side length 2&apos; &gt; 1 (/ a 0), either Q contains 0 or (if Q
contains the unit cube in IR3) Nm ©m-cubes. So

^j | i)dx=~2-mNm&lt;p(22(m+l))

2

T(m) 2J r(m)

(The last inequality follows by our assumption on &lt;p.) Then - satisfies the

condition C*)^ for ail dyadic cubes in (R3.
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Fix a constant n &gt; 0, and constant A &gt; 0, we will now define some function u.

Let

We now define u as follows. For each cube QeS, (0^/^m —1), let uf be a
C00 function with compact support contained in Q (recall that Q 3Q) satisfying:
mjq(x) 1 on Ug&apos;l^- Q&apos;, and |Vm,°(x)|&lt;C2j, O^w,0^!. Define

where Ql9 Q2,..., Qvi are the collection of cubes in 3r Since only finitely many
&lt;p,Qk&apos;s can be simultaneously nonzero, \VUj\ is bounded by C2J (c dépends only on
the dimension d), and m, 1 on Uq&apos;g^+1 O\ m,=0 on Uqg^ Q- Define w

X^1 d,Mj» then on the set Uq6», Ô\UQ€a}+1 Q» only w, is not a constant, hence

|VM(x)|&lt;d, |VMj(x)|&lt;Cd,2&apos; on Uq^ Ô\UQ^j+1 Q. And

f |VM(x)|2dx=lr f

m-1

1=0

I1=0 S Ttfr1
M-1

Ï-2CÏ

=2cn2-

1=1

1 1

-1

While

m-1
U= Yé dl=n On U Q-
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Thus u({u&gt;n})&gt;22mNm2~3w &gt;--——. So if we choose m large enough, with
2r(m)

X[1i(t(0)~1^5cA, then the inequality u({u&gt;n})&lt;A — |Vw|2 would fail for
n J

such functions u, which finishes the construction of the example.

It turns out the constant 2d~2 is critical in Example I in the following sensé.

EXAMPLE IL For each C&gt;2d&quot;2, there exists an increasing function &lt;p with

&lt;p(4x)&lt;C&lt;p(x) for ail x and —— &lt;*. Yet for ail positive function v which
Ji x&lt;p(x)

satisfies the (*)&lt;p condition, we hâve

f u2(x)t;(x)dx&lt;Af |Vw(x)|2

for some finite constant A (which dépends on C), and for ail u e Cq(

Construction. We will assume d =3, and C&gt;2. The construction is based on
the following observation: Suppose v satisfies the (*)&lt;p condition, then for each

integer fc &gt; 1, we hâve

for each cube Q (which was obtained from the i*)^ condition by looking at cube

Q* containing Q with l(Q*) 2kl(Q)). Thus if we can construct some &lt;p with

&lt;p(4kx)

converges uniformly, and call the function iMx), then t;e(*)&lt;p implies ue
(*)(c-2/c)i|i- For the purpose of our example, we will construct some &lt;p with

Z 1
- oc

(b) cp(4k&quot;hl)^c&lt;p(4k) for each k
« /2\kcp(4kx) &quot; 1

(c) iK*)= Z (t;) —^r— converges uniformly and satisfies X ,,Ak\&lt;cc-
fc=oVC/ 2 k=oi^(4

Applying Theorem 2.1, we can then conclude that for such cp
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Construct &lt;p as follows: Choose séquence of integers 0 ko&lt;kx&lt;&apos; - - &lt;kn&lt;

• • • ; with E™ =[k2m9 k2m+1l 0m =[fc2w+i, ^m+a] even and odd intervais respec-
tively for m =0,1,2,.... And define &lt;p(4k) C|E«WE^ +m-1 for fc€0m and
&lt;p(4k) C|E°WEll+ +l^-i&apos;Ck~k*&quot; and define &lt;p to be linear in between the interval
4k to 4k+1. Then (b) is satisfied by the way &lt;p is defined. To check (a), we let
|Eo| l, |00|=[C|E°&apos;]+1, and |0m|=[C|E-l+ +^]+l, l^^^iC^+l respec-
tively for m =0,1,2, ([x] dénote the greatest integer &lt;x.) Then

(a)
&lt;p(4k)

10

And

Thvis

+ L L
m=0ke0m

&apos;,1+ +iom_,l

1 /. 1

&quot;C-lxJToC&quot;1/ \C-1/

k4n)

k-0

&lt;p(4kx)
for each n and £k^o nk— converges uniformly to

and

—&lt; y -^—&lt;oc.

neUEm
0

neUEm
0

for ail x ^ 1 while i|/ &gt;
&lt;p
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For n eOm, we hâve

d-4 f^k — Lu *-&gt;k

k=0 ^ k+neEm+1 ^

Ik
k-hn eJ^

Thus

neUOm
m=0

Thus &lt;p and i/r satisfies the estimâtes (a), (b), (c) and we hâve established the
example as desired.

Section 3

We recall that Qo is the unit dyadic cube in Ud. First we consider dyadic
martingales on Qo. Let ^n be the &lt;r-algebra generated by the 2nd dyadic subcubes

on Qo of sidelength 2~n and let E(f9 &lt;Sn) be the conditional expectation of / on &lt;Sn

j-. f where xeQn(x) and I(Qn(x)) 2-n). By a

dyadic martingale we mean a séquence of functions {/n} from Qo to 1R such that fn
is &lt;Sn-measurable and E(fn+1, %) fn. Our martingales will (almost) ail be L2
bounded and we dénote the limit function by /. We define the martingale



236 S Y A CHANG, J M WILSON AND T H WOLFF

différence fonctions sn (n&gt;0) by sn=fn+1-fn. Thus sn is ®n+1-measurable. The

square functions of the martingale {/n} is defined by

S/(x)=
n&gt;0

where Qn(x) is the unique dyadic cube of length 2&quot;n containing x. This is not
standard. One generally sees S/(x) Q]n J5(S^, &lt;Sn)(x))1/2; this définition agrées
with ours only when d 1, although when d is fixed the two are always
comparable. Our results work out nicer with our définition of Sf; with the other
définition the &quot;J&quot; in (3.1) below would hâve to be replaced by a constant
depending on d. Our resuit for dyadic martingales is as follows.

THEOREM 3.1. Let {fn} be a dyadic martingale on Q0&lt;=Rd with limit fonction
/. Suppose ||S/|U&lt;°°. Then for À&gt;0,

|{x € Qo : /(x) - /0(x) ^ A}| ^ exp HA2/||S/||i). (3.1)

The proof we give for this is due to Herman Rubin; it replaces a much longer
argument of the authors. It is based on the fundamental identity of sequential
analysis in statistics.

Proof of (3.1) (Rubin). We can assume /0 0. Fix t &gt; 0. Define qn :Q0-*R by

Thèse qn form a martingale! Clearly qn is ^-measurable, and we hâve

It follows that J qn 1 for ail n. (This is the fundamental identity of sequential
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analysis.) Using the elementary inequalities

* du ^cosh (U\U) ^exp (§ Ut)

valid when jll is a probability measure and f &lt;f&gt; d/ut 0, we find that

So nr=i £(**&apos;&gt; «,)(x)^et2/2||Sfiefor ail n and x, and the fundamental identity
now implies that foo^^expÔ^HS/IÊ) for ail n. Letting n go to « gives

JQo e* &lt;exp (jt2 ||S/|Ê). Now take t and apply Tsebyshev&apos;s inequality to get
||S/||oo

(3.1).

We record some corollaries, ail of which follow from Theorem 3.1 by standard

arguments.

COROLLARY 3.1. We hâve the good A inequality

2 e2

with C a universal constant.

Proof [1]. Define a stopping time tx =min({n:Xj^n (/j+i&quot;&quot;/j)2 —^2A2}). Let
© {Q} be the maximal dyadic cubes with /Q&gt;A. For each Qe® consider
{x€Q:/*(x)&gt;2A, S/(x)&lt;eA}. If this is non-empty then /Q&lt;(l + e)A. Also

|{x g Q : f(x) &gt; 2A, S/(x) &lt; eA}| |{x g Q : /*(x) &gt; 2A and tx oo}|

and ||S(f(Tx))|U&lt;eA pointwise. By (3.1) and Lemma 3.1,

and if we sum over Q we are done.
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Integrating out the good -À inequality gives the bizarre estimate

with Ci&gt;0, c2&lt;°°. We can also obtain the following &quot;law of the iterated
logarithm&quot; for dyadic martingales.

COROLLARY 3.2. If {/n} is a dyadic martingale on Qo, then

a.e. on the set where {fn} is unbounded. (Hère (Snf(x))2 Yk=o\\xok(x)Sk\%&gt;-)

This may be proved like [6], Section 7.5 using Theorem 3.1 instead of the
central limit theorem. We omit the proof since Corollary 3.2 is a minor modification

of known results (due to W. F. Stout; see [15] and the références there).
We&apos;re grateful to R. Banuelos and C. Mueller for pointing out the known results,
especially to Banuelos for référence [15]. We note that the corresponding lower
bound

limsup-SnV2ïoglogSn

is false in our context.
Now we prove a version of Theorem 3.1 in which the Lusin area intégral

replaces S. Let

and pt(x) t~dp(x/t), t &gt; 0, so that F(x, t) pt */(x) is the harmonie extension of /
to R++1. Let ty be the vector valued function Vxp and i^t(x) t~d\(/(xlt) t Vxpt(x).

For 0&lt;y&lt;°° define

1/2

1/2
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where r,(x) {(y, t)eUi+1 : |x - y| &lt; yt}. We then hâve

THEOREM 3.2. Suppose A,/eL&quot;. Then

If-foh
SUP Î7ÏÎ eXP\ClQ:cube|O|JQ V IIA/IÊ,

where cx&gt;0 and c2&lt;°° dépend on d and y.

Some remarks about this. First, P. Jones [11] (private communication) has

shown that it is possible for a function / to satisfy A^JeL00, AyJ^L00, for two
numbers O&lt;y1&lt;72&lt;00- Second, regarding the proof of Theorem 3.2, it is a
réduction to the dyadic case using one of the tools available for such purposes, a

décomposition from [2] (see also [4]). This grind it out approach has the drawback
that we do not obtain a sharp (or even dimension independent) constant like the \
in Theorem 3.1. Also it does not seem to let us replace A, by the g function. On
the other hand it does apply to square functions formed using fairly gênerai
kernels; for example, we could take p to be a nonnegative radial Schwarz function
instead of the Poisson kernel and the same proof would work.

We note that R. Banuelos (personal communication) has proved results similar
to Theorem 3.2 by probabilistic arguments, which give sharp constants.

We give two lemmas. The first is a version of the Calderon-Torchinsky
machinery [3] and the second is a variant of a trick due to S. Janson.

LEMMA 3.1. If p&gt;0 there is a smooth, radial function K supported in
{x :|x|&lt;p} such that if we define q(x) VK(x) and qt(x) t~dq(x/t), then

lim f (*t*f(x-y),qt(y))dy^=f(x)
T—0 Jt&gt;T f

for ail feL2 with compact support. The limit is (say) in the L2 sensé.

Proof [3]. Choose Ko supported in |x|&lt;p, smooth and radial and such that

i K0(x)(-A)1~d/2p(x)^0. Let K cK0 where c is a suitable constant. Let u(£)
(2ir |£|)2 £L0 K(tÇ)p(ti;)t dt Then v is radial and homogeneous of degree zéro,
hence constant. It follows from the Plancherel theorem that J|€j=1

hence we can (and do) choose c so that v^l. Then

(f &lt;*&gt;*f{x-y),qt(y))dy^)\ç) ?(Û f
\Jt&gt;T t / Jt&gt;T
f
t&gt;T

in L2 as T-»0.
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Let x eUd. In the next lemma and subsequently, we let 3** dénote the set of
dyadic cubes translated by x, Le. Sx {Q c|d : {y : y 4- x e Q} e S}.

LEMMA 3.2. There is a number N N(d) with the following property: if
A&lt;oo, then the set ® {Q:Qe% and l(Q)^2A} may be décomposée, ©

there exist xx • • • xNeUd such that

If Q€©0) then Q is contained in a cube Q&apos;e%** with l(Q&apos;) 8l(Q). (3.1)

V Qi, Q2e©0) and Qt + Q2, then Q[ * Q^. (3.2)

Proof. By scaling we can assume A —3. We need only obtain (3.1) since if
(3.1) holds and if Je2h is given there can be at most 8d cubes Q with Q€©0)
and Q&apos; /. So we can get (3.2) by further decomposing each ©0).

We first show (3.1) when d l. Let N 2, xx \, x2 0. If Qe© then

Q (^T^) ^r some n&gt;3, Kel. Let Qe®{1) if K 0 or 1 (mod 8), Qe@(2)

otherwise. Then (3.1) is clear for j 2. Suppose Q€@(1). We must show Q
contains no point of the form q2~(n~3)+|, qeZ. Suppose Ô did contain such a

point. We know Qc[p2-(n-3)-2-(&quot;-1), p2-(n-3) + 2~(n-1)] for some pel. So

1 2n~3
x J.p_--&lt;-——hq&lt;p-f|, contradiction.

4 2

When d&gt; 1 any Q €© is uniquely Q I[Q) x - • • x I^Q) where each I,(Q)cR, If
o-c{l,..., d} let©(&lt;r) {Q€©:Il(Q)€©(1) if iea, I^g©^ if i^cr}. Let xCT be the

point whose ith coordinate xo.(i) satisfies x&lt;T(i) 3 if iecr, xo.(i) 0 if i£cr. Then
the décomposition © (J®(&lt;r) and the points x^ satisfy (3.1).

Proof of Theorem 3.2. We can assume O O0, /qo 0. Let cpeCo with
&lt;p(x) l if xg5Q0, &lt;p(x) 0 if x$É7Q0. Let h &lt;p/. We must show JQoeciH2&lt;c2.

Choose K by Lemma 3.1 with p y/4. Form the corresponding q. Let S

{(x,r)€RÎ+1:x€Ôo, t^p&quot;1}. Write

Hx) f &lt;* * h(y), qtU y)&gt; dy7+ f &lt;* h() d

The integrand giving h2(x) vanishes when xgQ0 and t is sufficiently small.
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Hence for x € Qo,

dt
|H2(x)|&lt;f

Also note yeQ0 implies by standard arguments that \^it * ((&lt;p - l)/)(y)| ^
2 II/IIbmo- So for any x,

| hi(x)-1 &lt;ifc */(y), q,(x - y» dyj
*((«p - D/)(y), *(x - y» dyy

So it suffices to estimate

A Oc) J^ &lt;ih */(y), qt(x - y» dyy.

For Q dyadic with KQ)sl, let TQ Sn((y, ():y eQ, 4
2p

dt
Define \Q(x) JTo &lt;^, */(y), q,(x - y)&gt; dy y. Then

A(x)= X AQ(x). (3.3)

It is easy to see that

XQ is supported on Q (3.4)

j\Q=0 (3.5)

f if 0&lt;a&lt;l(say).
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The last inequality together with the choice of p implies that for x eUd fixed,

0&lt;a&lt;l
xeQ

where B HA/IU. So we are reduced to proving the following.

LEMMA 3.3. If A has a décomposition (3.3) satisfying (3.4), (3.5), and (3.6)
for some a, 0&lt;a&lt;l, then

l ec&gt;fyB2&lt;c2&lt;oo.

Proof. Choose N, ©0), {xjf as in Lemma 3.2 with A 1. Write A^Y^A,
where A, =Zoe©(i)^Q- It suffices to estimate A,, so fix j and let g(x) A^x + x,).
Th^n g Zkq)s8 go» where gQ=AQ with Q and Q&apos; related as in (3.1), (3.2).
Thèse gQ&gt; satisfy (3.5), (3.6) and a stronger form of (3.4): gQ&apos; is supported on Q&apos;.

Write g^ as a dyadic martingale, gQ ==Zqsq&apos; g8&apos; where g§&apos; is supported on Q
and constant on cubes of length jl(Q)9 and J gg&gt; 0. This gives the représentation
of g as dyadic martingale,

8-11 g§&apos;= I 8°
l(Q)2S8 Q&apos;=&gt;Q

By well-known properties of Lipschitz functions ([14]),
C IMLp« KQ)~tt. Let p € (0, a). H x is fixed, then

I HgQiË^ Z I iigg&apos;

xeQ xeQ VQ&apos;2Q

X3&apos;2xeQ

xgQ Q&apos;2Q

llfoCpa I 1(O)2(&lt;-B&gt;

xeQ&apos; xeQeQ&apos;
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We can now apply Theorem 3.1 to conclude that JQo eCig2/B2&lt;c2, so the lemma
is proved.

This finishes the proof of Theorem 3.2. Quite likely good À inequalities
analogous to Corollary 3.1 may also be obtained; however, we hâve not done this.
But we want to point out two immédiate corollaries.

COROLLARY 3.3. 1/A/ € L°°, then f belongs to the closure of L°° in BMO.

This follows from [9] and Theorem 3.2. In fact if Ay/eL00, then / exists in
[L°°, BMO]1/2,oo: This follows from Theorem 3.2 and unpublished results of S.

Janson [10]. Using that the full gradient is invariant by the Hilbert transform we
also hâve the following: if F is bounded and harmonie on 1R+ and

sapera Jr^(x) lW(y&gt; 0|2 dy dt &lt;o°5 then / may be approximated in L°° norm by real

parts of H°° functions. Back on IRd, if Sf dénotes either AJ or Sf, we also hâve

COROLLARY 3.4. If w&gt;0 and f are &amp;ven, then

for any cube Q for which the right hand side is finite.

This follows from Theorem 3.1 or 3.2 by Young&apos;s inequality. Note the formai
similarity between Corollary 3.4 and the (false) analogue of Theorem 2.1 where

Section 4. Appendix

In this section we show that if v&gt;0 has the Muckenhoupt A^ condition and
satisfies

\Q\ l vdx&lt;oo (4.1)

then t; has the Kerman-Sawyer property (0.10).
Recall the v is said to hâve A«, if V e &gt; 0 there is a 8 &gt; 0 so that for ail cubes Q
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and ail measurable sets EcQ9

v
o

An easy conséquence of this is that there is a C&lt;oo so that

f M(XQv)dx^c( vdx VQ (4.2)
JQ JQ

where M is the Hardy-Littlewood maximal function. We shall assume that v
satisfies (4.1) and (4.2).

A collection of dyadic cubes {Qa} is said to satisfy the Carleson nesting
condition if there is an A&lt;oo so that for ail cubes Qa from the collection, we
hâve:

X |Q«&apos;NA|QJ (4.3)

It is a fact that if {Qa} has (4.3) then for ail /&gt;0 is LUS?) and ail cubes Q:

£ (îTTlf /&lt;*x)|Q«NCA( M(Xof)dx. (4.4)

We wish to show that (4.1) and (4.2) imply

f (M1UQu|)2dx&lt;cf vdx (4.5)
JQ JQ

where M1/ sup-r~-r I \f\dt. It is clearly enough to prove (4.5) when the
xeQ \Q\ Jq

supremum is taken over dyadic cubes. (We may also take Q to be dyadic.) Let
R &gt;0 be large. Let {Q,fc} be the maximal dyadic subcubes of Q such that

(46)
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Then:

by (4.1). Thus if the {Qk} had (4.3), then (4.2) and (4.4) would imply (4.5). They
do. By their maximality, the {Qk} satisfy:

^t •*-«&quot;* &lt;47&gt;

where c dépends on the dimension d. Let Qk+1 &lt;= Q^. Combining (4.6) and (4.7)
yields:

for K large enough. This implies that:

And by iterating we get:

î I ior&quot;i*(i

which is (4.3).

Remark (1). We note that at one point, namely (4.8), our argument is

extremely wasteful. This would seem to indicate the delicacy of the Kerman-
Sawyer condition.
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(2). While this paper was in préparation we learned that Sawyer has indepen-
dently found another proof that (4.1) and Aœ imply (0.10). Sawyer has also found
a direct proof that if 0&lt; V&lt; W and W has (0.10), then so does V.
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