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Some weighted norm inequalities concerning
the Schrodinger operators

S. Y. A. CHANG, J. M. WiLsoN and T. H. WoLFF

Introduction

Let v be a nonnegative, locally integrable function on R Let L=—A—v be
the associated Schrodinger operator. If L is essentially selfadjoint on Cg, then
positivity of L is equivalent via an integration by parts with

I IulzvdeJ Vul*dx VueCs;. 0.1)

r* r*

In [8], C. Fefferman asks for conditions on v =0 which imply

J' lul? vdx_<.cj |Vul?* dx 0.2)
d Rd

for some constant c. By considering translates and dilates of a fixed bump function
it is clear that a necessary condition for (0.2) is

‘_éi L vdx=c'l(Q)™? (0.3)

for some c’, for all cubes Q =R%. (JQ| and 1(Q) denote the Lebesgue measure and
side length of Q respectively.) Letting v dx be (approximately) Lebesgue measure
on a codimension 2 hyperplane, we see that (0.3) is not sufficient. In [8], it is
shown that a sufficient condition is:

(@ L was) =6l(Q) 04
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218 S. Y. A. CHANG, J. M. WILSON AND T. H. WOLFF

for some p>1 and ¢, <. Comparing (0.3) and (0.4) suggests the following
question. Let ¢ :[0,®) —[1, ) be increasing. When it is the case that

1 + +2 o
(et sy | 2RI dx < ©05)

implies (0.2)? We will show that if

L xe(x) =% (0.6)

then (0.5) implies (0.2), and that this is essentially best possible. In [8], some joint
work of C. Fefferman and D. H. Phong is presented in which (0.4) = (0.2) is used
also to give bounds on the number of bound states of Schrodinger operators.
Using (0.5), (0.6) instead of (0.4), we get a slight sharpening of their results.

We will now sketch the proof given in [8] that (0.4) implies (0.2). First it is
shown that (0.3) implies

J S uvdx < c_[qul2 dx 0.7)
where S is a variant of the Lusin area function. It is well-known that
J‘|u|2 wdxsjsz(u)w dx (0.8)

if w=0 satisfies the Muckenhoupt A.-condition. Set

1 1/p
M,v(x) =sup (‘-6—‘ j P dx) .
Q

x€Q

A key point is that M,v satisfies the A.-condition for any v. If (0.4) holds, then
M,v also satisfies (0.3). Hence

J luPvdx=< J |u.|2 M,v dx
= CI S*(u)M,v dx

<o j Vul dx.
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A natural question arises from this: for what maximal functions M do we have
j\u\2 vdeCISZ(u)Mv dx (0.9)

with ¢ independent of u and v? It was suggested in [8] that (0.9) might hold for
M = M, the Hardy-Littlewood maximal function. If this were the case, then (0.5)
would imply (0.2) when ¢(x)=1+log™ x. Much of this paper is concerned with
inequality (0.9). In Section 1, we show (0.9) does not hold for the Hardy-
Littlewood maximal function. We also show that the “converse’ inequality

J S%(u)v dx SCJ lu|> Mv dx

is true. In Section 2, we give the above mentioned results relating (0.2), (0.5) and
(0.6). The examples showing that (0.6) is best possible are based on the counter-
example to (0.9) in Section 1. In Section 3, we consider another question, raised
by E. Stein (see [7] for related considerations). What is the sharp order of local
integrability of a function which has a pointwise bounded S function? It is easy to
see that if S(f)e L™ then fe BMO. Hence e*""S®l.c .1 for a suitable constant
a>0. But (0.9), if true with M =M, would have implied e>f"SOLc ! for
suitable a > 0. As it turns out this last statement is true despite the failure of (0.9).

Very recently, Kerman and Sawyer [12] gave a real variable necessary and
sufficient condition on v for (0.2) to be true. Define

1(Q)

le(x) = Sllp ‘Ql

] Il dt.

Then (0.2) holds if and only if

J (M, (xov))* dx < cj vdx forall cube Q. (0.10)
Q Q

It is clear that our conditions (0.5), (0.6) must imply (0.10), and therefore that
our results in Section 2 could be derived from theirs. However, it does not seem
trivial to show directly that (0.5), (0.6) implies (0.10) (in fact we do not know how
to do this!). So we will give our original arguments. In Section 4, we make some
remarks about (0.10) and conditions of type (0.5). Specifically, if v satisfies (0.2)
and A, then v satisfies the Kerman-Sawyer condition (0.10).
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The argument we give for Theorem 3.1 is due to H. Rubin; we are grateful for
his permission to include it. An alternate proof and generalization of our results in
Section 2 has recently been given by S. Chanillo [5].

Some additional notation is as follows. Q will always be a dyadic cube in R<.
Q, is the unit cube {(x, x5,...,x4):0=x;, <1}.

We are grateful to C. Fefferman, who pointed out the questions in this paper
to us.

Section 1

Let ¢y € C*([R?) be real, radial, supp ¢ ={|x|=1} and | ¢ =0. For fe L} .(R?),
we set:

szmm-—-j oy OP S5

x—tj<y

Let M denote the Hardy-Littlewood maximal function. We prove the following;:

THEOREM 1.1. There exists a C= C(d) so that for all w=0 in L,..(R%) and
all fe L. .(R?) we have:

I Si(fiwdx = CJIﬂ2 Mw dx.

THEOREM 1.2. There exists no C such that
J IfI>wdx =< CJ Si(F)Mw dx

for all fe YR?) and w=0 in LL.([R?).

Remark. The proof of Theorem 1 still works if we replace S by the “poly-

disc” S-function, and M by the corresponding ‘“‘strong” maximal function as
described in [4].

Proof of Theorem 1.1. For k=0, £1, £2, ... let E*x ={Mw>2*}. Let B(x, r)
denote the ball in R? centered at x of radius r. Define

Ak ={(t y)eR%¥", B(t, y) < E*}.
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Set

1

Plx, y)= |B(x, y)| IB(x,y) Wt

Observe that @ <2*! in A*\A**!. We have

[ssomax={ wor([ irenor ) as

—c| e oy 42

x| I oF oy =2

—o0 Ak\Ak+l

=cL 2| iruops?

Now note that when (t, y)e A¥, supp ¢, (t - -) = E*. Thus:

dt dy J’ dt dy

[ e @P =2 | i 0P 2

=] ey 0 L2
Rni—{-l

= ClipeB=c| I dx
Ey

where the next to last inequality is by Plancherel’s theorem.
Then, the sum is bounded by:

=cy zkj 2 dx
—o00 Ex

= [IfP T 2xer x) i

_ cj 12 Mw dx.

Proof of Theorem 1.2. We give the counterexample for d = 1. Let N be large.
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Set w(x)=2x(y=2~- For k=0, 1,2,... define:

1 |x|=<27*1
a.(x)=<{-1 2kl x| =27k
0 otherwise
Let
N a(x)
f(x)= kle .

(this f¢ &, but that is unimportant: f is smooth enough to be nicely approximable).
Clearly:

J IfI*> w dx ~ (log N)?

We now estimate [ S2(f)Mw dx. Let

Fork=0,1,...,Nlet T"={(t, y):(t—y, t+y)<[-27% 27¥T}, i.e., the “tent” over
{lx|=27*}. Note that R(t, y)=C(N—k+1)2* in T*\T**!, k<N, R(t, n)=C2V
in TN*1. Thus:

[srammac=c] ipes, 0P RO ED

- CI I, (P R(s, y) 22
(T

+cz L I+, (O R y)m

k\Tk+1

+| U orRE =R

The last term is 0, since f*y,()=0 for (t,y)eT" "' (f is constant on
supp Y, (t—-) and [ ¢ =0).
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For the first term we note that

N-1 2-—k+1 C

2 _ -
“f"Z_‘ kgo (N__ k)Z_NZ

R(t,n)=<CN on (T°

Thus:

dtd
j IF*u, ) R, y)—‘—y<§
(T¢)

So we only need consider the middle terms. For each k, when (t, y)e T*\T**!,
we have

fru, ()= (Z ()

N )*wy(t)

since the terms for j <k are constant on [t—y, t+y]. Therefore:

2dtdy No1og-iel ok
L\Tm F* s OP=7= L -y

The estimate for R(t, y) implies that:

dtdy N=to1
’R -———._C ——r
S [ OP R e

which proves Theorem 2.

The proof works because the coefficients of the a,(x) run “backwards’: they
get larger as the “frequencies” of the a, get higher. This is also the idea (sort of)
behind the counterexample in Section 2.

Section 2

In this section, we will establish a theorem which indicates that we may put an
average condition on v (v=0) which is slightly stronger than the L log L condi-
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tion as stated in the introduction (yet weaker than the LP”-condition for all p>1),
with the Schrodinger operator L = —A—v a positive operator.

THEOREM 2.1. Suppose ¢ is an increasing function [0,®)—[1,®) with

I <c <, then for every positive function v on R* (d =3) which satisfies:
1 xe(x)
1
e 7 [ HEUQPe(IQ de=1
lQl Jo

for all cube Q in R* then
J u’(x)v(x) dx=C, j [Vu(x)?dx for all ueCgR?) 2.1)
R R*

where C, is a constant depends only on C,.

Remark. The function ¢(x)=1+(log" x)'**, or 1+ (log" x)(loglog* x)'*¢, £ >

a0

0, all satisfy the condition J
1 x@(x)

< oo, but not the function ¢(x)=1+(log" x).
The dyadic analogue of the theorem is a little easier to verify, to pass from the
dyadic case to the “continuous’ case, we will apply the following lemma of C.
Fefferman ([8]; Lecture II, Lemma B).
First we will explain some notations used in [8]. For Q a dyadic cube, define

H@ = space of functions supported in Q, and linear + constant on each of the
dyadic subcubes obtained by bisecting Q.

HE=space of functions supported in Q, and linear + constant on all of Q.

H®= the orthogonal complement of HS in HS.

For every ueL*[R?), we write u=Y,0(Q) where #(Q) denotes the or-
thogonal projection of L? onto H?. Define [|ulll = Yo (diam Q)2 ||2(Q)|5 then

LEMMA [8]. |lulB= C |[Vul|5 for all ue C5(R?), C a universal constant.

Proof of Theorem 2.1. For each integer n, we let E, denote the set {xe
R4, 22V <y(x)=22"}. Let Y, denote the collection of dyadic cubes of length
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1(Q)=2"". Then for each u e Cgy([R?), we have

= =]

j ul(x)v(x) dx < Z 22"I u?(x) dx
o E.

R n=-—oo

=) 22y J . u*(x) dx
E.N

n=-—oo Q, €, s
o 2 2
<232 ¥ j (2 a@)+( L o)
—ao Q.€3%, YE,.NQ, ‘0QcQ, QRrQ,
where =ik i
90 2
=22 ) I (Z a(o)) dx
—o0 Q,.€%,, “E,NQ, ‘Q<=Q,
oo 2
=2y 2> Y j (): a(Q)) dx.
—oo Q.€3,, “E,NQ, ‘QxQ,

For the term I, we have the direct estimate:

oo

I=2 ) 2 ) Y |a(QIB

n=-—oo Q,.€3%, Q=Q,

oo

=2 Y 2 Y |a(Ql}

n=—oo l(Q)=2"

oo 20

=2 Y 2™y Y |a(QIRuQ) 2k

n=-w  k=0UQ)=2"""k

=2 k}_:o 27y Y laQ) Q)

n Q()esn-ﬂc

sz( Y 2-2*) Y Ia(Q)Z 1(Q)2<=C||Vul; by the lemma.
Q

k=0

225

To estimate the second term, we notice that for each fixed dyadic cube Q, €3, if
Q is dyadic and Q2Q, then @(Q) is a linear function on Q, thus
(SuUp,eo, B Q)X =]4(Q)lo. IR =C, la(Q)|3 1(Q)™¢ for each such Q and for
some constant C depending only on the dimension d. Let ag = ||ii(Q)|g, |l then

=2 i r2 D) L:,.no,. ( Y ao)zdx

n=-—c0 Q. €%, QRQ,

-2 Y 2 ¥ Enal( X ao)2

n=-—o Q. QRQ,
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We now notice that since v satisfies the (*), condition, we have for every dyadic
Q in R4
1 oo

(l(Q))d"zn;_mz "|QNE,| e(2*"1(Q)*)=1. (2.2)

Thus if we let Cq,, = ¢(22"1(Q)?), then

1 1
2 Crn 2 21%(R))

Rz2Q, Rz2Q,. ¥
nd 1 I"" dx
= — < =C,.
i=1 ‘P(zz') 1 x@(x) 0
Hence

=2 f 2y \E,.nQ,,\(

n=-—o Q, €%,

1
Z azQCQ,n> Z CR,n

QRQ. RRQ,
Gl

=2C, Y 2> } |E.NQ.| X a%Con

n=—om Q. €3, QzQ,

oo

=2C, ). 22 Y a3Co. ) |E.NQ,|

n=-—oo Q dyadic Q, e,
Q.<=Q

oo

=2C, 2, 2*") a4Co. |QNE,]
Q

n=—o

=2GC, § ak ,.gm 22" (2" 1(Q)*) |QNE,|
=2GC, é aZl(Q)4? by (2.2)

<2C,C, % l4(Q)IE Q) #1(Q)*
=2C,Cy § la(Q)I3 1(Q)~2

=2C,Cy lulz=C;|[VulB (by the lemma) C, = constant - C,C,.

Combining the estimate in I and II, we get

J- wWxox)de<I+II=<C,|Vulp (C,=C,+constant).
R

This finishes the proof of the theorem.
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As in ([8], p. 145) we have

COROLLARY 2.1. Suppose ¢ is an increasing function with ¢(x)=1,

* d
j xcp(xx) = Cy <, and also ¢(4x)= C,e(x) for all x eR* for some C,. Then there
1

exists some constant Cs, such that if Avg(vl(Q)?¢(l(Q)?)=C; for all cube Q in
R% then L=-A—v=0.

Proof. L is positive is equivalent to the inequality | u”vdx=<{|Vu|?> for all
u € C5(R*). Thus it follows from the result of the theorem (and the fact C, = C,+
constant) that there exists some constant C,, Cs (depending only on C, and the
dimension d) such that if ¥ satisfies

(9)eCat  Avg(Tl(Q)e(TU(Q)*) =C,

then L,=—A—-Cs0 is positive. Thus if ¢ satisfies the additional hypothesis
¢(4x) = C,e(x), then we can choose some constant C; (C;=C,CsC%% ) such
that if v satisfies the condition (*),(C;), and if we set ©=(1/Cs)v then for each
cube Q in RY,

Avg(B1(QF 0 (61(Q)) = = Avo(el(QPe(2- v1(?))

-_<_Ci €595 S Ay, (01(Q) 20 (v1(Q)?)
5

|
=— C210g4 C5C3_<— C4.
5

Thus L =—A—v=—A—-Cs0 =L, is a positive operator. If we translate the result
in Corollary 1, we obtain the following estimate of A,(L) (the first non-positive
eigenvalue of L) as in the case of Theorem 5 in ([8], p. 145).

COROLLARY 2.2. With the same assumption as in Corollary 2.1 about ¢,

there are constants C, ¢ depending only on d, ¢ such that cEg,<—\,(L) < CE,,,
where

E..= sup [Avqu —cl(Q)7?]

Ey,= Sl(l)P [Avque l(Q)?)—cl(Q)?].
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With some minor changes, one can check that the proof of Theorem 6 in ([8],
page 154 on) works for the (*), version exactly as in the LP-version, and obtain
the following parallel result:

PROPOSITION 2.3. With the same assumption about ¢ as in Corollary 2.1, if
we assume in addition that ¢(4x)=<C,e(x) with C,<2%2. Then there exists
constant ¢, C (depending on ¢, and d) so that if L=—A—v has at least CN

negative eigenvalues, then there is a collection of pairwise disjoint cubes Q,, . . ., Qn
for which

Avg, (v (v1(Q))?)) = Cl(Q) 2.

Remark. ¢(x)=(log(cy+x))'*® for € >0 would satisfy the assumption of the
proposition for some constant ¢; depending on dimension d.

In the second part of this section, we will describe a counterexample for the
question posed in the introduction.

We first remark that in R%, when the dimension d is one or two, the condition
(*) ((*) is the (%), condition for ¢(x)=1log" x)

1
* 21 + 2 <
(*) _——IOIJ v(x)I(Q)*log” (v(X)I(Q))dx=C

for all cubes Q in R?, with [(Q) =side length of Q, implies that v=0. To see this
fact, we notice that the condition (*) is equivalent to

+ 2 - C
J.Q v(x) log™ (v(x)1°(Q)) dx__———--———l(o)z_d .

Thus for d=1 or 2, and for cubes Q with [(Q)=1 we have
fov(x)log" (v(x)I*(Q))dx<C. If for each positive integer k we let E, =

{xeRd:v(x)Zi—}. Then we get j v(x)dx <
QNE,

C
f 11 cub ith
log 1(Q) or all cubes Q wi

[(Q)=k. Choosing an increasing sequence of cubes Q to cover E, we may
conclude E, = & for each k. Thus v=0. In fact, whend=10or2; A=0 and v=0
satisfies some mild decay conditions the operator —A— Av always has a negative
eigenvalue. (Unique negative eigenvalue if A is small enough.) In particular it is
never positive. For more precise statements of this fact and other results of
properties of eigenvalues of —A—Av when d =1, 2, the reader is referred to [13],
[16]. (The authors would like to thank the referee for pointing out these for us.)
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Thus for all v satisfies (*),
J u?(x)v(x) dx < CJ’ \Vul? dx
R4 R4

for all u € C5(R?) for the trivial reason. If in this case (d =1 or 2), we restrict the
condition (*) to a bounded subset D in R (or R?), that is if we assume:

x*) .._1_ 2 + 2 -
SO L ()(Q) log* ((x)I(Q)) dx = C

for all cubes Q in R? contained in a fixed bounded set D cR? then (%)’ implies in
particular (when d =1, or 2)

()" I v(x)log* v(x) dx <C.
D
Thus for all u, C* with compact support contained in D, we have

I uz(x)v(x) dx < (J‘ eozuz()c)/l'D |V“(X)|2dx+l J

D a Jp

v(x)log* v(x) dx) I |Vu(x)]* dx
D

= C’j |Vu(x)|* dx
D

for some universal constant a (which depends only on the Lebesgue measure D)
and for some constant C. The existence of the constants a, c¢ is a special case of
the work of N. Trudinger [17] on the sharper form of the Sobolov inequality.
In R? with d =3, we will construct some v which satisfies the condition (), yet
Sra u?(x)v(x) dx/fge |Vul? dx fails to be bounded for all u e Cg(R?). The construc-
tion is a variation of the counterexample for the inequality (1.2) given in the

oo

previous section. This example also shows that the condition I <o stated

: . . xp(x
in Theorem 2.1 is essentially the best possible condition. 1 xe(x)

EXAMPLE 1. Suppose ¢:[1,)—[1,) is an increasing function with

@(4x)=<2%"2p(x) and with -[ X (x)

oo

divergent. Then there exists a positive
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function v on R? which satisfies

1 2 2 -
R L () Qe (v(x)IX(Q)) dx =<1.

cubes in R?

Yet the weak type (2.2) bound
A 2

vu=nh=—| [Vy| (2.3)
n R

fails for all positive constant A <o and for some function u (which depends on
A) in Cg(R?).

Qo

Construction of the example. The assumption j diverges is equivalent

X
1 Xep(x)

diverges. We will also assume without loss of

o 1
to the condition that
2 o

generality that ¢(1) =1, and d =3 (the example works for any d = 3 with suitable
changes of constants). Let 7(n) =¢@(2**) n=0, 1,2, ..., and m be a fixed constant
1
(so that ) —(—]-) is big). For each 0=j=m, define a collection &, of dyadic cubes
ji=m T

in R? recursively as follows:

@0={unit cube Qo n Ra}, N0= 1
@, is a collection of N; dyadic cubes in R?,

each with side length 277, satisfying the following properties:

(a) Each cube in @, is a subcube of some cube in &,_,.

(b) Each &;_; cube contains ¢; &;-cubes, where ¢; is either one or two and
depends only on j.

" (m—j)

(©) ¢ is chosen in such a way so that 3 - 2/ T =N,=<2- 2"I£—m—-]—).
: 7(m) 7(m)

(c) can be done because by our assumption on @, T((m—j)=T(m—(j—1))=

27(m—j), e.g. if ®,_, has been defined, let ;=1 if N;_,>?2 T(m—j)

T(m) and Cj =2
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otherwise. Then if ¢; =1, we get

iT(m_j)< lT(m—(j_l))_( =7. J.__I'T(m—(j"'l))
Ym0 am) N =22
=2.2TM=D N =N_,.
7(m)
If ¢;=2, then N,=2N,_, and
1 4Tm=) o rm—(—1)) _ —n . A TM—))
212 7(m) =2 e T(m)

We terminate the process when j =m and define v =2 on those ®,, cubes
. . . v . "
and v =0 otherwise. We will now verify that — satisfies the condition (*), for some
c

constant c. Note that it suffices (up to a change of the constant c) to verify (*),, for
all dyadic cubes. To see (%), for dyadic cubes, fix a dyadic cube Q in R?, and

assume, say, Q has side length [(Q)=2""=<1. Then Q contains either 0 or %"
i
®,,,-cubes. Thus it follows from condition (c) that

]

. N, o
|_<12|I V(I Ze(0(x)1Z) dx =23 - 22 '2_2'F2 Pme(22mP)
Q

_2™"N,,
=N

T(m—j)=4.

For dyadic cubes Q with the side length 2' =1 (j =0), either Q contains 0 or Gf Q
contains the unit cube in R®) N,, &,,-cubes. So

1 1 )
lal J:3 0()IGe ()5 dx =5 27mN, (22 D)
2 2j(P(22m) B 2 . _
ST(m) ‘ i = (m) T(m)=2.

v .
(The last inequality follows by our assumption on ¢.) Then a satisfies the
condition (%), for all dyadic cubes in R>.
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Fix a constant n >0, and constant A >0, we will now define some function u.
Let

n Nk <j<m-—
d; = S (D) (v(m—j)) O=j=m-—1.

1=l=m

We now define u as follows. For each cube Qe3; (0=j=m—1), let u? be a
C* function with compact support contained in Q (recall that Q =3Q) satisfying:
uP(x)=1 on U3+ @', and [Vul(x)|=C2, 0=u?=1. Define

=3 (TTa-e2)en

=1 k<l

where Q,, Q,, ..., Qy, are the collection of cubes in J;. Since only finitely many
¢ X’s can be simultaneously nonzero, |Vy;| is bounded by C2' (¢ depends only on
the dimension d), and ¥, =1 on Ugey,, Qs 4 =0 on Ugey Q. Define u=
Yot diw;, then on the set Ugey, Q\ers e only y; is not a constant, hence
|VU(X)|<d, Vi, (x)| = Cd; 2 on Uges, Q\Uqey,., Q- And

J. [Vu)? dx = Z Vu(x)?

i=0 Qej é\uoaﬁi +1 é

<C Z (d;2)*- N, -27¥

i=0
2

_i: T (a(m = ) N2
(5
1=1
Szcmil . n2 _ (7(m _]))——ZI_(E('I_—‘T].).
= (3 @) o
=1
1 1
_2cn2
(£ o)

While

m—1
u= Y d=n on U Q.

i=0 Qed,,



Some weighted norm inequalities concerning the Schrodinger operators 233

Thus v({u=n})=22"N, 2" 21 )
21(m)

Yy (7(1))'=5cA, then the inequality v({uzn})sA;l}i I\Vul2 would fail for

So if we choose m large enough, with

such functions u, which finishes the construction of the example.
It turns out the constant 2¢72 is critical in Example I in the following sense.

EXAMPLE II. For each C>2%72, there exists an increasing function ¢ with

¢(4x)=< Ce(x) for all x and j dx
1 xe(x)
satisfies the (*), condition, we have

= o, Yet for all positive function v which

j u?(x)v(x) dx SAI . Vu(x)|?

for some finite constant A (which depends on C), and for all u e C5(R?).

Construction. We will assume d =3, and C>?2. The construction is based on
the following observation: Suppose v satisfies the (*), condition, then for each
integer k=1, we have

2
SO _,

k
|—('—15| j )10y 28
Q

for each cube Q (which was obtained from the (*), condition by looking at cube
Q* containing Q with [(Q*)=2*1(Q)). Thus if we can construct some ¢ with

5 (2 2

k=0

converges uniformly, and call the function Y¥(x), then ve(*), implies ve
(*)c—2/cy For the purpose of our example, we will construct some ¢ with
i |
a
@) ,EO (4%)
b) @@ =ce(4") for each k
oc (2)" <p(4"x)

© vw=1(5

=0oC

. s 1
o converges uniformly and satisfies ¥~

Applying Theorem 2.1, we can then conclude that for such ¢

<cc,

I u?v sAjIVuI2 V ue Cg(R3).
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Construct ¢ as follows: Choose sequence of integers 0=k, <k, <--- <k, <

; with E,, =[Kkam Kom+1)s Om =[K2m+1, K2m+2] €ven and odd intervals respec-
tively for m=0,1,2,.... And define @(4*)= CEHEHE.l for ke0,, and
@(4%) = C'EHE I+ HE,_|Ck—k2 and define ¢ to be linear in between the interval
4% to 4“*'. Then (b) is satisfied by the way ¢ is defined. To check (a), we let
|Eol=1, |0o|=[C'®1+1, and |0,,|=[C®**EN+1, |E,.q| =[C*]+1 respec-
tively for m=0,1,2,.... ((x] denote the greatest integer =x.) Then

1 < 1 1
@ 2 @) D) C<—Fam CIEJHE++E, |

% m=0 keE,,
kelUE,,
0

- 1
52mz=0 Cm—1<°°

1 _ 5 _ 10 :
§ o(4%) =mzzom =oc by our choice of 0,

kelUJo,
0
And
oc 4k oo Ck—ksz|E01+-~~+lEm_ll d C|E0|+~-+|Em[
© X* ( =X X : +2 X a—
k=0 m=0 keE,, C m=0 keO,, C
- Z | ol

CIO 1+0,l+---+0, |
- 1 1 1
+mZ=O C‘01‘+'"+‘0m—1‘(1 +E+ e +——C|0m‘)

2C ( = 1) ( C )2
=C-1 mz‘oc"' =2\c1)-
Thus

k pgn
w(a) = Z (p(4 4 ) Z <p(4)

k=0

@(4*x)

for each n and Y goo——— C*

converges uniformly to ¢(x) for all x=1 while yy =¢

and

)

ne

W =2
.

cCS
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For n €0,,, we have

wa) = Z<p(4"+") y @4 ™)
k=0

k
k+“eE,"+1 C

Ck+"_k2m 2
> Z CIEJ+E,j++E,|

k
k+"eE"‘+l C

2(0.1-1) Y C e
k+n:Em+,

> lOm| Clom!Cn_k2m+z — lOmI C"—k2m+1_

Thus

1 - 1
© L 3@ L L v
"nlo”

Sizl _1

m=0 ne0,, ‘Om‘ Cn Kamss

T (CELERRR Ny
m=0 ‘Om‘ C‘Oml

C « 1
= <
C-1 mz=0 ‘Om‘

Ms

Thus ¢ and ¢ satisfies the estimates (a), (b), (c¢) and we have established the
example as desired.

Section 3

We recall that Q, is the unit dyadic cube in R® First we consider dyadic
martingales on Q,. Let 4, be the o-algebra generated by the 2nd dyadic subcubes
on Q, of sidelength 27" and let E(f, %,) be the conditional expectation of f on 4,
(i.e. E(f,%,)(x)= 1 j f where xeQ,(x) and 1(Q,(x))= 2“"). By a
|Qn(x)l Q,(x)
dyadic martingale we mean a sequence of functions {f,} from Q, to R such that f,
is §,-measurable and E(f,.;, %) =f,. Our martingales will (almost) all be L?
bounded and we denote the limit function by f. We define the martingale
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difference functions s, (n=0) by s, =f,,1—f. Thus s, is %,,,-measurable. The
square functions of the martingale {f,} is defined by

SF(x)= Y. lIxo.wS: 2

n>0

where Q,(x) is the unique dyadic cube of length 27" containing x. This is not
standard. One generally sees Sf(x)= (., E(S2Z, %.)(x))"?; this definition agrees
with ours only when d =1, although when d is fixed the two are always
comparable. Our results work out nicer with our definition of Sf; with the other
definition the ‘“}” in (3.1) below would have to be replaced by a constant
depending on d. Our result for dyadic martingales is as follows.

THEOREM 3.1. Let {f,} be a dyadic martingale on Q,<R? with limit function
f. Suppose ||Sf|l.. <. Then for A =0,

lix € Qo: f(x)— fo(x) = A} < exp (—3A2/|ISfIR). 3.1)
The proof we give for this is due to Herman Rubin; it replaces a much longer

argument of the authors. It is based on the fundamental identity of sequential
analysis in statistics.

Proof of (3.1) (Rubin). We can assume f,= 0. Fix t > 0. Define q,, : Q,— R by

n—1 -1
4, = e""(H E(e', ‘g,-)) :

i=1

These g, form a martingale! Clearly g, is %,-measurable, and we have
n -1
E(Gn+1, %)= E(tf“nﬂ(ﬂ E(e*, ‘gj)) , %)
=1

n -1
- B(ese(I1 B, ) )
=1
= E(e"(E(e>, 9.)) ', G)
= E(eﬁ", (gn)(E(etS", gn))ﬂlqn
=qn.

It follows that § g, = 1 for all n. (This is the fundamental identity of sequential



Some weighted norm inequalities concerning the Schrédinger operators 237

analysis.) Using the elementary inequalities

j e® dp <cosh (|¢|l) =exp G ||l¢IR)
valid when p is a probability measure and § ¢ du =0, we find that
E(e"™, 4)(x)=exp 31? [Ix o, SilI5)-

So [I7=1 E(e*S, 4)(x) <"/ i for all n and x, and the fundamental identity
now implies that [, e <exp Gt*||SfI2) for all n. Letting n go to = gives
A
fo, €T =exp G*||SfI2). Now take t = ISl and apply Tsebyshev’s inequality to get
(3.1).

We record some corollaries, all of which follow from Theorem 3.1 by standard
arguments.

COROLLARY 3.1. We have the good A inequality

Hx e Qy:f*(x)>2A, Sf(x)<eA}]=Cexp —% a ;:) Hx e Qq:f*(x)>A},

with C a universal constant.
Proof [1]. Define a stopping time 7, =min ({n:Y,;<, (fis1—f;)*=¢*A?%}). Let

®={Q} be the maximal dyadic cubes with fo>A. For each Qe® consider
{x € Q:f*(x)>2A, Sf(x)<eA}. If this is non-empty then fo <(1+¢)A. Also

{x € Q:f*(x)>2A, Sf(x)<eA}|=Kx € Q:f*(x)>2A and 7, = =}|
={xe Q:(f(n)—fo)*>(1—e)A}|

and [|S(f(\))ll.< €A pointwise. By (3.1) and Lemma 3.1,

Hx € Q:f*(x)>2A, Sf(x)<eA}|=Cexp (—%(—1—;;%)3&—) |Q|

and if we sum over Q we are done.
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Integrating out the good —A inequality gives the bizarre estimate

[ ew@nsepsea| aviosrm
Q Q

(4] (1]

with ¢;>0, c,<». We can also obtain the following “law of the iterated
logarithm” for dyadic martingales.

COROLLARY 3.2. If {f.} is a dyadic martingale on Q,, then

. |f,. ()| -
hlrt-l—ﬂl P S"f(x)v2loglog S™f(x) !

a.e. on the set where {f,} is unbounded. (Here (S"f(x))* =Y} lIxo.cSkIE-)

This may be proved like [6], Section 7.5 using Theorem 3.1 instead of the
central limit theorem. We omit the proof since Corollary 3.2 is a minor modifica-
tion of known results (due to W. F. Stout; see [15] and the references there).
We’re grateful to R. Banuelos and C. Mueller for pointing out the known results,

especially to Banuelos for reference [15]. We note that the corresponding lower
bound

. Il
i suP 572 loglog S™
is false in our context.

Now we prove a version of Theorem 3.1 in which the Lusin area integral
replaces S. Let

d+1

p(x)= F(T)/(*rr“’“’z)(l + |x[2)@+Dr2)

and p,(x)=t"%p(x/t), t>0, so that F(x, t) = p, *f(x) is the harmonic extension of f
to R*1, Let ¢ be the vector valued function V,p and y,(x) = t~%¢(x/t) = t V,p,(x).
For 0 <y < define

af@=([ wsonopeaya)”

1/2
(] wrrope-2ayar)
v(x)
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where I, (x) ={(y, ) eR{*":|x — y| < yt}. We then have

THEOREM 3.2. Suppose A feL”. Then

.01 [, oo o i) <o

where ¢, >0 and c, < depend on d and v.

Some remarks about this. First, P. Jones [11] (private communication) has
shown that it is possible for a function f to satisfy A, feL™, A, f¢L", for two
numbers 0<+vy, <+vy,<o. Second, regarding the proof of Theorem 3.2, it is a
reduction to the dyadic case using one of the tools available for such purposes, a
decomposition from [2] (see also [4]). This grind it out approach has the drawback
that we do not obtain a sharp (or even dimension independent) constant like the 3
in Theorem 3.1. Also it does not seem to let us replace A, by the g function. On
the other hand it does apply to square functions formed using fairly general
kernels; for example, we could take p to be a nonnegative radial Schwarz function
instead of the Poisson kernel and the same proof would work.

We note that R. Banuelos (personal communication) has proved results similar
to Theorem 3.2 by probabilistic arguments, which give sharp constants.

We give two lemmas. The first is a version of the Calderon-Torchinsky
machinery [3] and the second is a variant of a trick due to S. Janson.

LEMMA 3.1. If p>0 there is a smooth, radial function K supported in
{x :|x|=p} such that if we define q(x)=VK(x) and g.(x) =t"%q(x/t), then

lim [ @iy, aon ayZ =1t
At

for all f e L? with compact support. The limit is (say) in the L? sense.

Proof [3]. Choose K, supported in |x|=p, smooth and radial and such that
§ Ko(x)(—A)4?p(x)# 0. Let K = cK, where c is a suitable constant. Let v(£) =
Qm |€])? 2o K(te)p(t€)t dt. Then v is radial and homogeneous of degree zero,
hence constant. It follows from the Plancherel theorem that § -, v(&) dé#0;
hence we can (and do) choose ¢ so that v=1. Then

([ wrre-yam e ©-fo ek

t=>

in L?as T—0.
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Let x cR% In the next lemma and subsequently, we let * denote the set of
dyadic cubes translated by x, i.e. ¥ ={QcR?:{y:y+xeQ}e}.

LEMMA 3.2. There is a number N = N(d) with the following property: if
A <x, then the set 8={Q:Q€eJ and 1(Q)=2"} may be decomposed, &=
N @9, and there exist x, - - - xx €R? such that

If Qe® then Q is contained in a cube Q' € ¥ with 1(Q") =8I(Q). (3.1)

If Ql’ 02 G@G) and Ql % Qz, then Q; ?l'- Qé- (3~2)

Proof. By scaling we can assume A =—3. We need only obtain (3.1) since if
(3.1) holds and if JeJ™ is given there can be at most 8¢ cubes Q with Q e ¥
and Q'=1J. So we can get (3.2) by further decomposing each G®.

We first show (3.1) when d=1. Let N=2, x,=1 x,=0. If Qe® then

k—1 k
Q =( o ,E;) for some n=3, KeZ.Let Qe®" if K=0 or 1 (mod 8), Q e®?®
otherwise. Then (3.1) is clear for j=2. Suppose Qe®". We must show Q
contains no point of the form q2 " >+1, qeZ. Suppose Q did contain such a
point. We know Qc[p2 " -2 -1 [3-¢=32=(-D] for some peZ. So
2n—3
P34=73

When d >1 any Q €® is uniquely Q =I{? X - - - X I{? where each I{? cR. If
oc{l,...,d}1etE’={Qe@: I PGV if ico, [{Xc®? if i¢ o}. Let x, be the
point whose ith coordinate x, (i) satisfies x,(i)=3 if i €0, x,(i)=0 if i¢ 0. Then
the decomposition & =|J &’ and the points x,, satisfy (3.1).

+q <p+}, contradiction.

Proof of Theorem 3.2. We can assume Q=Q,, fo =0. Let ¢ € Cy with
e(x)=1 if x€5Q,, ¢(x)=0 if x¢7Q,. Let h=¢f. We must show [, e"’ =c,.
Choose K by Lemma 3.1 with p=+v/4. Form the corresponding q. Let S =
{(x, N eR**:x e Qq, t=p~'}). Write

d
h = [ ekl aye] | heho i ay{
Ri+lls

= hy(x) + hy(x).

The integrand giving h,(x) vanishes when x € Q, and t is sufficiently small.
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Hence for x € Q,,

o= [ Tl Nl dy

t=t,

sclul, | 2

t=t,

= Cllfllsmo = C A fll.

Also note yeQ, implies by standard arguments that |y, *((¢—1)f)(y)|=
Ct? ||fllemo- So for any x,

hl(x>—L e fy), ax =y dy 2|

N ‘L (W *((@ — DY), q.(x —y)) dyth‘
<|lflemo = C lA fll-

So it suffices to estimate

AGx)= L W), ale =) dy™.

For Q dyadic with I(Q)=1, let To=SN {(y, t):yeQ, %—?sts!-(—‘-?—z}.
Define Aq(x)=fr, (i *f(y), alx—y) dy . Then
A= Y Ao(x). (3.3)
1Q@)=1
It is easy to see that
Ao is supported on Q (3.4)
(3.5)

Molfipa (Q)** = CI(Q)™ @V L g *f2dydt, if 0<a<1 (say).
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The last inequality together with the choice of p implies that for x eR? fixed,

Y MolBina 1(Q**=CB?,  0<a<l

xeQ
where B =||A fl|l.. So we are reduced to proving the following.

LEMMA 3.3. If A has a decomposition (3.3) satisfying (3.4), (3.5), and (3.6)
for some a, 0<a <1, then

j ecle/B2<c2<w.
Q

(4]

Proof. Choose N, &%, {x,})’ as in Lemma 3.2 with A=1. Write A =Y A,
where A; =) geeo Ao It suffices to estimate A;, so fix j and let g(x) = A;(x +x;).
Then g =Y on=s 8> Where go =Aqo with Q and Q' related as in (3.1), (3.2).
These g satisfy (3.5), (3.6) and a stronger form of (3.4): g, is supported on Q’.
Write g, as a dyadic martingale, go =Y oo 85 where g3 is supported on Q
and constant on cubes of length 31(Q), and § g3.=0. This gives the representation
of g as dyadic martingale,

g= 2 2 83= Y g°

l(Q)=8 Q'=2Q 1(Q)=8
1(QH=8

By well-known properties of Lipschitz functions ([14]), |g3l.=
Cligolip« I(Q)™™. Let B€(0, ). If x is fixed, then

T lek= 3 (X ledh)

x€Q xeQ

=C 3 107( T leakins)

x€Q

=C Y UQP“™® Y lgolBina (Q)?*

xeQ Q'=2Q

=C Y Q" llgolfna 2 UQYP®

xeQ’ xeQeQ’

=C Y Q)" |lgolBia

xeQ’

=CB2.
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We can now apply Theorem 3.1 to conclude that [, e¥7?*<c,, so the lemma
is proved.

This finishes the proof of Theorem 3.2. Quite likely good A inequalities
analogous to Corollary 3.1 may also be obtained; however, we have not done this.
But we want to point out two immediate corollaries.

COROLLARY 3.3. If A,feL", then f belongs to the closure of L™ in BMO.

This follows from [9] and Theorem 3.2. In fact if A feL™, then f exists in
[L*, BMO},,;.: This follows from Theorem 3.2 and unpublished results of S.
Janson [10]. Using that the full gradient is invariant by the Hilbert transform we
also have the following: if F is bounded and harmonic on R% and
SUP, e S0y [VF(y, DI> dy dt <o, then f may be approximated in L norm by real
parts of H” functions. Back on R¢, if Sf denotes either A_f or Sf, we also have

COROLLARY 34. If w=0 and f are given, then

L (F—foYw=CISf L w(1+10g* )

Q

for any cube Q for which the right hand side is finite.
This follows from Theorem 3.1 or 3.2 by Young’s inequality. Note the formal

similarity between Corollary 3.4 and the (false) analogue of Theorem 2.1 where
e(x)=1+log" x.

Section 4. Appendix

In this section we show that if v =0 has the Muckenhoupt A, condition and
satisfies

1(Q)?
sup

d 4.1
oY Lv X <0 4.1)

then v has the Kerman-Sawyer property (0.10).
Recall the v is said to have A, if V € >0 there is a § >0 so that for all cubes Q
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and all measurable sets E< Q,

|E| I °

e o e
1] L"

An easy consequence of this is that there is a C <o so that
J M(xqv) dx = cj vdx VQ (4.2)
Q Q

where M is the Hardy-Littlewood maximal function. We shall assume that v
satisfies (4.1) and (4.2).

A collection of dyadic cubes {Q,} is said to satisfy the Carleson nesting
condition if there is an A <o so that for all cubes Q, from the collection, we
have:

Y lQd=AlQ.l (4.3)

Q. =Q,

It is a fact that if {Q,} has (4.3) then for all f=0is L. (R*) and all cubes Q:

T

z m L fax |oa|-CAj M(xof) dx. .9)

We wish to show that (4.1) and (4.2) imply

j (M, |va|)2dx$cj vdx 4.5)
Q

Q

1(Q)
where M,f= ilelg 0|

supremum is taken over dyadic cubes. (We may also take Q to be dyadic.) Let
R >0 be large. Let {Q}} be the maximal dyadic subcubes of Q such that

j |f| dt. It is clearly enough to prove (4.5) when the

1(QhH
1Qf| Jor

vdx >Rk (4.6)
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Then:

[ Moaora=2 (SR o) ion

Z (IQ"I L )(l—(lg—;tl)—z Lk v) QY
Ci(mj )IOH

by (4.1). Thus if the {Q}} had (4.3), then (4.2) and (4.4) would imply (4.5). They
do. By their maximality, the {Q}} satisfy:

1(Qh
|Q}

j vdx <cR¥ 4.7
Qf

where ¢ depends on the dimension d. Let Qf*' = Qf. Combining (4.6) and (4.7)
yields:

1
T vdx
Q5™ Lm {(oh)
L >cR >10 4.8
AN O o
Q1| Jor

for R large enough. This implies that:

Y QY =15|Q}

Qf*'=Q¥

And by iterating we get:
Y X lokm=a+diol
n=0 Qt*"<Q}

which is (4.3).

Remark (1). We note that at one point, namely (4.8), our argument is
extremely wasteful. This would seem to indicate the delicacy of the Kerman-
Sawyer condition.
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(2). While this paper was in preparation we learned that Sawyer has indepen-
dently found another proof that (4.1) and A., imply (0.10). Sawyer has also found
a direct proof that if 0=V =W and W has (0.10), then so does V.
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